

Short Time Measurement Using TDC7201

Vishy Viswanathan

ABSTRACT

Time-to-digital converters are used in measuring time-of-flight in multiple end applications such as drones, range finders, machine vision, robots, etc. These end applications can either use light waves, ultrasonic waves or other technologies such as RADAR. However, in each of these cases, time-of-flight between the transmitted wave and the reflected wave provides us with the distance traveled. Speed of light in air is multitudes of orders higher than the speed of sound waves in air and hence the total distance traveled by light waves is much higher during the time frame. For very short distance measurements (less than 2 meters), time-of-flight (TOF) is in the range of Ons to 12ns and a centimeter accuracy corresponds to 67ps. The objective of this application note is to describe a method for measuring time periods down to 0.25ns using the TDC7201 with millimeter accuracy.

Contents

1	Background	2
	TDC7201 Short Time Measurements	
3	Test Setup	7
4	Test Results	11
5	References	12

List of Figures

1	TDCx Measurement Summary	2
2	TDC7201 Block Diagram	3
3	TDCx Measurement Mode 1	4
4	TDCx Measurement Mode 2	5
5	TDC7201 Short Time Measurements Block Diagram	6
6	TDC7201 Short Time Measurements Timing Diagram	7
7	DTG5078 Based Test Setup	8
8	DTG5078 Generated Test Signals For Interleaved Short Time Measurements	9
9	TDC1 Register Setup	9
10	TDC2 Register Setup	10
11	TDC7201 Short Time Measurement Graph Data	10
12	TDC7201 Combined Measurement Data for TOF=0.25ns: Raw and 128x Running Average	11
13	TDC7201 Combined Measurement Data for TOF=0.25ns: Equivalent Distance Raw and 128x Running Average	11
14	TDC7201 Combined Measurement Data for TOF=0.5ns: Raw and 128x Running Average	11
15	TDC7201 Combined Measurement Data for TOF=0.5ns: Equivalent Distance Raw and 128x Running Average	12
16	TDC7201 Combined Measurement Data for TOF=1.0ns: Raw and 128x Running Average	12
17	TDC7201 Combined Measurement Data for TOF=1.0ns: Equivalent Distance Raw and 128x Running Average	12

All trademarks are the property of their respective owners.

1 Background

The TDC7201 is targeted for use with ultrasonic, LIDAR, and SONAR equipment for time of flight applications. It has two built-in Time-to-Digital Converters (TDCx, x = 1, 2) that perform independently the function of a stopwatch to measure time between a single event (edge on START pin) and multiple subsequent events (edges on STOP pin). Each TDCx has an internal self-calibrated time base that is used to measure time with resolution in the order of 55ps. Self-calibration compensates for drift over time and temperature and enables time-to-digital conversion accuracy in the order of picoseconds. A summary of the TDCx functionality is shown in the Figure 1 and a block diagram of the TDC7201 is shown in Figure 2.

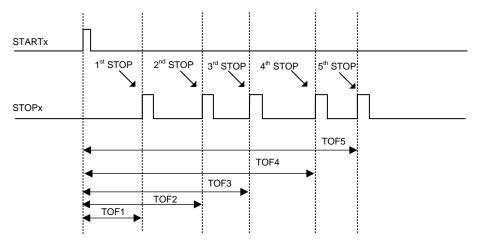
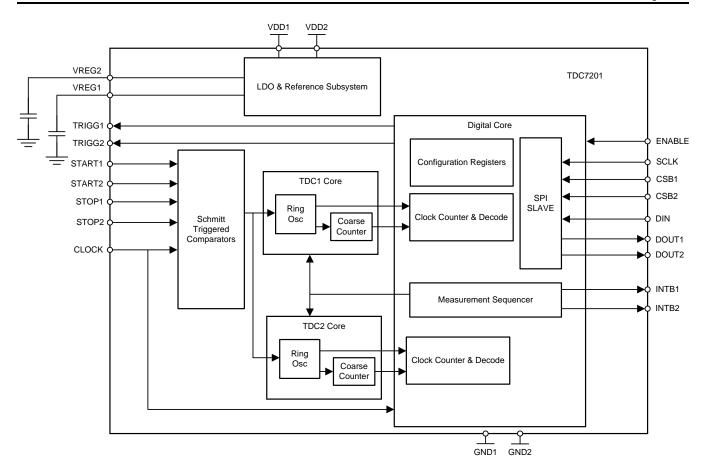



Figure 1. TDCx Measurement Summary

Background

Copyright © 2016, Texas Instruments Incorporated

Figure 2. TDC7201 Block Diagram

Each TDCx of the TDC7201 has two measurement modes: Measurement Mode 1 and Measurement Mode 2. The choice of mode is to be based on the duration of time to be measured by the device.

1.1 Measurement Mode 1

In measurement mode 1, as shown in Figure 3, each TDCx of the TDC7201 performs the entire counting from STARTx to the last STOPx using its internal ring oscillator plus coarse counter. This method is recommended for measuring shorter time durations of <500ns. Using measurement mode 1 for measuring <500ns decreases accuracy of the measurement. The minimum time measurable in measurement mode 1 is 12ns.

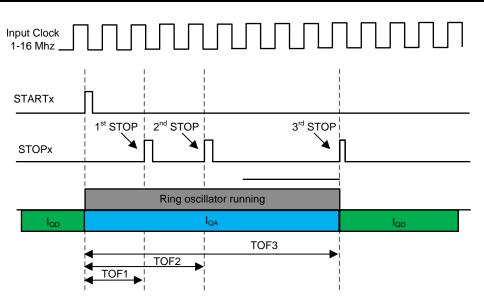


Figure 3. TDCx Measurement Mode 1

1.2 Measurement Mode 2

In measurement mode 2, the internal ring oscillator of each TDC of the TDC7201 is used only to count fractional parts of the total measured time. As shown in Figure 4, the internal ring oscillator starts counting from when it receives the STARTx signal until the first rising edge of the CLOCK. Then, the internal ring oscillator switches off, and the Clock counter starts counting the clock cycles of the external CLOCK input until a STOPx pulse is received. The internal ring oscillator again starts counting from the STOPx signal until the next rising edge of the CLOCK.

This method is recommended for measuring long time durations and can only be used when the time between STARTx and STOPx is a minimum of 2 cycles of the external CLOCK. As the TDC7201 device has a maximum clock frequency of 16MHz, the minimum time measurable in measurement mode 2 is 125ns.

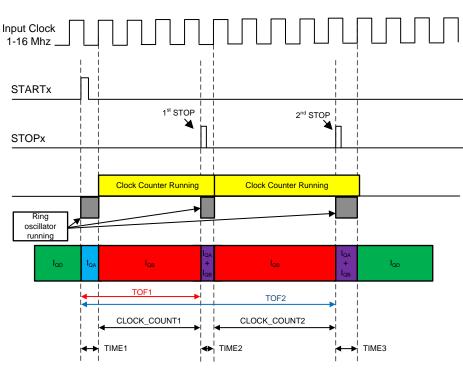
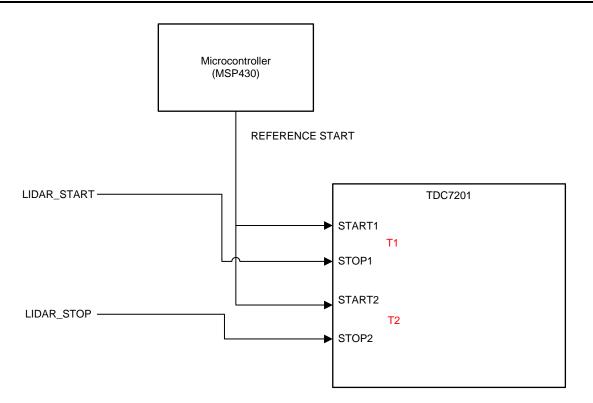


Figure 4. TDCx Measurement Mode 2


2 TDC7201 Short Time Measurements

The minimum time measurable in measurement mode 1 is 12ns. It is feasible to do measurements down to 0.25ns using the two built-in TDCs of TDC7201 in what is called combined measurement mode. In combined measurement mode, START1 and START2 are connected together:

- A common REFERENCE_START signal is applied to START1 and START2 at least 12ns before occurrence of actual Start and Stop signals
- TOF Start (LIDAR_START) signal is connected to STOP1
- TOF Stop (LIDAR_STOP) signal is connected to STOP2
- Two time periods T1 (REFERENCE_START to LIDAR_START) and T2 (REFERENCE_START to LIDAR_STOP) are measured and their difference T3 = (T2-T1) is the required time between Start to Stop

An illustration of this combined measurement mode is in Figure 5 and Figure 6. It is necessary that the REFERENCE_START pulse is generated at least 12ns before the LIDAR_START pulse. The REFERENCE_START could be generated by the MCU or by a pulse generator like the Tektronix DTG5078. In the setup shown below, the two TDCs of the TDC7201 make their measurement in parallel. TDC1 measures the time period T1 and TDC2 measures the time period T2.

Copyright © 2016, Texas Instruments Incorporated

Figure 5. TDC7201 Short Time Measurements Block Diagram

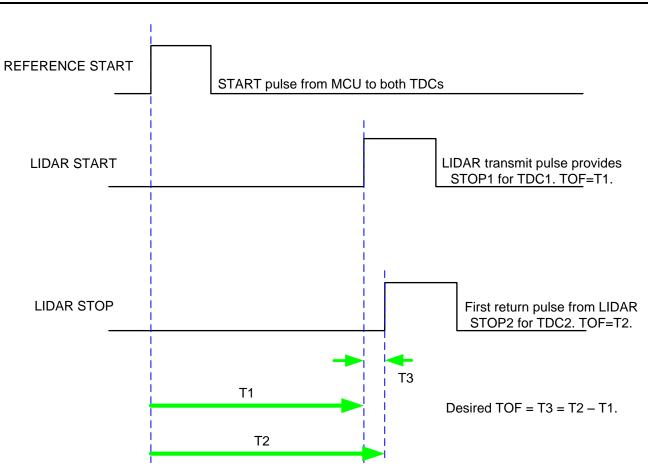


Figure 6. TDC7201 Short Time Measurements Timing Diagram

3 Test Setup

Figure 7shows a block diagram of the test setup. A Tektronix Data Timing Generator DTG5078 and a TDC7201EVM along with MSP430F5529 Launch Pad is used to demonstrate short time measurements. The DTG5078 is used to generate the REFERANCE_START, LIDAR_START and LIDAR_STOP signals following a DTG trigger from the MSP430. The REFERENCE_START signal is applied to the SMA connector labeled "COMMON_START (J3)" on the TDC7201EVM which is connected to TDC7201 START1 and START2 inputs. Following two changes are needed to the TDC7201EVM to use COMMON_START (J3):

- Populate zero ohm resistors R11 and R12
- Remove R2 and R9

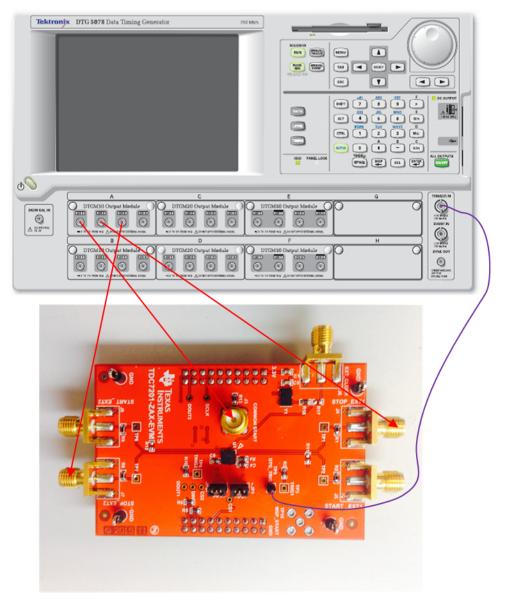


Figure 7. DTG5078 Based Test Setup

An oscilloscope picture of the DTG5078 generated signals is shown in Figure 8. Channel 1 (Blue) represents the REFERENCE_START signal while Channel 2 (Pink) and Channel 3 (Green) represents the LIDAR_START and LIDAR_STOP signals.

Note LIDAR_START is generated 12ns after the REFERENCE _START signal. The start to stop delay for TDC7201 to measure is set as 0.25ns (Δ time period). A screen capture of the TDC7201EVM GUI registers setup for TDC1 and TDC2 are shown in Figure 9 and Figure 10. A screen capture of the TDC7201EVM GUI graph measurement result is shown in Figure 11.

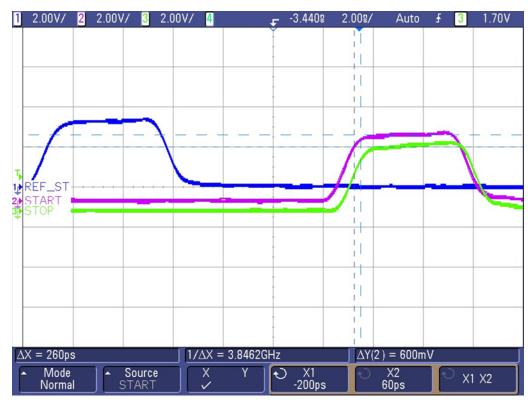


Figure 8. DTG5078 Generated Test Signals For Interleaved Short Time Measurements

TDC720x TOF_ONE_SHOT GF	RAPH DEBUG	_	2.07	2.1.8	
TDC7201: SELECT TDCx TDC1 (Default)					
CONFIG1 (0x00)	CONFIG2 (0x01)	INTERRUPT STATUS (0x02)	INTERRUPT MASK (0x03)		
START	NUMBER OF STOPS	NEW MEAS INT	NEW MEAS MASK		
No Effect 👻	Single 👻	Interrupt Detected	Interrupt Enabled		
MODE	AVERAGING CYCLES		COARSE_CNTR_OVERFLOW_MASK		
Measurement Mode 1	1 Meas Cycle 👻	COARSE CNTR OVERFLOW INT	Interrupt Enabled		
START EDGE POLARITY	CALIBRATION 2 PERIODS	Overflow Not Detected	CLOCK_CNTR_OVERFLOW_MASK		
Rising Edge 🗸 👻	10 Clock Periods 🗸		Interrupt Enabled		
STOP EDGE POLARITY	R	CLOCK CNTR OVERFLOW INT Overflow Not Detected	R		
Rising Edge		Overflow Not Detected			
TRIGG EDGE POLARITY					
Rising Edge	COARSE CNTR OV_H (0x04) ×FF	MEASUREMENT STARTED FLAG	CLOCK CNTR STOP MASK_H (0x08) × 00		
PARITY_EN		Measurement Started			
Disabled 👻	R		R		
FORCE CALIBRATION		MEASUREMENT COMPLTD FLAG			
No Calibration after intrpt	COARSE CNTR OV_L (0x05) ×FF	Measurement Complete	CLOCK ONTR STOP MASK_L (0x09) × 00		
R	R	R	R		
CLOCK ONTR OV_H (0x06)	CLOCK CNTR OV_L (0x07)				
×FF	×FF R	READ ALL LOAD CO	SAVE CONFIG		
Read All No Errors					

Figure 9. TDC1 Register Setup

SETUP TDC720x TOF_ONE_SHOT GRA	PH DEBUG		FW REVISION GUI REVISIO				
TDC7201: SELECT TDCx TDC2							
CONFIG1 (0x00) START No Effect	CONFIG2 (0x01) NUMBER OF STOPS Single	INTERRUPT STATUS (0x02) NEW_MEAS_INT Interrupt Detected	INTERRUPT MASK (0x03) NEW_MEAS_MASK Interrupt Enabled				
MODE Measurement Mode 1 START EDGE POLARITY Rising Edge STOP EDGE POLARITY	AVERAGING CYCLES 1 Meas Cycle CALIBRATION 2 PERIODS 10 Clock Periods	COARSE CNTR OVERFLOW INT Overflow Not Detected	COARSE_CNITE_OVERFLOW_MASK Interrupt Enabled • CLOCK_CNITE_OVERFLOW_MASK Interrupt Enabled •				
Rising Edge TRIGG EDGE POLARITY Rising Edge PARITY_EN Disabled	COARSE ONTR OV_H (0x04) *FF R	MEASUREMENT STARTED FLAG Measurement Started	CLOCK CNTR STOP MASK_H (0x08) ×00 R				
FORCE CALIBRATION No Calbraton after intrpt	COARSE CNTR OV_L (0x05) ×FF R	MEASUREMENT COMPLTD FLAG Measurement Complete	CLOCK CNTR STOP MASK (0x09) ×00 R				
CLOCK CNTR OV_H (0x06) ×FF R	CLOCK CNTR OV_L (0x07) ×FF R	READ ALL LOAD COM	FIG SAVE CONFIG				
Read All No Errors							

Figure 10. TDC2 Register Setup

SETUP TDC720x TOF_ONE_SHOT GRAPH DEBUG		FW REVISION GUI REVISION 2.07 2.1.8.0				
TDC7201: SELECT TDCx TDC1 (Default)						
50.2106 45- 40- 25- 20- 15- 10- 5- 00- 5- - 20- - 5- - 20- - 25- - 20- - 25- - 20- - 15- - 10- - 5- - 20- - 15- - - 20- - 15- - - 20- - - 5- - - 20- - - 5- - - - - - - - - - - - - - - -	TDC AVG VALUE (ns) 0.249807 TDC STDEV (ns) 0.032281 AVG/STDEV NUM_ELEMENTS (>0) 10 TDC_STOP_SELECT Start-Stop1 START GRAPH SAVE GRAPH DATA TO FILE ZOOM_OUT Y-SCALE 450 SAVE RESULT REGR TO FILE	Stop Graph TDC GRAPH SELECT TDC7201: TDC2 - TDC1 • ZOOM_IN X-SCALE 4 50				
Reading Graph Data Successful						

Figure 11. TDC7201 Short Time Measurement Graph Data

4 Test Results

Figure 12 to Figure 17 show the raw TOF measurement data of TDC7201 in combined measurement mode and its equivalent distance for TOF durations of 0.25ns, 0.5ns and 1ns. Over 50,000 samples are captured and plotted. A 128x running average of the raw samples is also shown. In summary, raw data shows an absolute worst case deviation of 60ps (0.9cm) while 128x running average data shows an absolute worst case deviation of 6.5ps (1mm).

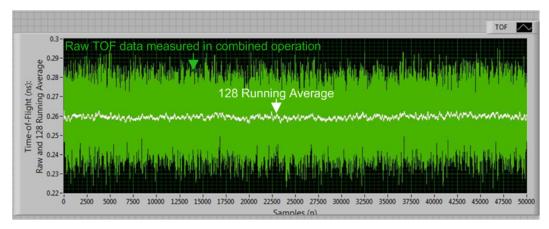


Figure 12. TDC7201 Combined Measurement Data for TOF=0.25ns: Raw and 128x Running Average

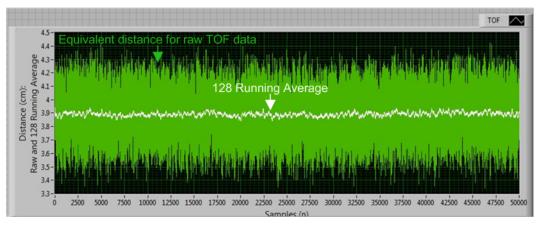


Figure 13. TDC7201 Combined Measurement Data for TOF=0.25ns: Equivalent Distance Raw and 128x Running Average

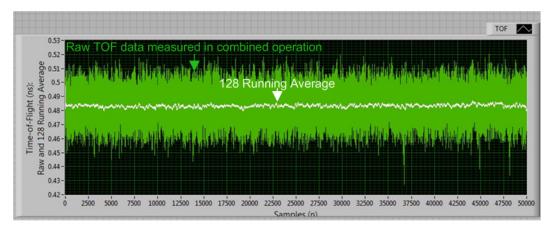


Figure 14. TDC7201 Combined Measurement Data for TOF=0.5ns: Raw and 128x Running Average

Test Results



Figure 15. TDC7201 Combined Measurement Data for TOF=0.5ns: Equivalent Distance Raw and 128x Running Average

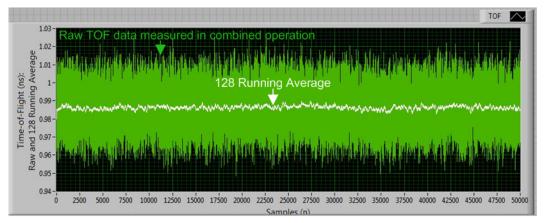


Figure 16. TDC7201 Combined Measurement Data for TOF=1.0ns: Raw and 128x Running Average

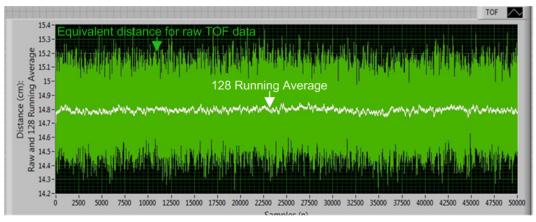


Figure 17. TDC7201 Combined Measurement Data for TOF=1.0ns: Equivalent Distance Raw and 128x Running Average

5 References

- 1. TDC7201 Data Sheet (http://www.ti.com/lit/ds/symlink/tdc7201.pdf)
- 2. TDC7201 Evaluation Module (http://www.ti.com/tool/tdc7201-zax-evm)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Audio Amplifiers Data Converters DLP® Products	www.ti.com/audio amplifier.ti.com dataconverter.ti.com www.dlp.com	Applications Automotive and Transportation Communications and Telecom Computers and Peripherals Consumer Electronics	www.ti.com/automotive www.ti.com/communications www.ti.com/computers www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated