
Errata
MSP430F47167 Microcontroller

ABSTRACT

This document describes the known exceptions to the functional specifications (advisories).

Table of Contents
1 Functional Advisories.. 2
2 Preprogrammed Software Advisories.. 2
3 Debug Only Advisories.. 2
4 Fixed by Compiler Advisories... 3
5 Nomenclature, Package Symbolization, and Revision Identification.. 4

5.1 Device Nomenclature...4
5.2 Package Markings..4
5.3 Memory-Mapped Hardware Revision (TLV Structure)... 5

6 Advisory Descriptions..6
7 Revision History... 21

www.ti.com Table of Contents

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

1 Functional Advisories
Advisories that affect the device's operation, function, or parametrics.

✓ The check mark indicates that the issue is present in the specified revision.

Errata Number R
ev

 A
CPU44 ✓
DMA3 ✓
DMA4 ✓
DMA13 ✓
FLASH19 ✓
FLASH24 ✓
FLASH27 ✓
FLL3 ✓
FLL8 ✓
LCDA5 ✓
LCDA6 ✓
LCDA7 ✓
TA12 ✓
TA16 ✓
TA21 ✓
TAB22 ✓
TB2 ✓
TB16 ✓
TB24 ✓
USCI20 ✓
USCI21 ✓
USCI22 ✓
USCI23 ✓
USCI24 ✓
USCI25 ✓
USCI26 ✓
USCI28 ✓
USCI30 ✓
USCI34 ✓
USCI35 ✓
USCI40 ✓
XOSC5 ✓
XOSC8 ✓
XOSC9 ✓

2 Preprogrammed Software Advisories
Advisories that affect factory-programmed software.

✓ The check mark indicates that the issue is present in the specified revision.

The device does not have any errata for this category.

3 Debug Only Advisories
Advisories that affect only debug operation.

Functional Advisories www.ti.com

2 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

✓ The check mark indicates that the issue is present in the specified revision.

Errata Number R
ev

 A

EEM20 ✓
JTAG23 ✓

4 Fixed by Compiler Advisories
Advisories that are resolved by compiler workaround. Refer to each advisory for the IDE and compiler versions
with a workaround.

✓ The check mark indicates that the issue is present in the specified revision.

Errata Number R
ev

 A

CPU19 ✓

Refer to the following MSP430 compiler documentation for more details about the CPU bugs workarounds.

TI MSP430 Compiler Tools (Code Composer Studio IDE)

• MSP430 Optimizing C/C++ Compiler: Check the --silicon_errata option
• MSP430 Assembly Language Tools

MSP430 GNU Compiler (MSP430-GCC)

• MSP430 GCC Options: Check -msilicon-errata= and -msilicon-errata-warn= options
• MSP430 GCC User's Guide

IAR Embedded Workbench

• IAR workarounds for msp430 hardware issues

www.ti.com Fixed by Compiler Advisories

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slau132
https://www.ti.com/lit/pdf/slau131
https://gcc.gnu.org/onlinedocs/gcc/MSP430-Options.html
https://www.ti.com/lit/pdf/slau646
https://www.iar.com/support/tech-notes/compiler/workarounds-for-msp430-hardware-issues
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

5 Nomenclature, Package Symbolization, and Revision Identification
The revision of the device can be identified by the revision letter on the Package Markings or by the HW_ID
located inside the TLV structure of the device.

5.1 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully
qualified production devices (MSP).

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

MSP – Fully qualified production device

Support tool naming prefixes:

X: Development-support product that has not yet completed Texas Instruments internal qualification testing.

null: Fully-qualified development-support product.

XMS devices and X development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated
fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.
TI recommends that these devices not be used in any production system because their expected end-use failure
rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature
range, package type, and distribution format.

5.2 Package Markings

PZ100 LQFP (PZ) 100 Pin

Nomenclature, Package Symbolization, and Revision Identification www.ti.com

4 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

5.3 Memory-Mapped Hardware Revision (TLV Structure)
This device does not support reading the hardware revision from memory.

Further guidance on how to locate the TLV structure and read out the HW_ID can be found in the device User's
Guide.

www.ti.com Nomenclature, Package Symbolization, and Revision Identification

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

6 Advisory Descriptions

CPU19 CPU Module

Category Compiler-Fixed

Function CPUOFF modification may result in unintentional register read

Description If an instruction that modifies the CPUOFF bit in the Status Register is followed by an
instruction with an indirect addressed operand (e.g. MOV @R8, R9, RET, POP, POPM),
an unintentional register read operation can occur during the wakeup of the CPU. If the
unintentional read occurs to a read sensitive register (e.g. UCB0RXBUF, TAIV), which
changes its value or the value of other registers (IFG's), the bug leads to lost interrupts or
wrong register read values.

Workaround Insert a NOP instruction after each CPUOFF instruction.

OR

Refer to the table below for compiler-specific fix implementation information.
Note that compilers implementing the fix may lead to double stack usage when RET/
RETA follows the compiler-inserted NOP.

IDE/Compiler Version Number Notes

IAR Embedded Workbench IAR EW430 v6.20.1 until v6.40
User is required to add the compiler
or assembler flag option below. --
hw_workaround=nop_after_lpm

IAR Embedded Workbench IAR EW430 v6.40 or later
Workaround is automatically
enabled

TI MSP430 Compiler Tools (Code
Composer Studio)

15.12.0.LTS
User is required to add the compiler
or assembler flag option below. --
silicon_errata=CPU19

MSP430 GNU Compiler (MSP430-
GCC)

MSP430-GCC 4.9 build 389 or later

User is required to add the compiler
or assembler flag option below.
-msilicon-errata=cpu19 -msilicon-
errata-warn=cpu19 generates a
warning in addition

MSP430 GNU Compiler (MSP430-
GCC)

MSP430-GCC 5.x build 14 or later

User is required to add the compiler
or assembler flag option below.
-msilicon-errata=cpu19 -msilicon-
errata-warn=cpu19 generates a
warning in addition

CPU44 CPU Module

Category Functional

Function Incorrect address fetching during interrupt decoding

Description The CPU uses the default reset address if an interrupt is fired during the same time
window as the module interrupt is being disabled. The failure only occurs at high
temperature and/or when the frequency is near the maximum allowable range for the
current VCC.

Advisory Descriptions www.ti.com

6 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

Workaround 1) Keep the system frequency lower from the maximum allowable value for the system
VCC.
OR
2) Use the DINT before clearing the module interrupt enable (IE) bit.
Example for USCI_A0:

 __disable_interrupt(); // Workaround
 IE2 &= ~(UCA0TXIE);
 __enable_interrupt();

DMA3 DMA Module

Category Functional

Function Read-modify-write instructions may corrupt DMA address registers

Description When a 16-bit wide read-modify-write instruction (such as add.w and sub.w) is directly
used on a DMA address register (DMAxSA or DMAxDA), the register contents will get
corrupted.

Workaround 1. Do not use 16-bit wide read-modify-write instructions on DMA address registers.
Instead, in case address calculations are necessary, do the calculations first, and then
assign the result to the DMA address registers.
OR
2. Use 20-bit wide read-modify-write instructions (such as addx.a, subx.a) on the DMA
address registers if needed.

DMA4 DMA Module

Category Functional

Function Corrupted write access to 20-bit DMA registers

Description When a 20-bit wide write to a DMA address register (DMAxSA or DMAxDA) is interrupted
by a DMA transfer, the register contents may be unpredictable.

Workaround 1. Design the application to guarantee that no DMA access interrupts 20-bit wide
accesses to the DMA address registers.

OR

2. When accessing the DMA address registers, enable the Read Modify Write disable bit
(DMARMWDIS = 1) or temporarily disable all active DMA channels (DMAEN = 0).

OR

3. Use word access for accessing the DMA address registers. Note that this limits the
values that can be written to the address registers to 16-bit values (lower 64K of Flash).

DMA13 DMA Module

Category Functional

Function Clearing the DMAONFETCH bit may result in unpredictable code execution

www.ti.com Advisory Descriptions

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

Description If the DMA module is used with DMACTL1.DMAONFETCH = 0, DMA transfer requests
occur immediately upon receiving the request. This may result in unpredictable code
execution by the CPU.

Workaround Always ensure that DMACTL1.DMAONFETCH = 1. Note that this needs to be set
explicitly by the user and is not the default setting for the DMACTL1 register.

EEM20 EEM Module

Category Debug

Function Debugger might clear interrupt flags

Description During debugging read-sensitive interrupt flags might be cleared as soon as the debugger
stops. This is valid in both single-stepping and free run modes.

Workaround None.

FLASH19 FLASH Module

Category Functional

Function EEI feature does not work for code execution from RAM

Description When the program is executed from RAM, the flash controller EEI feature does not work.
The erase cycle is suspended and the interrupt is serviced, but there is a problem while
resuming with the erase cycle.

Addresses applied to flash are different than the actual values while resuming erase cycle
after ISR execution.

Workaround None

FLASH24 FLASH Module

Category Functional

Function Write or erase emergency exit can cause failures

Description When a flash write or erase is abruptly terminated, the following flash accesses by the
CPU may be unreliable resulting in erroneous code execution. The abrupt termination can
be the result of one the following events:
1) The flash controller clock is configured to be sourced by an external crystal. An
oscillator fault occurs thus stopping this clock abruptly.
or
2) The Emergency Exit bit (EMEX in FCTL3) when set forces a write or an erase
operation to be terminated before normal completion.
or
3) The Enable Emergency Interrupt Exit bit (EEIEX in FCTL1) when set with GIE=1 can
lead to an interrupt causing an emergency exit during a Flash operation.

Workaround 1) Use the internal DCO as the flash controller clock provided from MCLK or SMCLK.
or
2) After setting EMEX = 1, wait for a sufficient amount of time before Flash is accessed
again.
or
3) No Workaround. Do not use EEIEX bit.

Advisory Descriptions www.ti.com

8 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

FLASH27 FLASH Module

Category Functional

Function EEI feature can disrupt segment erase

Description When a flash segment erase operation is active with EEI feature selected (EEI=1 in
FLCTL1) and GIE=0, the following can occur:

An interrupt event causes the flash erase to be stopped, and the flash controller expects
an RETI to resume the erase. Because GIE=0, interrupts are not serviced and RETI will
never happen.

Workaround 1) Do not set bit EEI=1 when GIE = 0.
or,
2) Force an RETI instruction during the erase operation during the check for BUSY=1
(FCLTL3).

Sample code:

MOV R5, 0(R5) ; Dummy write, erase segment
LOOP: BIT #BUSY, &FCTL3 ; test busy bit
JMP SUB_RETI ; Force RETI instruction
JNZ LOOP ; loop while BUSY=1

SUB_RETI: PUSH SR
RETI

FLL3 FLL Module

Category Functional

Function FLLDx = 11 for /8 may generate an unstable MCLK frequency

Description When setting the FLL to higher frequencies using FLLDx = 11 (/8) the output frequency
of the FLL may have a larger frequency variation (e.g. averaged over 2sec) as well as
a lower average output frequency than expected when compared to the other FLLDx bit
settings.

Workaround None

FLL8 FLL Module

Category Functional

Function Low frequency oscillator fault detection not functional

Description When external digital clock source is selected for LFXT1 (bit LFXT1DIG=1 in register
FLL_CTL1), oscillator faults may not be detected and the LFOF bit(in register
FLL_CTL0)will not be set. User must ensure that an oscillator fault does not occur when
external digital clock source is used in low-frequency mode.

Workaround None.

JTAG23 JTAG Module

Category Debug

www.ti.com Advisory Descriptions

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

Function PSA checksum calculation does not work in marginal read mode.

Description If the PSA checksum is calculated via JTAG interface in marginal read mode the MRG0
and MRG1 bits in the FCTL4 register are reset.

Workaround None.

LCDA5 LCDA Module

Category Functional

Function Wrong cycle time for first cycle of COMx/Sx signals

Description The time of the first cycle of COMx/Sx signals after enabling the LCD_A module is only
half of the selected value. All following cycles are correct

Workaround Not required, because it does not influence the LCD function.

LCDA6 LCDA Module

Category Functional

Function Internal charge pump not functional in static mode

Description When LCD_A module is configured in static mode (bits LCDMXx = 00b in LCDACTL),
the internal charge pump (bit LCDCPEN=1 in LCDAVCTL0 register) is not functional.
However, the charge pump is functional in 2-mux, 3-mux and 4-mux modes.

Workaround For static mode operation of the LCD_A, do not enable charge pump; instead, source
LCD voltage externally (bit VLCDEXT=1 in register LCDAVCTL0) at pin LCDCAP.

LCDA7 LCDA Module

Category Functional

Function Higher current consumption when using shared LCD ports as fast toggling outputs

Description If a shared LCD pin (segment or com line) is used as digital fast toggling output (f>10kHz)
and the VLCD is >0V (BG enabled) the device current consumption increases with higher
toggling frequencies.

Workaround 1. Do not use shared LCD pins as fast toggling outputs if an LCD is used.
2. Reduce the toggle frequency of the shared pin to <10kHz.

TA12 TA Module

Category Functional

Function Interrupt is lost (slow ACLK)

Description Timer_A counter is running with slow clock (external TACLK or ACLK)compared to MCLK.
The compare mode is selected for the capture/compare channel and the CCRx register
is incremented by one with the occurring compare interrupt (if TAR = CCRx). Due to the
fast MCLK the CCRx register increment (CCRx = CCRx+1) happens before the Timer_A
counter has incremented again. Therefore the next compare interrupt should happen at
once with the next Timer_A counter increment (if TAR = CCRx + 1). This interrupt gets
lost.

Advisory Descriptions www.ti.com

10 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

Workaround Switch capture/compare mode to capture mode before the CCRx register increment.
Switch back to compare mode afterwards.

TA16 TA Module

Category Functional

Function First increment of TAR erroneous when IDx > 00

Description The first increment of TAR after any timer clear event (POR/TACLR) happens immediately
following the first positive edge of the selected clock source (INCLK, SMCLK, ACLK or
TACLK). This is independent of the clock input divider settings (ID0, ID1). All following
TAR increments are performed correctly with the selected IDx settings.

Workaround None

TA21 TA Module

Category Functional

Function TAIFG Flag is erroneously set after Timer A restarts in Up Mode

Description In Up Mode, the TAIFG flag should only be set when the timer counts from TACCR0 to
zero. However, if the Timer A is stopped at TAR = TACCR0, then cleared (TAR=0) by
setting the TACLR bit, and finally restarted in Up Mode, the next rising edge of the TACLK
will erroneously set the TAIFG flag.

Workaround None.

TAB22 TAB Module

Category Functional

Function Timer_A/Timer_B register modification after Watchdog Timer PUC

Description Unwanted modification of the Timer_A/Timer_B registers TACTL/TBCTL and TAIV/TBIV
can occur when a PUC is generated by the Watchdog Timer(WDT) in Watchdog
mode and any Timer_A/Timer_B counter register TACCRx/TBCCRx is incremented/
decremented (Timer_A/Timer_B does not need to be running).

Workaround Initialize TACTL/TBCTL register after the reset occurs using a MOV instruction (BIS/BIC
may not fully initialize the register). TAIV/TBIV is automatically cleared following this
initialization.

Example code:

MOV.W #VAL, &TACTL
or

www.ti.com Advisory Descriptions

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 11

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

MOV.W #VAL, &TBCTL

Where, VAL=0, if Timer is not used in application otherwise, user defined per desired
function.

TB2 TB Module

Category Functional

Function Interrupt is lost (slow ACLK)

Description Timer_B counter is running with slow clock (external TBCLK or ACLK) compared to
MCLK. The compare mode is selected for the capture/compare channel and the CCRx
register is incremented by 1 with the occurring compare interrupt (if TBR = CCRx).
Due to the fast MCLK, the CCRx register increment (CCRx = CCRx + 1) happens before
the Timer_B counter has incremented again. Therefore, the next compare interrupt should
happen at once with the next Timer_B counter increment (if TBR = CCRx + 1). This
interrupt is lost.

Workaround Switch capture/compare mode to capture mode before the CCRx register increment.
Switch back to compare mode afterward.

TB16 TB Module

Category Functional

Function First increment of TBR erroneous when IDx > 00

Description The first increment of TBR after any timer clear event (POR/TBCLR) happens
immediately following the first positive edge of the selected clock source (INCLK, SMCLK,
ACLK, or TBCLK). This is independent of the clock input divider settings (ID0, ID1). All
following TBR increments are performed correctly with the selected IDx settings.

Workaround None

TB24 TB Module

Category Functional

Function TBIFG Flag is erroneously set after Timer B restarts in Up Mode

Description In Up Mode, the TBIFG flag should only be set when the timer resets from TBCCR0 to
zero. However, if the Timer B is stopped at TBR = TBCCR0, then cleared (TBR=0) by
setting the TBCLR bit, and finally restarted in Up Mode, the next rising edge of the TBCLK
will erroneously set the TBIFG flag.

Workaround None.

Advisory Descriptions www.ti.com

12 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

USCI20 USCI Module

Category Functional

Function I2C Mode Multi-master transmitter issue

Description When configured for I2C master-transmitter mode, and used in a multi-master
environment, the USCI module can cause unpredictable bus behavior if all of the following
four conditions are true:

1 - Two masters are generating SCL
And
2 - The slave is stretching the SCL low phase of an ACK period while outputting NACK on
SDA
And
3 - The slave drives ACK on SDA after the USCI has already released SCL, and then the
SCL bus line gets released
And
4 - The transmit buffer has not been loaded before the other master continues
communication by driving SCL low

The USCI will remain in the SCL high phase until the transmit buffer is written. After the
transmit buffer has been written, the USCI will interfere with the current bus activity and
may cause unpredictable bus behavior.

Workaround 1 - Ensure that slave doesn't stretch the SCL low phase of an ACK period
Or
2 - Ensure that the transmit buffer is loaded in time
Or
3 - Do not use the multi-master transmitter mode

USCI21 USCI Module

Category Functional

Function UART IrDA receive filter

Description The IrDA receive filter can be used to filter pulses with length UCAIRRXFL configured
in UCAxIRRCTL register. If UCIRRXFE is set the IrDA receive decoder may filter out
pulses longer than the configured filter length depending on frequency of BRCLK. This is
resulting in framing errors or corrupted data on the receiver side.

Workaround Depending on the used baud rate and the configured filter length a maximum frequency
for BRCLK needs to be set to avoid this issue:

For baud rates equal and higher than 115.000 the maximum allowed BRCLK frequency is
equal to the max specified system frequency.

www.ti.com Advisory Descriptions

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 13

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

USCI22 USCI Module

Category Functional

Function I2C Master Receiver with 10-bit slave addressing

Description Unexpected behavior of the USCI_B can occur when configured in I2C master receive
mode with 10-bit slave addressing under the following conditions:

1) The USCI sends first byte of slave address, the slave sends an ACK and when second
address byte is sent, the slave sends a NACK.
2) Master sends a repeat start condition (If UCTXSTT=1).
3) The first address byte following the repeated start is acknowledged.

However, the second address byte is not sent, instead the Master incorrectly starts to
receive data and sets UCBxRXIFG=1.

Workaround Do not use repeated start condition instead set the stop condition UCTXSTP=1 in the
NACK ISR prior to the following start condition (USTXSTT=1).

USCI23 USCI Module

Category Functional

Function UART transmit mode with automatic baud rate detection

Advisory Descriptions www.ti.com

14 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

Description Erroneous behavior of the USCI_A can occur when configured in UART transmit mode
with automatic baud rate detection. During transmission if a "Transmit break" is initiated
(UCTXBRK=1), the USCI_A will not deliver a stop bit of logic high, instead, it will send a
logic low during the subsequent synch period.

Workaround 1) Follow User's Guide instructions for transmitting a break/synch field following
UCSWRST=1.
Or,
2) Set UCTXBRK=1 before an active transmission, i.e. check for bit UCBUSY=0 and then
set UCTXBRK=1.

USCI24 USCI Module

Category Functional

Function Incorrect baud rate information during UART automatic baud rate detection mode

Description Erroneous behavior of the USCI_A can occur when configured in UART mode with
automatic baud rate detection. After automatic baud rate measurement is complete, the
UART updates UCAxBR0 and UCAxBR1. Under Oversampling mode (UCOS16=1), for
baud rates that should result in UCAxBRx=0x0002, the UART incorrectly reports it as
UCAxBRx=0x5555.

Workaround When break/synch is detected following the automatic baud rate detection, the flag
UCBRK flag is set to 1. Check if UCAxBRx=0x5555 and correct it to 0x0002.

USCI25 USCI Module

Category Functional

Function TXIFG is not reset when NACK is received in I2C mode

Description When the USCI_B module is configured as an I2C master transmitter the TXIFG is not
reset after a NACK is received if the master is configured to send a restart (UCTXSTT=1
& UCTXSTP=0).

Workaround Reset TXIFG in software within the NACKIFG interrupt service routine

USCI26 USCI Module

Category Functional

Function Tbuf parameter violation in I2C multi-master mode

Description In multi-master I2C systems the timing parameter Tbuf (bus free time between a stop
condition and the following start) is not guaranteed to match the I2C specification of 4.7us
in standard mode and 1.3us in fast mode. If the UCTXSTT bit is set during a running I2C
transaction, the USCI module waits and issues the start condition on bus release causing
the violation to occur.
Note: It is recommended to check if UCBBUSY bit is cleared before setting UCTXSTT=1.

Workaround None

USCI28 USCI Module

Category Functional

www.ti.com Advisory Descriptions

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 15

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

Function Timing of USCI I2C interrupts may cause device reset due to automatic clear of an IFG.

Description When certain USCI I2C interrupt flags (IFG) are set and an automatic flag-clearing event
on the I2C bus occurs, it results in an errant ISR call to the reset vector. This will only
happen when the IFG is cleared within a critical time window (~6 CPU clock cycles) after
a USCI interrupt request occurs and before the interrupt servicing is initiated. The affected
interrupts are UCBxTXIFG, UCSTPIFG, UCSTTIFG and UCNACKIFG.

The automatic flag-clearing scenarios are described in the following situations:
(1) A pending UCBxTXIFG interrupt request is cleared on the falling SCL clock edge
following a NACK.
(2) A pending UCSTPIFG, UCSTTIFG, or UCNACKIFG interrupt request is cleared by a
following Start condition.

Workaround (1) Polling the affected flags instead of enabling the interrupts.
or
(2) Ensuring the above mentioned flag-clearing events occur after a time delay of 6 CPU
clock cycles has elapsed since the interrupt request occurred and was accepted.
or
(3) At program start, check any applicable enabled IE bits such as UCBxTXIE,
UCBxRXIE, UCSTTIE, UCSTPIE or UCNACKIE for a reset (A PUC will clear all of the IE
bits of interest). If no PUC occurred then the device ran into the above mentioned errant
condition and the program counter will need to be restored using an RETI instruction.

; ------- Workaround (3) example for TXIFG ------------
Note: For assembly code use code snippet shown below and insert prior to user code

main
bit.b #UCBxTXIE ,&IE2 ; if TXIE is set, errant call occurred
jz start_normal ; if not start main program
reti ; else return from interrupt call
start_normal
... ; Application code continues

Note: For C code the workaround will need to be executed prior to the CSTARTUP
routine. The steps for modifying the CSTARTUP routine are IDE dependent.
Examples for Code Composer and IAR Embedded Workbench are shown below.

IAR Embedded Workbench:
1) The file cstartup.s43 is found at: ...\IAR Systems\< Current Embedded Workbench
Version >\430\src\lib\430
2) Create a local copy of this file and link it to the project. Do not rename the file.
3) In the copy insert the following code prior to stack pointer initialization as shown:

#define IE2 (0x0001)
BIT.B #0x08,&IE2 ; if TXIE is set, errant call occurred
JZ Start_Normal ; if not start main program
RETI ; else return from interrupt call
// Initialize SP to point to the top of the stack.
Start_Normal
MOV #SFE(CSTACK), SP
// Ensure that main is called.

Code Composer:
1) The file boot.c is found at ...\Texas Instruments\< Current Code Composer Version >

Advisory Descriptions www.ti.com

16 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

\tools\compiler\MSP430\lib\rtssrc.zip
2) Extract the file from rtssrc.zip and create a local copy. Link the copy to the project. Do
not rename this file.
3) In the copy insert the following code prior to stack pointer initialization as shown:

__asm("\t BIT.B\t #0x08,&0x0001"); // if TXIE is set, errant call occurred
__asm("\t JZ\t Start_Normal"); // if not start main program
__asm("\t RETI"); // else return from interrupt call
__asm("Start_Normal");

/*-- */
/* Initialize stack pointer. Stack grows toward lower memory. */
/*---*/

Insert the code here:

/**/
/* C_INT00() - C ENVIRONMENT ENTRY POINT */
/**/
#pragma CLINK(_c_int00)
extern void __interrupt _c_int00()
{

//

STACK_INIT();

USCI30 USCI Module

Category Functional

Function I2C mode master receiver / slave receiver

Description When the USCI I2C module is configured as a receiver (master or slave), it performs
a double-buffered receive operation. In a transaction of two bytes, once the first byte is
moved from the receive shift register to the receive buffer the byte is acknowledged and
the state machine allows the reception of the next byte.

If the receive buffer has not been cleared of its contents by reading the UCBxRXBUF
register while the 7th bit of the following data byte is being received, an error condition
may occur on the I2C bus. Depending on the USCI configuration the following may occur:

1) If the USCI is configured as an I2C master receiver, an unintentional repeated start
condition can be triggered or the master switches into an idle state (I2C communication
aborted). The reception of the current data byte is not successful in this case.
2) If the USCI is configured as I2C slave receiver, the slave can switch to an idle state
stalling I2C communication. The reception of the current data byte is not successful in this
case. The USCI I2C state machine will notify the master of the aborted reception with a
NACK.

Note that the error condition described above occurs only within a limited window of the
7th bit of the current byte being received. If the receive buffer is read outside of this
window (before or after), then the error condition will not occur.

Workaround a) The error condition can be avoided altogether by servicing the UCBxRXIFG in a timely
manner. This can be done by (a) servicing the interrupt and ensuring UCBxRXBUF is
read promptly or (b) Using the DMA to automatically read bytes from receive buffer upon

www.ti.com Advisory Descriptions

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 17

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

UCBxRXIFG being set.

OR

b) In case the receive buffer cannot be read out in time, test the I2C clock line before the
UCBxRXBUF is read out to ensure that the critical window has elapsed. This is done by
checking if the clock line low status indicator bit UCSCLLOW is set for atleast three USCI
bit clock cycles i.e. 3 X t(BitClock).

Note that the last byte of the transaction must be read directly from UCBxRXBUF. For all
other bytes follow the workaround:

Code flow for workaround

(1) Enter RX ISR for reading receiving bytes
(2) Check if UCSCLLOW.UCBxSTAT == 1
(3) If no, repeat step 2 until set
(4) If yes, repeat step 2 for a time period > 3 x t (BitClock) where t (BitClock) = 1/ f
(BitClock)
(5) If window of 3 x t(BitClock) cycles has elapsed, it is safe to read UCBxRXBUF

USCI34 USCI Module

Category Functional

Function I2C multi-master transmit may lose first few bytes.

Description In an I2C multi-master system (UCMM =1), under the following conditions:

(1)the master is configured as a transmitter (UCTR =1)

AND

(2)the start bit is set (UCTXSTT =1);

if the I2C bus is unavailable, then the USCI module enters an idle state where it waits and
checks for bus release. While in the idle state it is possible that the USCI master updates
its TXIFG based on clock line activity due to other master/slave communication on the
bus. The data byte(s) loaded in TXBUF while in idle state are lost and transmit pointers
initialized by the user in the transmit ISR are updated incorrectly.

Workaround Verify that the START condition has been sent (UCTXSTT =0) before loading TXBUF with
data.

Example:
#pragma vector = USCIAB0TX_VECTOR
__interrupt void USCIAB0TX_ISR(void)
{
// Workaround for USCI34
if(UCB0CTL1&UCTXSTT)
{
// TXData = pointer to the transmit buffer start
// PTxData = pointer to transmit in the ISR
PTxData = TXData; // restore the transmit buffer pointer if the Start bit is set
}
//
if(IFG2&UCB0TXIFG)

Advisory Descriptions www.ti.com

18 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

{
if (PTxData < = PTxDataEnd) // Check TX byte counter
{
UCB0TXBUF = *PTxData++; // Load TX buffer
}
else
{
UCB0CTL1 |= UCTXSTP; // I2C stop condition
IFG2 &= ~UCB0TXIFG; // Clear USCI_B0 TX int flag
__bic_SR_register_on_exit(CPUOFF); // Exit LPM0
}
}
}

USCI35 USCI Module

Category Functional

Function Violation of setup and hold times for (repeated) start in I2C master mode

Description In I2C master mode, the setup and hold times for a (repeated) START, tSU,STA and tHD,STA
respectively, can be violated if SCL clock frequency is greater than 50kHz in standard
mode (100kbps). As a result, a slave can receive incorrect data or the I2C bus can be
stalled due to clock stretching by the slave.

Workaround If using repeated start, ensure SCL clock frequencies is < 50kHz in I2C standard mode
(100 kbps).

USCI40 USCI Module

Category Functional

Function SPI Slave Transmit with clock phase select = 1

Description In SPI slave mode with clock phase select set to 1 (UCAxCTLW0.UCCKPH=1), after the
first TX byte, all following bytes are shifted by one bit with shift direction dependent on
UCMSB. This is due to the internal shift register getting pre-loaded asynchronously when
writing to the USCIA TXBUF register. TX data in the internal buffer is shifted by one bit
after the RX data is received.

Workaround Reinitialize TXBUF before using SPI and after each transmission.
If transmit data needs to be repeated with the next transmission, then write back
previously read value:

UCAxTXBUF = UCAxTXBUF;

XOSC5 XOSC Module

Category Functional

Function LF crystal failures may not be properly detected by the oscillator fault circuitry

Description The oscillator fault error detection of the LFXT1 oscillator in low frequency mode (XTS =
0) may not work reliably causing a failing crystal to go undetected by the CPU, i.e. OFIFG
will not be set.

www.ti.com Advisory Descriptions

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 19

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

Workaround None

XOSC8 XOSC Module

Category Functional

Function ACLK failure when crystal ESR is below 40 kOhm.

Description When ACLK is sourced by a low frequency crystal with an ESR below 40 kOhm, the duty
cycle of ACLK may fall below the specification; the OFIFG may become set or in some
instances, ACLK may stop completely.

Workaround Please refer to "XOSC8 Guidance" found at SLAA423 for information regarding working
with this erratum.

XOSC9 XOSC Module

Category Functional

Function XT1 Oscillator may not function as expected in HF mode

Description XT1 oscillator does not work correctly in high frequency mode at supply voltages below
2.0V with crystal frequency > 4MHz.

Workaround None. When XT1 oscillator is used in HF mode with crystal frequency > 4MHz ensure a
supply voltage > 2.2V.

Advisory Descriptions www.ti.com

20 MSP430F47167 Microcontroller SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

http://www.ti.com/lit/pdf/slaa423
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

7 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from October 9, 2019 to May 11, 2021 Page
• Changed the document format and structure; updated the numbering format for tables, figures, and cross

references throughout the document..6

www.ti.com Revision History

SLAZ229O – OCTOBER 2012 – REVISED MAY 2021
Submit Document Feedback

MSP430F47167 Microcontroller 21

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ229O&partnum=MSP430F47167

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Functional Advisories
	2 Preprogrammed Software Advisories
	3 Debug Only Advisories
	4 Fixed by Compiler Advisories
	5 Nomenclature, Package Symbolization, and Revision Identification
	5.1 Device Nomenclature
	5.2 Package Markings
	5.3 Memory-Mapped Hardware Revision (TLV Structure)

	6 Advisory Descriptions
	7 Revision History

