
USBN9603,USBN9604

AN-1222 USBN9603/4 - Increased Data Transfer Rate Using Ping-Pong Buffering

Literature Number: SNOA417

© 2002 National Semiconductor Corporation www.national.com

U
S

B
N

9603/4 - Increased D
ata Transfer R

ate using P
ing-P

ong B
uffering

A
N

-1222

The National Semiconductor USBN9603/4 has multiple
endpoints to exchange data with the host. Normally, FIFO
data transmission or reception is set up using one endpoint
for each pipe. However, allocating two, same-direction,
endpoints to one pipe is an effective way to increase the
data transfer rate because the second FIFO is filled while
the contents of the first are being transmitted.

This data buffering method is called ping-pong buffering.

1.0 Using two Endpoints for One Pipe
This Application Note describes the two-endpoint case,
using endpoints EP1 (TXFIFO-1) and EP3 (TXFIFO-2) for
transmitting, and EP2 (RXFIFO-1) and EP4 (RXFIFO-2) for
receiving data to/from the host. For simplicity, the packet
data size is the same as the FIFO length (64 bytes each).

During the enumeration process, when the node receives a
SET_CONFIGURATION device request, the firmware
enables the related endpoint. At this time the EP1/EP3 and
EP2/EP4 pairs are each assigned the identical endpoint
address by the EPCx.EP[3:0] control bits.

The USBN9603/4 has a built-in priority scheme, where the
endpoint with the lower number gets the response and the
data, if there are multiple endpoints of the same type pro-
grammed to the same endpoint number.

It is assumed that another firmware task prepares the
transmission data for Buffer-1 (for EP1) and Buffer-2 (for
EP3) data buffers. Similarly, it is assumed that another pro-
gram task handles the data retrieved from Buffer-1 (for
EP2) and Buffer-2 (for EP4).

Figure 1-1 shows a two-pipe connection between a host
and a USB device.

Figure 1-1. Two-pipe Connection

Host

Client
Software

Buffer

Buffer

Host Side USB Logical Device Side

Interface

Data0 (toggle clear)

Data1 (toggle set)

Buffer 1

Buffer 2

TXFIFO-1 (EP1)

TXFIFO-2 (EP3)

Data0 (toggle clear)

Data1 (toggle set)

Buffer 1

Buffer 2

RXFIFO-1 (EP2)

RXFIFO-2 (EP4)
Pipe

Pipe

National Semiconductor is a registered trademark of National Semiconductor Corporation.

For a complete listing of National Semiconductor trademarks, please visit www.national.com/trademarks.

USBN9603/4 - Increased Data
Transfer Rate using Ping-Pong
Buffering

National Semiconductor
Application Note 1222
March 2002
Revision 1.0

www.national.com 2 Revision 1.0

U
S

B
N

96
03

/4 2.0 Data Transmission
The data packet request from the host uses IN-token with a
combined node and endpoint address. There are various
ways to move the transmission data from the local area
into the USBN9603/4 FIFO, depending on the user's firm-
ware. In this Application Note this data filling is performed
in the main flow of the firmware, and the ping-pong buffer-
ing control is processed in each Tx event interrupt service.

2.1 MAIN FLOW
Figure 2-1 shows the data transmission process in the firm-
ware main flow. Two flags, UPDATE1 and UPDATE2, com-
municate between the main flow and the Tx event interrupt

service. When UPDATE1 is cleared (0) the transmission
data is already set in the endpoint, when set (1) the FIFO
needs to be filled with the next data.

UPDATE2 behaves in a similar manner.

The USB packet transaction format is assumed to be
BULK and INTERRUPT. (The TOGGLE bit has a different
meaning for the ISOCHRONOUS format of USBN9603/4.
See Section 7.2.22 of the USBN9603/USBN9604 Univer-
sal Serial Bus Full Speed Node Controller with Enhanced
DMA Support Datasheet.)

Figure 2-1. FIFO Data Filling in Main Flow

MAIN PROCESS

UPDATE1 flag ON?

UPDATE2 flag ON?

Flush TXFIFO-1

Set data retrieved from Buffer-1
into TXFIFO-1

EP1: Set LAST & TX_EN bits

Clear UPDATE1 flag

Flush TXFIFO-2

Set data retrieved from Buffer-2
into TXFIFO-2

EP3: Set TOGGLE, LAST & TX_EN bits

Clear UPDATE2 flag

YES

NO

YES

NO

To other MAIN part

Revision 1.0 3 www.national.com

U
S

B
N

9603/4
2.1.1 FIFO data filling in the Main Flow.
First, EP1 is flushed and filled with data, and the LAST and
TX_EN bits are set. The process is then repeated for EP3,
the TOGGLE bit is also set.

For the USBN9603/4, the firmware must use the TOGGLE
bit to detect, and recover from, transmitting errors at the
host side.

However, when using ping-pong buffering, the firmware
does not need to consider the toggle process because
each endpoint uses its own, dedicated, toggle value.

(In this case, EP1 is for data0 and EP3 is for data1 but of
course this is user application dependent.)

EP1 and EP3 are assigned the identical endpoint address
for transmitting so the USBN9603/4 responds from the
lower address number (EP1) at the first received IN-token.
After EP1 transmits the contents of TXFIFO-1, the
USBN9603/4 generates a transmission (Tx) event inter-
rupt.

Figure 2-2. EP1 Tx Event Interrupt Service

2.2 TX EVENT INTERRUPT FLOW
Figure 2-2 shows the EP1 Tx event interrupt service flow.
First, firmware reads the TXS1 status register and confirms
the condition of TX_DONE and ACK_STAT bits. After the
USBN9603/4 has sent all FIFO content to the USB bus, the
host returns the ACK signal if the data has been received
without error. The ACK_STAT bit reflects the ACK signal,
and the host responds within 16 bit times (Full Speed
device) as defined in the Universal Serial Bus Specification
1.1. The USBN9603/4 takes care of this 16 bit time inter-
nally so firmware only reads the status register and checks
both TX_DONE and ACK_STAT bit conditions.

If ACK_STAT is still clear, it can not determine whether the
previously sent packet was correctly received at the host or
was received with errors. This is an error transaction so
the node firmware should prepare, in TXFIFO-1, the same
data content as was sent before. A useful feature of the
USBN9603/4 enables re-filling the same data into the
FIFO. The last data exists in the FIFO so setting TXCx.RFF
bit readies to send the data with adjusting internal FIFO
data pointer.

When ACK_STAT is set the last transaction completes with
no error, so firmware disables EP1 to prevent NAKing the
next IN-token from the host. EP1 can not recognize the
host endpoint address, as it is disabled at this stage, so the
reply to the next IN-token is from EP3, which has the same

TX_1

Read TXS1 status register

NO

NO

YES

YES

TX_DONE = 1 ?

ACK_STAT = 1 ?

Disable EP1 to prevent NAKing from
next IN token sent from host

UPDATE1 flag ON

Set TXC1.RFF bit to send current same
data in TXFIFO-1 at next IN token

EP1: Set LAST & TX_EN bits

To other TX_1 service

www.national.com 4 Revision 1.0

U
S

B
N

96
03

/4 endpoint address. Firmware sets the UPDATE1 flag for the
next data filling into TXFIFO-1 in the main flow.

Figure 2-3 shows the EP3 Tx event interrupt service flow.
As for EP1, the firmware first reads the TXS2 status regis-
ter and checks the condition of the TX_DONE and
ACK_STAT bits. If the last transaction completed with
errors, firmware must re-fill TXFIFO-2 with the same con-
tents. This process is the same as for EP1 with one differ-
ence, the firmware must set the TOGGLE bit. (As

described in 2.1, EP3 is the endpoint with TOGGLE set
(data1)).

If the previous transaction ends without error, the firmware
enables EP1 again, so the reply to the next IN-token is
again from EP1. EP3 is now empty, so setting the
UPDATE2 flag fills it with the next data from the main flow.

Figure 2-3. EP3 Tx Event Interrupt Service

3.0 Data Reception
The data packet transfer from the host uses OUT-token
with node address and endpoint address combination. For
the purposes of this Application Note, we assume that data
retrieval from the FIFO to local memory, and related flow
control, is executed in the USBN9603/4 data reception (Rx)
event interrupt service routine.

3.1 RX EVENT INTERRUPT FLOW
Figure 3-1 shows the data reception process in EP2 Rx
event interrupt service flow. First, firmware reads the RXS1
status register and confirms that there are no errors and
that all the data sent by the host has been received.

If the RXS1 status register indicates an error, or incomplete
data reception, the USBN9603/4 does not return the hand-
shake status (ACK or NAK) and the host repeats the last
procedure. Firmware prepares to receive a packet from the
host by flushing RXFIFO-1 and setting TX_EN for the next
OUT-token and data.

As described in Section 2.1, this Application Note uses two
endpoints and assigns a separate TOGGLE value to each.

In this case, EP2 is assumed TOGGLE clear (data0) and
EP4 is assumed TOGGLE set (data1).

When the status indicates no error, the firmware checks
the TOGGLE bit:

TX_2

Read TXS2 status register

NO

NO

YES

YES

TX_DONE = 1 ?

ACK_STAT = 1 ?

UPDATE2 flag ON

Set TXC2.RFF bit to send current same
data in TXFIFO-2 at next IN token

EP3: Set TOGGLE, LAST & TX_EN bits

To other TX_2 service

Enable EP1

Revision 1.0 5 www.national.com

U
S

B
N

9603/4
• If TOGGLE is not zero, this is an error transaction and

the firmware must ignore the current contents of
RXFIFO-1.

• If TOGGLE is zero, this transaction completes without
error and the firmware retrieves the contents of
RXFIFO-1 and saves it into local memory Buffer-1.

After flushing RXFIFO-1 to prepare for the next data recep-
tion, the firmware disables EP2. As a result, EP2 never
reacts with host designated endpoint address. EP4, there-
fore, responds alternately with the next OUT-token and
data.

Figure 3-2 shows the data reception process in the EP4 Rx
event interrupt service flow. The firmware reads the RXS2

status register, and checks for error conditions. The pro-
cess is the same as for EP2, described above.

If no errors are detected, EP4 is assigned TOGGLE set
(data1) so firmware confirms the TOGGLE setting. Accord-
ing to the result of the TOGGLE condition check, the cur-
rent received data in RXFIFO-2 is either discarded, or
retrieved into the local memory Buffer-2.

The firmware then prepares for the next reception of EP4
to flush RXFIFO-2 and set RX_EN bit. Moreover, at this
stage EP2 is enabled again and sets the RX_EN bit so it is
able to respond and thus receive the next OUT-token and
data from the host.

Figure 3-1. EP2 Rx Event Interrupt Service

RX_1

Read RXS1 status register

RX_ERR = 1 ?

LX_LAST = 1 ?

TOGGLE = 0 ?

Retrieve RXFIFO-1 data and
save into local Buffer-1

Discard received RXFIFO-1 data

Flush RXFIFO-1

Disable EP2

YES

NO

YES

NO

NO

YES

To other RX_1 service

Flush RXFIFO-1 and

set RX_EN bit of EP2

www.national.com 6 Revision 1.0

U
S

B
N

96
03

/4

Figure 3-2. EP4 Rx Event Interrupt Service

RX_2

Read RXS2 status register

RX_ERR = 1 ?

LX_LAST = 1 ?

TOGGLE = 1?

Retrieve RXFIFO-2 data and
save into local Buffer-2

Discard received RXFIFO-1 data

Flush RXFIFO-1

Enable EP2

YES

NO

YES

NO

NO

YES

SET RX_EN bits of EP2, EP4

Flush RXFIFO-2 and

set RX_EN bit of EP4

To other RX_2 service

Revision 1.0 7 www.national.com

U
S

B
N

9603/4
4.0 Conclusions
The USBN9603/4 can assign the same endpoint address
to multiple endpoints. In this case, data is received or
transmitted to/from the endpoint with the lowest number.
This ping-pong buffering is an effective way to increase the
data transfer rate because the second FIFO is filled while
the contents of the first are being transmitted. An additional
advantage is the ability to reduce the firmware effort
required to alternate the TOGGLE bit on transmitting. This
buffering can also be adapted for the ISOCHRONOUS
transaction format.

www.national.com 8 Revision 1.0

U
S

B
N

96
03

/4 5.0 Program Code Example
//---
// SET_CONFIGURATION request
//---
void setconfiguration(void)
{

usb_cfg = usb_buf[2];//set the configuration number
if(usb_buf[2] != 0)//set the configuration

{
dpapid =0; //first PID is DATA0
stalld = 0; //nothing stalled

//Ping-Pong buffering: transmitting endpoints are EP1 and EP3 so these are assigned
//the same endpoint address, in this case address 5

FLUSHTX1 //flush TXFIFO-1
write_usb(EPC1,EP_EN+5);//enable EP1 and address 5

FLUSHTX2 //flush TXFIFO-2
write_usb(EPC3,EP_EN+5);//enable EP3 and address 5

//Ping-Pong buffering: receiving endpoints are EP2 and EP4 so these are assigned the
//same endpoint address, in this case address 2

FLUSHRX1 //flush RXFIFO-1
write_usb(EPC2,EP_EN+2);//enable EP2 and address 2
write_usb(RXC1,RX_EN);//RXFIFO-1 receive enable

FLUSHRX2 //flush RXFIFO-2
write_usb(EPC4,EP_EN+2);//enable EP4 and address 4
write_usb(RXC2,RX_EN);//RXFIFO-2 receive enable

}
else

{
write_usb(EPC1,0);//disable EP1
write_usb(EPC3,0);//disable EP3
write_usb(EPC2,0);//disable EP2
write_usb(EPC4,0);//disable EP4

}
}

//---
// MAIN PROCESS
//---

|
|
|

//As the following process handles the FIFO data filling, it should not be disturbed
//by other interrupts. All interrupts are disabled from here.

global_int_off();

//According to the EP1 condition, skip or fill the TXFIFO-1
if(update1 = 1)//check to need filling TXFIFO-1

{
FLUSHTX1 //flush TXFIFO-1
for(byte_count=0; byte_count <64; byte_count++)

//fill the data from local memory area(Buffer_1) to TXFIFO-1, fixed 64 byte

{
write_usb(TXD1,Buffer_1[byte_count]);

}
write_usb(TXC1,TX_LAST+TX_EN); //TXFIFO-1 transmit enable and set DATA0 (TOGGLE=0)
update1 = 0; //complete filling the data into TXFIFO-1
}

//According to the EP3 condition , skip or fill the TXFIFO-2
if(update2 = 1) //check to need filling TXFIFO-2

Revision 1.0 9 www.national.com

U
S

B
N

9603/4
{

FLUSHTX2 //flush TXFIFO-2
for(byte_count=0; byte_count <64; byte_count++)//fill the data from local memory area

//(Buffer_2) to TXFIFO-2, fixed 64 byte
{

 write_usb(TXD2,Buffer_2[byte_count]);
}

write_usb(TXC2,TX_TOGL+TX_LAST+TX_EN); //TXFIFO-2 transmit enable and set DATA1 (TOGGLE=1)
update2 = 0; //complete filling the data into TXFIFO-2
}
//return to the normal condition, all interrupts are enabled from here

global_int_on();
|
|
|

//--------------------------------------
// TX_1 PROCESS
//--------------------------------------
void tx_1(void)
{
 txstat = read_usb(TXS1);//read the transmit status register
 if((txstat & TX_DONE) && (txstat & ACK_STAT))
 {
 write_usb(EPC1,0);//when last transmitted data is received

//completely at host, disable EP1
 update1 = 1;//set flag which means TXFIFO-1 empty
 }
 else
 {
 if((txstat & TX_DONE) && !(txstat & ACK_STAT))
 {
 write_usb(TXC1,RFF+TX_LAST+TX_EN);//no ACK from host so send TXFIFO-1

//content again ,TOGGLE=0
 }
 else
 {
 }
 }
}
//---
// TX_2 PROCESS
//---
void tx_2(void)
{
 txstat = read_usb(TXS2);//read the transmit status register
 if((txstat & TX_DONE) && (txstat & ACK_STAT))
 {
 write_usb(EPC1,EP_EN+ 5);//when last transmitted data is received

//completely at host, enable EP1
//in this case set endpoint address 5

 update2 = 1;//set flag which means TXFIFO-2 empty
 }
 else
 {
 if((txstat & TX_DONE) && !(txstat & ACK_STAT))
 {
 write_usb(TXC2,RFF+TX_TOGL+TX_LAST+TX_EN);//no ACK from host so send TXFIFO-2

//content again , TOGGLE=1
 }
 else
 {
 }
 }
}

www.national.com 10 Revision 1.0

U
S

B
N

96
03

/4 //---
// RX_1 PROCESS
//---
void rx_1(void)
{

rxstat = read_usb(RXS1); //read the receive status register
if((rxstat & RX_ERR) || !(rxstat & RX_LAST) || (rxstat & RX_TOGL))

{

//if this reception is error transaction, discard current RXFIFO-1 data, prepare
//next receive by flushing RXFIFO-1 and setting receive enable

FLUSHRX1
write_usb(RXC1,RX_EN);

}
else

{
//received data is error-free so retrieve RXFIFO-1 content into local memory area
//(Buffer_1) and flush RXFIFO-1 for next new packet reception and disable this
//endpoint to prevent the NAKing from next OUT-token

for(byte_count = 0; byte_count <64; byte_count++)
{

Buffer_1[byte_count] = read_usb(RXD1);
}

FLUSHRX1
write_usb(EPC2,0);

}
}

//---
// RX_2 PROCESS
//---
void rx_2(void)
{

rxstat = read_usb(RXS2); //read the receive status register
if((rxstat & RX_ERR) || !(rxstat & RX_LAST) || !(rxstat & RX_TOGL))

{

//if this reception is error transaction, discard current RXFIFO-2 data and prepare
//next receive by flushing RXFIFO-2 and setting receive enable

FLUSHRX2
write_usb(RXC2,RX_EN);

}
else

{
//received data is error-free so retrieve the RXFIFO-2 content into local
//memory area (Buffer_2)
for(byte_count = 0; byte_count <64; byte_count++)

{
Buffer_2[byte_count] = read_usb(RXD2);

}

//flush RXFIFO-2 for next new packet receive and enable it
FLUSHRX2
write_usb(RXC2,RX_EN);
write_usb(EPC2,EP_EN+2); //enable EP2 & RXFIFO-1 again
write_usb(RXC1,RX_EN);

}
}

U
S

B
N

9603/4 - Increased D
ata Transfer R

ate using P
ing-P

ong B
uffering

A
N

-1222

LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury to
the user.

2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

www.national.com

National Semiconductor
Corporation
Americas
Email:
new.feedback@nsc.com

National Semiconductor
Europe

Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 87 90

National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
Email: nsj.crc@jksmtp.nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	1.0 Using two Endpoints for One Pipe
	2.0 Data Transmission
	2.1 Main Flow
	2.1.1 FIFO data filling in the Main Flow.

	2.2 TX event interrupt flow

	3.0 Data Reception
	3.1 RX event interrupt flow

	4.0 Conclusions
	5.0 Program Code Example

