

Application Report SLVA347-August 2009

bq20z40/45 and bq20z60/65 EVM Data Flash Settings for Number of Serial Cells and Pack Capacity

Chase Richards

PMP BMS Notebook

ABSTRACT

This application report describes the configuration changes in the data flash constants in the Texas Instruments bq20z40/45 and bq20z60/65 Gas Gauging Evaluation Software required for a variety of battery-pack configurations.

The factors affecting the settings include the number of cells in series and the pack capacity. The pack capacity is determined by the cell capacity and the number of cells that are in parallel.

Configurations are described (for example) as 3s2p, which stands for 3 cells in series and 2 in parallel. All changes must be done before enabling the Impedance Track[™] feature in the bq20z40/45 or bq20z60/65.

Section 1 describes the changes required when changing series-cell count, and Section 2 explains settings for varying the pack capacity. Illustrations are provided showing the specific locations in the data flash screens of the evaluation software.

1 Changes to Default 4-Series Cell Configuration

The following changes from the default settings must be made to enable a 2-series or 3-series cell pack before enabling the Impedance Track[™] feature in the EVM. If a 4-series cell pack is connected, the EVM can be used in the default setting.

In addition to the serial configuration, the design capacity of the cells must be considered. This information is found on the cell-manufacturer data sheet and must be set in the data flash. This is described in Section 2 of this application report.

Impedance Track is a trademark of Texas Instruments.

www.ti.com

	-		
Setting	2-Cell	3-Cell	4-Cell (Default)
LT Chg Voltage	6000	9000	12000
ST1 Chg Voltage	8400	12600	16800
ST2 Chg Voltage	8400	12600	16800
HT Chg Voltage	8380	12570	16760
Depleted Voltage ⁽¹⁾	5000	8000	11000
Depleted Recovery ⁽¹⁾	5500	8500	11500

Table 1. Charge Control

⁽¹⁾ This parameter does not apply to the bq20z40/45.

Configuratio	n		LED Support	LED Support Power			Gas Gauging			
1st Level Safet	y	ĭ	2nd Level Safety		Charge Control			SBS Configuration		
Name	Value	Unit	Name	Value	Unit	Name		Value	Unit	
Charge Temp Cfg	-	-	ST1 Chg Current3	4000	mA	FC Set %		-1	%	
JT1	0.0	degC	ST2 Chg Voltage	16800	mV	FC Clear %		98	%	
JT2	12.0	degC	ST2 Chg Current1	4000	mA	Cell Balancing	Cfg	-	-	
JT2a	30.0	degC	ST2 Chg Current2	4000	mA	Min Cell Devia	tion	1750	s/mAh	
JT3	45.0	degC	ST2 Chg Current3	4000	mA	Charging Fault	5	-	-	
JT4	55.0	degC	HT Chg Voltage	(16760)	mV	Over Charging Voltage		500	m٧	
Temp Hys	1.0	degC	HT Chg Current1	3800	mA	Over Charging Volt Time		2	s	
Prc-Charge Cfg	-	-	HT Chg Current2	3800	mA	Over Charging Current		500	mA	
Pre-chg Voltage Threshold	3000	m∀	HT Chg Current3	3800	mA	Over Charging Curr Time		2	s	
Pre-chg Recovery Voltage	3100	m∀	Cell Voltage Threshold1	3900	mV	Over Charging Curr Recov		100	mA	
Pre-chg Current	250	mA	Cell Voltage Threshold2	4000	mV	Depleted Volta	ge	8000	m۷	
Charge Cfg	-	-	Cell Voltage Thresh Hys	10	mV	Depleted Volta	ge Time	2	s	
LT Chg Voltage	12000	m∀	Termination Cfg.	-	-	Depleted Recov	very	8500	m۷	
LT Chg Current1	250	mA	Maintenance Current	0	mA	Over Charge C	apacity	300	mAh	
LT Chg Current2	250	mA	Taper Current	250	mA	Over Charge R	ecovery	2	mAh	
LT Chg Current3	250	mA	Taper Voltage	75	mV	СМТО		10800	s	
ST1 Chg Voltage	16800	m∀	Current Taper Window	40	S	PCMTO		3600	s	
ST1 Chg Current1	4000	mA	TCA Set %	-1	%	Charge Fault C	fg	00	-	
ST1 Chg Current2	4000	mA	TCA Clear %	95	%					

This and other illustrations contain some parameters that are absent in the bq20z40/45.

Table 2. SBS Configuration

Setting	2-Cell	3-Cell	4-Cell (Default)
Design Voltage	7200	10800	14400

Also see the description of the Design Capacity and Design Energy settings in Section 2.

Configuration		ľ	LED Support	Ĭ	Y Power			Gas Gauging	
1st Level Safety		2nd Level Safety	Ĭ	Charge Con	ntrol	SBS Configuration			
Name	Value	Unit	Name	Value	Unit	Name		Value	Unit
Data	-	-	CC %	90	%	TDA Set %		6	%
Rem Cap Alarm	300	mAh	CF MaxError Limit	100	%	TDA Clear %		8	%
Rem Energy Alarm	4320	mWh	Design Capacity	4400	mAh	FD Set %		2	%
Rem Time Alarm	10	Min	Design Energy	63360	mWh	FD Clear %		5	%
Init Battery Mode	0081	-	Manuf Name	xas Instrumer	-	TDA Set Volt	Threshold	5000	m∀
Design Voltage	14400	m٧	Device Name	bq20z60	-	TDA Set Volt	Time	5	s
Spec Info	0031	-	Device Chemistry	LION	-	TDA Clear Vol	t	5500	m∀
Manuf Date	01-Jan-1980	date	Deterioration Warn Limit	50	%	FD Set Volt Th	reshold	5000	m∀
Ser. Num.	0001	-	Deterioration Fault Limit	30	%	FD Volt Time		5	s
Cycle Count	0	-	Cell Life Limit	20	%	FD Clear Volt		5500	m∀
CC Threshold	4400	mAh	Configuration	-	-				

www.ti.com

Setting	2-Cell	3-Cell	4-Cell (Default)					
Operation Cfg A	0d29	0e29	0f29					
CC1	0	1	1					
CC0	1	0	1					

 Table 3. Typical Configuration Settings for bq20z60/65

Number of serial cells is defined in CC1 and CC0 bits in Operation CfgA, bit mask 0x0300.

PF Sta	itus	ľ	Calibration								
Configuration		LED Support		Power			Gas Gauging				
Name	Value	Unit		Name	Value	Unit		Name		Value	Unit
Registers	-	-		Operation Cfg C	0130	-		Non-Removat	le Cfg	0000	-
Operation Cfg A	0F29	-		Permanent Fail Cfg	0000	-		AFE		-	-
Operation Cfg B	6440	-		Permanent Fail Cfg 2	0000	-		AFE.State_C	ΓL	00	-

Table 4. Typical Configuration Settings for bq20z40/45

Setting	2-Cell	3-Cell	4-Cell (Default)
Operation Cfg A	0129	0229	0329

Table 5. Power

Setting	2-Cell	3-Cell	4-Cell (Default)
Flash Update OK Voltage	6000	7500	7500
Shutdown Voltage	5000	7000	7000
Charger Present	3000	3000	3000

PF Status Calibration									
Configuration			LED Support		Power			Gas Gauging	
Name	Value	Unit	Name	Value	Unit	Name		Value	Unit
Power	-	-	Cell Shutdown Time	10	s	Cal Inhibit 7	emp High	45.0	degC
Flash Update OK Voltage 🛛 🤇	7500	mV	Charger Present	3000	mV	Sleep Voltag	e Time	5	s
Shutdown Voltage 🤍 🤇	7000	mV	Sleep Current	10	mA	Sleep Currei	nt Time	20	s
Shutdown Time	10	s	Bus Low Time	5	s	Wake Curre	nt Reg	00	-
Cell Shutdown Voltage	1750	mV	Cal Inhibit Temp Low	5.0	degC	Sealed Ship	Delay	5	s

Table 6. Gas Gauging

Setting	2-Cell	3-Cell	4-Cell (Default)
Term Voltage	6000	9000	12000

PF Statu	as	Ĭ	Calibration					
Configuration		ſ	LED Support	Y	Power		Gas Gaugir	g
Name	Value	Unit	Name	Value	Unit	Name	Value	Unit
IT Cfg	-	-	Chg Current Threshold	50	mA	Update Status	00	-
Load Select	7	-	Quit Current	10	mA	Cell 0 Chg dod at EoC	0	-
Load Mode	0	-	Dsg Relax Time	1	s	Cell 1 Chg dod at EoC	0	-
Term Voltage	12000	mV	Chg Relax Time	60	s	Cell 2 Chg dod at EoC	0	-
User Rate-mA	0	mA	State	-	-	Cell 3 Chg dod at EoC	0	-
User Rate-mW	0	m₩	Qmax Cell 0	4400	mAh	Avg I Last Run	-2000	mA
Reserve Cap-mAh	0	mAh	Qmax Cell 1	4400	mAh	Avg P Last Run	-3022	10mW
Reserve Cap-mWh	0	mWh	Qmax Cell 2	4400	mAh	Delta Voltage	0	mV
Current Thresholds	-	-	Qmax Cell 3	4400	mAh	Max Avg I Last Run	-2000	mA
Dsg Current Threshold	100	mA	Qmax Pack	4400	mAh	Max Avg P Last Run	-3022	10mW

2 Changes to Capacity Settings

The pack capacity depends on the individual cell capacity and on the number of parallel cells. The cell-capacity value found in the cell-manufacturer data sheet is used only as an initial estimate for the gas-gauging algorithm, and is updated during operation.

2.1 Gas Gauging

The Qmax of all serial cells (Qmax Cell 0 to 3) is set initially to equal values. The same value is assigned to Qmax Pack. The value to be assigned is calculated as

Qmax = Data sheet Cell Capacity × Number_parallel_cells.

Example: The default assumes 2200-mAh cells. Table 7 and the accompanying illustration show the required changes to the 4s2p default values if 2400-mAh cells are actually used..

Setting	1p with 2400 mAh	2p with 2200 mAH (Default)	3p with 2400 mAH
Qmax Cell 0	2400	4400	7200
Qmax Cell 1	2400	4400	7200
Qmax Cell 2	2400	4400	7200
Qmax Cell 3	2400	4400	7200
Qmax Pack	2400	4400	7200

Table	7.	Gas	Gau	ıgin	g
-------	----	-----	-----	------	---

PF Statu:	\$	ľ	Calibration					
Configuration		Y	LED Support		Power	ĭ	Gas Gaugir	g
Name	Value	Unit	Name	Value	Unit	Name	Value	Unit
IT Cfg	-	-	Chg Current Threshold	50	mA	Update Status	00	-
Load Select	7	-	Quit Current	10	mA	Cell 0 Chg dod at EoC	0	-
Load Mode	0	-	Dsg Relax Time	1	S	Cell 1 Chg dod at EoC	0	-
Term Voltage	12000	mV	Chg Relax Time	60	S	Cell 2 Chg dod at EoC	0	-
User Rate-mA	0	mA	State	-	-	Cell 3 Chg dod at EoC	0	-
User Rate-mW	0	mW	Qmax Cell 0	4400	mAh	Avg I Last Run	-2000	mA
Reserve Cap-mAh	0	mAh	Qmax Cell 1	4400	mAh	Avg P Last Run	-3022	10mW
Reserve Cap-mWh	0	mWh	Qmax Cell 2	4400	mAh	Delta Voltage	0	mV
Current Thresholds	-	-	Qmax Cell 3	4400	mAh	Max Avg I Last Run	-2000	mA
Dsg Current Threshold	100	mA	Qmax Pack	4400	mAh	Max Avg P Last Run	-3022	10mW

2.2 SBS Configuration

Design Capacity is set to the same number as Qmax or lower. Design energy (mW) is calculated as Design Energy = Design Capacity × Number_Serial_Cells × 3.6 V

Example: The default assumes 2200-mAh cells. Table 8 and the accompanying illustration show the required changes to the 4s2p default if 2400-mAh cells are actually used.

Setting	1p with 2400 mAh	2p with 2200 mAH (Default)	3p with 2400 mAH				
Design Capacity	2400	4400	7200				
Design Energy	34560	63360	103680				

Configuration		LED Support		Power		Gas Gauging			
1st Level Safety		2nd Level Safety	<u>ĭ</u>	Charge Control		SBS Configuration		tion	
Name	Value	Unit	Name	Value	Unit	Name		Value	Unit
Data	-	-	CC %	90	%	TDA Set %		6	%
Rem Cap Alarm	300	mAh	CF MaxError Limit	100	%	TDA Clear %		8	%
Rem Energy Alarm	4320	mWh	Design Capacity	4400	mAh	FD Set %		2	%
Rem Time Alarm	10	Min	Design Energy	63360	mWh	FD Clear %		5	%
Init Battery Mode	0081	-	Manuf Name	×as Instrumer	-	TDA Set Volt	Threshold	5000	m۷
Design Voltage	14400	mV	Device Name	bq20z60	-	TDA Set Volt	Fime	5	s
Spec Info	0031	-	Device Chemistry	LION	-	TDA Clear Vol	ł	5500	mV
Manuf Date	01-Jan-1980	date	Deterioration Warn Limit	50	%	FD Set Volt Th	reshold	5000	m۷
Ser. Num.	0001	-	Deterioration Fault Limit	30	%	FD Volt Time		5	s
Cycle Count	0	-	Cell Life Limit	20	%	FD Clear Volt		5500	m٧
CC Threshold	4400	mAh	Configuration	-	-				

Design Capacity is used to calculate the amount of discharge that is sufficient for a Qmax update. Therefore, it must be set to less than or equal to Qmax. Design Energy is not used in the gas-gauging algorithm, except for reporting absolute state of charge (ASOC) and state of health; so, it does not influence gas-gauging accuracy. Actual capacity depends on the rate of discharge. If a more-accurate setting of design capacity and energy is desired, it must be measured at a discharge rate typical for the target application. The learned FCC value from gas gauging of a new battery pack at a typical rate can be used as a good estimate of design capacity.

Table 8. Gas Gauging

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Broadband	www.ti.com/broadband
DSP	dsp.ti.com	Digital Control	www.ti.com/digitalcontrol
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Military	www.ti.com/military
Logic	logic.ti.com	Optical Networking	www.ti.com/opticalnetwork
Power Mgmt	power.ti.com	Security	www.ti.com/security
Microcontrollers	microcontroller.ti.com	Telephony	www.ti.com/telephony
RFID	www.ti-rfid.com	Video & Imaging	www.ti.com/video
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated