

# ITU-T G.8262 compliance test results for the LMK05318

Arvind Sridhar

#### ABSTRACT

The LMK05318 is an ultra-low jitter clock synchronizer with integrated EEPROM targeted for communication and industrial applications. This document details the LMK05318's compliance to the ITU-T G.8262 (timing characteristics of a synchronous Ethernet equipment slave clock) standard.

#### Contents

| 1  | Introduction               |    |
|----|----------------------------|----|
| 2  | Wander Generation          | 4  |
| 3  | Wander Transfer            |    |
| 4  | Wander Tolerance           |    |
| 5  | Jitter Tolerance           |    |
| 6  | Phase Transient Generation |    |
| 7  | Holdover                   |    |
| 8  | Free-Run Accuracy          |    |
| 9  | Pull-In and Hold-In        |    |
| 10 | Conclusion                 |    |
| 11 | Appendix                   |    |
| 12 | References                 | 34 |

#### List of Figures

| 1  | Test Setup for Wander Generation                                                                                                  | 4  |
|----|-----------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | Wander Generation (MTIE) for EEC-Option 1                                                                                         | 5  |
| 3  | Wander Generation MTIE Option 1, G.8262 EEC Option 1 Results, Tested at Constant Room<br>Temperature With DPLL Bandwidth of 10 Hz | 5  |
| 4  | Wander Generation MTIE Option 1, G.8262 EEC Option 1 Results, Tested at Temperature of 85°C With DPLL Bandwidth of 10 Hz          | 6  |
| 5  | Wander Generation (TDEV) for EEC-Option 1 With Constant Temperature                                                               | 6  |
| 6  | Wander Generation TDEV G.8262 EEC Option 1 Results, Tested at Constant Room Temperature With DPLL Bandwidth of 10 Hz              | 7  |
| 7  | Wander Generation (MTIE) for EEC-Option 2 With Constant Temperature                                                               | 8  |
| 8  | Wander Generation MTIE ITU-T G.8262 EEC Option 2 Results, Tested at Constant Room Temperature With DPLL Bandwidth of 0.1 Hz       | 8  |
| 9  | Wander Generation (TDEV) for EEC-Option 2 With Constant Temperature                                                               | 9  |
| 10 | Wander Generation TDEV G.8262 EEC Option 2 Results, Tested at Constant Room Temperature With DPLL Bandwidth of 0.1 Hz             | 9  |
| 11 | Test Setup for Wander Transfer                                                                                                    | 10 |
| 12 | Wander Transfer EEC Option 1 With Max DPLL Bandwidth of 10 Hz                                                                     | 11 |
| 13 | Wander Transfer EEC Option 2 With Max DPLL Bandwidth of 0.1 Hz                                                                    | 12 |
| 14 | Input Wander Tolerance (TDEV) for EEC-Option 2                                                                                    | 13 |
| 15 | Wander Transfer for EEC-Option 2 (Maximum Output Wander When Input Wander Meets )                                                 | 13 |
| 16 | Test Setup for Wander Tolerance                                                                                                   | 14 |
| 17 | Input Wander Tolerance (MTIE) for EEC-Option 1                                                                                    | 15 |
| 18 | Lower Limit of Maximum Tolerable Sinusoidal Input Wander for EEC-Option 1                                                         | 15 |
|    |                                                                                                                                   |    |



| 19 | Input Wander Tolerance (TDEV) for EEC-Option 2                                               | 16 |
|----|----------------------------------------------------------------------------------------------|----|
| 20 | Test Setup for Jitter Tolerance                                                              | 17 |
| 21 | 1G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 and EEC-Option 2          | 18 |
| 22 | 10G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 and EEC-Option 2         | 18 |
| 23 | Test Setup for Phase Transient Generation                                                    | 20 |
| 24 | Maximum Phase Transient at the Output Due to Reference Switching for EEC-Option 1            | 21 |
| 25 | Short-Term Phase Transient Result                                                            | 21 |
| 26 | MTIE at the Output Due to Reference Switching/Rearrangement Operations for EEC-Option 2      | 22 |
| 27 | Short-Term Phase Transient Option 2                                                          | 23 |
| 28 | Test Setup for Phase Transient Generation With Signal Interruption                           | 24 |
| 29 | Phase Transient With Signal Interruptions Results                                            | 25 |
| 30 | Test Setup for Phase Discontinuity                                                           | 26 |
| 31 | Phase Discontinuity Results                                                                  | 27 |
| 32 | Phase Discontinuity Option 2 Results                                                         | 28 |
| 33 | Permissible Phase Error for an EEC-Option 1 Under Holdover Operation at Constant Temperature | 29 |
| 34 | Holdover Option 1 Result                                                                     | 29 |
| 35 | Holdover Option 2 Result                                                                     | 30 |
| 36 | Alternate Test Setup to Measure Phase Transient Response Accurately                          | 32 |
| 37 | Phase Transient Result                                                                       | 33 |
| 38 | Frequency Transient Result                                                                   | 33 |
|    |                                                                                              |    |

### List of Tables

| 1  | ITU-T G.8262 Compliance Summary                                                      | 3  |
|----|--------------------------------------------------------------------------------------|----|
| 2  | Input Wander Tolerance (TDEV) for EEC-Option 2                                       | 13 |
| 3  | Lower Limit of Maximum Tolerable Sinusoidal Input Wander for EEC-Option 1            | 15 |
| 4  | 1G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 & EEC-Option 2    | 18 |
| 5  | 10G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 and EEC-Option 2 | 19 |
| 6  | 25G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 and EEC-Option 2 | 19 |
| 7  | 1G Test Conditions                                                                   | 19 |
| 8  | 10G Test Conditions                                                                  | 19 |
| 9  | 25G Test Conditions                                                                  | 19 |
| 10 | Transient Response Specifications During Holdover                                    | 30 |
| 11 | Pull-In Results                                                                      | 31 |
| 12 | Hold-In Results                                                                      | 31 |
|    |                                                                                      |    |

# Trademarks

2

All trademarks are the property of their respective owners.



#### 1 Introduction

This document contains the summary of the test setups and measured silicon results highlighting compliance to ITU-T G.8262 (Timing characteristics of a synchronous Ethernet equipment slave clock) standard. Testing was performed using the Calnex Rb/GPS frequency reference and Calnex Paragon-T hardware. Other test hardware was used as required for the measurements.

The device-under-test (LMK05318) was configured using Texas Instruments' TICS Pro Silicon EVM Programming Tool. Unless specified otherwise, the LMK05318 Digital PLL loop bandwidth for EEC-Option 1 was set to 10 Hz and for EEC-Option 2 to 0.1 Hz.

| SECTION                                                                                        | DESCRIPTION                                                                                                             | EEC OPT 1<br>(SECTION IN<br>G.8262) | EEC OPT 2<br>(SECTION IN<br>G.8262) | COMPLIANT |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------|
|                                                                                                | WANDER GEN                                                                                                              | ERATION                             |                                     |           |
| Section 2.1                                                                                    | MTIE EEC Option 1; Must not exceed MTIE mask                                                                            | 8.1.1                               |                                     | Yes       |
| Section 2.2                                                                                    | TDEV EEC Option 1; Must not exceed TDEV mask                                                                            | 8.1.1                               |                                     | Yes       |
| Section 2.3                                                                                    | MTIE EEC Option 2; Must not exceed MTIE mask                                                                            |                                     | 8.1.2                               | Yes       |
| Section 2.3                                                                                    | TDEV EEC Option 2; Must not exceed TDEV mask                                                                            |                                     | 8.1.2                               | Yes       |
|                                                                                                | WANDER TRA                                                                                                              | ANSFER                              |                                     |           |
| Section 3.1                                                                                    | Transfer Function of the PLL for EEC Option 1 and EEC Option 2; Must meet bandwidth requirements                        | 10.1                                | 10.2                                | Yes       |
| Section 3.2                                                                                    | Wander Transfer TDEV G.8262 for EEC Option 2;<br>Must not exceed TDEV mask                                              |                                     | 10.2                                | Yes       |
|                                                                                                | WANDER TOL                                                                                                              | ERANCE                              | •                                   | *         |
| Section 4.1                                                                                    | Wander Tolerance EEC Option 1; Must tolerate at<br>least input wander defined by MTIE/TDEV mask                         | 9.1.1                               |                                     | Yes       |
| Section 4.2                                                                                    | Wander Tolerance EEC Option 2; Must tolerate at<br>least input wander defined by TDEV mask                              |                                     | 9.1.2                               | Yes       |
|                                                                                                | JITTER TOLE                                                                                                             | RANCE                               |                                     |           |
| Section 5.1                                                                                    | Jitter Tolerance for EEC Option 1 and EEC Option 2;<br>Must tolerate jitter defined by UI mask                          | 9.2.1                               | 9.2.1                               | Yes       |
|                                                                                                | PHASE TRANSIENT                                                                                                         | GENERATION                          |                                     |           |
| Section 6.1                                                                                    | Short Term Phase Transient EEC Option 1; Must not exceed limits set by standard                                         | 11.1.1                              |                                     | Yes       |
| Section 6.2 Short Term Phase Transient EEC Option 2; Must not exceed MTIE mask set by standard |                                                                                                                         |                                     | 11.1.2<br>11.4.2                    | Yes       |
| Section 6.3                                                                                    | Section 6.3 Phase Transient Generation with Signal Interruptions<br>EEC Option 1; Must not exceed phase variation limit |                                     |                                     | Yes       |
| Section 6.4                                                                                    | Phase Discontinuity EEC Option 1; Must not exceed phase variation limits                                                | 11.4.1                              |                                     | Yes       |
| Section 6.5 Phase Discontinuity EEC Option 2; Must not exceed MTIE mask set by standard        |                                                                                                                         |                                     | 11.4.2                              | Yes       |
|                                                                                                | HOLDOVER PER                                                                                                            | FORMANCE                            |                                     |           |
| Section 7.1 Holdover EEC Option 1; Must not exceed TIE mask set by standard                    |                                                                                                                         | 11.2.1                              |                                     | Yes       |
| Section 7.2                                                                                    | Holdover EEC Option 2; Must meet TIE mask set by standard                                                               |                                     | 11.2.2                              | Yes       |
|                                                                                                | FREE-RUN AC                                                                                                             | CURACY                              |                                     |           |
| Section 8.1                                                                                    | Free-run Accuracy EEC Option 1 and Option 2; Must<br>not exceed ± 4.6 ppm                                               | 6.1                                 | 6.2                                 | Yes       |
|                                                                                                | PULL-IN AND                                                                                                             | HOLD-IN                             |                                     |           |
| Section 9                                                                                      | Pull-in and Hold-in EEC Option 1 and Option 2;<br>Minimum pull-in range and hold-in range must be ±<br>4.6 ppm          | 7.1.1                               | 7.1.2<br>7.2.2                      | Yes       |

#### Table 1. ITU-T G.8262 Compliance Summary

Introduction



Wander Generation

#### 2 Wander Generation

The following tests measure the amount of wander generated by the LMK05318. For these tests, the setup shown in Figure 1 was used.

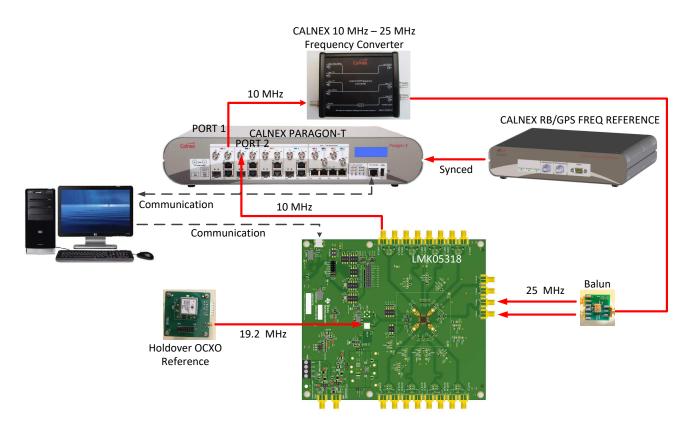



Figure 1. Test Setup for Wander Generation

#### 2.1 Wander Generation MTIE Option 1, G.8262 EEC Option 1

While the DPLL is locked to an input clock that is wander-free, it will not generate wander that exceeds the MTIE mask shown in Figure 2 (Figure 1 in the G.8262 specification). There is no noise modulation applied to the input for this test. The LMK05318 passed the Wander Generation MTIE Option 1, G.8262 EEC Option 1 requirement as shown in Figure 3 and Figure 4.

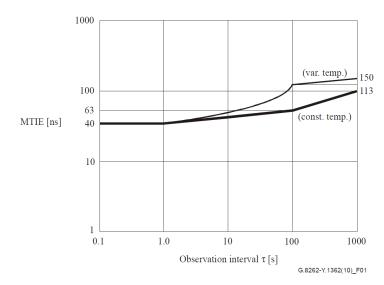
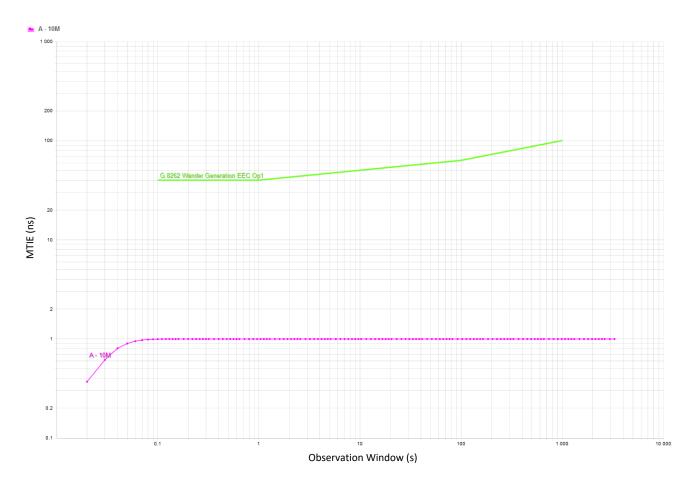
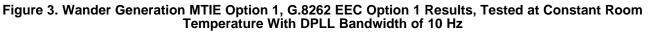




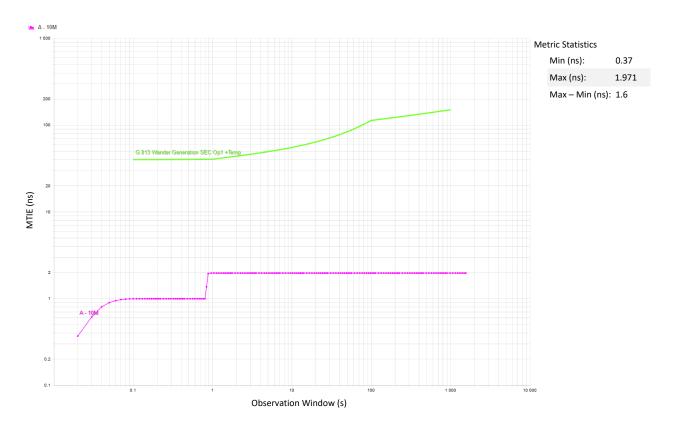
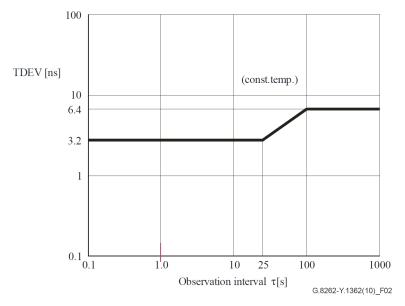

Figure 2. Wander Generation (MTIE) for EEC-Option 1

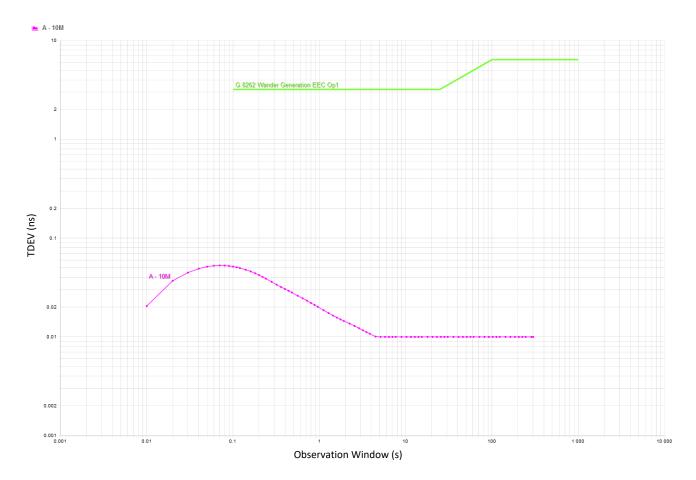






#### Wander Generation



Figure 4. Wander Generation MTIE Option 1, G.8262 EEC Option 1 Results, Tested at Temperature of 85°C With DPLL Bandwidth of 10 Hz

#### 2.2 Wander Generation TDEV G.8262 EEC Option 1

While the DPLL is locked to an input clock signal that is wander-free, it will not generate wander that exceeds the TDEV mask shown in Figure 5 (Figure 2 in the G.8262 specification). The LMK05318 passed the Wander Generation TDEV G.8262 EEC Option 1 requirement as shown in Figure 6.







Wander Generation

7

Figure 6. Wander Generation TDEV G.8262 EEC Option 1 Results, Tested at Constant Room Temperature With DPLL Bandwidth of 10 Hz

# 2.3 Wander Generation MTIE Stratum ITU-T G.8262 EEC Option 2

Texas

www.ti.com

**ISTRUMENTS** 

While the DPLL is locked to an input clock signal that is wander-free, it will not generate wander that exceeds the MTIE mask shown in Figure 7 (Figure 3 in the G.8262 specification). The LMK05318 passed the Wander Generation MTIE Stratum ITU-T G.8262 EEC Option 2 requirement as shown in Figure 8.

Copyright © 2018–2019, Texas Instruments Incorporated



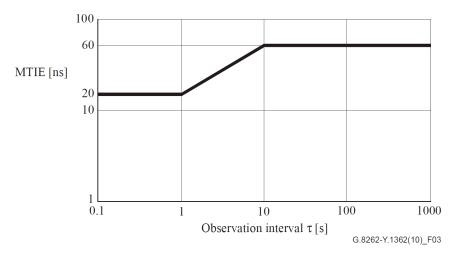



Figure 7. Wander Generation (MTIE) for EEC-Option 2 With Constant Temperature

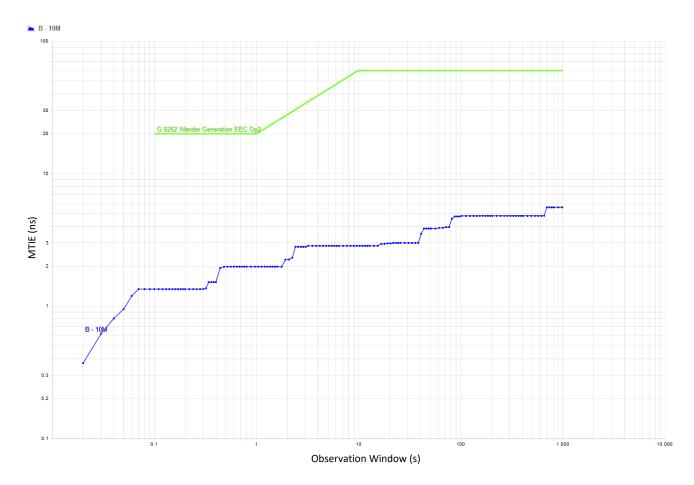



Figure 8. Wander Generation MTIE ITU-T G.8262 EEC Option 2 Results, Tested at Constant Room Temperature With DPLL Bandwidth of 0.1 Hz



### 2.4 Wander Generation TDEV G.8262 EEC Option 2

While the DPLL is locked to an input clock signal that is wander-free, it will not generate wander that exceeds the TDEV mask shown in Figure 9 (Figure 4 in the G.8262 specification). The LMK05318 passed the Wander Generation TDEV G.8262 EEC Option 2 requirement as shown in Figure 10.

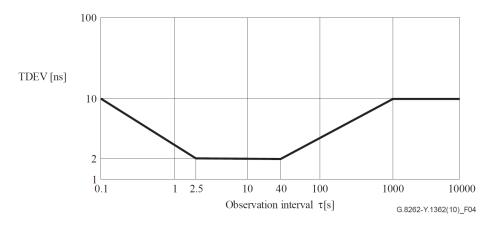



Figure 9. Wander Generation (TDEV) for EEC-Option 2 With Constant Temperature

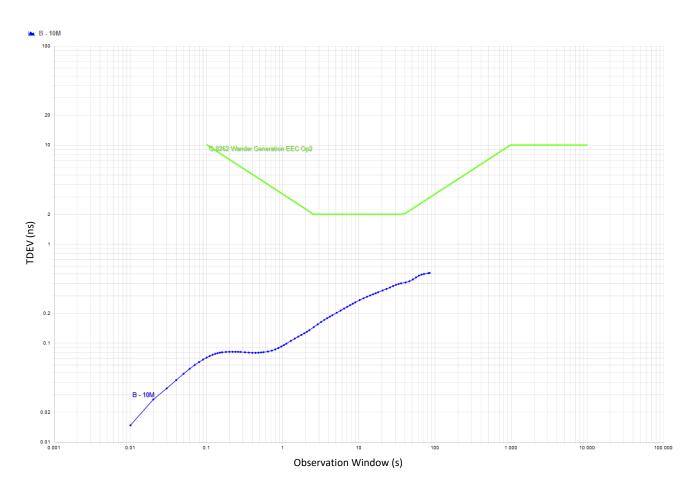



Figure 10. Wander Generation TDEV G.8262 EEC Option 2 Results, Tested at Constant Room Temperature With DPLL Bandwidth of 0.1 Hz



#### 3 Wander Transfer

The following tests measure the wander transfer of the LMK05318. For these tests, the setup shown in Figure 11 was used.

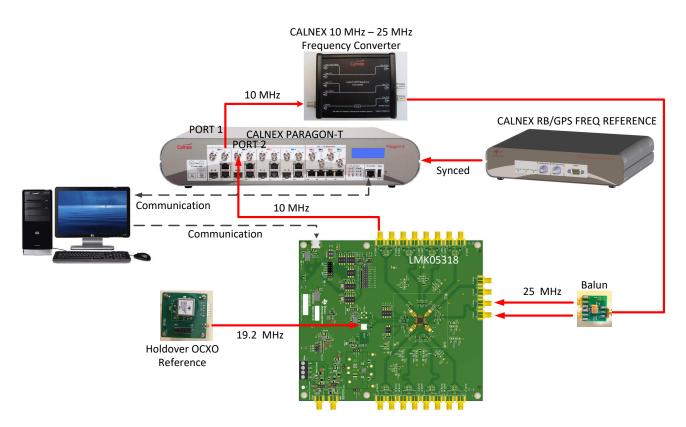



Figure 11. Test Setup for Wander Transfer

#### 3.1 Transfer Function of the PLL for Option 1 and Option 2

Wander transfer is determined by the DPLL loop BW and peaking. For Option 1, the DPLL loop bandwidth was set to 10 Hz and for Option 2, the DPLL loop bandwidth was set to 0.1 Hz. Both Option 1 and Option 2 require <0.2 dB of peaking. The LMK05318 meets the requirements for the transfer function of the PLL for EEC Option 1 and Option 2 as shown in Figure 12 and Figure 13. The results show a close match between expected bandwidth and measured bandwidth on LMK05318. For Option 1, the expected bandwidth is 10 Hz and the measured bandwidth is around 10 Hz. For Option 2, the expected bandwidth is 0.1 Hz and the measured bandwidth is around 0.1 Hz.



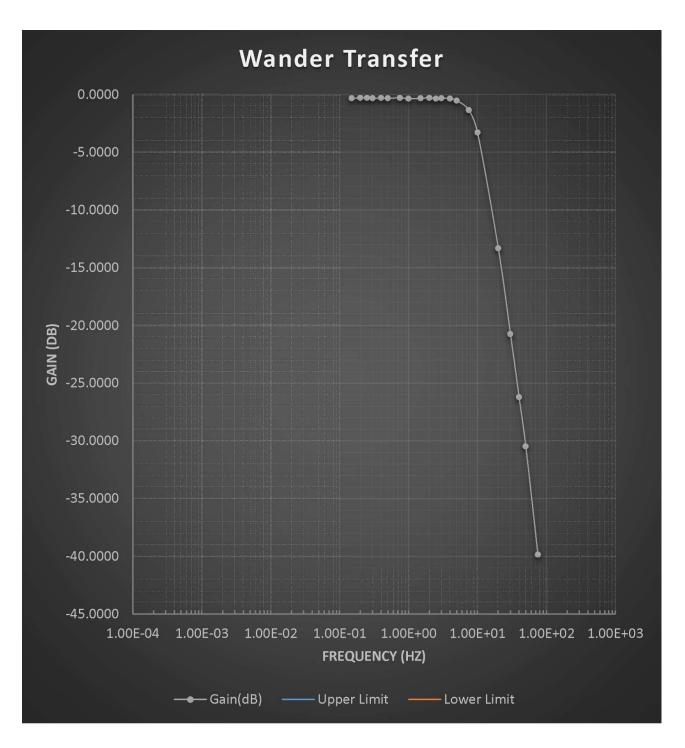



Figure 12. Wander Transfer EEC Option 1 With Max DPLL Bandwidth of 10 Hz



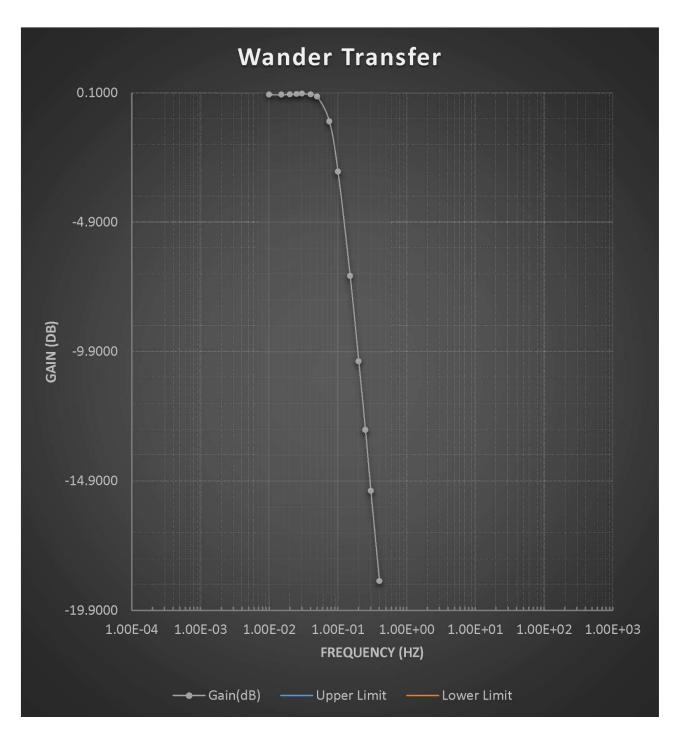



Figure 13. Wander Transfer EEC Option 2 With Max DPLL Bandwidth of 0.1 Hz



13

# 3.2 Wander Transfer TDEV G.8262 Option 2

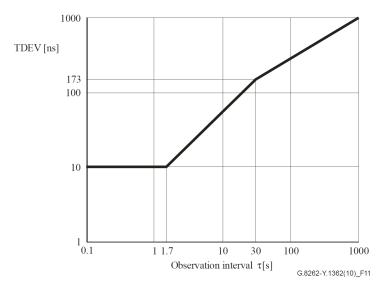

The process for this specification is to measure the output wander (TDEV) when the device is locked to a clock that has wander as defined by the TDEV mask shown in Figure 14 (Figure 8 in the G.8262 specification) and Table 2 (Table 10 in the G.8262 specification) and to ensure that the TDEV output is below the mask shown in Figure 15 (Figure 11 in the G.8262 specification). Results from Section 3.1 offer sufficient information regarding the bandwidth of the DPLL to state that the LMK05318 meets the requirements for wander transfer TDEV G.8262 Option 2.



Figure 14. Input Wander Tolerance (TDEV) for EEC-Option 2

| Table 2. Input Wander Tolerance | (TDEV) for EEC-Option 2 | 2 |
|---------------------------------|-------------------------|---|
| Tuble 21 Input Manuel Telefanee |                         | • |

| TDEV LIMIT (ns)            | OBSERVATION INTERVAL $\tau$ (s) |
|----------------------------|---------------------------------|
| 17                         | 0.1 < τ ≤ 3                     |
| 5.77 × τ                   | 3 < τ ≤ 30                      |
| 31.6325 × τ <sup>0.5</sup> | 30 < τ ≤ 1000                   |







Wander Tolerance

#### 4 Wander Tolerance

The following tests measure the wander tolerance of the LMK05318. For these tests, the same general setup, shown in Figure 16, was used.

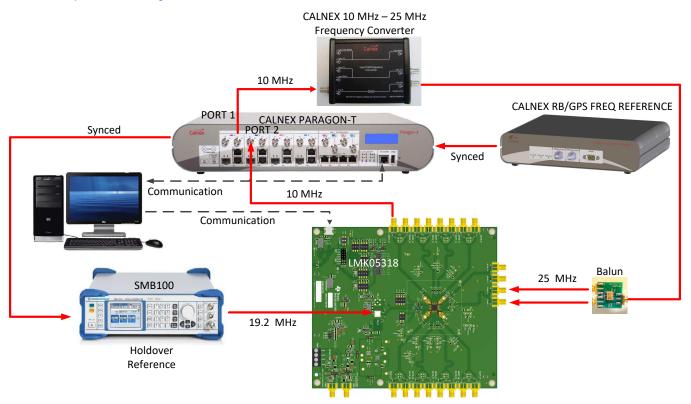



Figure 16. Test Setup for Wander Tolerance

#### 4.1 Wander Tolerance G.8262 Option 1

A PLL that is locked to an input clock must be able to tolerate the wander defined in Figure 17 (Figure 5 in the G.8262 specification). The definition of tolerance is such that the device will not trigger any alarms while locked to such an input clock and it will be able to pull-in to such as input clock. Test signals with a sinusoidal phase variation can be used, according to the levels in Table 3 (Table 9 in the G.8262 specification), to check conformance to the mask in Figure 17 (Figure 5 in the G.8262 specification).

Test signals with sinusoidal phase variation according to levels shown in Table 3 were introduced using the Calnex Paragon-T box. There were no amplitude, frequency, or missing clock cycle alarms flagged by the LMK05318 DUT (10-Hz loop bandwidth). The device stayed locked and was able to pull-in to the input clock throughout the duration of this test. The LMK05318 showed a passing result for the wander tolerance G.8262 Option 1 specification.



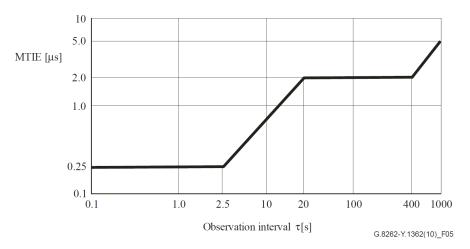



Figure 17. Input Wander Tolerance (MTIE) for EEC-Option 1

| PEAK-TO-PEAK WANDER AMPLITUDE |                     | WANDER FREQUENCY    |                      |                      |                      |                     |                     |
|-------------------------------|---------------------|---------------------|----------------------|----------------------|----------------------|---------------------|---------------------|
| Α <sub>1</sub> (μs)           | Α <sub>2</sub> (μs) | Α <sub>3</sub> (μs) | f <sub>4</sub> (mHz) | f <sub>3</sub> (mHz) | f <sub>2</sub> (mHz) | f <sub>1</sub> (Hz) | f <sub>0</sub> (Hz) |
| 0.25                          | 2                   | 5                   | 0.32                 | 0.8                  | 16                   | 0.13                | 10                  |

(1) The resultant requirements are shown in Figure 18

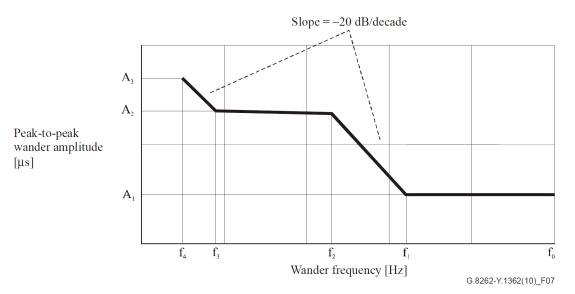



Figure 18. Lower Limit of Maximum Tolerable Sinusoidal Input Wander for EEC-Option 1



#### 4.2 Wander Tolerance G.8262 Option 2

A PLL that is locked to an input clock must be able to tolerate the wander defined in Figure 19 (Figure 8 in the G.8262 specification). The definition of tolerance is such that the device will not trigger any alarms while locked to such an input clock and it will be able to pull-in to such as input clock. Test signals with sinusoidal phase variation according to levels shown in Figure 19 (Table 9 in the G.8262 specification) were introduced using the Calnex Paragon-T box for this test, too. There were no amplitude, frequency, or missing clock cycle alarms flagged by the LMK05318 DUT (0.1-Hz loop bandwidth), and the device stayed locked and was able to pull-in to the input clock throughout the duration of this test. The LMK05318 showed a passing result for the wander tolerance G.8262 Option 2 specification.

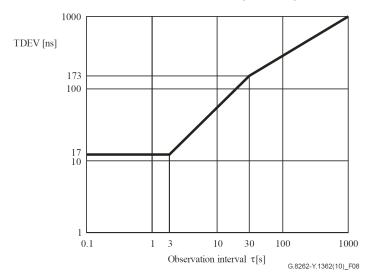



Figure 19. Input Wander Tolerance (TDEV) for EEC-Option 2

#### 5 **Jitter Tolerance**

The following tests measure the jitter tolerance of the LMK05318. For these tests, the setup shown in Figure 20 was used.



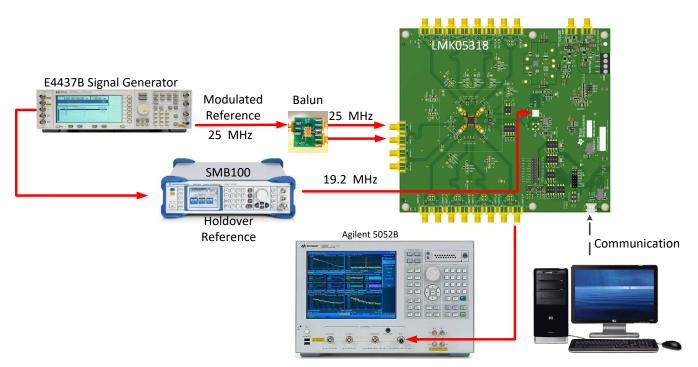



Figure 20. Test Setup for Jitter Tolerance

#### 5.1 Jitter Tolerance G.8262 Option 1 and Option 2

A PLL that is locked to an input clock must be able to tolerate the jitter defined in Figure 21 (Figure 9 in the G.8262 specification) and Figure 22 (Figure 10 in the G.8262 specification). The definition of tolerance is that the device will not trigger any alarms while locked to such an input clock and that it will be able to pull-in to such an input clock. For Option 1, LMK05318 DPLL loop bandwidth was set to 10 Hz. For Option 2, the DPLL loop bandwidth was set to 0.1 Hz. For this test, the modulation frequency and frequency deviation was applied on the E4437B.

In compliance with the jitter tolerance spec requirement, the reference clock to LMK05318 (generated using E4437B) was modulated. The LMK05318 met the jitter tolerance requirements per the standard. The LMK05318 did not trigger any alarms, stayed locked to the reference and there was no observed degradation to the integrated RMS (12 kHz – 20 MHz) phase jitter of the output clock (156.25 MHz). The integrated RMS phase jitter was <250 fs (max) for the duration for this test.






Figure 21. 1G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 and EEC-Option 2

| Table 4. 1G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 & EEC-Option 2 <sup>(1)</sup> | Jitter Tolerance for EEC-Option 1 & EEC-Option 2 <sup>(1)</sup> | Table 4. 1G Synchronous Ethernet Wideband Jitter Te |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|

| PEAK-PEAK JITTER AMPLITUDE (UI) | FREQUENCY f (Hz) |
|---------------------------------|------------------|
| 312.5                           | 10 < f ≤ 12.1    |
| 3750 f <sup>-1</sup>            | 12.1 < f ≤ 2.5k  |
| 1.5                             | 2.5k < f ≤ 50k   |

(1) 1G includes 1000BASE-KX, -SX, -LX; multi-lane interfaces are for further study.

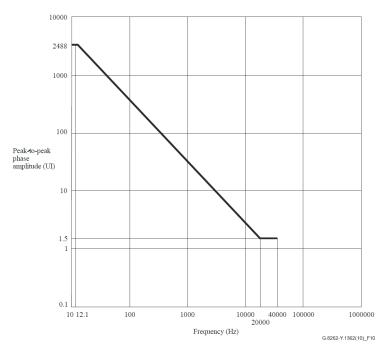



Figure 22. 10G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 and EEC-Option 2



# Table 5. 10G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 and EEC-Option 2<sup>(1)</sup>

| PEAK-PEAK JITTER AMPLITUDE (UI) | FREQUENCY f (Hz) |
|---------------------------------|------------------|
| 2488                            | 10 < f ≤ 12.1    |
| 3000 f <sup>-1</sup>            | 12.1 < f ≤ 20k   |
| 1.5                             | 20k < f ≤ 40k    |

(1) 10G includes 10GBASE-SR/LR/ER, 10GBASE-LRM, 10GBASE-SW/LW/EW and multi-lane interfaces consisting of 10G lanes including 40GBASE-KR4/CR4/SR4/LR4 and 100GBASE-CR10/SR10.

# Table 6. 25G Synchronous Ethernet Wideband Jitter Tolerance for EEC-Option 1 and EEC-Option $2^{(1)}$

| PEAK-PEAK JITTER AMPLITUDE (UI) | FREQUENCY f (Hz) |
|---------------------------------|------------------|
| 6445                            | 10 < f ≤ 11.17   |
| 72000 f <sup>1</sup>            | 11.17 < f ≤ 20k  |
| 3.6                             | 20k < f ≤ 100k   |

(1) 25G includes multi-lane interfaces consisting of 25G lanes including 100GBASE-LR4/ER4.

#### Table 7. 1G Test Conditions

| MOD FREQUENCY (Hz) | PK-PK PHASE AMPLITUDE (UI) | FREQ DEVIATION (Hz) |
|--------------------|----------------------------|---------------------|
| 10                 | 312.5                      | 0.245               |
| 12.1               | 312.5                      | 0.296               |
| 100                | 40                         | 0.314               |
| 1000               | 4                          | 0.314               |
| 2500               | 1.5                        | 0.294               |
| 10000              | 1.5                        | 1.178               |
| 50000              | 1.5                        | 5.890               |

#### Table 8. 10G Test Conditions

| MOD FREQUENCY (Hz) | PK-PK PHASE AMPLITUDE (UI) | FREQ DEVIATION (kHz) |
|--------------------|----------------------------|----------------------|
| 10                 | 2488                       | 0.195                |
| 12.1               | 2488                       | 0.236                |
| 100                | 300                        | 0.235                |
| 1000               | 30                         | 0.235                |
| 2500               | 12                         | 0.235                |
| 20000              | 1.5                        | 1.885                |
| 40000              | 1.5                        | 3.770                |

#### Table 9. 25G Test Conditions

| MOD FREQUENCY (Hz) | PK-PK PHASE AMPLITUDE (UI) | FREQ DEVIATION (kHz) |
|--------------------|----------------------------|----------------------|
| 10                 | 6455                       | 0.202                |
| 11.17              | 6455                       | 0.226                |
| 100                | 720                        | 0.226                |
| 1000               | 72                         | 0.226                |
| 2500               | 28.8                       | 0.226                |
| 20000              | 3.6                        | 0.226                |
| 100000             | 3.6                        | 1.131                |

#### Phase Transient Generation

#### 6 Phase Transient Generation

The following tests measure the phase transient of the LMK05318. For these tests, the setup shown in Figure 23 was used.

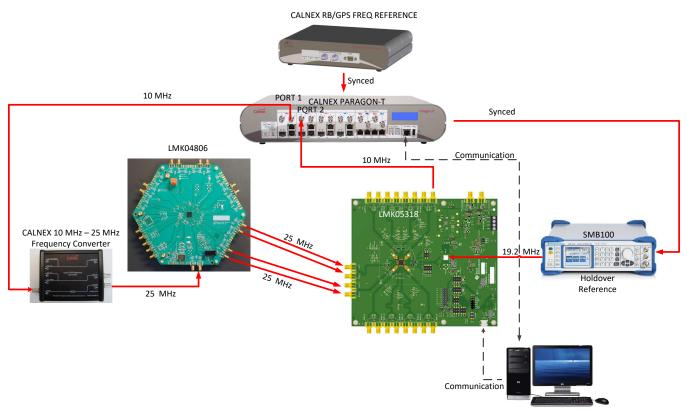



Figure 23. Test Setup for Phase Transient Generation

#### 6.1 Short-Term Phase Transient Response G.8262 Option 1

For this test, the device is forced into holdover for 15 seconds by performing a manual switch from a valid active clock input (IN0) to another input with no valid signal (IN1), then the holdover state is exited by manually switching back to the valid active clock input. The test is completed after an entry into holdover and exit from holdover has taken place within 15 seconds. The output phase variation, relative to the input reference before it was lost, is bounded by the following requirements.

The phase error must not exceed  $\Delta t + 5 \times 10.8 \times S$  seconds over any period S up to 15 seconds.  $\Delta t$  represents two phase jumps that may occur during the transition into and out of holdover state which both must not exceed 120 ns with a temporary frequency offset of no more than 7.5 ppm. The resultant overall requirements is summarized in Figure 24 (Figure 12 in the G.8262 specification). This figure is intended to depict the worst-case phase movement attributable to an EEC reference clock switch.

The LMK05318 passed the requirements for short-term phase transient response. No significant *phase hits* were observed during holdover entry and exit using LMK05318.

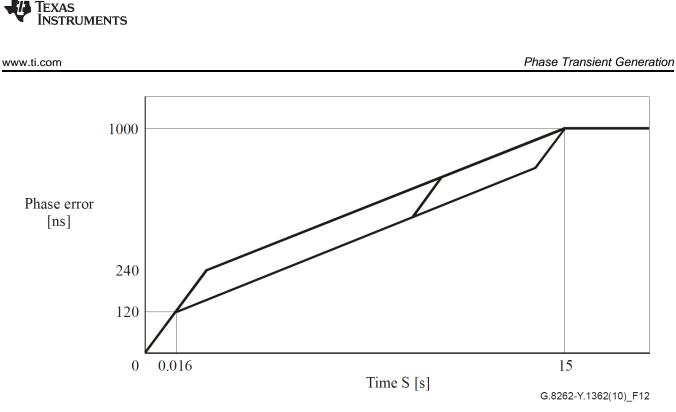
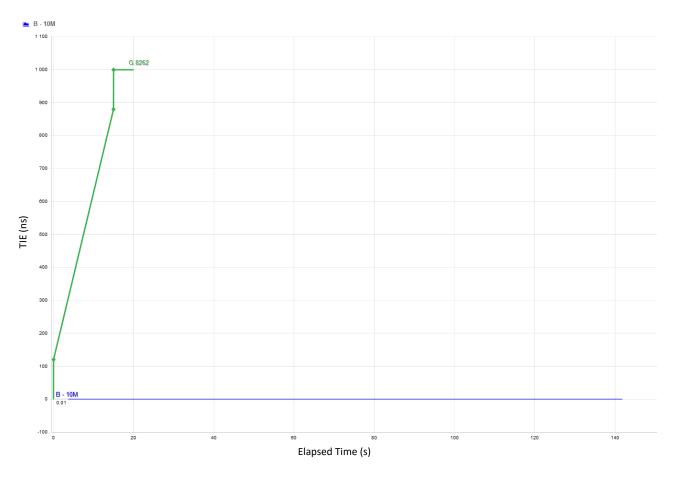




Figure 24. Maximum Phase Transient at the Output Due to Reference Switching for EEC-Option 1







#### 6.2 Short-Term Phase Transient Response G.8262 Option 2

For this test, the device is forced into holdover for 15 seconds by performing a manual switch from a valid active clock input (IN0) to another input with no valid signal (IN1), then the holdover state is exited by manually switching back to the valid active clock input. The test is completed after an entry into holdover and exit from holdover has taken place within 15 seconds. The output will not exceed the MTIE requirement of Figure 26 (Figure 14 in the G.8262 specification).

The above MTIE data captures the phase transient at the output of LMK05318 during multiple reference clock switchover events, displaying a passing result. The resolution of Calnex equipment is limited to 1 ns for MTIE. The unique phase cancellation scheme implemented in LMK05318 allows for a phase transient <100 ps which cannot be measured accurately using this setup. Refer to Section 11 for an alternate setup to measure the phase transient response of LMK05318 more accurately during reference switchover events.

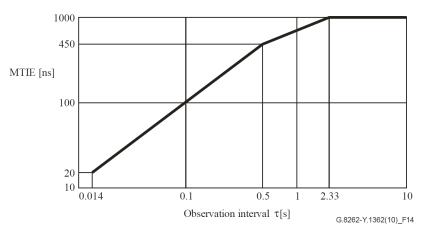



Figure 26. MTIE at the Output Due to Reference Switching/Rearrangement Operations for EEC-Option 2



Phase Transient Generation

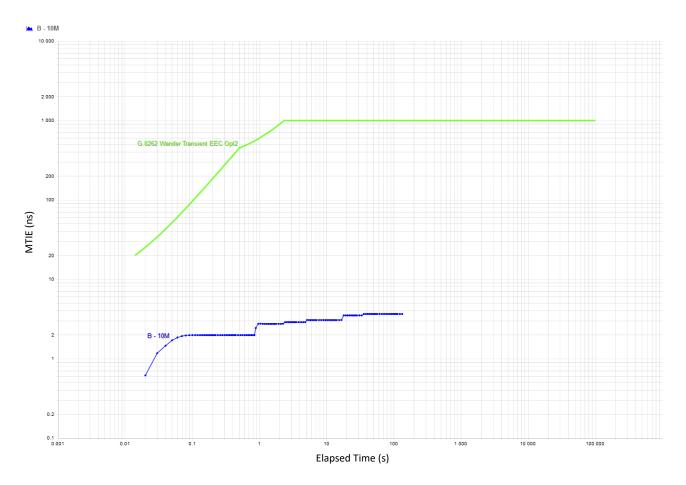



Figure 27. Short-Term Phase Transient Option 2

#### 6.3 Phase Transient Generation With Signal Interruptions G.8262 EEC Option 1

The passing condition for this specification is that an input interruption that does not force a switchover does not cause an output phase transient greater than 120 ns with a maximum frequency offset of 7.5 ppm in a period of 16 ms. For this setup, a pulse generator was inserted into the general setup as in Figure 28. An 8110A pulse generator is used to generate a gapped clock and was set to generate 25 MHz with 1 pulse missing every 2048 clock cycles. This gapped clock was used as reference to LMK05318 and the LMK05318 output was monitored for phase transients.

The LMK05318 passed the requirements for the phase transient generation with signal interruptions G.8262 EEC Option 1. There were no significant phase hits (meets compliance requirements) during operation of the device while receiving a gapped clock as reference.



Phase Transient Generation

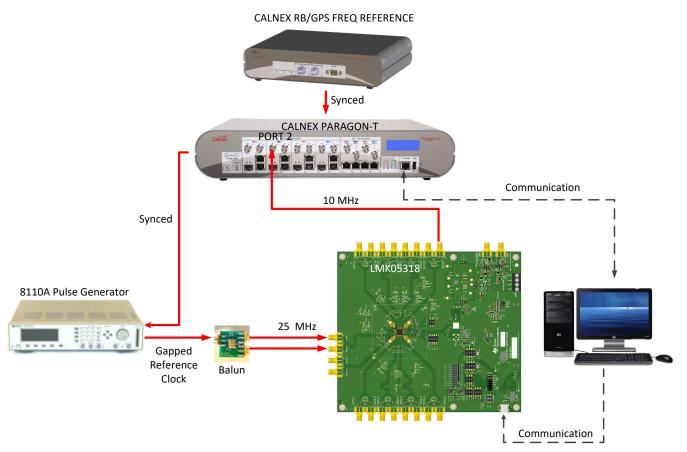



Figure 28. Test Setup for Phase Transient Generation With Signal Interruption



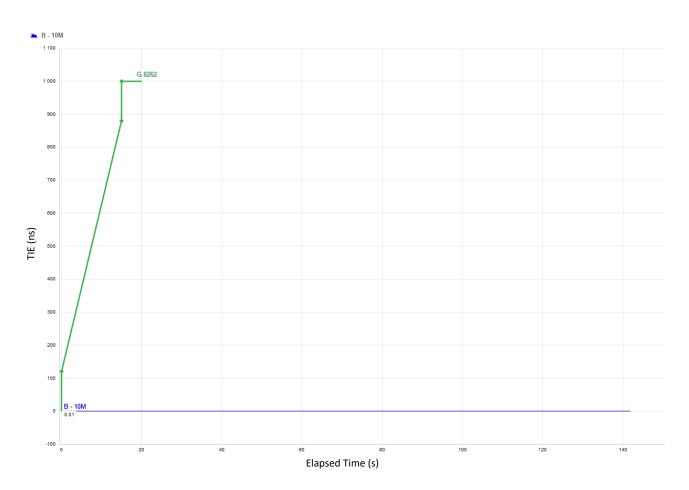



Figure 29. Phase Transient With Signal Interruptions Results

# 6.4 Phase Discontinuity G.8262 Option 1

Passing this test requires that switching between two input clocks of the same frequency but with different phases does not cause an output phase transient greater than what is outlined in Section 11.4.1 of the G.8262 specification. The setup for this test (shown in Figure 30) is as follows:

- · There are two inputs that are 180 degrees out of phase going into the DUT
- The output is measured to ensure that the objective is met

The TIE data for phase discontinuity during reference switchover G.8262 EEC Option 1 (shown in Figure 31) indicates compliance to the standard.



#### Phase Transient Generation

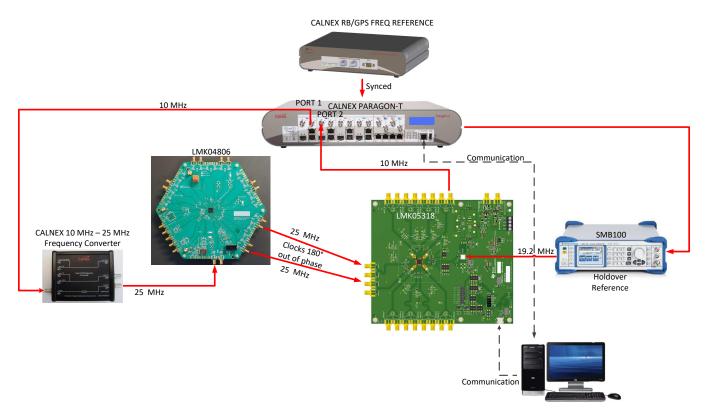



Figure 30. Test Setup for Phase Discontinuity





27

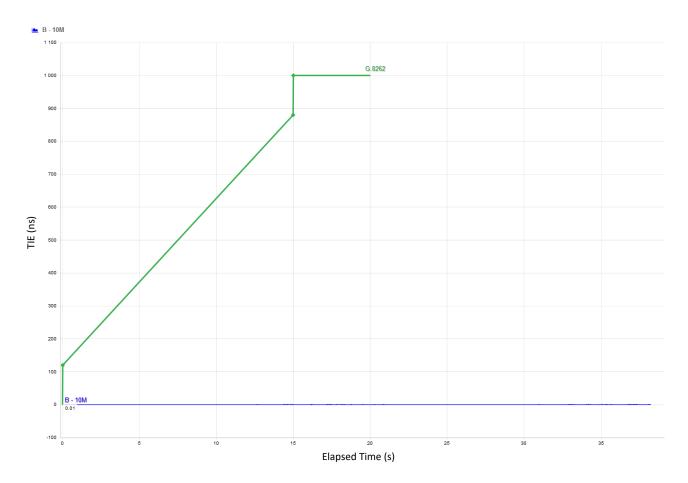



Figure 31. Phase Discontinuity Results

# 6.5 Phase Discontinuity G.8262 Option 2

For this test, the requirement is that switching between two input clocks of the same frequency but with different phase will not exceed the MTIE mask of Figure 26 (Figure 14 and Table 15 in the G.8262 spec). Refer to Section 11 for an alternate setup to measure the phase transient response of LMK05318 accurately during reference switchover events.

The LMK05318 met this requirement, as shown in Figure 32.



#### Holdover

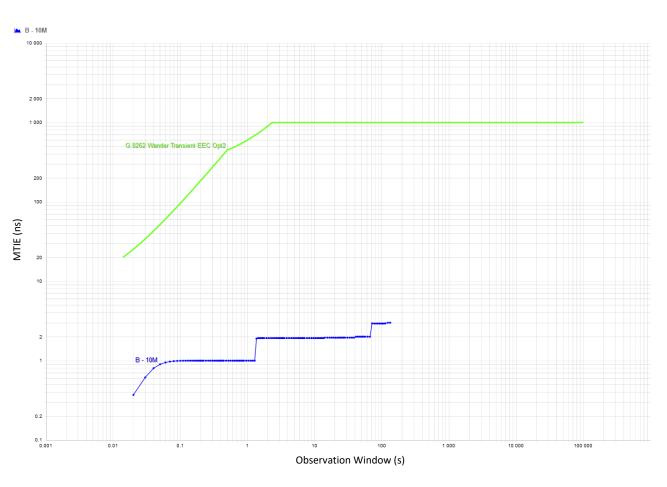



Figure 32. Phase Discontinuity Option 2 Results

# 7 Holdover

# 7.1 Holdover G.8262 Option 1

To meet this specification, a PLL in holdover must meet the requirements in Figure 33 (Figure 13 in the G.8262 specification). The procedure for this test is that the LMK05318 DUT will lock to IN0, which contains a valid input clock. Then the input is switched to IN1, which contains no valid input, thereby causing the device to enter holdover and remain in holdover for the remainder of the test. The LMK05318 device was set up in 3-loop mode, 5-Hz loop bandwidth and forced into holdover. The LMK05318 met this specification. The TIE plot shown in Figure 34 demonstrates compliance to the standard in green.



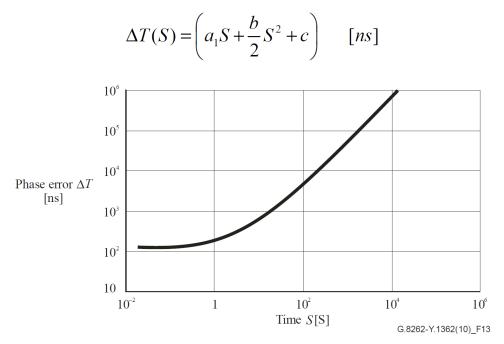
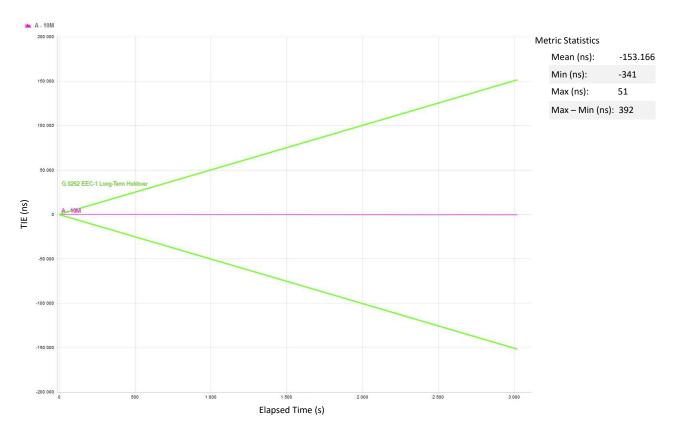




Figure 33. Permissible Phase Error for an EEC-Option 1 Under Holdover Operation at Constant Temperature

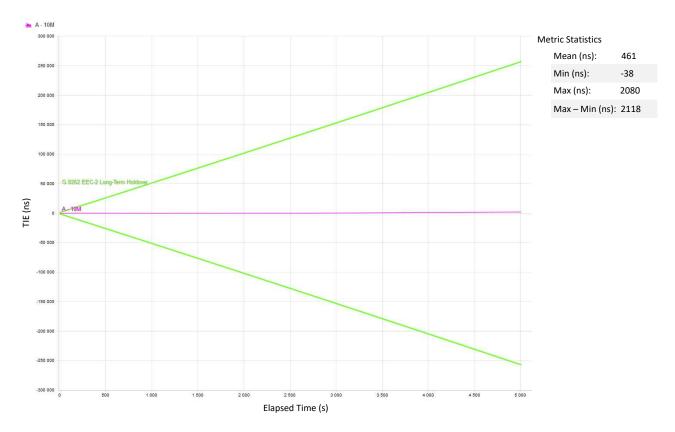






#### 7.2 Holdover G.8262 Option 2

To meet this specification, a PLL in holdover must meet the requirements in Table 10 (Table 14 in the G.8262 specification). The procedure for this test is that the DUT obtains lock from INO, which contains a valid input clock. Then the input is switched to IN1, which contains no valid input, thus entering holdover and remains in holdover for the remainder of the test. The LMK05318 met this specification. The TIE plot shown in Figure 35 demonstrates compliance to the standard in green.


|                                              | EEC Option 2                  |  |  |
|----------------------------------------------|-------------------------------|--|--|
| Applies For                                  | S > <b>TBD</b> <sup>(6)</sup> |  |  |
| <i>a</i> <sub>1</sub> (ns/s) <sup>(1)</sup>  | 50                            |  |  |
| a <sub>2</sub> (ns/s) <sup>(2)</sup>         | 300                           |  |  |
| <i>b</i> (ns/s <sup>2</sup> ) <sup>(3)</sup> | $4.63 \times 10^{-4}$         |  |  |
| <i>c</i> (ns) <sup>(4)</sup>                 | 1000                          |  |  |
| d (ns/s <sup>2</sup> ) <sup>(5)</sup>        | 4.63 × 10 <sup>-4</sup>       |  |  |

(1) a1 represents an initial frequency offset under constant temperature conditions (±1 K)

- (2)  $a_2$  accounts for temperature variations after the clock went into holdover. If there are no temperature variations, the term  $a_2S$  should not contribute to the phase error.
- (3) b represents the average frequency drift caused by aging. This value is derived from typical aging characteristics after 60 days of continuous operation. It is not intended to measure this value on a per day basis, as the temperature effect will dominate.

(4) The phase offset *c* takes care of any additional phase shift that may arise during the transition at the entry of the holdover state.

(5) *d* represents the maximum temporary frequency drift rate at constant temperature allowed during holdover. However, it is not required that *d* and *b* be equal.



(6) TBD: To be defined.





#### 8 Free-Run Accuracy

# 8.1 Free-Run Accuracy G.8262 Option 1 and Option 2

To meet this requirement, the free-run frequency will never exceed  $\pm 4.6$  ppm with reference to a traceable Stratum-1 reference. This includes initial power-up or wherever there isn't sufficient holdover history accumulated.

With the LMK05318 reference removed, the device was locked to the holdover reference upon power on reset until holdover history was available. The holdover reference selected was within  $\pm 4.6$  ppm. The output clock from LMK05318 followed the holdover reference.

#### 9 Pull-In and Hold-In

#### 9.1 Pull-In Range G.8262 Option 1 and Option 2

To meet this requirement, a PLL which is in free-run or holdover within its  $\pm 4.6$  ppm frequency range (based on its TCXO/OCXO) must be able to pull-in to a reference that is within  $\pm 4.6$  ppm frequency (traceable to Stratum-1). In other words, the PLL should be able to pull-in a minimum of  $\pm 9.2$  ppm and no alarms should be asserted during this process. Hold-in range is defined as the largest offset between a slave clock's reference frequency varies over the frequency range. The hold-in range for EEC-Option 2 should be  $\pm 4.6$  ppm, whatever the internal oscillator frequency offset may be. The minimum pull-in range for Option 1 and Option 2 should be  $\pm 4.6$  ppm, whatever the internal oscillator frequency constitution frequency offset may be.

The LMK05318 meets the specification for pull-in and hold-in range as shown in Table 11 and Table 12.

| REFERENCE TO DPLL | тсхо             | OUTPUT           | NOTES                                  |
|-------------------|------------------|------------------|----------------------------------------|
| 25 MHz - 4.6 ppm  | 10 MHz + 4.6 ppm | 10 MHz - 4.6 ppm | Lock from POR with<br>FASTLOCK Enabled |
| 25 MHz - 4.6 ppm  | 10 MHz - 4.6 ppm | 10 MHz - 4.6 ppm |                                        |
| 25 MHz + 4.6 ppm  | 10 MHz + 4.6 ppm | 10 MHz + 4.6 ppm |                                        |
| 25 MHz + 4.6 ppm  | 10 MHz - 4.6 ppm | 10 MHz + 4.6 ppm |                                        |

#### Table 11. Pull-In Results

#### Table 12. Hold-In Results

| REFERENCE TO DPLL | тсхо             | OUTPUT           | NOTES                                                                                                                  |
|-------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------------------|
| 25 MHz - 4.6 ppm  | 10 MHz ± 4.6 ppm | 10 MHz - 4.6 ppm | '±' here refers to reference<br>frequency (TCXO or Reference<br>to DPLL) being swept from '-'<br>to '+' and vice-versa |
| 25 MHz + 4.6 ppm  | 10 MHz ± 4.6 ppm |                  |                                                                                                                        |
| 25 MHz ± 4.6 ppm  | 10 MHz - 4.6 ppm | 10 MHz ± 4.6 ppm |                                                                                                                        |
| 25 MHz ± 4.6 ppm  | 10 MHz + 4.6 ppm | 10 MHz ± 4.6 ppm |                                                                                                                        |

# 10 Conclusion

The LMK05318 Network Synchronizer device, along with a compliant TCXO or OCXO, meets or exceeds the requirement set in ITU-T G.8262/Y.1362 (07/2010) and Amendment 2 (10/2012).

Notable features of this high performance device includes:

- Hitless Switching with minimal phase transients (<100 ps)
- Ultra High-Performance VCO allows use of a low-cost holdover reference without sacrificing performance
- High-Performance DPLL Channel with Programmable loop bandwidth for jitter and wander filtering suitable for EEC Option 1 and EEC Option 2
- Reference Priority Selection, Gapped Clock and Runt Pulse Detectors, Automatic/Manual Switchover, Holdover, and Tuning Word History

#### 11 Appendix

This section describes the alternate test setup to measure phase transient response accurately.

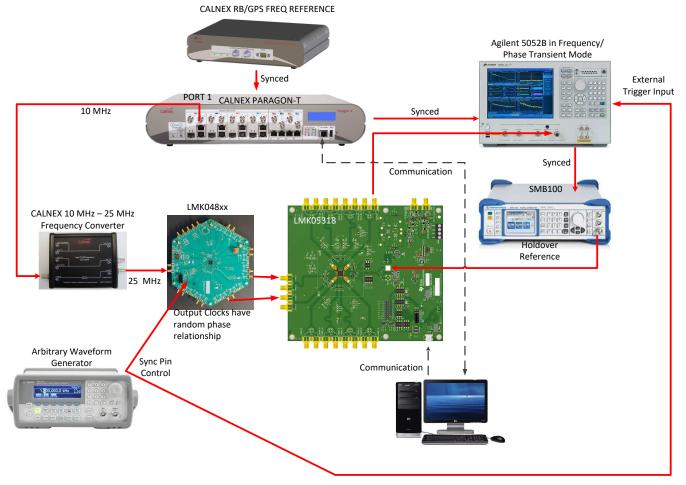



Figure 36. Alternate Test Setup to Measure Phase Transient Response Accurately

The Arbitrary Waveform Generator (ARB) is configured to generate a pulse that controls the SYNC input of the LMK04806 Texas Instruments High Performance Jitter Cleaner device. The SYNC input control toggles one of two active output channels on LMK04806 between ON/OFF states periodically. The LMK04806 is configured in single-loop (PLL2 only) mode to convert a 25-MHz input to two 25-MHz outputs. Every time the SYNC control toggles, the phase relationship between the 25-MHz outputs from the LMK04806 is random. The LMK05318 selects between the 25-MHz reference inputs. When one of the input channels to the LMK05318 is disabled through SYNC control on the LMK04806, the device automatically switches to operate from the other valid reference clock. The phase and frequency transient during this switchover event is captured on an Agilent 5052B as shown in Figure 36.

The LMK05318 was configured to generate a 10-MHz output in this setup. The phase/frequency transient after 100 switchover events is shown in Figure 37, where the x-axis represents a total span of 1 second and the y-axis represents the phase transient in degrees, and in Figure 38 where the x-axis represents a total span of 1 second and the y-axis represents the frequency transient in Hz. The switchover event occurs at the center of the plot. From these plots, it can be seen that the phase transient is approximately 200-mdeg corresponding to approximately 55 ps for 10 MHz and that the frequency transient is approximately 200-mHz corresponding to approximately 0.02 ppm = 20 ppb for 10 MHz.

This alternate measurement setup allows us to visualize the true phase transient of <100 ps observed during reference switchover events. This measurement approach does not suffer from equipment limitations as observed earlier when using the Calnex hardware.



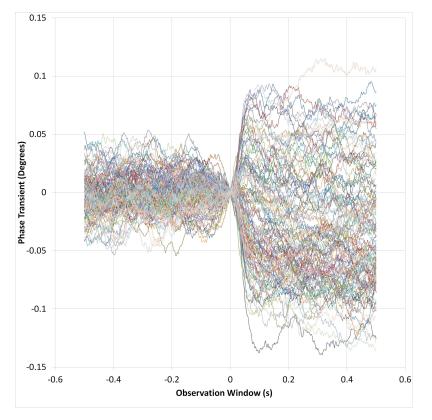



Figure 37. Phase Transient Result

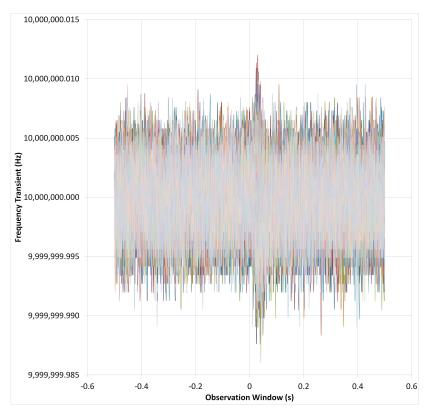



Figure 38. Frequency Transient Result



References

# 12 References

For reference, see the following:

• ITU-T G.8262 Standard

### **Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

#### Changes from Original (December 2018) to A Revision

| • | Changed document title from: ITU-T G.8262 Compliance Test Results for: LMK05318 to: ITU-T G.8262 compliance test |    |
|---|------------------------------------------------------------------------------------------------------------------|----|
|   | results for the LMK05318 1                                                                                       | l. |

Page

# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated