

LMX2694EPEVM Evaluation Instructions

The LMX2694EPEVM is designed to evaluate the performance of LMX2694-EP. This board consists of a LMX2694-EP device.

The LMX2694-EP is a high-performance, wideband synthesizer that can generate any frequency from 39.3 MHz to 15.1 GHz without using an internal VCO doubler. The device runs from a single 3.3-V supply and has integrated LDOs that eliminate the need for on-board low noise LDOs.

Contents

1	LMX2694EPEVM Evaluation Module	3
2	Setup	3
3	Typical Measurement	5
4	Schematic	10
5	PCB Layout and Layer Stack-Up	12
6	Bill of Materials	14
7	Troubleshooting Guide	15
	-	

LMX2694EPEVM Evaluation Instructions

TEXAS INSTRUMENTS

www.ti.com

		www.u.c	om
Appen	dix A Using Diffe	rent Reference Clock	16
Appen	dix B USB2ANY	Firmware Upgrade	17
		List of Figures	
1	EVM Connection D	Diagram	3
2	Select Device in TI	ICS Pro	4
3	Default Mode		5
4	J1, J2 Header		5
5	Loop Filter		5
6	Default Output		6
7	Phase Adjustment	Setting	7
8	Phase Adjustment	· · · · · · · · · · · · · · · · · · ·	7
9	SYSREF Pulsed M	Node Setting	8
10	SYSREF Pulsed M	Node	8
11	Readback Setting.		9
12	Register Readback	k	9
13	LMX2694EPEVM S	Schematic (Page 1)	10
14	LMX2694EPEVM S	Schematic (Page 2)	11
15	PCB Laver Stack-L		12

15	PCB Layer Stack-Up	12
16	Top Layer	12
17	RF GND Layer	12
18	Signal GND Layer	13
19	Bottom Layer	13
20	Troubleshooting Guide	15
21	Firmware Requirement	17
22	Firmware Loader	17
23	BSL Button	18
24	Update Firmware	18
25	Firmware Update Completed	19
26	USB Communications	19

List of Tables

1	Loop Filter Configuration	6
2	Phase Adjustment Setting	7
3	Bill of Materials	14
4	Reference Clock Input Configuration	16

Trademarks

2

All trademarks are the property of their respective owners.

1 LMX2694EPEVM Evaluation Module

1.1 Evaluation Module Contents

The box contains:

- One LMX2694EPEVM board (HSDC061-001)
- One USB2ANY (HPA665)
- One USB cable
- One 10-pin ribbon cable

1.2 Evaluation Setup Requirement

The evaluation requires the following hardware and software:

- A DC power supply
- A spectrum analyzer or a signal analyzer
- A PC running Windows 7 or more recent version
- A high quality signal generator
- An oscilloscope (optional)
- Texas Instruments Clocks and Synthesizers TICS Pro software
- Texas Instruments PLLatinum Simulator Tool (optional)

1.3 Resources

Related evaluation and development resources are as follows:

- LMX2694-EP data sheet
- TICS Pro software
- PLLatinum Simulator Tool (PLL Sim)

2 Setup

2.1 Connection Diagram

Figure 1. EVM Connection Diagram

2.2 Power Supply

Setup

Apply a 3.3 V to J5 header. The acceptable supply voltage range is 3.2 V to 3.5 V. The maximum current consumption in the most extreme configuration must not exceed 600 mA.

2.3 Reference Clock

Connect the OSCINP SMA connector to a high quality 100 MHz signal source. The OSCINM SMA connector can be left open because it is not connected to LMX2694-EP.

The EVM is configured for single-ended input. The OSCIN_P pin connected to the OSCINP SMA connector and the OSCIN_M pin 50- Ω terminated onboard. If required, the EVM can be modified to operate with a different clock source in a different configuration. See *Appendix A* for more details.

2.4 RF Output

Connect the RFOUTBM SMA connector to a signal analyzer. Output frequency is 14 GHz and the amplitude is about 1 dBm.

By default, the TICS Pro evaluation software has RFOUTA power down. These SMA connectors can be left open.

2.5 Programming

Connect the ribbon cable from the USB2ANY to the LMX2694EPEVM .

Connect the USB cable from a PC to USB port in the USB2ANY. This provides power supply to the USB2ANY and communication with the TICS Pro. A firmware update may be required. See *Appendix B* for more details.

2.6 Evaluation Software

Download and install TICS Pro to a PC.

Run the software and follow these steps to start the program.

1. Go to "Select Device" \rightarrow "PLL + VCO" \rightarrow "LMX2694".

Figure 2. Select Device in TICS Pro

2. Go to "Default Configuration" \rightarrow "Default Mode YYYY-MM-DD".

Figure 3. Default Mode

2.7 EVM Strap Options

2.7.1 J1 Header

Pin 2 of J1 is connected to the CE pin. Put a short to the "HW" position, this will connect the CE pin to VDD via resistor R7. If the short is placed in the "SW" position, the status of CE pin is configurable through TICS Pro.

2.7.2 J2 Header

Pin 1 of J2 is connected to the MUXOUT pin. Put a short in J2, this will connect the MUXOUT pin to the LED D1. If MUXOUT is configured as lock detect output, the LED will lite when the PLL is locked. During register read back, if the LED slows down the edge of the read back data, remove the short.

Figure 4. J1, J2 Header

3 Typical Measurement

3.1 Default Configuration

3.1.1 Loop Filter

The loop filter is populated on the bottom side of the board. The parameters for the loop filter are listed in *Table 1*.

Figure 5. Loop Filter

Copyright © 2019, Texas Instruments Incorporated

Setup

PARAMETER	VALUE
VCO frequency	Designed for 15 GHz, but works over the whole frequency range
VCO gain	213 MHz/V
Effective charge pump gain	15 mA
Phase detector frequency	200 MHz
Loop bandwidth	430 kHz
Phase margin	58 degrees
C1LF	470 pF
C2LF	68 nF
C3LF	Open
C4LF	1.8 nF
R2LF	68 Ω
R3LF	0 Ω
R4LF	18 Ω

Table 1. Loop Filter Configuration

3.1.2 Typical Output

- 1. Follow Section 2 to set up the evaluation.
- 2. Click "Write All Registers" to write all the registers to LMX2694-EP. The default output is 14 GHz.

Figure 6. Default Output

3.2 Additional Tests

6

3.2.1 Phase Adjustment

Use Equation 1 to adjust the phase of the RF output signal.

Phase shift in degree = $360^{\circ} \times (MASH_SEED / PLL_DEN) \times (IncludedDivide / CHDIV)$ where

• Included Divide = 4 or 6 when VCO_PHASE_SYNC = 1, otherwise it is equal to 1

Table 2 and Equation 2 show an example.

Table 2. Phase Adjustment Setting

PARAMETER	EXAMPLE VALUE
MASH_SEED	800
PLL_DEN	1000
CHDIV	48
VCO_PHASE_SYNC	0
IncludedDivide	1

(2)

Typical Measurement

Phase shift = $360^{\circ} \times (800 / 1000) \times (1 / 48) = 6^{\circ}$

The user can write 800 to MASH_SEED 60 times to get a 360° phase shift.

MASH and Phase Synchronization						
PFD_DLY_SEL	2					
MASH_ORDER	2nd Order Modulator $$					
MASH_RESET	_N					
MASH_SEED 800						
VCO_PHASE_SYNC						
Toggle Sync Pin						

Figure 7. Phase Adjustment Setting

Figure 8. Phase Adjustment

3.2.2 SYSREF Example

RFOUTB of LMX2694-EP can be used to generate or duplicate the SYSREF signal. The output of RFOUTB can be a single pulse, series of pulses, or a continuous stream of pulses. These pulses are synchronous with the RFOUTA signal with an adjustable delay. To use the SYSREF capability, the PLL must be in SYNC mode with VCO_PHASE_SYNC = 1. Here is an example of Pulsed mode.

Typical Measurement

Figure 9. SYSREF Pulsed Mode Setting

Figure 10. SYSREF Pulsed Mode

3.2.3 Register Readback

To read back the written register values, follow these steps:

1. Set MUXOUT_LD_SEL to Readback in TICS Pro.

MUXout	
MUXOUT_LD_SEL	-
Lock Detect	•
Readback	
Lock Detect	

Figure 11. Readback Setting

- 2. Click on the Register Name that you want to read back.
- 3. Click the Read Register button to read back the register value.

R	egister Map									
Re	gister Name	Address/Value	2222	1111	1111 5432	1100	0000	0000		Data
								5220		Data
Ι.	R107	0x6B0000	0110	1011	0000	0000	0000	0 0 0 0	~	0×6A0007
	R106	0x6A0007	0110	1010	0000	0000	0000	0 1 1 1		Write Register
17	R105	0x694440	0110	1001	0100	0100	0100	0 0 0 0		Ante Register
	R104	0x680000	0110	1000	0 0 0 0	0000	0000	0 0 0 0		Read Register
	R103	0x670000	0110	0111	0 0 0 0	0000	0000	0 0 0 0		

Figure 12. Register Readback

9

Typical Measurement

Schematic

www.ti.com

4 Schematic

Figure 13. LMX2694EPEVM Schematic (Page 1)

5 PCB Layout and Layer Stack-Up

5.1 PCB Layer Stack-Up

The top layer is 1-oz. copper.

Figure 15. PCB Layer Stack-Up

5.2 PCB Layout

Figure 16. Top Layer

Figure 17. RF GND Layer

Figure 19. Bottom Layer

Bill of Materials

6 Bill of Materials

DESIGNATOR	QUANTITY	DESCRIPTION	PART NUMBER	MANUFACTURER
C1, C2, C3, C4, C5, C6	6	CAP, CERM, 47 pF, 50 V, +/- 5%, C0G/NP0, 0402	885012005044	Wurth Elektronik
C1LF	1	CAP, CERM, 470 pF, 50 V,+/- 10%, C0G/NP0, 0402	C0402C471K5GAC7867	Kemet
C2LF	1	CAP, CERM, 68 nF, 50 V, +/- 10%, X7R, 0402	CGA2B3X7R1H683K050BB	ТДК
C4LF	1	CAP, CERM, 1.8 nF, 50 V,+/- 5%, X7R, 0402	C0402C182J5RACTU	Kemet
C7, C9, C11	3	CAP, CERM, 0.1 µF, 16 V, +/- 10%, X7R, 0603	885012206046	Wurth Elektronik
C8, C10, C12, C21, C22, C23, C25	7	CAP, CERM, 10 µF, 10 V,+/- 10%, X5R, 0603	GRM188R61A106KAALD	MuRata
C13, C32, C33	3	CAP, CERM, 0.1 µF, 16 V, +/- 10%, X7R, 0402	885012205037	Wurth Elektronik
C14, C15, C16, C17, C18, C19, C20, C24	8	CAP, CERM, 1 µF, 25 V, +/- 10%, X5R, 0402	GRM155R61E105KA12D	MuRata
C26, C27, C28, C29, C30, C31	6	CAP, CERM, 10 nF, 16 V, +/- 10%, X7R, 0402	520L103KT16T	AT Ceramics
D1	1	LED, Green, SMD	LTST-C190GKT	Lite-On
J1	1	Header, 100mil, 3x1, Gold, TH	TSW-103-07-G-S	Samtec
J3	1	Header (shrouded), 100mil, 5x2, Gold, SMT	52601-S10-8LF	FCI
J2, J5	2	Header, 100mil, 2x1, Gold, TH	TSW-102-07-G-S	Samtec
J8, J9, J10	3	JACK, SMA, 50 Ohm, Gold, Edge Mount	142-0771-831	Cinch Connectivity
J12, J13	2	CONN SMA JACK STR EDGE MNT	CON-SMA-EDGE-S	RF Solutions Ltd.
L1, L2	2	Inductor, Multilayer, Air Core, 18 nH, 0.3 A, 0.36 ohm, SMD	LQG15HS18NJ02D	MuRata
R2, R3, R4, R5, R6	5	RES, 33, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060333R0JNEA	Vishay-Dale
R2LF	1	RES, 68.1, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	CRCW040268R1FKED	Vishay-Dale
R3LF, R13, R14, R15, R16, R17, R18, R31	8	RES, 0, 5%, 0.063 W, AEC- Q200 Grade 0, 0402	CRCW04020000Z0ED	Vishay-Dale
R4LF	1	RES, 18.2, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	CRCW040218R2FKED	Vishay-Dale
R7	1	RES, 1.0 k, 5%, 0.1 W, AEC- Q200 Grade 0, 0603	CRCW06031K00JNEA	Vishay-Dale
R8	1	RES, 330, 5%, 0.1 W, AEC- Q200 Grade 0, 0603	CRCW0603330RJNEA	Vishay-Dale
R9, R10	2	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06030000Z0EA	Vishay-Dale
R19, R20, R21, R22, R33	5	RES, 50, 0.1%, 0.05 W, 0402	FC0402E50R0BST1	Vishay-Dale
R29, R30	2	RES, 49.9, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	CRCW040249R9FKED	Vishay-Dale
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8	8	Test Point, Miniature, White, TH	5002	Keystone
TP9	1	Test Point, Miniature, Black, TH	5001	Keystone
TP10	1	Test Point, Miniature, Red, TH	5000	Keystone
U1	1	15-GHz Wideband RF Synthesizer	LMX2694-EP	Texas Instruments

Table 3. Bill of Materials

7 Troubleshooting Guide

If the EVM does not work as expected, use Figure 20 to identify potential root causes. Consider the following:

- Do not make modifications to the EVM or change the default settings until AFTER it is verified to be working.
- Register readback requires the correct hardware and software setup. See Section 3.2.3 for details.
- The POR current of the LMX2694EPEVM is approximately 140 mA.
- The power-down current of the LMX2694EPEVM is approximately 5 mA.

Figure 20. Troubleshooting Guide

Appendix A SNAU245–October 2019

Using Different Reference Clock

These are the different options to provide a reference clock to LMX2694EPEVM. By default, the EVM is configured for an external single-ended clock.

Table 4. Reference Clock Input Configuration

Appendix B SNAU245–October 2019

USB2ANY Firmware Upgrade

Usually when the USB2ANY module is used the first time, TICS Pro will request a firmware update. Follow the pop-up instructions to complete the update. This is necessary to ensure that the USB connection between the PC and the USB2ANY module is properly setup, otherwise the programming to LMX2694EPEVM will not be successful.

1. When you see this message, click the "OK" button.

USB2ANY Firmware Requirement	×
The connected <unknown device=""> requires a firmware update to version 2.7.0.0. Serial Number: 70DB816F27001900 Current version is: UNKNOWN</unknown>	
The update takes only a few seconds and does not require an Internet connection.	
OK Cancel	

Figure 21. Firmware Requirement

2. Next, follow the on-screen procedure.

USB2ANY Firmware Loader	×
Prepare the USB2ANY for download:	
1. If a USB cable is connected to the USB2ANY, disconnect it.	
2. While pressing the BSL Button (S1), connect the USB cable.	
Help me locate the BSL Button (S 1)	
Close	

Figure 22. Firmware Loader

3. If you don't know the location of the BSL button, click the long button in the middle of the screen.

Figure 23. BSL Button

4. Click the "OK" button to go back to the previous screen. Follow the on-screen procedure until this screen is appears.

USB2ANY Firmware Loader		×
The USB2ANY is ready for download. Click the Update Firmware button to start the update process.	Update Firmware	
Close		

Figure 24. Update Firmware

5. Click the "Upgrade Firmware" button, the firmware will be upgrading. Click the "Close" button after it is complete.

Figure 25. Firmware Update Completed

6. Check the USB connection in TICS Pro by clicking USB communications → Interface. Make sure the USB Connected button is green.

Communication Setup				_ 🗆 ×
Interface USB2ANY TiHera FTDI DemoMode	Select USB2ANY A2C3B06F24002100 USB Connected	▼ Identify	Select a Protocol	SPI 💌
				Close

Figure 26. USB Communications

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated