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1 Abstract
In higher power applications to utilize the full line power and reduce line current harmonics PFC pre-
regulators are generally required. In these high power applications interleaving PFC stages can reduce
inductor area and reduce output capacitor ripple current. This is made possible through the inductor ripple
current cancellation that occurs with interleaving. This application note reviews the design of a 350-W two
phase interleaved power factor corrected (PFC) pre-regulator. This power converter achieves PFC with
the use of the UCC28528 PFC/PWM controller along with the UCC28220 interleaved PWM controller that
is used to interleave the two power stages. The converter also has a 2-W auxiliary bias supply that
supplies power to the converters gate drive and PWM/PFC circuitry. The complete schematic of the
working design is shown in Figure 7 and Figure 8.

2 Review the Benefits of Interleaving PFC Boost Pre-Regulators
Figure 1 shows the functional diagram of a two phase interleaved boost converter. The interleaved boost
converter is simply two boost converters operating 180 degrees out of phase. The input current is the sum
of the two inductor currents IL1 and IL2. Because the inductor’s ripple currents are out of phase, they
cancel each other out and reduce the input ripple current caused by the boost inductors. The best input
inductor ripple current cancellation occurs at 50% duty cycle. The output capacitor current is the sum of
the two diode currents (I1 + I2) less the dc output current. This reduces the output capacitor ripple current
(IOUT) as a function of duty cycle. As the duty cycle approaches 0%, 50% and 100% duty cycle, the sum of
the two diode currents approaches dc. At any of these optimum operating points, the output capacitor only
has to filter the inductor ripple currents.
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Figure 1. Interleaved Boost Stage
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2.1 Input Ripple Current Reduction as a Function of Duty Cycle
The following equations show how the ratio of input ripple current to inductor ripple current (K(D)) vary
with changes in duty cycle. Figure 2 shows how K(D) varies with changes in duty cycle. It’s important to
remember these variations in input ripple current, when selecting inductors for the interleaved boost
converters. This is because the duty cycle in PFC pre-regulator is not fixed and changes with line voltage.

(1)

(2)

(3)

Figure 2. Input Ripple Current Reduction

In PFC pre-regulators the duty cycle (D(θ)) is not constant and varies with changes in line voltage
(Vin(θ) ). The amount of duty cycle variation for universal applications can be quite large. This variation in
duty cycle can be observed by evaluating a converter that was designed for a universal input of 85 V to
265 V with a regulated 385 V dc output. At low line the duty cycle (D1(θ)) varies from 100% to 68% and at
high line the duty cycle (D2(θ)) varies from 100% down to 2%. The inductor ripple current cancellation will
not be 100% throughout the line cycle. However, it is good enough to drastically reduce the input ripple
current for a given inductance. The highest ripple current in this example would occur at the peak of low
line with a duty cycle of 68%. The amount of inductor ripple current seen at the input for this duty cycle
would be 55%.

line voltage as a function of phase angle. (4)

duty cycle as function of phase angle (5)

where ω = 2 π fLINE

and θ = ωτ
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Figure 3. Duty Cycle Variation in Universal PFC Pre-Regulator

2.2 Evaluate Magnetic Volume Reduction
The inductor ripple current cancellation allows the designer to reduce boost inductor magnetic volume.
This is due to the energy storage requirement of the two interleaved inductors being half that of single
stage pre-regulator designed for the same power level, switching frequency and inductance.

single stage inductor energy. (6)

two phase total inductor energy. (7)

The amount of reduction in boost inductor volume can be seen mathematically by comparing the required
inductor area products of single stage PFC pre-regulator (WaAcSINGLE) with that of a two phase interleaved
pre-regulator inductor (WaAcINTERLEAVED) for a given inductance. The exact values for the inductor (L),
inductor RMS current (IRMS), current density (CD) and flux density (B) are not required to show the
reduction in area product.

(8)

(9)

(10)
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The ratio of the total interleaved area product (2 X WaAcINTERLEAVED) to the area product of a single stage
pre-regulator is 0.5. This results in a 50% reduction in area product just by interleaving, which will result in
a substantial reduction in boost magnetic volume.

(11)

Interleaving PFC pre-regulators if done in this fashion will not increase the size of the EMI filter. A
common design practice is to select the switching frequency of the power converter below the EMI band of
150 kHz. The second harmonic of switching frequency would be twice the fundamental and will most likely
be in the EMI band and would need to be filtered to meet specifications. Interleaving two pre-regulators
causes the input to see a switching frequency that is twice the switching frequency of a single phase. This
means the fundamental switching frequency of the converter will most likely be pushed into the EMI band
and be at the second harmonic of an individual stage's switching frequency. However, the input ripple
current is reduced by a factor of two. This should not put any additional constraints on the EMI filter.

2.3 Output Capacitor Ripple Current Reductions as a Function of Duty Cycle
Figure 4 shows the normalized output capacitor RMS current in a single stage boost (ICOUT(single)(D)) and the
normalized capacitor RMS current in a two phase interleaved boost converter (ICOUT(D)) as a function of
duty cycle. Figure 4 illustrates that the output capacitor ripple current in a two phase interleaved is half
that in a traditional single stage boost converter for the same power levels. The reduction in RMS current
reduces heating caused by the capacitor’s ESR losses, reducing electrical stress.

(12)

(13)

(14)

Figure 4. Normalized Output Capacitor Ripple Currents
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3 Design Review
The power supply design requirements are presented in Table 1. Please note this 350-W PFC pre-
regulator design is based on a TI evaluation module HPA117, TI User’s Guide Literature number
SLUU228, which is orderable through TI. Please visit www.ti.com for details. Also note that the design
presented in this application note is based on typical values. In a production environment a worst case
analysis would have to be conducted.

Table 1. Design Requirements
PARAMETER MIN TYP MAX

VIN 85 V RMS 110 V or 230 V RMS 265 V RMS
VOUT 374 V 390 V 425 V

VRIPPLE 30 V
Current THD at 350 W 10%

PF at 350 W 0.95
Full load efficiency 90%

fS 100 kHz
Holdup requirements (tHOLD) 20 ms

fLINE 47 Hz 50 Hz 60 Hz
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Figure 5. Functional Schematic
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3.1 Boost Inductor Selection
Cooper Electronics designed the 200 μH, CTX16-17309, boost Inductors for our design.

(15)

3.2 Output Capacitor Selection (COUT)
There are three determining criteria for selecting the output capacitor. They are holdup energy, output
ripple voltage and lastly RMS ripple current. Equation 16 and Equation 17 are used to select the output
capacitor. Equation 16 selects the output capacitor based on holdup requirements, while Equation 17
sizes capacitance base on output voltage (VRIPPLE) requirements. The designer should select the largest
result of Equation 16 and Equation 17 for the design.

(16)

(17)

(18)

The capacitor should also be de-rated based on capacitor tolerances. The following equation de-rates the
output capacitor based on 20% error in capacitance tolerance and a 20% variation over the life of the
capacitor.

(19)

The RMS ripple current for the boost capacitor can be calculated with the following equations. To use
these equations it is a good idea to use MathCAD or MATLAB design tools.

(20)

(21)

(22)

(23)
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3.3 FET and Diode Selection
To meet the efficiency requirements (η) of the design a power budget (PSEMI) of 19 W was set. Selecting
these semiconductor devices are always trial an error. It may take several tries before the appropriate
semi conductor devices can be chosen for the design.

(24)

3.4 Diode Selection
To reduce switching losses CREE CSD10060 SiC rectifiers were used. These diodes have close to zero
reverse recovery current. The following equation is used to estimate the diode loss (PDIODE) and diode
peak (IDIODE(peak)) and average current (IDIODE), where Vf is the forward voltage drop of the boost diode.
These diodes in our design will dissipate around 0.6 W (PDIODE) per diode dissipating a total of 1.2 W for
both diodes in the design. This leaves 17.8 W of losses for the boost FETs and the auxiliary bias supply.

(25)

(26)

(27)

3.5 FET Selection Based on RMS and Peak Currents and Estimated FET Losses

, peak FET current. (28)

The following equation estimates FET RMS current (IFET(rms)) which is needed to estimate boost FET (PFET)
losses.

(29)

, peak FET line currents (IIN ton (t)) at switch turn off. (30)

, peak FET line currents (IIN toff (t)) at switch turn off. (31)

Part of the total FET losses are contributed Coss (COSS(avg)) charging and discharging during a PWM
switching cycle. COSS varies with line voltage and is not a linear function. The following equation and
information from the FETs data sheet can be used to calculate COSS(avg). COSS(spec) is the typical COSS
measured at a specified VDS voltage (VDS(spec)). A IRF840, 8 A 500 V FET was selected for the design. The
estimated COSS(avg) was roughly 160 pF.

(32)
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To estimate FET turn-on (tON(delay)) and turn off (tOFF(delay)) delays requires studying the FETs VGS versus QG
characteristics of Figure 6 along with the following equations.

Figure 6.

, the typical maximum miller plateau gate charge for VDS equal to 400 V. (33)

, is the amount of gate charge when the FET VGS is at its maximum VGS(max). (34)

, is average FET gate drive current. (35)

(36)

, switching losses at FET turnoff. (37)

, switching losses at FET turn-on. (38)

, COSS loss. (39)

, FET gate loss. (40)

, FET RDS(on) loss (41)

(42)

The estimated FET loss (PFET) for this design was 5 W. The total FET loss would be 10 W and with the 1.2
W total diode loss comes to a total semiconductor loss of 11.2 W, which is below the 19 W power budget
(PSEMI) that was initially set.
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3.6 Selecting Heat Sinks for the FETs
Because the diodes only dissipated 0.6 W heat sinks were not required for the boost diodes. However, the
FETs required heat sinks and the following equation was used to calculate the thermal impedance (RθSA)
of the required heat sink. This equation is based on a maximum allowable ambient temperature (TAMB) of
40°C, and the thermal impedance from junction to case Rθjc of the IR840 and the case to sink thermal
impedance of a TO220 (RθCS) which all can be found in the IRF840’s data sheet. For this design we chose
an AAVID 531202 heat sink to meet the RθSA requirements.

(43)

3.7 Over Voltage Protection and Under Voltage Lockout
The OVP function and under voltage lockout (UVLO) were handled by the UCC28220. It is a simple
comparator that monitors the boost voltage. Information on setting up these thresholds can be found in the
UCC28220’s data sheet. The OVP for this design was set to 425 V and UVLO was set to 108 V. The pre-
regulator will not start switching until VOUT reaches 108 V.

3.8 Peak Current Limit
Peek current limit is set by the maximum control voltage (VC) at the input of the UCC28220’s PWM
comparator. Where “a” is the current sense transformer turns ratio of T1 and T2. The peak current limit trip
point was set for 130% of the nominal peak current to protect the boost FETs.

(44)

(45)
VC = 1.8, VCTRL was set to a maximum of 3.0 V to protect the UCC28220 CTRL pin. (46)

, this equation takes into account slope compensation that is added later. (47)

The peak current of the FET during power up is 2 times IPEAK under normal operation. This is due the
excessive slope compensation that is needed for stability.

(48)

3.9 Current Sense Transformer Reset Resistor (T1 and T2)

(49)

3.10 Oscillator and Maximum Duty Cycle Clamp
The UCC28220’s oscillator and maximum duty cycle clamp are setup through resistor RCHG and discharge.
The desired duty cycle clamp (DMAX) was set at 0.9 to stop the current sense transformers from saturating.

, UCC28220 oscillator constant. (50)

, UCC28220 internal oscillator frequency. (51)

, internal duty cycle clamp. (52)

(53)
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(54)

3.11 Control Loop Compensation
All the control equations for the voltage loop and current loop are estimates. The control equations in this
paper gives starting points for feedback compensation. In most control loops it is required to adjust the
loop compensation as necessary with a network analyzer.

3.12 Current Loop
The first step in setting up the current loop is setting up the multiplier components. The RIAC resistor is tied
to the rectified line voltage and is what forces the current amplifier output to track changes in the line
voltage. This resistance typically is a group of series resistors needed to meet the high voltage
requirements.

(55)

The multiplier internal to the UCC28528 has a voltage feed forward (VFF) function that keeps the power
stage gain constant and provides soft power limiting when the line drops keeping the line current from
increasing excessively. A detailed explanation can be found in TI/Unitrode application note SLUA196A.
The VFF signal is produced through an internal current mirror within the PFC controller. The maximum
current leaving the VFF pin is equal to one half the IAC current. The following equations are used to select
a VFF resistor (RVFF) and a filter capacitor (CVFF) to remove ac components from the VFF signal.

(56)

The VFF signals ac portion has an affect on total current harmonic distortion (THD). The filter’s pole (fp1)
is set at a frequency to limit the VFF contribution to 1.5% in order to meet the power supplies current THD
design requirements.

(57)

(58)

This control methodology is based on average and peak current mode control and the following formulas
to compensate the current loop. These calculations get the design close to the correct compensation and
will have to be fine tuned with a network analyzer. In this design example to compensate the current loop
(TC(s)) we set a design goal of 45 degrees of phase margin and a crossover frequency of one tenth the
switching frequency.

, current loop transfer function. (59)

, control to output current transfer function. (60)
VC1 = VC - 0.5 V, VC1 is the maximum control voltage at the input of the PWM comparator of the UCC28220. Note
Equation VC1 takes into account the 500 mV offset that is present in the UCC28220 PWM controller. (61)

The current amplifier compensation transfer function GCA(s) is as follows

(62)

, internal divider of the UCC28220 CTRL pin. (63)
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The voltage divider HCA was required to divide down the CA output of the UCC28528, to protect the CTRL
pin of the UCC28220. This divider should work fine for any power requirement and should be considered a
fixed variable.

(64)

For stability the current sense signal needs slope compensation. It is required to add at least half of the
inductor current down slope to the current sense signal. The UCC28220 has internal slope compensation
that is setup by resistor RSLOPE.

(65)

The UCC28528 needed a current sense resistor (PFCRSENSE) to monitor the input current. Calculating this
resistor value is based on allocating a maximum allowable current sense voltage (VSENSE).

(66)

The UCC28528 also uses the current sense signal to trigger power limiting. The power limit can be setup
by properly selecting the multiplier resistor RMO. The power limit was set to 110% of full load power.
Please refer to the UCC28528s data sheet for details on how this power limiting function works. The
power limit was set at 110% as not to interfere with the UCC28220’s peak current limit function which was
set at 130%.

(67)

, resistor RZA is set to force TC(s) to cross over at (fS/10). (68)

Putting a zero at loop crossover adds an additional 45 degrees of phase at crossover to ensure control
loop stability.

, capacitor CZB is adjusted to put a zero at frequency crossover. (69)

, capacitor CPB is used to attenuate high frequency noise. (70)

3.13 Voltage Loop (TV(s))
Compensating the voltage loop has two major constraints. First is attenuating the 2 x fLINE output capacitor
voltage ripple, this is required to reduce input current harmonic distortion. Second is control loop stability.
If either of these criteria is compromised PF and THD will be affected greatly.

(71)
VC2 = 5.5 V, maximum voltage amplifier (VA) output. (72)
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, voltage control to output transfer function. (73)
gm = 100 umho, trans-conductance voltage amplifier (VA) gain. (74)

, this divider can also be used to set up the RA and RB voltage divider. (75)

(76)

To ensure that this loop would have low harmonic distortion the loop was designed to crossover (fC) at 10
Hz.

(77)

, CZA is set at fC to give the voltage loop 45 degrees of added phase at crossover. (78)

, is sized to attenuate the output ripple voltage. (79)

After the critical parameters were calculated the power supply was constructed and evaluated. The final
design of the 350-W two phase interleaved PFC is shown in the schematics of Figure 7 and Figure 8. This
power supply also has a 2-W auxiliary power supply that is based on a discontinues current mode (DCM)
flyback topology.
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4 Schematic

Figure 7. 350-W Interleaved PFC Boost Pre-Regulator Schematic
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Figure 8. 2-W, Flyback and PFC/PWM Controller Schematic

5 Design Performance

16 350-W, Two-Phase Interleaved PFC Pre-Regulator Design Review SLUA369C–February 2005–Revised September 2013
Submit Documentation Feedback

Copyright © 2005–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA369C


t − Time − 5 ms/div .

10 mV/div .

Output Ripple V oltage,
POUT = 350 W

100

Frequency

1000 10000 10000

−32

−24

−16

−8

0

8

16

24

32

40

G
ai

n−
dB

−180

−144

−108

−72

−36

0

36

72

108

144

180

P
ha

se
−D

eg
re

es

Phase

Gain

TC(f) Current Loop Frequency Response
VIN = 120 V DC, POUT = 350 W

−40

−32

−24

−16

−8

0

8

16

24

32

40

G
ai

n−
dB

−180

−144

−108

−72

−36

0

36

72

108

144

180

P
ha

se
−D

eg
re

es

Phase

Gain

TC(f) Current Loop Frequency Response
VIN = 238 V DC, POUT = 350 W

100 1000 10000 100000

Frequency

www.ti.com Design Performance

The current loop TC(s) was measured with a network analyzer and did not exactly track the model
presented above. The TC(s) gain moved with input voltage and appeared to have a double pole around 30
kHz. This is probably due to the excessive slope compensation that this topology requires. However, the
current loop was stable and did not have to be adjusted. Note to measure the current loop or voltage loop
requires a dc input voltage, otherwise the line current and voltage affects the loop measurements. A
network analyzer with a low enough frequency range was not available to measure the voltage loop.

Figure 9. Figure 10.

Figure 11.
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5.1 Input Inductor Ripple Current Cancellation
Figure 12 shows the inductor ripple current cancellation at the peak of line with a minimum input of 85 V
RMS. From this graph it can be observed that the input current (CH4) is 1/2 the individual inductor ripple
currents of L1 (CH2) and L2 (CH3). The ratio of input ripple current to inductor ripple current agrees with
graph in Figure 2. Note that the current ratio is 0.225 A/mV in the following graphs.

Figure 13.Figure 12.

Figure 14.
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5.2 Transient Response
The voltage loop of a PFC pre-regulator is generally below 10 Hz, which means the fastest the voltage
loop can respond to a small transient is roughly 100 ms. In typical applications a PFC pre-regulator takes
5 to 10 times as long to recover from a transient response. However, a large signal comparator built into
the UCC28528 control device allowed the design to recover from large signal transient responses in less
than 200 ms.

Figure 17.Figure 15.

Figure 18.
Figure 16.
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Figure 19. Figure 20.

Figure 21. Figure 22.
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www.ti.com Conclusion:

6 Conclusion:
By interleaving boost pre-regulator stages enables the power supply designer to reduce boost inductor
area product by 50% and reduce boost capacitance RMS current. This allows the designer to reduce the
size of the PFC pre-regulator; as well as, use output filter capacitors with lower RMS ratings.

In high power applications interleaving PFC pre-regulators would be a good choice, where many boost
FETs and boost diodes would be required for the design. In these applications the only added cost would
be adding the additional control circuitry that is needed to accomplish interleaving.
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