

Powering the MSP430 from a High Voltage Input using the TPS62122

Nick Tseng / Chris Glaser

Battery Power Applications

ABSTRACT

This reference design is presented to help designers and others who are using the <u>MSP430</u> in a system with an input voltage range from 3.6V to 15V, and who are concerned with maintaining high efficiency and long battery life.

The TPS62122 is a highly efficient solution (up to 96% efficiency) capable of driving 75-mA loads. Its 11-µA quiescent current makes the TPS62122 an ideal choice in systems concerned over battery life.

Included in this document is a power solution for the MSP430. Power requirements, illustrated schematic, operation waveforms and bill of materials are included.

Contents

1	Power	Requirements	2			
2	Schen	natic, Waveforms, and Bill of Materials	5			
	2.1	Schematic	5			
	2.2	Waveforms	5			
	2.3	Bill of Materials	6			
3	Furthe	er Applications	7			
4	Conclusion					
5	Refere	ences	7			

List of Figures

1	TPS62120 and MSP430 Simplified Block Diagram	2
2	TPS62122 Schematic Diagram	5
3	Efficiency vs Output Current I _{OUT} (V _{OUT} = 3.3 V)	5
4	Efficiency vs Input Voltage V_{IN} (V_{OUT} = 3.3 V)	5
5	Typical Operation I _{out} 10 mA	5
6	Power Good Output During Startup	5

List of Tables

1	CC43 Family Power Requirements	2
2	MSP430x1xx Family Power Requirements	2
3	MSP430x2xx Family Power Requirements	3
4	MSP430x4xx Family Power Requirements	3
5	MSP430x5xx Family Power Requirements	4
6	TPS62122 List of Materials	6
7	TPS621xx Family Features	7

All trademarks are the property of their respective owners.

Figure 1. TPS62120 and MSP430 Simplified Block Diagram

1 Power Requirements

This reference design is for the MSP430 family of microcontroller devices and accounts for the voltage and current requirements as described herein. The MSP430 devices require only a single 3.3-V input; no sequencing is required. The operating input voltage for this reference design is 3.6V to 15V. This design is optimized for efficiency, high and wide input voltage range, small size, and low component count.

The power requirements for each MSP430 family are listed below in Tables 3 through 6. The power given is based on the amount of current the core consumes per megahertz (MHz). The Analog I_{MAX} column indicates the amount of current added if the additional functional blocks are used.

For more information and other reference designs, visit www.ti.com/processorpower.

DEVICE	PIN	VOLTA	GE (V)	CPU I _{MAX}	ANALOG	SEQUENCIN	TIMING	COMMENTS
FAMILY	NAME	MIN	MAX	(µ A/MHz)	Ι _{ΜΑΧ} (μΑ)	G ORDER	DELAY	COMMENTS
F613x, F513x	A _{VCC} , D _{VCC} ⁽¹⁾	1.8	3.6	250 ⁽²⁾	I _{REF} = 140	n/a	n/a	+Maximum CPU speed of 20 MHz

Table 1. CC43 Family Power Requirements

⁽¹⁾ It is recommended to power A_{VCC} and D_{VCC} from the same source. A maximum difference of 0.3 V between A_{VCC} and D_{VCC} can be tolerated during power-up.

⁽²⁾ Maximum value for CPU clocked at 20 MHz at 3 V shown. Actual value depends on supply voltage and MCLK/internal regulator settings. Does not include peripheral module supply current or GPIO source/sink currents, which must be added separately.

DEVICE		VOLTA	AGE (V)		ANALOG	COMMENTS	
FAMILY		MIN	MAX	(µA/MHz) ⁽²⁾	Ι _{ΜΑΧ} (μΑ)	COMMENTS	
x11x1A	V _{cc}	1.8	3.6	350	Comp_A = 60	C11x1: 300 µA/MHz max	
F12x	V _{CC}	1.8	3.6	350	Comp_A+ = 60		
F11x2, 12x2	V _{CC}	1.8	3.6	350	ADC10 = 1200, I _{REF} = 400		
F13x, 14x[1]	A_{VCC}, D_{VCC} ⁽³⁾	1.8	3.6	560	Comp_A = 60, ADC12 = 1600, $I_{REF} = 800$	F13x, 14x: Comp_A, ADC12 F14x1: Comp_A	
F15x, 16x, 161x	A_{VCC} , D_{VCC} ⁽³⁾	1.8	3.6	600	Comp_A = 60, ADC12 = 1600, I _{REF} = 800, DAC12 = 1500	DAC outputs not loaded; DAC12 currents for a single DAC, max of two DAC12s in device)	

Table 2. MSP430x1xx Family Power Requirements⁽¹⁾

⁽¹⁾ Additional 7-mA maximum required when writing/erasing Flash In-system.

(2) 8-MHz maximum CPU clock speed (ex. Imax_x11x1 = 8 MHz × 350 μ A = 2.8 mA). V_{CC} = D_{VCC} = A_{VCC} = 3 V. Actual value depends on supply voltage. Does not include peripheral module supply current or GPIO source/sink currents, which must be added separately.

 $^{(3)}$ It is recommended to power A_{VCC} and D_{VCC} from the same source. A maximum difference of 0.3 V between A_{VCC} and D_{VCC} can be tolerated.

www.ti.com

DEVICE		VOLTA	GE (V)			
FAMILY	PIN NAME	MIN	MAX	$(\mu A/MHz)$ I_{MAX} (μA)		COMMENTS
F20xx	V _{cc}	1.8	3.6	370	Comp_A+ = 60 ADC10 = 1200, ADC10_I _{REF} = 400 SD16_A + I _{REF} = 1700 RefBuffer = 600	20x1: Comp_A+ 20x2: ADC10 20x3: SD16_A
F21x1	V _{cc}	1.8	3.6	410	Comp_A+ = 60	
F21x2	A_{VCC}, D_{VCC}	1.8	3.6	350	$Comp_A + = 60$ ADC10 = 1200, $I_{REF} = 400$	
F22xx	A_{VCC}, D_{VCC} ⁽³⁾	1.8	3.6	550	ADC12 = 1200, I _{REF} = 400 OA = 290	22x2: ADC10 22x4: ADC10, 2 OAs OA currents for a single amplifier
F23x0	A_{VCC}, D_{VCC} ⁽³⁾	1.8	3.6	550	Comp_A + = 60	
F23x, 24x[1], 2410	A_{VCC}, D_{VCC} ⁽³⁾	1.8	3.6	445	Comp_A + = 60, ADC12 = 1000, I _{REF} = 700	224x1: Comp_A+ 23x, 24x, 2410: Comp_A+, ADC12
F241x, 261x	A_{VCC} , D_{VCC} ⁽³⁾	1.8	3.6	560	$\begin{array}{l} Comp_A + = 60, \\ ADC12 = 1000, \\ I_{REF} = 700 \\ DAC12 = 1500 \end{array}$	241x: Comp_A+, ADC12 261x: Comp_A+, ADC12, two DAC12s DAC12 outputs not loaded; DAC12 currents for a single DAC

Table 3. MSP430x2xx Family Power Requirements⁽¹⁾

⁽¹⁾ Additional 7-mA maximum required when writing/erasing Flash In-system.

⁽²⁾ 16 MHz maximum CPU clock speed (ex. Imax_20xx = 16 MHz × 370 μA = 5.90 mA). V_{CC} = D_{VCC} = A_{VCC} = 3 V. Actual value depends on supply voltage. Does not include peripheral module supply current or GPIO source/sink currents, which must be added separately.

⁽³⁾ It is recommended to power A_{VCC} and D_{VCC} from the same source. A maximum difference of 0.3 V between A_{VCC} and D_{VCC} can be tolerated during power-up.

DEVICE		VOLTA	AGE (V)		ANALOG	COMMENTS	
FAMILY		MIN MAX		(µA/MHz) ⁽³⁾	Ι _{ΜΑΧ} (μΑ)	COMMENTS	
x41x	A_{VCC}, D_{VCC}	1.8	3.6	350	Comp_A = 60	C41x: 300 µA/MHz max	
FW42x	A_{VCC}, D_{VCC}	1.8	3.6	350	Comp_A = 60 Scan IF = 650		
F42x	A_{VCC}, D_{VCC}	1.8	3.6	500	SD16 + I _{REF} = 1550 Ref Buffer = 600	SD16 current is for a single A/D (three on device)	
FE42x[a], 42x2	A_{VCC}, D_{VCC}	1.8	3.6	500	ESP430CE1 = 4900 Ref Buffer = 600	ESP430 current for 4-MHz operation	
F43x[1], F44x	A_{VCC}, D_{VCC}	1.8	3.6	560	Comp_A = 60, ADC12 = 1600, I _{REF} = 800		
F42x0	A_{VCC}, D_{VCC}	1.8	3.6	520	SD16_A + I_{REF} =1800 Ref Buffer = 600 DAC12=1500	DAC12 output not loaded	
FG42x0	A_{VCC}, D_{VCC}	1.8	3.6	560	$SD16_A + I_{REF}=1800$ Ref Buffer = 600 DAC12 = 1500, OA = 290	DAC12 output not loaded; OA current for a single amplifier (two OAs in device)	

Table 4. MSP430x4xx Family Power Requirements⁽¹⁾

⁽¹⁾ Additional 7-mA maximum required when writing/erasing Flash In-system.

⁽²⁾ It is recommended to power A_{VCC} and D_{VCC} from the same source. A maximum difference of 0.3 V between A_{VCC} and D_{VCC} can be tolerated.

⁽³⁾ 8 MHz maximum CPU clock speed (ex. Imax_x41x = 8 MHz × 350 μA = 2.8 mA). (F47xx max CPU clock = 16 MHz) V_{CC} = D_{VCC} = A_{VCC} = 3 V. Actual value depends on supply voltage. Does not include peripheral module supply current or GPIO source/sink currents, which must be added separately. LCD current not included.

www.ti.com

4

DEVICE		VOLTAGE (V)			ANALOG	COMMENTS	
FAMILY		MIN	MAX	(µA/MHz) ⁽³⁾	Ι _{ΜΑΧ} (μ Α)	COMMENTS	
FG43x	A_{VCC}, D_{VCC}	1.8	3.6	570	Comp_A = 60, ADC12 = 1600, $I_{REF} = 800,$ DAC12 = 1500, OA = 490	DAC12 outputs not loaded; OA and DAC12 currents for a single amplifier/DAC (three OAs, two DACs in device)	
FG46xx	A _{VCC} , D _{VCC}	1.8	3.6	740	$\begin{array}{l} Comp_A = 60, \\ ADC12 = 1600, \\ V_{REF} = 800, \\ DAC12 = 1500, \\ OA = 490 \end{array}$	DAC12 outputs no loaded; OA and DAC12 currents for a single amplifier/DAC (three OAs, two DACs in device)	
F47xx	A _{VCC} , D _{VCC}	1.8	3.6	560	$\begin{array}{l} \text{Comp}_\text{A} = 60,\\ \text{SD16}_\text{A} + \text{I}_{\text{REF}} = 1700\\ \text{Ref Buffer} = 600 \end{array}$	16 MHz max CUP frequency; SD16 current is for a single A/D (four on device)	

Table 4. MSP430x4xx Family Power Requirements⁽¹⁾ (continued)

Table 5. MSP430x5xx Family Power Requirements⁽¹⁾

DEVICE		VOLTA	GE (V)	CPU I _{MAX}	ANALOG	COMMENTS	
FAMILY		MIN	MAX	(µ A/MHz) ⁽²⁾	Ι _{ΜΑΧ} (μΑ)	COMMENTS	
F54xx	A_{VCC} , D_{VCC} ⁽³⁾	2.2	3.6	348	ADC12_A = 220, I _{REF} = 190	18 MHz maximum CPU clock speed	

⁽¹⁾ Additional 5-mA maximum required when writing/erasing Flash In-system.

(2) 16 MHz maximum at 3-V CPU clock speed. Actual value depends on supply voltage and MCLK/internal regulator settings. Does not include peripheral module supply current or GPIO source/sink currents, which must be added separately.

(3) It is recommended to power A_{VCC} and D_{VCC} from the same source. A maximum difference of 0.3 V between A_{VCC} and D_{VCC} can be tolerated during power-up.

Schematic, Waveforms, and Bill of Materials

www.ti.com

2 Schematic, Waveforms, and Bill of Materials

2.1 Schematic

Figure 2. TPS62122 Schematic Diagram

2.2 Waveforms

2.3 Bill of Materials

6

Table 6 shows the bill of materials (BOM) for the 3.3 V_{OUT} design shown in Figure 2.

Count	RefDes	Value	Description	Size	Part Number	MFR
1	C _{IN}	4.7µF	Capacitor, Ceramic, 25V, X5R, 20%	0805	GRM21BR61E475MA12 L	muRata
1	C _{OUT}	4.7µF	Capacitor, Ceramic, 6.3V, X5R, 20%	0603	GRM188R60J475ME19D	muRata
1	C_{FF}	22pF	Capacitor, Ceramic, 50V, C0G-NP0, 5%	0603	Standard	Standard
1	L	18µH	Inductor, SMT, 0.56A, 750m Ω	3 mm x 3 mm	LPS3015-183ML	Coilcraft
1	R1	560kΩ	Resistor, Chip, 1/16W, 1%	0603	Standard	Standard
1	R2	180kΩ	Resistor, Chip, 1/16W, 1%	0603	Standard	Standard
1	U1	TPS62122	IC, 15-V, 75-mA High-Efficiency Buck Converter	8SOT-23	TPS62122DCN	ТІ

Table 6. TPS62122 List of Materials

www.ti.com

3 Further Applications

Multiple devices or subsystems can share the 3.3-V rail with the MSP430; this may require additional output current (exceeding 75mA). The TPS621xx family contains alternative devices capable of driving up to 3A. These devices also support higher input voltages, which better suits them for applications powered by 4 cell lithium-ion batteries. All of the devices shown in Table 7 support 3-V to 17-V inputs and drive output currents \geq 500 mA. Table 7 lists the voltage, current, and packaging information for the various TPS621xx devices.

	TPS62120	TPS62122	TPS62130	TPS62140	TPS62150	TPS62160	TPS62170
I _{OUT} (Max) (A)	0.075	0.075	3	2	1	1	0.5
V _{IN} (Min) (V)	2	2	3	3	3	3	3
V _{IN} (Max) (V)	15	15	17	17	17	17	17
V _{OUT} (Min) (V)	1.2	1.2	0.9	0.9	0.9	0.9	0.9
V _{OUT} (Max) (V)	5.5	5.5	6	6	6	6	6
lq (Typ) (mA)	0.011	0.011	0.017	0.017	0.017	0.017	0.017
Package Size	3mm X 3mm 8SOT-23	2mm X 2mm 6WSON	3mm X 3mm 16QFN	3mm X 3mm 16QFN	3mm X 3mm 16QFN	2mm X 2mm 8WSON	2mm X 2mm 8WSON

Table 7. TPS621xx Family Features

MSP430 devices have integrated power management systems to regulate internal startup and shutdown procedures. However, the power good and SGND pins available on the TPS62120 further increase the robustness of the system on startup. When VOUT has reached regulation (3.3V in this example), the TPS62120 signals the MSP430 through the PG (power good) pin. The TPS62120's SGND pin provides additional protection during the shutdown process. During shutdown mode, SGND provides a discharge path from the output capacitor to ground. This feature prevents lingering output voltages from discharging through the MSP430.

4 Conclusion

The TPS62122 efficiently powers an MSP430 in a system with input voltages ranging from 3.6V to 15V. The 11-µA quiescent current reduces overall power consumption and prolongs battery life in the application.

Similar devices within the TPS621xx family allow for even wider input voltage ranges and drive loads up to 3A. These higher current alternatives make room for additional subsystems to share the 3.3-V output power rail.

5 References

- 1. TPS62122 Datasheet 15-V, 75-mA, 96% Efficiency Step-Down Converter (SLVSAD5)
- 2. TPS62122 EVM User Guide TPS62122EVM User's Guide (SLVU388)

7

Further Applications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated