## Functional Safety Information LM25141-Q1 Functional Safety FIT Rate, FMD and Pin FMA

# **TEXAS INSTRUMENTS**

### **Table of Contents**

| 1 Overview                                      | 2 |
|-------------------------------------------------|---|
| 2 Functional Safety Failure In Time (FIT) Rates | 3 |
| 3 Failure Mode Distribution (FMD)               |   |
| 4 Pin Failure Mode Analysis (Pin FMA)           |   |
| 5 Revision History                              |   |
| · · · · · ·                                     |   |

### Trademarks

All trademarks are the property of their respective owners.

1

2

### 1 Overview

This document contains information for LM25141-Q1 (VQFN package) to aid in a functional safety system design. Information provided are:

- Functional Safety Failure In Time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device
- Pin failure mode analysis (Pin FMA)

Figure 1-1 shows the device functional block diagram for reference.




Figure 1-1. Functional Block Diagram

LM25141-Q1 was developed using a quality-managed development process, but was not developed in accordance with the IEC 61508 or ISO 26262 standards.





### 2 Functional Safety Failure In Time (FIT) Rates

This section provides Functional Safety Failure In Time (FIT) rates for LM25141-Q1 based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

#### Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

| FIT IEC TR 62380 / ISO 26262 | FIT (Failures Per 10 <sup>9</sup> Hours) |  |  |  |
|------------------------------|------------------------------------------|--|--|--|
| Total Component FIT Rate     | 15                                       |  |  |  |
| Die FIT Rate                 | 4                                        |  |  |  |
| Package FIT Rate             | 11                                       |  |  |  |

The failure rate and mission profile information in Table 2-1 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- Mission Profile: Motor Control from Table 11
- Power dissipation: 750 mW
- Climate type: World-wide Table 8
- Package factor (lambda 3): Table 17b
- Substrate Material: FR4
- EOS FIT rate assumed: 0 FIT

#### Table 2-2. Component Failure Rates per Siemens Norm SN 29500-2

| Table | Table Category                                    |        | Reference Virtual T <sub>J</sub> |
|-------|---------------------------------------------------|--------|----------------------------------|
| 5     | CMOS/BICMOS<br>ASICs Analog & Mixed > 50-V supply | 32 FIT | 55°C                             |

The Reference FIT Rate and Reference Virtual  $T_J$  (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.



### 3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for LM25141-Q1 in Table 3-1 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of sub-circuit function size and complexity and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures due to misuse or overstress.

| Die Failure Modes                               | Failure Mode Distribution (%) |
|-------------------------------------------------|-------------------------------|
| No output voltage                               | 60%                           |
| Output not in specification – voltage or timing | 25%                           |
| Gate driver stuck on                            | 5%                            |
| PG false trip or fails to trip                  | 5%                            |
| Short circuit any two pins                      | 5%                            |

#### Table 3-1. Die Failure Modes and Distribution



### 4 Pin Failure Mode Analysis (Pin FMA)

This section provides a Failure Mode Analysis (FMA) for the pins of the LM25141-Q1. The failure modes covered in this document include the typical pin-by-pin failure scenarios:

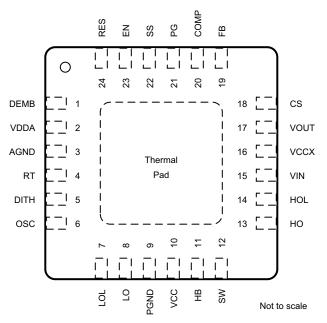

- Pin short-circuited to Ground (see Table 4-2)
- Pin open-circuited (see Table 4-3)
- Pin short-circuited to an adjacent pin (see Table 4-4)
- Pin short-circuit to VIN (see Table 4-5)

Table 4-2 through Table 4-5 also indicate how these pin conditions can affect the device as per the failure effects classification in Table 4-1.

| Class | Failure Effects                                             |
|-------|-------------------------------------------------------------|
| A     | Potential device damage that affects functionality          |
| В     | No device damage, but loss of functionality                 |
| С     | No device damage, but performance degradation               |
| D     | No device damage, no impact to functionality or performance |

#### Table 4-1. TI Classification of Failure Effects

Figure 4-1 shows the LM25141-Q1 pin diagram. For a detailed description of the device pins, please refer to the *Pin Configuration and Functions* section in the LM25141-Q1 data sheet.





Following are the assumptions of use and the device configuration assumed for the pin FMA in this section:

- Application circuit as per LM25141-Q1 data sheet is used
- PG is pulled up to VOUT

| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                                                       | Failure<br>Effect<br>Class |
|----------|---------|------------------------------------------------------------------------------------------------------------------|----------------------------|
| DEMB     | 1       | V <sub>OUT</sub> = expected, DEMB mode only, and no synchronization is available.                                | С                          |
| DEMD     |         | If DEMB = VDDA, V <sub>OUT</sub> = 0 V. Loaded VCC output                                                        | В                          |
| VDDA     | 2       | V <sub>OUT</sub> = 0 V. No switching. Loaded VCC output                                                          | В                          |
| AGND     | 3       | AGND is GND. V <sub>OUT</sub> = expected                                                                         | D                          |
| RT       | 4       | Normal operation. V <sub>OUT</sub> = expected. F <sub>SW</sub> defaults to 2.2 MHz or 440 kHz, depending on OSC. | С                          |
| DITH     | 5       | Dither disabled. V <sub>OUT</sub> = expected                                                                     | С                          |
| osc      | 6       | If OSC = GND, then F <sub>SW</sub> = 440 kHz. V <sub>OUT</sub> = expected                                        | С                          |
| 030      | 0       | If OSC = VDDA, then V <sub>OUT</sub> = 0 V. Loaded VCC output                                                    |                            |
| LOL      | 7       | V <sub>OUT</sub> = 0 V. The VCC regulator is loaded to current limit.                                            | В                          |
| LO       | 8       | V <sub>OUT</sub> = 0 V. The VCC regulator is loaded to current limit.                                            | В                          |
| PGND     | 9       | PGND is GND. V <sub>OUT</sub> = expected                                                                         | D                          |
| VCC      | 10      | V <sub>OUT</sub> = 0 V. The VCC regulator is loaded to current limit.                                            | В                          |
| HB       | 11      | V <sub>OUT</sub> = 0 V. The VCC regulator is loaded to current limit.                                            | В                          |
| SW       | 12      | V <sub>OUT</sub> = 0 V. Excessive current from VIN                                                               | В                          |
| НО       | 13      | V <sub>OUT</sub> = 0 V. High-side MOSFET cannot be turned on.                                                    | В                          |
| HOL      | 14      | V <sub>OUT</sub> = 0 V. High-side MOSFET cannot be turned on.                                                    | В                          |
| VIN      | 15      | V <sub>OUT</sub> = 0 V                                                                                           | В                          |
| VCCX     | 16      | V <sub>OUT</sub> = expected. The internal VCC regulator provides bias voltage.                                   | С                          |
| VOUT     | 17      | V <sub>OUT</sub> = 0 V. Current limit reached and hiccup mode occurs.                                            | В                          |
| CS       | 18      | V <sub>OUT</sub> = 0 V                                                                                           | В                          |
|          | If      | If FB = VDDA, then V <sub>OUT</sub> = 0 V.                                                                       | D                          |
| FB       | 19      | If FB = GND, then $V_{OUT}$ = 5 V.                                                                               | В                          |
| COMP     | 20      | V <sub>OUT</sub> = 0 V                                                                                           | В                          |
| PG       | 21      | V <sub>PG</sub> = 0 V. V <sub>OUT</sub> = expected                                                               | С                          |
| SS       | 22      | V <sub>OUT</sub> = 0 V                                                                                           | С                          |
| EN       | 23      | V <sub>OUT</sub> = 0 V. The LM25141-Q1 is disabled and enters shutdown.                                          | С                          |
| RES      | 24      | V <sub>OUT</sub> = expected. The LM25141-Q1 cannot exit hiccup mode.                                             | С                          |

#### Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground

#### Table 4-3. Pin FMA for Device Pins Open-Circuited

| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                              | Failure<br>Effect<br>Class |
|----------|---------|-----------------------------------------------------------------------------------------|----------------------------|
| DEMB     | 1       | Diode emulation/FPWM mode undefined. V <sub>OUT</sub> = expected, erratic switching     | С                          |
| VDDA     | 2       | V <sub>OUT</sub> = 0 V. Poor noise immunity                                             | С                          |
| AGND     | 3       | V <sub>OUT</sub> = 0 V                                                                  | В                          |
| RT       | 4       | Normal operation. Frequency modulation feature is disabled. V <sub>OUT</sub> = expected | С                          |
| DITH     | 5       | V <sub>OUT</sub> = expected                                                             | С                          |
| OSC      | 6       | F <sub>SW</sub> 440 kHz or 2.2 MHz. V <sub>OUT</sub> = expected                         | С                          |
| LOL      | 7       | V <sub>OUT</sub> = 0 V. No discharge path for low-side MOSFET gate                      | В                          |
| LO       | 8       | V <sub>OUT</sub> = expected. Lower efficiency                                           | С                          |
| PGND     | 9       | V <sub>OUT</sub> = 0 V. Uncontrolled behavior because of floating ground                | В                          |
| VCC      | 10      | V <sub>OUT</sub> = 0 V                                                                  | В                          |
| HB       | 11      | V <sub>OUT</sub> = 0 V. High-side gate drive floating                                   | В                          |
| SW       | 12      | V <sub>OUT</sub> = VIN. High-side FET control floating                                  | В                          |
| НО       | 13      | V <sub>OUT</sub> = 0 V. Does not regulate                                               | В                          |
| HOL      | 14      | V <sub>OUT</sub> = VIN. Does not regulate. Excessive current from VIN                   | В                          |
| VIN      | 15      | V <sub>OUT</sub> = 0 V                                                                  | В                          |

6

| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                                            | Failure<br>Effect<br>Class |
|----------|---------|-------------------------------------------------------------------------------------------------------|----------------------------|
| VCCX     | 16      | V <sub>OUT</sub> = expected                                                                           | D                          |
| VOUT     | 17      | V <sub>OUT</sub> = oscillation. Does not regulate                                                     | В                          |
| CS       | 18      | V <sub>OUT</sub> = oscillation. No overcurrent or current sense information for current mode control. | В                          |
| FB       | 19      | V <sub>OUT</sub> does not regulate. The controller is configured for adjustable output.               | В                          |
| COMP     | 20      | V <sub>OUT</sub> = oscillation. Does not regulate                                                     | В                          |
| PG       | 21      | V <sub>OUT</sub> = expected. No PG information                                                        | С                          |
| SS       | 22      | V <sub>OUT</sub> = expected                                                                           | D                          |
| EN       | 23      | V <sub>OUT</sub> = 0 V                                                                                | В                          |
| RES      | 24      | V <sub>OUT</sub> = expected. Exits hiccup mode quickly because low parasitic capacitor value.         | C                          |

#### Table 4-3. Pin FMA for Device Pins Open-Circuited (continued)

### Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

| Pin Name | Pin No. | Shorted To | Description of Potential Failure Effect(s)                                                              | Failure<br>Effect<br>Class |
|----------|---------|------------|---------------------------------------------------------------------------------------------------------|----------------------------|
| DEMB     | 1       | VDDA       | V <sub>OUT</sub> = regulation, normal operation, and FPWM mode is enabled.                              | С                          |
| VDDA     | 2       | AGND       | V <sub>OUT</sub> = 0 V                                                                                  | В                          |
| AGND     | 3       | RT         | V <sub>OUT</sub> = regulation. Frequency modulation is disabled.                                        | С                          |
| RT       | 4       | DITH       | V <sub>OUT</sub> = regulation. Frequency modulation is disabled.                                        | С                          |
| DITH     | 5       | OSC        | V <sub>OUT</sub> = regulation. F <sub>SW</sub> = 440 kHz                                                | С                          |
| OSC      | 6       | LOL        | V <sub>OUT</sub> = unregulated                                                                          | В                          |
| LOL      | 7       | LO         | V <sub>OUT</sub> = expected                                                                             | С                          |
| LO       | 8       | PGND       | V <sub>OUT</sub> = 0 V                                                                                  | В                          |
| PGND     | 9       | VCC        | V <sub>OUT</sub> = 0 V                                                                                  | В                          |
| VCC      | 10      | HB         | V <sub>OUT</sub> = 0 V                                                                                  | В                          |
| HB       | 11      | SW         | V <sub>OUT</sub> = 0 V. The VCC regulator is in current limit.                                          | В                          |
| SW       | 12      | НО         | V <sub>OUT</sub> = 0 V                                                                                  | В                          |
| HO       | 13      | HOL        | V <sub>OUT</sub> = expected                                                                             | В                          |
| HOL      | 14      | VIN        | V <sub>OUT</sub> = 0 V                                                                                  | A                          |
| VIN      | 15      | VCCX       | If $V_{VIN} > 6.5$ V, then $V_{OUT} = 0$ V. Exceeds the VCCX absolute maximum ratings                   | A                          |
| VCCX     | 16      | VOUT       | V <sub>OUT</sub> = expected                                                                             | D                          |
| VUUX     | 10      | 0001       | If $V_{OUT}$ is > 6.5 V, then it exceeds the VCCX absolute maximum rating.                              | A                          |
| VOUT     | 17      | CS         | $V_{\text{OUT}}$ cannot regulate, current limit is disabled, and there is no current sense information. | В                          |
| CS       | 18      | FB         | If FB = VDDA, then $V_{OUT}$ = 3.3 V.                                                                   | В                          |
| 03       | 10      | FD         | If FB = GND, then V <sub>OUT</sub> = 0 V. Excessive current from VIN                                    | В                          |
| FB       | 19      | COMP       | If FB = VDDA, then V <sub>OUT</sub> = VIN.                                                              | A                          |
| ГD       | 19      | CONF       | If FB = GND, then $V_{OUT}$ = 0 V.                                                                      | В                          |
| COMP     | 20      | PG         | V <sub>OUT</sub> = 0 V                                                                                  | В                          |
| PG       | 21      | SS         | V <sub>OUT</sub> = 0 V                                                                                  | В                          |
| SS       | 22      | EN         | If $V_{EN}$ > 6.5 V, then the pin exceeds the absolute maximum rating of the SS pin. $V_{OUT}$ = 0 V    | A                          |
| EN       | 23      | RES        | If $V_{EN}$ > 6.5 V, then the pin exceeds the absolute maximum rating of the SS pin. $V_{OUT}$ = 0 V    | A                          |
| RES      | 24      | DEMB       | If DEMB = GND, $V_{OUT}$ = regulation, then the pin does not restart if current limit is reached.       | В                          |
| NLO      | 24      |            | If DEMB = VDDA, then V <sub>OUT</sub> = regulation. No hiccup mode                                      | В                          |

7

| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                                                        | Failure<br>Effect<br>Class |
|----------|---------|-------------------------------------------------------------------------------------------------------------------|----------------------------|
|          |         | If DEMB = GND, then V <sub>OUT</sub> = 0 V. Excessive current for VIN                                             | В                          |
| DEMB     | 1       | If DEMB = VDDA and $V_{VIN}$ < 6.5 V, then $V_{OUT}$ = expected and there is erratic switching.                   | В                          |
|          |         | If $V_{VIN}$ > 6.5 V and exceeds the maximum rating of the DEMP pin, the device is damaged.                       | А                          |
| VDDA     | 2       | If $V_{VIN}$ > 6.5 V, $V_{OUT}$ = 0 V, and exceeds the maximum rating of the VDDA pin, the device is damaged.     | A                          |
| VDDA     | 2       | If $V_{VIN}$ < 6.5 V, then $V_{OUT}$ = expected.                                                                  | D                          |
| AGND     | 3       | High VIN current. V <sub>OUT</sub> = 0 V                                                                          | В                          |
| RT       | 4       | If $V_{VIN} < 6.5 V$ , then $V_{OUT} = 0 V$ .                                                                     | В                          |
|          | 4       | If $V_{VIN}$ > 6.5 V and exceeds the maximum ratings, then the device is damaged.                                 | A                          |
| DITH     | 5       | If V <sub>VIN</sub> > 6.5 V, the device is damaged.                                                               | A                          |
|          | 5       | If $V_{VIN}$ < 6.5 V, <sub>OUT</sub> = expected. No spread spectrum                                               | С                          |
|          |         | If OSC = GND and high VIN current, then V <sub>OUT</sub> = 0 V.                                                   | В                          |
| OSC      | 6       | If OSC = VDDA, VIN > 6.5 V, the device is damaged, and $V_{OUT} = 0$ V.                                           | A                          |
|          |         | If OSC = VDDA, VIN < 6.5 V, $V_{OUT}$ = expected, and there is erratic switching.                                 | С                          |
|          | 7       | If $V_{VIN}$ < 6.5 V, $V_{OUT}$ = 0 V and there is excessive current from VIN.                                    | В                          |
| LOL      | 7       | If $V_{VIN} > 6.5 V$ , exceeds the maximum ratings for the LO pin and the device is damaged.                      | А                          |
| 10       | 0       | If $V_{VIN}$ < 6.5 V, $V_{OUT}$ = 0 V and there is excessive current from VIN.                                    | В                          |
| LO       | 8       | If V <sub>VIN</sub> > 6.5 V, exceeds the maximum ratings for the LOL pin, the device is damaged                   | A                          |
| PGND     | 9       | V <sub>OUT</sub> = 0 V. Excessive current from VIN                                                                | В                          |
|          |         | If $V_{VIN}$ < 6.5 V, then $V_{OUT}$ = expected.                                                                  | D                          |
| VCC      | 10      | If V <sub>VIN</sub> > 6.5 V, exceeds the maximum ratings and the device is damaged.                               | A                          |
|          | 11      | If $V_{VIN}$ < 6.5 V, then $V_{OUT}$ = expected and there is erratic switching.                                   | В                          |
| HB       |         | If $V_{VIN}$ > 6.5 V, exceeds the maximum rating the device is damaged and $V_{OUT}$ = VIN.                       | A                          |
| SW       | 12      | V <sub>OUT</sub> = VIN. Excessive current from VIN                                                                | A                          |
|          |         | If V <sub>VIN</sub> < 6.5 V, V <sub>OUT</sub> drops lower than VIN, no switching, and excessive current from VIN. | В                          |
| НО       | 13      | If $V_{VIN}$ > 6.5 V, exceeds maximum ratings of the HO pin, the device is damaged, and $V_{OUT}$ = VIN.          | A                          |
|          |         | If V <sub>VIN</sub> < 6.5 V, V <sub>OUT</sub> drops lower than VIN, no switching, and excessive current from VIN. |                            |
| HOL      | 14      | If $V_{VIN}$ > 6.5 V, exceeds maximum ratings of the HO pin, the device is damaged, and $V_{OUT}$ = VIN.          | — В                        |
| VIN      | 15      | N/A                                                                                                               | В                          |
|          |         | For VCCX = VOUT, $V_{IN}$ < 6.5 V and $V_{OUT}$ = VIN.                                                            | В                          |
| VCCX     | 16      | If V <sub>VIN</sub> > 6.5 V, it exceeds the VCCX pin maximum rated voltage and the LM25141-Q1 is damaged.         | A                          |
|          |         | If V <sub>VIN</sub> < 15.5 V, VOUT = VIN.                                                                         | В                          |
| VOUT     | 17      | If V <sub>VIN</sub> > 15.5 V and exceeds the maximum rating, the LM25141-Q1 is damaged.                           | A                          |
|          |         | V <sub>VIN</sub> < 6.5 V. V <sub>OUT</sub> = VIN                                                                  | В                          |
| CS       |         | If V <sub>VIN</sub> > 15.5 V and exceeds the maximum rating, the LM25141-Q1 is damaged.                           | A                          |
|          |         | If V <sub>VIN</sub> < 6.5 V, FB = VDDA, then V <sub>OUT</sub> = expected.                                         | В                          |
| FB       | 19      | If $V_{VIN} < 6.5$ V, FB = GND, then $V_{OUT} = 0$ V. Excessive current from VIN                                  | В                          |
|          |         | If $V_{VIN} > 6.5$ V and exceeds the maximum ratings, the LM25141-Q1 is damaged.                                  | A                          |
| COMP     |         | If $V_{VIN} > 5$ V and $< 6.5$ V, $V_{OUT} = 0$ V                                                                 | В                          |
|          | 20      | If $V_{VIN} > 6.5$ V and exceeds the maximum ratings, the LM25141-Q1 is damaged.                                  | A                          |
|          |         | If V <sub>VIN</sub> < 6.5 V, V <sub>OUT</sub> = expected and PG forced high.                                      | В                          |
| PG       | 21      | If $V_{VIN} > 6.5$ V and exceeds the maximum ratings, the LM25141-Q1 is damaged.                                  | A                          |
|          |         | If $V_{VIN} < 6.5 V$ , then $V_{OUT}$ = expected.                                                                 | D                          |
| SS       | 22      | If $V_{VIN} > 6.5$ V and exceeds the maximum ratings, the LM25141-Q1 is damaged.                                  | A                          |
| EN       | 23      | V <sub>OUT</sub> = expected                                                                                       | D                          |

#### Table 4-5. Pin FMA for Device Pins Short-Circuited to VIN



| Pin Name | Pin No. | Description of Potential Failure Effect(s)                                       | Failure<br>Effect<br>Class |
|----------|---------|----------------------------------------------------------------------------------|----------------------------|
| RES      | 24      | If $V_{VIN}$ < 6.5 V, $V_{OUT}$ = expected. No hiccup mode                       | С                          |
| INES     |         | If $V_{VIN}$ > 6.5 V and exceeds the maximum ratings, the LM25141-Q1 is damaged. | A                          |

#### Table 4-5. Pin FMA for Device Pins Short-Circuited to VIN (continued)

### **5 Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| CI | hanges from Revision * (December 2019) to Revision A (May 2022)                                | Page |
|----|------------------------------------------------------------------------------------------------|------|
| •  | Updated the numbering format for tables, figures, and cross-references throughout the document | 3    |
| •  | Updated document to new pin FMA template                                                       | 3    |

### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated