
National Semiconductor 2900 Semiconductor Dr. Santa Clara, CA 95052 www.national.com Matt Reynolds Principal Apps LED SSL-LDC

LM3429 BUCK-BOOST Nuventix

Reference design and Evaluation PCB

The demonstration board includes a LM3429 device that converts 9VDC to 36VDC input to a 700mA constant current output designed to operate a load of three to eight series LEDs. This is a 4-layer board having input voltage and ground as the two internal planes. The design has been made assuming there are analog dimming requirements.

A bill of materials below describes the parts used on this demonstration board. A schematic and layout have also been included below along with measured performance characteristics of this demo board.

1

LM3429 NUVENTIX Schematic

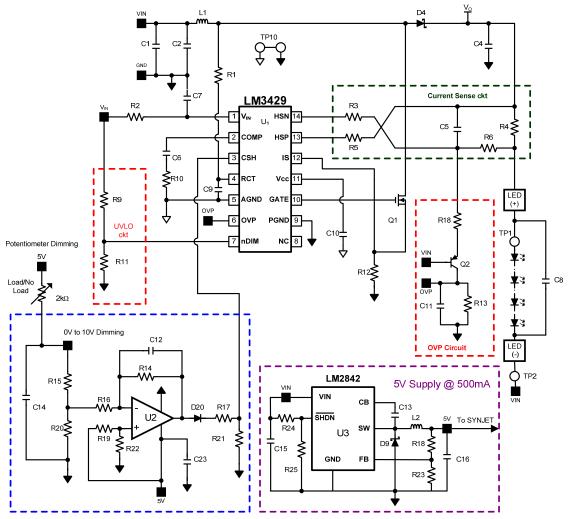


FIGURE 1: LM3429 SCHEMATIC 9VDC - 36VDC WITH ANALOG DIMMING

SETTING AVERAGE LED CURRENT

The LM3429 uses peak current-mode control to regulate the boosted output voltage. An external current sense resistor R_{SENSE} (i.e. R4) in series with the LED load is used to convert the LED current, I_{LED} , into a voltage that is sensed by HSP and HSN. HSP and HSN are the inputs to a high side sense amplifier that is used in combination with a resistor tied to CSH (pin 4) and an error amplifier to program a desired I_{LED} current.

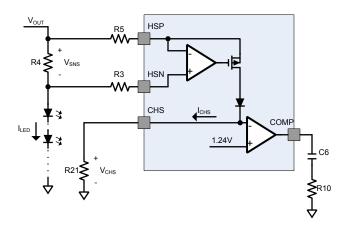


FIGURE 2: HIGH-SIDE SENSING CIRCUIT

This establishes a current gain determined by a resistor ratio consisting of R21 and R5 along with R4 as described in the equation:

$$I_{LED} = \left(\frac{R5}{R21}\right) \times \left(\frac{1.24V}{R4}\right)$$

 I_{LED} current of 500mA: R9 = 200mΩ R5 = R3 = 1kΩ R12 = 12.4KΩ

 I_{LED} current of 700mA: R4 = 150mΩ R3 = R5 = 1kΩ R21 = 11.8KΩ

Setting Switching Frequency

$$f_{_{SW}} = \frac{25}{C_{_{T}} \times R_{_{T}}} = 600 \text{kHz}$$

Choose $C_T(C9) = 1000pF$ Therefore: $R_T(R1) = 41.2k\Omega$

Calculating Input power and input current

$$\frac{P_{OUT}}{P_{IN}} = \eta$$

Therefore:

$$\frac{V_{\scriptscriptstyle OUT} \times I_{\scriptscriptstyle LED}}{V_{\scriptscriptstyle IN} \times I_{\scriptscriptstyle IN}} \!=\! \eta$$

 V_{OUT} equals $V_{LEDSTACK}$ which equals the forward voltage drop of a single LED times the number of series connected LEDs. The sense voltage across R4 (typically 100mV to 200mV) can also be added.

$$V_{OUT} = V_{LEDSTACK} = (V_{FD} \times \# \text{ of } LEDs + V_{SNS})$$

The input voltage range is usually known, and therefore the input current can easily be calculated.

$$\boldsymbol{I}_{\mathrm{IN}} = \frac{\boldsymbol{V}_{\mathrm{OUT}} \times \boldsymbol{I}_{\mathrm{LED}}}{\boldsymbol{V}_{\mathrm{IN}} \times \boldsymbol{\eta}}$$

Efficiencies can be empirically calculated on the bench, or assumed for the initial design. Designs using the Buck-Boost topology will easily achieve efficiencies between 85% and 95% depending on external component choices.

INDUCTOR SELECTION

The inductor should be chosen so that the current ripple (Δi_L) is between 35% and 50% of the average current (< I_L >) through the inductor.

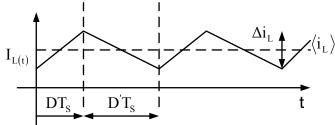


Figure 3: Inductor Current Waveform

For a given LED string voltage (V_0), the greatest peak ripple is seen when the input voltage is at its greatest magnitude. To better explain the design process of choosing an inductor, a simple example is given.

 $\label{eq:NUVENTIX} \begin{array}{l} \text{-Design Example:} \\ V_{O} \approx 6 \; X \; 3.5 \text{V} = 21 \text{V} \\ V_{\text{IN-MIN}} = 10 \text{V} \\ V_{\text{IN-NOM}} = 16 \text{V} \\ V_{\text{IN-MAX}} = 26 \text{V} \\ I_{\text{LED}} = 0.70 \text{A} \end{array}$

Buck-Boost Conversion Ratio: $\left(\frac{V_{O}}{V_{IN}}\right) \approx \left(\frac{D}{D^{'}}\right)$

Therefore:
$$D \approx \left(\frac{V_0}{V_{IN} + V_0}\right)$$

D @ V_{IN-MAX} ≈ 0.45 D @ V_{IN-MIN} = 0.68

$$f_{SW} = \left(\frac{25}{C_{t} \times R_{t}}\right) \approx 600 \text{kHz}$$
$$D = \left(\frac{t_{ON}}{t_{ON} + t_{OFF}}\right) = t_{ON} \times f_{SW}$$

Calculate average input current: The average input current is equal to the average inductor current.

5

$$\left(\frac{P_{\rm O}}{P_{\rm IN}}\right) = \eta$$

Assume efficiency = 85%

$$\left(\frac{\mathbf{V}_{\mathrm{O}} \times \mathbf{I}_{\mathrm{LED}}}{\mathbf{V}_{\mathrm{IN}} \times \mathbf{I}_{\mathrm{IN}}}\right) = 0.85$$

 $I_{IN} AVG = 1.5A @ V_{IN} = 12V$ $I_{IN} AVG = 0.75A @ V_{IN} = 24V$

Set inductor current ripple for 40% of average current.

 $\Delta I_{IN} = 1.5A \times 0.40 = 600mA (V_{IN} = 12V)$ $\Delta I_{IN} = 0.75 \times 0.40 = 300mA (V_{IN} = 24V)$

$$\begin{split} V_{\rm IN} &= L\!\!\left(\frac{di}{dt}\right) \end{split}$$
 Therefore: $L = V_{\rm IN}\!\left(\frac{dt}{di}\right) \!= V_{\rm IN}\!\left(\frac{D}{\Delta i \!\times\! f_{\rm S}}\right) \end{split}$

 $60uH @ V_{IN} = 24V$ Use standard value of 47uH

PEAK CURRENT LIMIT

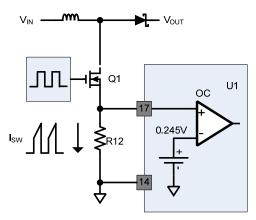
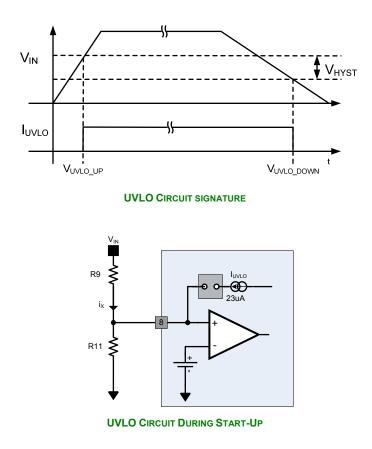


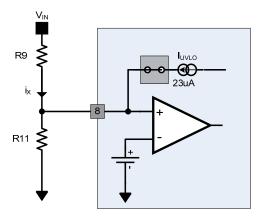
FIGURE 3: EXTERNAL $R_{\text{SENSE}}\,I_{\text{SW}}\,\text{CURRENT}\,\text{SENSE}$

$$\left(\frac{P_{OUT}}{P_{IN}}\right) = \left(\frac{V_{OUT} \times I_{LED}}{V_{IN} \times I_{IN-AVG}}\right) = \eta$$

$$I_{\text{IN-AVG}} = \left(\frac{V_{\text{OUT}} \times I_{\text{LED}}}{V_{\text{IN}} \times \eta}\right) = \left(\frac{21 \times 0.7A}{12V \times 0.85}\right) = 1.45A$$


The current limit (I_{CL}) is calculated by the equation:

$$I_{CL} = \left(\frac{0.245V}{R12}\right)$$


Substituting in the resistor value as listed in the board schematic (0.06 Ω) gives a current limit I_{CL} of approximately 4.1A.

UNDER-VOLTAGE PROTECTION

The LM3429 can be configured for under-voltage lockout (UVLO) protection with hysteresis using the dimming input nDIM and a resistor divider from input voltage to ground. UVLO protects the power devices during power supply startup and shutdown to prevent operation at voltages less than the minimum operating input voltage. The UVLO threshold is set up by the resister divider network of R9 and R11 (see figure below).

The UVLO threshold and hysteresis can be programmed completely independent of each other. UVLO hysteresis is accomplished with an internal 23µA current source that is switched on and off into the impedance of the UVLO set-point resistor divider. When the UVLO pin exceeds 1.24V, the current source is activated to instantly raise the voltage at the UVLO pin. When the UVLO pin voltage falls below the 1.24V threshold, the current source is turned off, causing the voltage at the UVLO pin to fall.

UVLO CIRCUIT DURING NORMAL OPERATION

Step 1: Choose V_{IN} voltage where converter starts to operate (V_{UV_UP}) and choose V_{IN} voltage where converter shuts down (V_{UV_DN}). V_{HYST} = (V_{UVLO_UP} - V_{UV_DN})

Step 2: Solve for resistor value R9 with the following equation.

$$R9 = \frac{V_{HYST}}{23uA}$$

Solve for resistor value R11 wit the following equation:

$$R11 = \left(\frac{R9 \times 1.24V}{V_{INUV_{UP}} - 1.24V}\right)$$

Example Calculation of UVLO with Hysterisis:

- V_{IN} start-up = $V_{UV_{UP}}$ = 7.0V
- V_{IN} shut down = $V_{UV_{DN}}$ = 4.75V

- $V_{HYST} = 7.0V 4.75V = 2.25V$
- R9 ≈ 90.9kΩ
- R11 ≈ 20.0kΩ

OVERVOLTAGE PROTECTION

An over-voltage protection (OVP) with programmable hysteresis feature is available on the LM3429 to protect the device from damage when the output voltage goes above a maximum value.

The OVP threshold is set up by the resister divider network of R11 and R18 which is referenced to the regulated output voltage (V₀). The OVP threshold and hysteresis can be programmed completely independent of each other. OVP hysteresis is accomplished with an internal 23μ A current source that is switched on and off into the impedance of the OVP set-point resistor divider. When the OVP pin exceeds 1.24V, the current source is activated to instantly raise the voltage at the OVP pin. When the OVP pin voltage falls below the 1.24V threshold, the current source is turned off, causing the voltage at the OVP pin to fall.

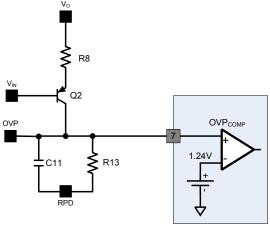


Figure 8: OVP circuit

- 1. Choose V_{OVP-UP}
- 2. Choose V_{OVP-DN}
- 3. Calculate OVP hysterisis $V_{HYST} = (V_{OVP-UP} V_{OVP-DN})$
- 4. Calculate R8.

$$R8 = \frac{V_{HYST}}{23uA}$$

The V_O OVP release point (which includes the OVP hysteresis) is described by the equation:

$$R13 = \left(\frac{R8 \times 1.24V}{V_{OVP_UP} - 1.24V}\right)$$

The evaluation board is already configured with OVP, and the V_0 OVP threshold is programmed on the evaluation board to 26V with 4V of hysteresis.

OVP hysterisis = 4V R8 = $174k\Omega$ R13 = $8.66k\Omega$

Main Switching MosFET

The maximum voltage seen across the switching MosFET (Q1) is equal to V_{IN} plus the LED stack voltage. One must rate the MosFET accordingly with sufficient margin.

 $V_{DS} > (V_{IN} + V_{LEDSTACK})$

The MosFET current rating should be greater than the average current seen by the MosFET under worst case operating conditions with sufficient margin.

 $I_{DS} > (I_{IN} \times D)$

Rectifier Diode

The output rectifier diode (D1) should be chosen accordingly.

Reverse voltage rating: $V_{D-REV} > (V_{IN}+V_{LEDSTACK})$

Average current rating" $I_{FD} > (I_{IN} \times D')$, or I_{LED}

Potentiometer Dimming: - Change the following values to create variable resistance dimming.

- Load 2kΩ Potentiometer
- R15, R16, R19, R22 = $2.0k\Omega$ resistor
- $R20 = 2.61 k\Omega$ resistor
- R14 change to 8.06kΩ resistor

0V to 10V Dimming: - Change the following values to create 0V to 10V dimming. 0V to 1V equals off, 8V to 10V is fully on, and everything in between is linear dimmed.

- No Load 2kΩ Potentiometer
- R14, R15, R16, R19, R20, R22 = 2.0kΩ resistor

Compensation

Compensation Design Criteria

- D = 0.68 (worst case scenario)
- V_{IN} = 12V
- V_O = 21V
- f_{SW} = 600 kHz
- C₀ = 22uF (ceramic)
 C8 = 0.1uF (compensation capacitor)
- $R2 = 0\Omega$ (compensation resistor)
- $R_D = 3\Omega$ (LED dynamic resistance)
- $R_{GM} = 4M\Omega$ (internal amplifier impedance)
- L = 47uH

The internal trans-conductance amplifier resistance along with C8 forms a pole at about 0.5Hz.

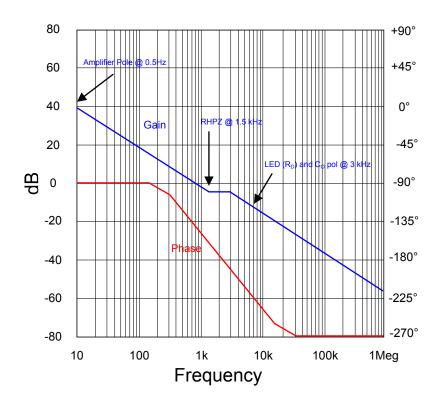
$$f_{PGM} = \frac{1}{2\pi (C8 \times R_{GM})}$$

The compensation zero formed by C8 and R2 is not present due to the fact that R2 is 0.0 Ω .

$$f_{ZGM} = \frac{1}{2\pi (C8 \times R2)}$$

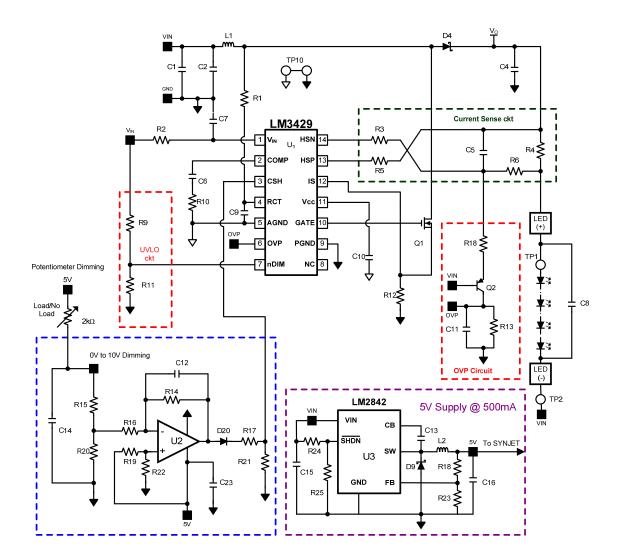
The pole associated with the output capacitor, and LED dynamic resistance is located at about 4 kHz

$$f_{\rm P1} = \frac{(1+D)}{2\pi (C_{\rm OUT} \times R_{\rm D})}$$


The V_{SNS} filter pole is set at about 160 kHz. At 160 kHz, it is far enough out in frequency that it wont have any bearing on the overall loop compensation.

$$f_{P-FLT} = \frac{1}{2\pi (C12 \times R20)}$$

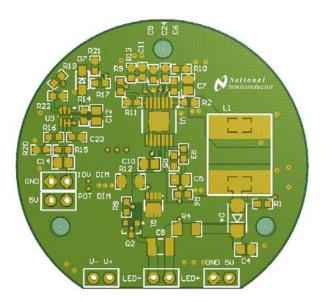
The right half plane zero frequency location is calculated to be at 1.5 kHz

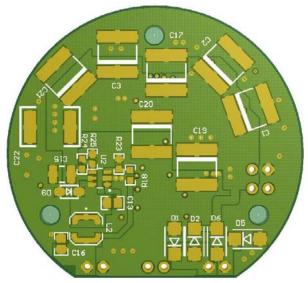

$$f_{\rm RHPZ} = \frac{\left(D^{2}R_{\rm D}\right)}{2\pi(\rm DL)}$$

The plot below shows the Gain/Phase plot for this application.

From the illustration above the loop bandwidth is 900 Hz, and the phase margin is about 40°.

One could simply drop the amplifier pole by a slight amount to gain 45° or more of phase margin. Another solution would be to decrease the inductor value slightly to push out the RHPZ.




LM3429 LED driver, Dimming, Nuventix cooler schematic

Part ID (DESC)	Part Value	MFG	Part Number
U1	Buck-Boost controller, TSSOP14	NSC	LM3429MH
C1, C2	10uF, X7R, 50V	TDK	C5750X7R1H106
C4, C5, C7	0.1uF, 0805	TDK	C2012X7R1H104K
C6	0.22uF, 0603	TDK	C1608X5R0J225K
C8 (Output Cap)	22uF 25V, 1210	Panasonic	GRM32ER61E226KE15L
С9	1000pF, 0603	TDK	C1608X7R1H102K
C10 (Vcc Cap)	2.2µF, 16V	TDK	C2012X5R1C225K
C11	47pF, 50V 0603	Panasonic	ECJ-1VC2A470J
D4	60V 2A SMA	ST Micro	STPS2L60A
L1	47uH	Coilcraft	MSS1038-473MLB
Q1	Power-PAK 60V	Vishay	SI7414DN
Q2	PNP Small Signal XSTR SOT23	Fairchild	MMBT3906
R1 (RCT Res)	41.2kΩ, 0603, 1%	Vishay	CRCW06034122F
R2, R6, R10	10Ω, 0603, 1%	Vishay	CRCW060310R0F
R3, R5 (HSP, HSN)	1kΩ, 0603, 1%	Vishay	CRCW06031001F
R4 (I _{LED} SNS Res)	0.15Ω, 1206	Vishay	WSL1206R1500FEA
R8 (OVP Res)	174kΩ, 0603, 1%	Vishay	CRCW06031743F
R9 (UVLO Res)	90.9kΩ, 0603, 1%	Vishay	CRCW06039092F
R11 (UVLO Res)	20.0kΩ, 0603, 1%	Vishay	CRCW06032002F
R12 (Mosfet SNS Res)	0.06Ω, 1206	Vishay	WSL2512R0600FEA
R13 (OVP)	8.66kΩ, 0603, 1%	Vishay	CRCW06038661F
R21 (CSH Res)	11.82kΩ, 0603, 1%	Vishay	CRCW060311822F
Dimming Circuit			
U2	SOT23-6	NSC	LMH6723MF
C12,C14,C23	0.1uF, 0805	TDK	C2012X7R1H104K
C24	No load		
D20	SOD123	Diodes Inc	1N4148W-7-F
R14	8.06kΩ, 0603, 1%	TDK	CRCW06038061F
R15, R16, R19, R22	2.0kΩ, 0603, 1%	TDK	CRCW06032001F
R17	22.1kΩ, 0603, 1%	TDK	CRCW06032212F
R20	2.61kΩ, 0603, 1%	TDK	CRCW06032611F
LM2842 Circuit			
U3	TSOT (1.25MHz), 600mA	NSC	LM2842YMK-ADJL
D9	40V 1A SMA	Diodes Inc	B140 -13
C15	4.7uF 1210, 50V	Murata	GRM32ER71H475KA88L
C16	47uF 6.3V	Kemet	C0805C476M9PACTU
C13	0.1uF, 0603, 16V	TDK	C1608X7R1C104K
L2	600mA	Coilcraft	LPS4018-153
R18	5.62kΩ, 0603, 1%	TDK	CRCW06035621F
R23	1.02kΩ, 0603, 1%	TDK	CRCW06031021F
R24	69.8kΩ, 0603, 1%	TDK	CRCW06036982F
R25	10.0kΩ, 0603, 1%	TDK	CRCW06031002F
V _{IN} , GND, LED+, LED-	Connector	Keystone	575-8
Test Points	Connector	Keystone	1502-2
J1, J3	Jumper	Molex	22-28-4023

LM3429 Buck-Boost: High Side Current Sense (2kΩ Potentiometer Dimming)

Top and Bottom Layers

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated