
1SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

Application Report
SNLA320–August 2019

Understanding EEPROM Programming for DS160PR410
PCI-Express Gen-4 Redriver

Davor Glisic

ABSTRACT
EEPROM (Electrically Erasable Programmable Read-Only Memory) is frequently used to program a set of
customized DS160PR410 PCI-Express Gen-4 Redriver settings that are different from the default values.
Using the information provided in this application report makes redriver EEPROM configuration and
programming easy to implement and understand. This application report details SMBus-to-EEPROM
mapping for the DS160PR410, gives guidance about the Intel hex file format, shows several EEPROM
hex file examples for typical DS160PR410 application scenarios, and provides instructions for generating
hex files with the SigCon Architect tool. With a complete understanding of how to program and interpret
EEPROM hex files for the DS160PR410, and with the aid of SigCon Architect, system designers are
better equipped to quickly generate their own customized hex files and increase the efficiency of their
designs.

Contents
1 Introduction .. 2
2 Hardware Configuration .. 2

2.1 4-Level Control Pins .. 2
2.2 DS160PR410 SMBus Master Mode Configuration ... 3
2.3 EEPROM Configuration for Single Device .. 4
2.4 EEPROM Configuration for Multiple Devices .. 4

3 SMBus-to-EEPROM Mapping.. 6
3.1 Recommended EEPROM Device Data ... 6

4 EEPROM Hex File Format ... 8
5 EEPROM Device Data Fundamentals .. 9

5.1 Base Header .. 9
5.2 Address Map Header ... 10
5.3 Cyclic Redundancy Check (CRC) Calculation... 11
5.4 Number of Devices versus Number of Slots... 11

6 EEPROM Hex File Examples... 12
6.1 Example 1: EEPROM Hex File for One Device, CRC Disabled, Common Channel Configuration

Enabled ... 12
6.2 Example 2: EEPROM Hex File for One Device, CRC Disabled, Common Channel Configuration

Disabled .. 13
6.3 Example 3: EEPROM Hex File for Eight Devices, Two Slots, CRC Disabled, Common Channel

Configuration Enabled .. 14
6.4 Example 4: EEPROM Hex File for Eight Devices, Four Slots, CRC Enabled, Common Channel

Configuration Enabled .. 15
7 Using SigCon Architect Tool for Generating EEPROM Hex Files ... 16
8 Conclusion .. 17
9 References .. 18

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

Introduction www.ti.com

2 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

1 Introduction
EEPROM is a non-volatile memory used in electronic devices to store data that must be saved when
power is removed. This non-volatile memory is particularly important when an application requires different
start-up configurations than the factory default settings. Upon device power-up, data saved in the
EEPROM will load automatically to the device. If EEPROM is not used, interface system designs require
external access to the SMBus SDA and SCL lines to set individual registers after each power-up. With
EEPROM, designers eliminate the requirement for an external microprocessor or software driver to
provide their desired register settings.

Programming EEPROM for the DS160PR410 PCI-Express Gen-4 redriver requires an understanding of
how EEPROM relates to the DS160PR410 SMBus registers. When generating EEPROM hex images for
the DS160PR410, the following topics must be considered:
• How to configure DS160PR410 for operation in SMBus Master Mode
• SMBus-to-EEPROM register mapping
• How to read EEPROM hex format
• How to calculate the CRC-8 value from a given bit stream of values
• Difference between Number of Slots and Number of Devices
• Difference between programming EEPROM data for a single device verses multiple devices

In this application report, the aforementioned topics are discussed in detail, and several EEPROM hex file
examples are provided as a reference.

2 Hardware Configuration
EEPROM programming depends on the number of DS160PR410 redrivers that share the same SMBus
interface. It is therefore important to understand how an EEPROM is configured to interface with one or
more DS160PR410 redrivers. The following subsections provide insights on how to configure the
DS160PR410 to operate in SMBus Master Mode and the EEPROM connections for single and multiple
devices.

2.1 4-Level Control Pins
The DS160PR410 has six (GAIN, VOD, EQ1_ADDR1, EQ0_ADDR0, EN_SMB, and RX_DET) 4-level
inputs pins that are used to control the configuration of the device. These 4-level inputs use a resistor
divider to help set the four valid levels as shown in Table 1.

Table 1. DS160PR410 4-Level Control Pin Settings

PIN LEVEL PIN SETTING
L0 1 kΩ to GND
L1 13 kΩ to GND
L2 Float
L3 59 kΩ to GND

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

www.ti.com Hardware Configuration

3SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

2.2 DS160PR410 SMBus Master Mode Configuration
Configuration of the DS160PR410 for operation in SMBus Master Mode requires the following steps:
• Strap EN_SMB pin to GND with a 13-kΩ resistor. If multiple DS160PR410 devices are on the same

board, it is possible to strap the EN_SMB pins of all devices with a single resistor. The resistor value in
this case must be 13 kΩ divided by the number of devices. For example, if strapping the EN_SMB pins
of eight devices, the value of the strapping resistor should be 13 kΩ / 8 = 1.62 kΩ.

• Configure the device SMBus slave address. There are 16 unique SMBus slave addresses that can be
assigned to the device by placing external resistor straps on the EQ0_ADDR0 and EQ1_ADDR1 pins
as shown in Table 2. When multiple DS160PR410 devices are on the same SMBus interface bus,
each device must be configured with a unique SMBus slave address.

• Leave RX_DET floating in PCI Express applications. This enables the RX detect state machine that
governs the RX detection cycle as defined in the PCI Express specification.

• VOD and GAIN pins may be left floating. The VOD and DC Gain setting are configured during the
EEPROM load.

• EEPROM size of 2 kb (256 × 8-bit) such as Microchip AT24C02D is recommended.
• The external EEPROM device address byte must be 0xA0 and capable of 400-kHz operation with a

3.3-V supply.

Table 2. DS160PR410 SMBus Address Map

EQ1_ADDR1 PIN LEVEL EQ0_ADDR0 PIN LEVEL 7-BIT ADDRESS [HEX] 8-BIT WRITE ADDRESS
[HEX]

L0 L0 0x18 0x30
L0 L1 0x19 0x32
L0 L2 0x1A 0x34
L0 L3 0x1B 0x36
L1 L0 0x1C 0x38
L1 L1 0x1D 0x3A
L1 L2 0x1E 0x3C
L1 L3 0x1F 0x3E
L2 L0 0x20 0x40
L2 L1 0x21 0x42
L2 L2 0x22 0x44
L2 L3 0x23 0x46
L3 L0 0x24 0x48
L3 L1 0x25 0x4A
L3 L2 0x26 0x4C
L3 L3 0x27 0x4E

If the DS160PR410 is configured for SMBus master mode, it will remain in the SMBus IDLE state until the
READ_EN_N pin is asserted to LOW. Once the READ_EN_N pin is driven LOW, the DS160PR410
becomes an SMBus master and attempts to self-configure by reading device settings stored in an external
EEPROM (SMBus 8-bit address 0xA0). When the DS160PR410 has finished reading from the EEPROM
successfully, it will drive the ALL_DONE_N pin LOW and change from an SMBus master to an SMBus
slave.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

EEPROM
Device ID: 0x50 (7-Bit)

A
D

0

A
D

1

A
D

2

DS160PR410
Device ID: 0x22 (7-Bit)

S
D

A

S
C

L

A
D

0

A
D

1

S
D

A

S
C

L
Customized registers settings

loaded from EEPROM to
device upon startup

MCU External
SMBus Master

SDA

SCL

External SMBus Control (Optional)

Optional LED to indicate
EEPROM Load Completion

LED turns on when
ALL_DONE_N pin asserts
low by tying LED anode to
VDD or 3.3 V.

VDD

SDA

SCL

220

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

4.7 k:

VDD

Hardware Configuration www.ti.com

4 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

2.3 EEPROM Configuration for Single Device
A simplified block diagram of an EEPROM device connected to a single DS160PR410 is shown in
Figure 1. If a single DS160PR410 operates in SMBus Master Mode, the EEPROM loads specific SMBus
register bits into the device when READ_EN_N pin is asserted low. While data is loading to the device,
the device operates as a master over the bus and requests data from the EEPROM. Once the EEPROM
contents are successfully read, the ALL_DONE_N pin asserts low. In most redriver EVMs, an LED is
attached to the ALL_DONE_N pin to notify that a successful read has occurred. When the ALL_DONE_N
pin asserts low, the device releases control of the bus and resumes operation in I2C / SMBus slave mode.
At this point, an optional external I2C or SMBus control MCU master may be used for any additional
programming or monitoring, though it is not required.

Figure 1. Example of EEPROM Used to Program a Single DS160PR410

2.4 EEPROM Configuration for Multiple Devices
The sequential behavior in which the READ_EN_N and ALL_DONE_N pins function are ideal for
systemically programming EEPROM contents to multiple devices that share the same SMBus lines. By
asserting the READ_EN_N pin of the first device low, the EEPROM will load the first device's contents into
the first device. During this time, no other device should take control of the SMBus lines until this first
device finishes and asserts its ALL_DONE_N pin low. Therefore, the ALL_DONE_N pin of the first device
can be tied directly to the READ_EN_N pin of the second device in the sequence to indicate when the
second device is allowed to take control of the SMBus lines. This daisy-chain process continues until the
last device loads its settings from the EEPROM successfully. Daisy chaining is a recommended practice
for loading EEPROM settings to multiple devices connected to the same SMBus lines, and this
implementation prevents bus contention that can occur when two devices try to read from the EEPROM
simultaneously.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

EEPROM
Device ID: 0x50 (7-bit)

A
D

0

A
D

1

A
D

2

DS160PR410
Device ID: 0x18 (7-bit)

S
D

A

S
C

L

A
D

0

A
D

1

S
D

A

S
C

L

Customized registers settings loaded from EEPROM to each connected device upon startup.

Note: To avoid SMBus / I2C bus contention amongst devices, ALL_DONE_N pin for
each device is tied to READ_EN_N pin of the next device in a daisy-chain fashion.

DS160PR410
Device ID: 0x19 (7-bit)

A
D

0

A
D

1

S
D

A

S
C

L

DS160PR410
Device ID: 0x1C (7-bit)

S
D

A

S
C

L

DS160PR410
Device ID: 0x1B (7-bit)

S
D

A

S
C

L

DS160PR410
Device ID: 0x1A (7-bit)

S
D

A

S
C

L

Optional LED to indicate
EEPROM Load Completion

LED turns on when
ALL_DONE_N pin asserts
low by tying LED anode to
VDD or 3.3 V.

VDD

220

MCU External
SMBus Master

SDA

SCL

SDA

SCL

External SMBus Control (Optional)

1 k: 1 k: 13 k: 1 k:

A
D

0

A
D

1

1 k: 13 k:

A
D

0

A
D

1

59 k: 1 k:

A
D

0

A
D

1

1 k:

DS160PR410
Device ID: 0x1D (7-bit)

S
D

A

S
C

L

DS160PR410
Device ID: 0x1E (7-bit)

S
D

A

S
C

L

DS160PR410
Device ID: 0x1F (7-bit)

S
D

A

S
C

L

A
D

0

A
D

1

13 k: 13 k:

A
D

0

A
D

1

13 k:

A
D

0

A
D

1

59 k: 13 k:

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

A
LL_D

O
N

E
_N

R
E

A
D

_E
N

_N

VDD VDD

4.7 k: 4.7 k:

VDD

4.7 k:

VDD

4.7 k:

VDD

4.7 k:

VDD

4.7 k:

VDD

4.7 k:

VDD

4.7 k:

www.ti.com Hardware Configuration

5SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

A simplified block diagram of an EEPROM device connected to multiple DS160PR410 devices is shown in
Figure 2. In this example, there are eight DS160PR410 redrivers. Note how daisy chaining is used to
implement sequential EEPROM loading.

Figure 2. Example of EEPROM Used to Program Eight DS160PR410 Devices

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

SMBus-to-EEPROM Mapping www.ti.com

6 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

3 SMBus-to-EEPROM Mapping
When populating EEPROM addresses, it is important to understand how the DS160PR410 SMBus Slave
registers map to the EEPROM. The EEPROM only takes a subset of the SMBus register bits. SMBus
register bits that are not stored in EEPROM cannot be changed from default at device start-up. A table of
the DS160PR410 SMBus-to-EEPROM mapping is shown in Table 4.

To read the table, the blue column represents the EEPROM address byte, while columns 2-9 show Bits
7:0 for the corresponding EEPROM address. The matching SMBus register bit for each EEPROM address
bit is shown in green, and the respective default value for that bit is shown in the row directly below. For
example, EEPROM Address 0x04[6] maps to SMBus Slave Mode Reg 0x04[5], where the default value is
0, while EEPROM Address 0x04[2] maps to SMBus Slave Mode Reg 0x06[7], where the default value is
1.

NOTE: The first three bytes of the EEPROM always contain a base header to control initialization of
all devices connected to the same SMBus lines.

3.1 Recommended EEPROM Device Data
Table 3 provides recommended Device Data for each available DS160PR410 CTLE Index with the VOD
and DC GAIN parameters at default values.

(1) The recommended device specific EEPROM data is a 4-byte wide data set. These bytes match with the descriptions of
EEPROM Address 0x03-0x06 in Table 4. The eq_bst2[2:0], eq_bst1[2:0], and eq_en_bypass bit are varied to set the desired
CTLE gain. All other bits are kept at their default values.

Table 3. Recommended DS160PR410 Specific EEPROM Data as a Function of CTLE Index

CTLE INDEX CTLE GAIN AT 4 GHz (dB) CTLE GAIN AT 8 GHz (dB) RECOMMENDED DEVICE
SPECIFIC EEPROM DATA (1)

0 -0.3 -0.8 0x802E1018
1 0.4 1.3 0x982E1018
2 3.3 5.7 0x81261018
3 3.8 7.1 0x91261018
4 4.9 8.4 0x8A261018
5 5.2 9.1 0x92261018
6 5.4 9.8 0x9A261018
7 6.5 10.7 0x93261018
8 6.7 11.3 0x9B261018
9 7.7 12.6 0x9C261018
10 8.7 13.6 0x9D261018
11 9.1 14.4 0xA5261018
12 9.4 15.0 0xAD261018
13 10.3 15.9 0xAE261018
14 10.6 16.5 0xB6261018
15 11.8 17.8 0xBF261018

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

www.ti.com SMBus-to-EEPROM Mapping

7SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

Table 4. EEPROM Address Map from DS160PR410 - Single Device with Default Values
EEPROM ADDRESS BYTE BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Description
0 (0x00)

CRC_EN ADDR MAP
ENABLE

EEPROM > 256
Bytes

COMMON
CHANNEL

DEVICE COUNT [3] DEVICE COUNT [2] DEVICE COUNT [1] DEVICE COUNT [0]

Default Value 0x00 0 0 0 0 0 0 0 0

Description
1 (0x01)

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

Default Value 0x00 0 0 0 0 0 0 0 0

Description
2 (0x02)

Max EEPROM Burst
size [7]

Max EEPROM Burst
size [6]

Max EEPROM Burst
size [5]

Max EEPROM Burst
size [4]

Max EEPROM Burst
size [3]

Max EEPROM Burst
size [2]

Max EEPROM Burst
size [1]

Max EEPROM Burst
size [0]

Default Value 0x00 0 0 0 0 0 0 0 0

Description

3 (0x03)

eq_bw[1] eq_bw[0] eq_bst2[2] eq_bst2[1] eq_bst2[0] eq_bst1[2] eq_bst1[1] eq_bst1[0]

SMBus Register 0x03 [7] 0x03 [6] 0x03 [5] 0x03 [4] 0x03 [3] 0x03 [2] 0x03 [1] 0x03 [0]

Default Value 0x80 1 0 0 0 0 0 0 0

Description

4 (0x04)

eq_term_en eq_hi_gain eq_en_dc_off eq_en eq_en_bypass drv_sel_vod[1] drv_sel_vod[0] drv_eq_en_override

SMBus Register 0x04 [6] 0x04 [5] 0x04 [4] 0x04 [3] 0x04 [0] 0x06 [7] 0x06 [6] 0x06 [5]

Default Value 0x26 0 0 1 0 0 1 1 0

Description

5 (0x05)

drv_en_pre drv_en drv_en_cm_loop Reserved Reserved mr_rx_det_man en_rx_det_count sel_rx_det_count

SMBus Register 0x06 [4] 0x06 [3] 0x06 [2] 0x08 [3] 0x08 [2] 0x0D [6] 0x0D [5] 0x0D [4]

Default Value 0x10 0 0 0 1 0 0 0 0

Description

6 (0x06)

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

SMBus Register 0x15 [6] 0x15 [3] 0x15 [2] 0x16 [6] 0x17 [2] 0x17 [1] 0x17 [0] n/a

Default Value 0x18 0 0 0 1 1 0 0 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

:2000000057001000830083008300830083008300830083008300830083008300830083004F

: Start Code: Each line always starts with an ASCII colon (:) character.
20 Byte Count: The number of data bytes (0x20) in each hex file.
0000 Load Offset: Starting load offset of data bytes.
00 Record Type: There are six record types. For redriver and mux buffer

programming, this value should always be 00:
00: Data Record
01: End-of-File Record
02: Extended Segment Address Record
03: Start Segment Address Record
04: Extended Linear Address Record
05: Start Linear Address Record

57...83 Data: There are n bytes of data per line (n specified by Byte Count parameter).
4F Checksum: Represents the checksum of the record

EEPROM Hex File Format www.ti.com

8 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

4 EEPROM Hex File Format
Intel Hex is a file format that conveys binary information in ASCII text format. It is widely used for storing
and transferring data in ROM, EEPROM, and microcontrollers. As such, it has been adopted as the
EEPROM format of choice for TI redrivers and mux buffers. In an Intel hex file, each line consists of
hexadecimal data. Below is an example of a 256-byte .hex file.

:2000000057001000830083008300830083008300830083008300830083008300830083004F
:20002000830083008700870087008700870087008700870087008700870087008700870058
:200040008700870092
:2000600080
:200080000000008126101891261018FFC7
:2000A000FF60
:2000C000FF40
:2000E000FF20
:00000001FF

Each hex file line conforms to a specific format. The following color scheme differentiates the meaning of
the format for each line. Below is an example of how the first line is interpreted:

to evaluate the checksum of each hex line, every byte in the line is summed together, and the two’s
complement is taken from the sum. The checksum is the least significant byte of this result. In the hex line
example above, the checksum is calculated below:

Ex: 20 + 00 + 00 + 00 + 57 + 00 + 10 + 00 + 83 + 00 + 83 + 00 + 83 + 00 + 83 + 00 + 83 + 00 + 83 + 00 +
83 + 00 + 83 + 00 + 83 + 00 + 83 + 00 +83 + 00 + 83 + 00 +83 +00 + 83 + 00 = 7B1

then do two's complement
1'h + not(7B1'h) = 1'h + 84E'h = 84F'h (1)

NOTE: Application tools are often used to calculate the checksum automatically. A free online
calculator is available here: 8-bit Checksum

Every line with the exception of the last line of the hex file always follows this formatting scheme. The last
line of the hex file is always the End-of-File (EOF) record, shown as: 00000001FF.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320
http://www.planetimming.com/checksum8.html

www.ti.com EEPROM Device Data Fundamentals

9SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

5 EEPROM Device Data Fundamentals
DS160PR410 EEPROM file contains one base header. Depending on the system design, a CRC and
address map header may also be used after the base header. A detailed explanation about the contents
of these headers and other key fundamentals are discussed in the subsections below.

5.1 Base Header
The first three bytes define the Base Header. The meaning of the first three bytes is explained in Table 5.

Table 5. Base Header Information

BYTE BIT NO. BIT NAME DESCRIPTION

0

7 CRC_EN

1 = CRC enable. If enabled, each device will have a CRC value specific to the
base header (3 bytes), address map header (2 or 3 bytes, if applicable), and data
(4 bytes).
0 = CRC disabled. If disabled, the CRC value is not computed, and CRC checking
is ignored.

6 ADDR Map Enable

1 = Address Map Header enable. If enabled, a 2 or 3 byte address map header will
be placed after the base header to indicate the start address of each device’s
EEPROM.
0 = Address Map Header disable. If disabled, the first device's EEPROM
information will immediately follow the base header.

5 EEPROM > 256 Bytes

1 = Required EEPROM size is more than 256 bytes (not recommended for the
DS160PR410).
0 = Required EEPROM size is 256 bytes or less (recommended for the
DS160PR410).

4 COMMON CHANNEL

1 = Common Channel Configuration enable. If enabled, the settings for all channels
are referenced from one Channel Register’s settings.
0 = Common Channel Configuration disable. If disabled, the settings for each
channel need to be defined separately.

3:0 DEVICE COUNT
DEVICE COUNT = (Total number of Devices) - 1
Note: This value is not used by the device when the EEPROM loads data, though
it is a useful debugging reference.

1 7:0 RES Reserved. Set bits to 0.

2 7:0 Max EEPROM Burst
Size

Maximum number of bytes that are read during a burst read operation. A value of
0x10 is suitable for all EEPROMs using DS160PR410 redriver.

5.1.1 Common Channel Configuration
When Common Channel Configuration is enabled from the Base Header Byte 0, Bit 4, the EEPROM data
for one Channel Register page is used as the universal channel settings for all Channel Registers in the
device slot. The use of Common Channel Configuration also reduces the overall EEPROM size.

For example, the DS160PR410 contains 4 bytes of EEPROM data per Channel Register page. Without
Common Channel Configuration, the total EEPROM size for the device slot per device is 16 bytes (4 bytes
× 4 device channels). In contrast, with Common Channel Configuration, the total EEPROM size per device
slot becomes only 4 bytes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

EEPROM Device Data Fundamentals www.ti.com

10 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

5.2 Address Map Header
When multiple devices are used, address map headers are necessary. To assign the correct EEPROM
data to the correct device, each device must know the location where it can obtain the correct register
settings. Details about where this information exists in the address map header are given in Table 6.

Table 6. Address Map Header Information

BYTE BIT NO. BIT NAME DESCRIPTION

0 7:0 CRC Value
8-Bit CRC value for each device. CRC is computed from the base header (3 bytes),
address map header (2 or 3 bytes, if applicable), and EEPROM data specific to the
device (4 bytes).

1 7:0 Device EEPROM Start
Address

Start address for device-specific EEPROM data. Recall that Address 0x00-0x02 of
device EEPROM is stored in the base header.

2
7:3 RES Reserved. Set bits to 0.

2:0 Device EEPROM Start
Address MSBs

These bits are only set if EEPROM Size > 256 bytes. Up to 3 MSB bits can be
appended to the front of the EEPROM start address indicated in Byte 1.

NOTE: Byte 2 is present only if EEPROM > 256 bytes. The DS160PR410 only supports single byte
EEPROM start addresses, however, which means the Base Header Address 0x00[5] bit
must always be set to 0.

If address map headers are enabled, they occupy 128 bytes (16 devices × 4 device channels × 2 bytes) of
EEPROM when EEPROM ≤ 256 bytes (Address 0x00[5] = 0’b) and 192 bytes (16 devices × 4 device
channels × 3 bytes) of EEPROM when EEPROM > 256 bytes (Address 0x00[5] = 1’b). For 2-byte address
map headers, the device with SMBus write address of 0x30 always occupies EEPROM addresses 0x03
and 0x04 (device channel 0), 0x05 and 0x06 (device channel 1), 0x07 and 0x08 (device channel 2), and
0x09 and 0x0A (device channel 3), a total of 8 bytes. The device with SMBus write address of 0x32
always occupies EEPROM addresses 0x0B through 0x12, and so on, as shown in Table 7. The unused
address map header EEPROM addresses should be set to zeros.

With address map headers enabled, the device specific data always starts at the EEPROM address 0x83
when 2-byte address map headers are needed. Similarly, the device-specific data always starts at the
EEPROM address 0xC3 when 3-byte address map headers are needed.

Table 7. Address Map Header EEPROM Address as a Function of DS160PR410 SMBus Address

7-BIT ADDRESS [HEX] 8-BIT WRITE ADDRESS
[HEX]

ADDRESS MAP HEADER
EEPROM ADDRESS (2-BYTE)

ADDRESS MAP HEADER
EEPROM ADDRESS (3-BYTE)

0x18 0x30 0x03 - 0x0A 0x03 - 0x0E
0x19 0x32 0x0B - 0x12 0x0F - 0x1A
0x1A 0x34 0x13 - 0x1A 0x1B - 0x26
0x1B 0x36 0x1B - 0x22 0x27 - 0x32
0x1C 0x38 0x23 - 0x2A 0x33 - 0x3E
0x1D 0x3A 0x2B - 0x32 0x3F - 0x4A
0x1E 0x3C 0x33 - 0x3A 0x4B - 0x56
0x1F 0x3E 0x3B - 0x42 0x57 - 0x62
0x20 0x40 0x43 - 0x4A 0x63 - 0x6E
0x21 0x42 0x4B - 0x52 0x6F - 0x7A
0x22 0x44 0x53 - 0x5A 0x7B - 0x86
0x23 0x46 0x5B - 0x62 0x87 - 0x92
0x24 0x48 0x63 - 0x6A 0x93 - 0x9E
0x25 0x4A 0x6B - 0x72 0x9F - 0xAA
0x26 0x4C 0x73 - 0x7A 0xAB - 0xB6
0x27 0x4E 0x7B - 0x82 0xB7 - 0xC2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

www.ti.com EEPROM Device Data Fundamentals

11SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

5.3 Cyclic Redundancy Check (CRC) Calculation
Sometimes, systems require a CRC check to ensure communication integrity between EEPROM and
target device. When the CRC is enabled in the Base Header (Address 0x00[7] = 1), each device
programmed by the EEPROM will have a specific CRC value in its respective Address Map Header Byte
0. The CRC is calculated through the CRC-8 polynomial, where the input x = [Base Header (3 Bytes) +
Address Map header (1 or 2 Bytes) + Device Data (4 Bytes)]. An example is provided below:

Table 8. EEPROM CRC-8 Example

SECTION VALUE (HEX)
Base Header 0xD70010

Address Map Header 0x83

Device Data 0x81261018

CRC-8 Input 0xD700108381261018

Computed CRC-8
(Address Map Header Byte 0) 0x84

NOTE: Application tools are often used to calculate the CRC automatically. A free online calculator
is available here: CRC-8

5.4 Number of Devices versus Number of Slots
There is an important distinction between the number of devices and the number of slots. The number of
devices pertains to the total number of physical devices present on the line. A maximum of 16 devices can
be programmed from the EEPROM. However, the number of slots pertains to the total number of unique
SMBus register settings to load from the EEPROM. Thus, the required size of the EEPROM depends
more on the number of unique EEPROM slots that are used compared to the number of devices that will
be programmed.

Oftentimes, multiple devices share the same SMBus register settings. If multiple devices share the exact
same SMBus register settings, then they can share the same EEPROM slot. In contrast, if different
register settings are required for any of the devices connected to the same EEPROM, each different set of
SMBus register settings will require its own EEPROM slot.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320
https://crccalc.com/

:2000000010001081261018FF2E

:20002000FFE0

:20004000FFC0

:20006000FFA0

:20008000FF80

:2000A000FF60

:2000C000FF40

:2000E000FF20

:00000001FF

__ = EEPROM Base Header
__ = Device Data

EEPROM Hex File Examples www.ti.com

12 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

6 EEPROM Hex File Examples

6.1 Example 1: EEPROM Hex File for One Device, CRC Disabled, Common Channel
Configuration Enabled
The simplest case for programming EEPROM is programming for a single DS160PR410 device with all
channels requiring the same settings. The following are key factors to consider when programming a
single device:
• Address Map Header can typically be disabled because the EEPROM does not need to reference the

start address of multiple-device EEPROM data.
• All device channels require the same settings, therefore only one 4-byte slot (device data) is needed.
• The device data should be derived from Table 4. Recommended device settings (device data) are also

given in Table 3.
• EEPROM size ≤ 256 bytes is more than adequate for a single DS160PR410.
• Device SMBus slave address must be 0x30 (8-bit)

An example of a hex file for a single DS160PR410 device with all channels requiring the same settings is
shown in Figure 3. The data relevant to the DS160PR410 EEPROM address bits is highlighted in green.
Note that this example hex file only works if the device SMBus slave address is 0x30 (8-bit).

Figure 3. Example of a Hex File for a Single DS160PR410 Device,
Common Channel Configuration Enabled

From the DS160PR410 hex file, the base header bytes are 0x100010. From Table 5, this means the
following:
• CRC is disabled (Address 0x00[7] = 0’b).
• No address map header is used (Address 0x00[6] = 0’b).
• EEPROM ≤ 256 bytes (Address 0x00[5] = 0’b).
• Common Channel Configuration is enabled (Address 0x00[4] = 1’b).
• DEVICE COUNT = 1 Device (Address 0x00[3:0] = 0000’b).
• Max EEPROM Burst size = 16 bytes (Address 0x02 = 0x10).

No address map header is used, therefore the remaining 4 bytes following the base header in the green-
highlighted section are device-specific data. In the SMBus-to-EEPROM mapping table, these bytes match
with the descriptions of the EEPROM Addresses 0x03-0x06. For this example, the 4-byte, device-specific
data configures all channels of the device with EQ Index = 2, VOD = 0 dB, and DC GAIN = 0 dB.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

:2000000000001081261018912610188A26101892261018FFFFFFFFFFFFFFFFFFFFFFFFFF77

:20002000FFE0

:20004000FFC0

:20006000FFA0

:20008000FF80

:2000A000FF60

:2000C000FF40

:2000E000FF20

:00000001FF

__ = EEPROM Base Header
__ = Channel 0 Device Data
__ = Channel 1 Device Data
__ = Channel 2 Device Data
__ = Channel 3 Device Data

www.ti.com EEPROM Hex File Examples

13SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

6.2 Example 2: EEPROM Hex File for One Device, CRC Disabled, Common Channel
Configuration Disabled
When programming EEPROM for a single device with each channel requiring unique settings, the
following are considered:
• Address Map Header can typically be disabled because the EEPROM does not need to reference the

start address of multiple-device EEPROM data.
• EEPROM size ≤ 256 bytes is more than adequate for a single DS160PR410.
• Each device channel requires unique settings, therefore one 16-byte slot is needed.
• The device data for each channel should be derived from Table 4. Recommended device settings

(device data) are also given in Table 3.
• Device SMBus slave address must be 0x30 (8-bit).

An example of a hex file for a single DS160PR410 device with each channel requiring unique settings is
shown in Figure 4. Note that this example hex file only works if the device SMBus slave address is 0x30
(8-bit).

Figure 4. Example of a Hex File for a Single DS160PR410 Device,
Common Channel Configuration Disabled

The base header bytes are 0x000010. From Table 5, the following is derived:
• CRC is disabled (Address 0x00[7] = 0’b).
• No address map header is used (Address 0x00[6] = 0’b).
• EEPROM ≤ 256 bytes (Address 0x00[5] = 0’b).
• Common Channel Configuration is disabled (Address 0x00[4] = 0’b).
• DEVICE COUNT = 1 Device (Address 0x00[3:0] = 0000’b).
• Max EEPROM Burst size = 16 bytes (Address 0x02 = 0x10).

No address map header is used, therefore the remaining 16 bytes following the base header are device-
specific data. Channel 0 device data is in the green-highlighted 4-byte section, followed by Channel 1
device data in blue-, Channel 2 device data in yellow-, and Channel 3 device data in magenta-highlighted,
4-byte sections. In the SMBus-to-EEPROM mapping table, these 4-byte sections match with the
descriptions of the EEPROM Addresses 0x03-0x06.

In this example, device data configures the Channel 0 with EQ Index = 2, Channel 1 with EQ Index = 3,
Channel 2 with EQ Index = 4, and Channel 3 with EQ Index = 5. All channels are configured with VOD = 0
dB and DC GAIN = 0 dB.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

:2000000057001000830083008300830083008300830083008300830083008300830083004F

:20002000830083008700870087008700870087008700870087008700870087008700870058

:200040008700870092

:2000600080

:200080000000008126101891261018FFC7

:2000A000FF60

:2000C000FF40

:2000E000FF20

:00000001FF

__ = EEPROM Base Header
__ = Slot 1 (Devices 1-4) Device Data
__ = Slot 2 (Devices 5-8) Device Data
__ = Address Headers for Devices 1-4 (with 8-bit SMBus Write Addresses 0x30 ± 0x36)
__ = Address Headers for Devices 5-8 (with 8-bit SMBus Write Addresses 0x38 ± 0x3E)
__ = Address Headers for Devices 9-16 (with 8-bit SMBus Write Addresses 0x40 ± 0x4E)

EEPROM Hex File Examples www.ti.com

14 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

6.3 Example 3: EEPROM Hex File for Eight Devices, Two Slots, CRC Disabled, Common
Channel Configuration Enabled
When programming EEPROM for multiple devices, the following are considered:
• Address Map Header must be used.
• All device channels require the same settings, therefore only 4-byte slots are needed.
• The device data for each device should be derived from Table 4. Recommended device settings

(device data) are also given in Table 3.
• EEPROM size ≤ 256 bytes is more than adequate for two 4-byte slots.

An example of a hex file for eight DS160PR410 devices requiring only two unique EEPROM slots is
shown in Figure 5.

Figure 5. Example of a Hex File for 8 DS160PR410 Devices (2 Unique EEPROM Slots)

The base header bytes are 0x570010. From Table 5, the following is derived:
• CRC is disabled (Address 0x00[7] = 0’b).
• Address map header is enabled (Address 0x00[6] = 1’b).
• EEPROM ≤ 256 bytes (Address 0x00[5] = 0’b).
• Common Channel Configuration is enabled (Address 0x00[4] = 1’b).
• DEVICE COUNT = 8 Devices (Address 0x00[3:0] = 0111’b).
• Max EEPROM Burst size = 16 bytes (Address 0x02 = 0x10).

With the CRC disabled, each Address Map Header Byte 0 is 0x00. In this example, Devices 1-4 share one
address map header (0x0083008300830083) while Devices 5-8 share another address header
(0x0087008700870087). This occurs if multiple devices are programmed with identical SMBus register
settings. A summary of address map headers, device data, and device settings for this hex file example is
give in Table 9.

The EEPROM addresses 0x43 through 0x82 are not used and should be set to 0x00 values.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

:20000000D7001084838483848384836C876C876C876C876C876C876C876C87178B178B17EA

:200020008B178B178B178B178B178B4F8F4F8F4F8F4F8F6C876C876C876C87848384838435

:200040008384830016

:2000600080

:2000800000000081261018912610188A26101892261018FFFFFFFFFFFFFFFFFFFFFFFFFF07

:2000A000FF60

:2000C000FF40

:2000E000FF20

:00000001FF

__ = EEPROM Base Header
__ = Slot 1 (Devices 1 and 8) Device Data
__ = Slot 2 (Devices 2, 3 and 7) Device Data
__ = Slot 3 (Devices 4 and 5) Device Data
__ = Slot 4 (Device 6) Device Data
__ = Address Headers for Devices 1-4 (with 8-bit SMBus Write Addresses 0x30 ± 0x36)
__ = Address Headers for Devices 5-8 (with 8-bit SMBus Write Addresses 0x38 ± 0x3E)
__ = Address Headers for Devices 9-16 (with 8-bit SMBus Write Addresses 0x40 ± 0x4E)

www.ti.com EEPROM Hex File Examples

15SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

Table 9. Summary of Address Map Headers and Device Data

DEVICE ADDRESS MAP HEADER ADDRESS MAP HEADER
LOCATION

DEVICE DATA (DEVICE
SETTING) DEVICE DATA LOCATION

1

0x0083008300830083

0x03 - 0x0A
0x81261018

(VOD = 0 dB, GAIN = 0 dB,
EQ Index = 2)

0x83 - 0x86
2 0x0B - 0x12
3 0x13 - 0x1A
4 0x1B - 0x22
5

0x0087008700870087

0x23 - 0x2A
0x91261018

(VOD = 0 dB, GAIN = 0 dB,
EQ Index = 3)

0x87 - 0x8A
6 0x2B - 0x32
7 0x33 - 0x3A
8 0x3B - 0x42

6.4 Example 4: EEPROM Hex File for Eight Devices, Four Slots, CRC Enabled, Common
Channel Configuration Enabled
When programming EEPROM for multiple devices, the following are considered:
• Address Map Header must be used.
• All device channels require the same settings, therefore only 4-byte slots are needed.
• The device data for each device should be derived from Table 4. Recommended device settings

(device data) are also given in Table 3.
• EEPROM size ≤ 256 bytes adequate for two 4-byte slots.

An example of a hex file for eight DS160PR410 devices requiring four unique EEPROM slots is shown in
Figure 6.

Figure 6. Example of a Hex File for 8 DS160PR410 Devices (2 Unique EEPROM Slots)

The base header bytes are 0xD70010. From Table 5, the following is derived:
• CRC is enabled (Address 0x00[7] = 1’b).
• Address map header is enabled (Address 0x00[6] = 1’b).
• EEPROM ≤ 256 bytes (Address 0x00[5] = 0’b).
• Common Channel Configuration is enabled (Address 0x00[4] = 1’b).
• DEVICE COUNT = 8 Devices (Address 0x00[3:0] = 0111’b).
• Max EEPROM Burst size = 16 bytes (Address 0x02 = 0x10).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

Using SigCon Architect Tool for Generating EEPROM Hex Files www.ti.com

16 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

In this example, Devices 1 and 8 share the address map header 0x8483848384838483, as they are
programmed with identical device data. Similarly, Devices 2, 3, and 7 share the address map header
0x6C876C876C876C87, Devices 4 and 5 share the address map header 0x178B178B178B178B, and
Device 6 has the address map header 0x4F8F4F8F4F8F4F8F. A summary of address map headers,
device data, and device settings for this hex file example is give in Table 10.

The EEPROM addresses 0x43 through 0x82 are not used and should be set to 0x00 values.

Table 10. Summary of Address Map Headers and Device Data

DEVICE ADDRESS MAP HEADER ADDRESS MAP HEADER
LOCATION

DEVICE DATA (DEVICE
SETTING) DEVICE DATA LOCATION

1 0x8483848384838483 0x03 - 0x0A
0x81261018

(VOD = 0 dB, GAIN = 0 dB,
EQ Index = 2)

0x83 - 0x86

2
0x6C876C876C876C87

0x0B - 0x12 0x91261018
(VOD = 0 dB, GAIN = 0 dB,

EQ Index = 3)
0x87 - 0x8A

3 0x13 - 0x1A

4
0x178B178B178B178B

0x1B - 0x22 0x8A261018
(VOD = 0 dB, GAIN = 0 dB,

EQ Index = 4)
0x8B - 0x8E

5 0x23 - 0x2A

6 0x4F8F4F8F4F8F4F8F 0x2B - 0x32
0x92261018

(VOD = 0 dB, GAIN = 0 dB,
EQ Index = 5)

0x8F - 0x92

7 0x6C876C876C876C87 0x33 - 0x3A
0x91261018

(VOD = 0 dB, GAIN = 0 dB,
EQ Index = 3)

0x87 - 0x8A

8 0x8483848384838483 0x3B - 0x42
0x81261018

(VOD = 0 dB, GAIN = 0 dB,
EQ Index = 2)

0x83 - 0x86

7 Using SigCon Architect Tool for Generating EEPROM Hex Files
The DS160PR410 profile for the SigCon Architect can help with generating custom EEPROM hex files.
This section outlines the necessary steps to generate the Example 4 hex file.
1. Install the SigCon Architect Version 3.0.0.8 application and the compatible SigCon Architect profiles

containing the DS160PR410 profile.
2. Start the SigCon Architect application.
3. Click "Continue in Demo Mode" if an actual evaluation module (EVM) is not connected to a PC through

a USB2ANY interface.
4. Select the DS160PR410 Configuration Page.
5. Click "Apply" in the USB2ANY Details section of the Configuration Page.
6. Select the DS160PR410 EEPROM Page.
7. In the Base Header Details section of the EEPROM Page, complete the following:

1. Set No. of Devices to 8.
2. Select 256 Bytes for EEPROM Size.
3. Check Common Channel, Address Map, and CRC boxes.

8. In the Slot Update Details section of the EEPROM Page, complete the following:
1. Set No. of Slots to 4.
2. Select Slot Number 1 and update Slot data to 81 26 10 18 (use Table 3 as a reference). Check if

Major Channel Settings for the slot are as desired.
3. Select Slot Number 2 and update Slot data to 91 26 10 18. Check if Major Channel Settings for the

slot are as desired.
4. Select Slot Number 3 and update Slot data to 8A 26 10 18. Check if Major Channel Settings for

the slot are as desired.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320
http://www.ti.com/tool/SIGCONARCHITECT

www.ti.com Conclusion

17SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

5. Select Slot Number 4 and update Slot data to 92 26 10 18. Check if Major Channel Settings for the
slot are as desired.

6. Assign Slot# to each Device Address in the Address/Slot list Selection:
1. Set Slot#1 to Devices Addresses 0x30 and 0x3E.
2. Set Slot#2 to Devices Addresses 0x32, 0x34, and 0x3C.
3. Set Slot#3 to Devices Addresses 0x36 and 0x38.
4. Set Slot#4 to Devices Address 0x3A.

9. Review EEPROM Data Table.
10. Click on "Write to EEPROM Hex" to save / generate a hex file.

A complete DS160PR410 EEPROM Page is shown in Figure 7.

Figure 7. SigCon Architect DS160PR410 EEPROM Page

8 Conclusion
In this application note, the benefits of EEPROM are explored as they relate to DS160PR410. Device-
specific EEPROM concepts such as the Base Header, Address Map Header, CRC, and EEPROM data
slot are explained in detail. In addition, the requirements of the Intel hex format are revealed to help users
differentiate between EEPROM sections relevant to formatting and EEPROM sections relevant to the
device settings. Step-by-step instruction for generating hex files using SigCon Architect as provided as
well. With a complete understanding of how to program and interpret these EEPROM hex files and the aid
of SigCon Architect, system designers are better equipped to quickly generate their own customized hex
files and increase the efficiency of their DS160PR410 designs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320

References www.ti.com

18 SNLA320–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4
Redriver

9 References

1. Texas Instruments, DS160PR410 4-Channel PCI-Express Gen-4 Linear Redriver data sheet
(SNLS645)

2. Texas Instruments, DS160PR410 Programming Guide (SNLU255)
3. Texas Instruments, Understanding EEPROM Programming for High Speed Redrivers and Mux Buffers

application report (SNLA228)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA320
http://www.ti.com/lit/pdf/SNLS645
http://www.ti.com/lit/pdf/SNLU255
http://www.ti.com/lit/pdf/SNLA228
http://www.ti.com/lit/pdf/SNLA228

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4 Redriver
	1 Introduction
	2 Hardware Configuration
	2.1 4-Level Control Pins
	2.2 DS160PR410 SMBus Master Mode Configuration
	2.3 EEPROM Configuration for Single Device
	2.4 EEPROM Configuration for Multiple Devices

	3 SMBus-to-EEPROM Mapping
	3.1 Recommended EEPROM Device Data

	4 EEPROM Hex File Format
	5 EEPROM Device Data Fundamentals
	5.1 Base Header
	5.1.1 Common Channel Configuration

	5.2 Address Map Header
	5.3 Cyclic Redundancy Check (CRC) Calculation
	5.4 Number of Devices versus Number of Slots

	6 EEPROM Hex File Examples
	6.1 Example 1: EEPROM Hex File for One Device, CRC Disabled, Common Channel Configuration Enabled
	6.2 Example 2: EEPROM Hex File for One Device, CRC Disabled, Common Channel Configuration Disabled
	6.3 Example 3: EEPROM Hex File for Eight Devices, Two Slots, CRC Disabled, Common Channel Configuration Enabled
	6.4 Example 4: EEPROM Hex File for Eight Devices, Four Slots, CRC Enabled, Common Channel Configuration Enabled

	7 Using SigCon Architect Tool for Generating EEPROM Hex Files
	8 Conclusion
	9 References

	Important Notice

