
Designer's Guide
SLAU543–December 2013

MSP430TCH5E Haptics Library

By adding haptics effects to your application, you can engage more of the user's senses and enrich the
user experience. TI provides a complete easy-to-use solution for this, in the form of the MSP430TCH5E
Haptics Library. The library is built around Immersion Corporation's TouchSense™ TS2200 Library, and it
provides a means of implementing haptics without patent infringement.

The library runs on the MSP430TCH5E device, interfacing with an ERM or LRA haptics actuator through a
DRV2603 or DRV8601 haptics driver device. Although this combination could be run as a fixed-function
serial slave device, the MSP430TCH5E creates new possibilities by allowing you to add custom
functionality to the MSP430TCH5E application code itself, driving its own haptics based on other inputs –
for example, from capacitive touch buttons.

This designer's guide describes how to incorporate the library into a project, and it documents both the
API and serial interfaces.

The library described in this document is included with the Capacitive Touch With Haptics Software
Development Kit (MSP430-HAPTOUCH-SDK).

Contents
1 Introduction .. 2
2 Haptics System Overview .. 3
3 Library Organization and Requirements ... 7
4 Design Considerations .. 11
5 Haptics Library API Calls ... 21
6 I2C Serial Interface Commands .. 34
7 Suggested Reading and Resources .. 41
Appendix A List of Haptics Effects .. 43

List of Figures

1 Haptics System.. 3
2 ERM Actuator.. 3
3 LRA Actuator .. 4
4 Generalized Relationship Between Actuator Drive Voltage and Vibration Strength 4
5 DRV2603's Relationship Between Input PWM Duty Cycle and Vibration Strength 5
6 MSP430TCH5E Fixed-Function Serial Slave Configuration... 7
7 MSP430TCH5E Integrated-Function Configuration .. 7
8 Output Format in CCS.. 9
9 HapticsLib.lib Optimization Settings (CCS).. 9
10 Haptics Engine Cycle for Playing a Haptics Effect or Sequence.. 16
11 Chronological Playback of a Sequence .. 17
12 Example Audio Config Values With Midpoint Set Halfway Through Range (128) 19
13 Example Audio Config Values With Midpoint Set at 30 .. 20
14 Host MCU Sending I2C Command to MSP430TCH5E Slave.. 34
15 Host MCU Reading Response From the MSP430TCH5E Slave ... 35
16 DRV2603 Product Page: Requesting the Full Data Sheet... 41

MSP430, Code Composer Studio are trademarks of Texas Instruments.
IAR Embedded Workbench is a trademark of IAR Systems.
TouchSense, Audio2Haptics are trademarks of Immersion Corporation.

1SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/product/MSP430TCH5E
http://www.ti.com/product/drv2603
http://www.ti.com/product/drv8601
http://www.ti.com/tool/msp430-haptouch-sdk
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Introduction www.ti.com

1 Introduction
TI's MSP430TCH5E Haptics Library, running on the MSP430TCH5E device, provides an easy way to add
haptics effects to any electronic device. Haptics effects enrich any user experience by engaging more of
the user's senses.

Haptic feedback is the use of vibration within an electronic product to interact with the user by his or her
sense of touch. By far the most common example is the use of vibration in cell phones as a way of
notifying the user of a call, avoiding the need to generate sound. But its applications go far beyond this.
Too often underutilized in electronic devices, touch is a powerful sense, and if utilized it can create an
experience that is more natural and organic to the way humans normally interact with the world.

Perhaps one of the most growing uses of haptics in the last ten years has been providing tactile feedback
for capacitive touch controls. Because of the synergy between haptics and capacitive touch, this library is
designed for easy application alongside the Capacitive Touch Software Library (CAPSENSELIBRARY).
Similarly, the MSP430TCH5E device is designed to run an application that uses both libraries
simultaneously. For an example of this, see the application note Haptics and Capacitive Touch Using the
MSP430TCH5E: the HapTouch BoosterPack (SLAA616).

The MSP430TCH5E Haptics Library is built around the TouchSense TS2200 library from Immersion, the
industry leader in haptics technologies. Using the MSP430TCH5E solution allows implementation of
haptics without patent infringement and without royalties.

It is important to note that the MSP430TCH5E Haptics Library only runs on the MSP430TCH5E device. If
executed on another MSP430™ device, the application will build, but the API functions will return an error.
It was also designed specifically for use with two of TI's haptics driver devices: the DRV2603 and the
DRV8601. It has been optimized for the DRV2603, but the DRV8601 has also been tested and is
recommended as well.

This designer's guide addresses the software necessary to implement haptics using the MSP430TCH5E.
It also covers some basic aspects of implementing the hardware.

The software for this library is included as part of the HapTouch BoosterPack SDK (MSP430-HAPTOUCH-
SDK).

Features:
• Quickly add haptics to any application
• Generate any one of 123 haptics effects, or build sequences of those effects
• Generate continuous haptics based on an audio signal, Immersion's Audio2Haptics™ feature
• A complete library and several examples
• The HapTouch GUI makes it easy to choose your effect or build effect sequences

2 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/tool/capsenselibrary
http://www.ti.com/lit/pdf/SLAA616
http://www.ti.com/tool/msp430-haptouch-sdk
http://www.ti.com/tool/msp430-haptouch-sdk
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Haptics

Controller

Driver

Device
Actuator

OUT+

OUT-

PWM

Enable

PWM Duty Cycle

(0Æ100%)
Voltage (DC or AC)

Variably

controlled

vibration

www.ti.com Haptics System Overview

2 Haptics System Overview
This section describes, at a high level, how a haptics system commonly works, and specifically how it is
implemented with the MSP430TCH5E.

2.1 Actuator Interface
All haptics systems use actuators to convert electrical signals into motion.

Figure 1. Haptics System

The haptics controller – in the case of this library, the MSP430TCH5E – drives the actuator using a simple
pulse-width modulated (PWM) waveform, through a driver device – in the case of this library, the
DRV2603 or DRV8601.

In a very generalized sense, there is a direct relationship between the controller's output PWM duty cycle,
the voltage produced by the driver device, and the degree of vibration that results from the actuator. That
is, the higher the PWM's duty cycle, the more strongly it drives the actuator, and vice versa. Although not
entirely this simple, one can think of the PWM as being averaged into a dc voltage, where the higher the
voltage, the faster the actuator is.

2.2 Actuator Types
There are several actuator types, but two of the most common are:
• ERM: Eccentric Rotating Mass. A motor spins an unbalanced mass. The resulting centripetal force

pulls the actuator as it spins; the result is vibration.
• LRA: Linear Resonant Actuator. A coil electromagnetically moves a mass outward along the axis of its

center (linearly). This force is counteracted in the opposite direction by a spring, such that when the
current through the coil stops, the mass returns to center. As the mass moves, it pulls the actuator
body; the result is vibration.

Both types are supported by this solution.

Figure 2. ERM Actuator

In Figure 2, notice that all of the mass is positioned on one side of the axle to maximize the lack of
balance.

3SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

���µ��}�[��������

drive voltage

Overdrive

0V No vibration

Negative

voltage

V
o

lt
a

g
e

V
ib

ra
ti

o
n

 S
tr

e
n

g
th

Braking, or

reverse spin

Haptics System Overview www.ti.com

Figure 3. LRA Actuator

LRA actuators often are made in a coin-style form factor (see Figure 3). Although ERM actuators have a
longer history, LRA actuators have advantages in power efficiency, lifespan, and response times, and thus
are increasing in popularity.

2.3 PWM Frequency
With ERM actuators, the frequency of the PWM waveform usually is not a major concern. It need only be
high enough to properly interact with the low-pass filter created by the inductive windings in the motor,
toward generating a dc voltage.

LRA actuators are more sensitive to frequency, typically having a window no wider than ±2.5 Hz in which
sufficient resonance is achieved.

If using the DRV2603, the frequency of the input PWM is not related to the frequency of the output. The
DRV2603 uses auto-resonance in driving the actuator, and the frequency of the input can be anywhere
between (at the time of this writing) 10 to 250 kHz, whether driving ERM or LRA. (Always check the driver
device data sheet for actual specifications.)

However, if using the DRV8601 with an LRA actuator, it is important to tune the frequency to the chosen
LRA actuator.

2.4 Relationships Between Duty Cycle and Vibration
Just as the mechanism of creating motion is fundamentally different between these actuators, so are the
waveforms required to drive them. The ERM is driven by a dc voltage, while the LRA is driven by a
sinusoidal voltage. (The ERM can actually have the PWM applied to it directly, and the inductance of its
windings produces a low-pass filter that averages to a dc voltage.)

Even so, there are things they have in common with respect to the relationship between drive voltage and
vibration strength. This is shown in Figure 4.

Figure 4. Generalized Relationship Between Actuator Drive Voltage and Vibration Strength

4 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Input Duty Cycle

50%

0%

LRA = Brake

ERM = Brake/Reverse

75%

100%

Vibration Strength

0%

50%

100%

Forward motion

-100%

www.ti.com Haptics System Overview

Figure 4 introduces two important terms:
• Overdrive: the temporary application of a voltage beyond the actuator's rated continuous voltage, for

the purpose of more quickly moving the mass when it has not been moving.
• Braking: the application of a negative voltage, to more quickly stop the forward motion of the mass.

Although these are handled automatically by the MSP430TCH5E haptics system, they become relevant to
the developer when choosing an actuator – see Section 4.2.

In Section 2.1, it was said there is a direct relationship between the controller's output PWM duty cycle,
the voltage produced by the driver device, and the degree of vibration that results from the actuator. While
true in general, the driver device actually exerts a great deal of influence in how the PWM duty cycle is
mapped to vibration. In short, the mapping does not have to be linear.

For example, the DRV2603 and DRV8601 have features that exploit the natures of ERM and LRA
actuators toward the goals of maximizing haptic performance and power efficiency. They handle overdrive
and braking automatically, such that the controller does not need to consciously implement them. In so
doing, they present to the controller a simple relationship between PWM duty cycle and vibration (see
Figure 5).

Figure 5. DRV2603's Relationship Between Input PWM Duty Cycle and Vibration Strength

The MSP430TCH5E Haptics Library is designed to interface with the DRV2603 and DRV8601. The effect
banks it contains are tuned to these devices. In turn, these devices work with a wide array of ERM and
LRA actuators, listed in Section 4.2.

2.5 Control of the PWM Duty Cycle: What is a Haptic Effect?
The MSP430TCH5E Haptics Library enables a rich of haptics effects, and sequences of those effects.
(For a more complete description of haptics effects and sequences, see Section 2.7.)

An effect is essentially a mapping of a changing PWM duty cycle over a brief period of time, producing a
particular vibration pattern experienced by the user. The library uses one of the TCH5E's Timer_A
modules, and one of its output pins, to generate the PWM.

The lifetime of a haptic effect is as follows:
1. The MSP430TCH5E application software calls a library API function that loads the effect into the

haptics engine.
2. The library sets the enable signal for the driver device.
3. The library loads an initial duty cycle (sometimes referred to as a voltage) into the Timer_A chosen to

output the PWM.

5SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Haptics System Overview www.ti.com

4. Every 5 ms, the application calls on the library to update the duty cycle.
5. Eventually, the effect reaches the end of its mapping of duty cycle over time and thus completes.
6. The library then disables the enable signal for the driver device.

This creates a voltage that changes on a stepwise basis over time, which might implement ramps, curves,
or other waveforms.

2.6 Effect Banks: Tuning Duty-Cycle Waveforms to Actuator Types
Even within the ERM or LRA types, actuators vary in their specifications. Obviously there are variances in
physical size and power efficiency, but these do not have bearing on how the PWM duty cycle should be
controlled.

In contrast, some actuator parameters do impact the duty cycles that should be applied. For example,
some actuators have different voltage ratings, moving the line between normal forward drive and
overdrive.

Another set of parameters are the response times – for example, the rise time and brake time. The rise
time is the time required for the actuator to go from a quiescent state to generating full acceleration, when
voltage is applied. The voltage may be the actuator's rated voltage, or it may be an overdrive voltage. The
brake time is the time required for the actuator go from the rated full acceleration to a level of acceleration
below human perception, while applying the negative overdrive (braking) voltage.

To account for these variances, the MSP430TCH5E Haptics Library includes several effect banks. The
developer must choose the best effect bank for the chosen actuator, and this requires knowing these
parameters.

2.7 Two Types of Haptics: Effects and Sequences
The most basic building block in the MSP430TCH5E Haptics Library is called an effect. A haptics effect
consists of a pattern of varied voltages applied to the actuator.

For example, one effect found in Appendix A is "Transition Ramp Up Long Sharp". It consists of an initial
low voltage (and thus weak haptics vibration) ramping upward to a high voltage (and thus strong haptics
effect). Reciprocally, a "Transition Ramp Down Long Sharp" would move from high voltage to low. The
library contains 123 of these effects.

The developer can then chain these effects together into effect sequences. A sequence consists of one or
more effects played sequentially with a programmable time gap between each one; and then the
sequence might be repeated one or more times. The variations that are possible using effects and
sequences provide tremendous potential for creativity, allowing the developer to target haptics for any
given application. Sequences can be created that mimic rolling dice, machine guns, or explosions.

In comparison to sequences, one can think of effects as more simple, linear, and short, in helping to fulfill
their role as building blocks for sequences.

The best way to become familiar with effects and sequences is to experience them, using the HapTouch
BoosterPack.

2.8 MSP430TCH5E: Integrated-Function and Serial Slave Configurations
In MSP430TCH5E-based systems, the MSP430TCH5E always originates the PWM that drives the
actuator. However, the developer has a choice of where the haptics command originates.
• Integrated-Function: Haptics commands originate within the TCH5E software application itself
• Fixed-Function: The TCH5E receives and implements haptics commands from a host MCU

The MSP430TCH5E is equipped with an Universal Serial Communications Interface (USCI) module, which
is capable of I2C, SPI, or UART communication. Any embedded processor – the host MCU – can send
commands to the TCH5E over these interfaces (see Figure 6).

6 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

MSP430

TCH5E

Driver

Device
Actuator

PWM

Enable

K�Z���(µv��]}v�Y�

x� Capacitive touch?

x� Other sensors?

OUT+

OUT-

MSP430

TCH5E
Host MCU

Driver

Device
Actuator

PWM

Enable

Haptics Sub-Unit

I2C/SPI/UART
OUT+

OUT-

www.ti.com Library Organization and Requirements

Figure 6. MSP430TCH5E Fixed-Function Serial Slave Configuration

A detailed software example of this is provided with this library, which uses I2C. The example contains a
complete serial command set, described in Section 6. The example could be easily ported to SPI or
another interface.

Alternatively, because the developer has complete control of the TCH5E application software, and
because the TCH5E has plenty of memory beyond what the haptics library requires, software on the
TCH5E can be written that receives system inputs and autonomously drives haptics effects based on
those inputs, using the library's API. For example, the TCH5E can sample capacitive touch buttons and
drive haptics in response (see Figure 7).

Figure 7. MSP430TCH5E Integrated-Function Configuration

Software examples are provided for both cases. The guide contains a detailed reference for the library's
API calls and also contains a reference for the serial interface commands used in the serial slave
example.

3 Library Organization and Requirements
The library includes:
• API calls for all haptics functions. (A reference for these API calls is provided in Section 5.)
• Example code for driving haptics effects
• An example serial interface for sending haptics commands from a host MCU. Both MSP430TCH5E

and host MCU code is provided. Section 5 serves as a reference guide for this interface.
• Hardware abstraction, in that the developer has a choice of timers and pin allocation for generating the

PWM output, as well as flexibility in how to input an audio signal for audio haptics.
• A wide range of ERM and LRA actuators is supported.
• The HapTouch GUI helps the developer in choosing effects and building sequences.

7SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Library Organization and Requirements www.ti.com

3.1 Hardware Assumptions
The library is provided as part of a turnkey solution. One reason for this is that every component in the
system impacts haptic performance, and the effect banks provided in the library have been optimized for
the entire system.

3.1.1 MSP430 Device Derivative Requirement
The MSP430TCH5E Haptics Library only runs on the MSP430TCH5E device. This device has been
specially optimized for haptics. Attempting to run the library on other MSP430 device derivatives will fail,
and the API function calls will return an error.

The library does not come pre-programmed into the MSP430TCH5E; rather, it must be downloaded and
programmed into each TCH5E device.

3.1.2 Driver Device Requirement
The library is designed to be used in haptics systems where the DRV2603 or DRV8601 is used as the
driver device between the MSP430TCH5E and the actuator. This is because the driver devices influence
the mapping between duty cycles and the drive voltages applied to the actuator.

3.1.3 Actuator Requirements
The requirements for actuators used with the library are described in Section 4.2. A wide range of ERM
and LRA actuators is supported.

3.2 Software Contents
The MSP430TCH5E Haptics Library software is included within the HapTouch BoosterPack software
(MSP430-HAPTOUCH-SDK). Its contents are as shown in Table 1.

Table 1. MSP430TCH5E Haptics Library Contents
Item Description
\MSP430_Haptics_Library To add the library to your project, add this directory into it, and follow the other

instructions in Section 3.7.
\MSP430_Haptics_Library

HapticsLib.lib A static library file containing the entire MSP430TCH5E Haptics Library
HapticsLib.h A header file allowing an application to access the library
License.txt The MSP430 Haptics Library is bound by a special license as part of its relationship

with Immersion Corporation. The license text is found here.
\Examples

HapticsLibExample_AudioHaptics An example showing how to use the audio-to-haptics function.
HapticsLibExample_Haptics_ An example showing how to drive haptics from within the MSP430TCH5E
from_TCH5E_app application software.
HapticsLibExample_SerialSlave An example showing how to drive the MSP430TCH5E+library as a serial slave.

(The serial interface protocol and commands are described in Section 6.)
I2C_Master_G2553 This is code for the host MCU that sends haptics commands to the MSP430TCH5E

slave. It runs on an MSP430G2553 but could be ported to any MCU.
I2C_Slave_TCH5E Software enabling the TCH5E to run as a fixed-function haptics serial slave device.

Designers_Guide.url Double-clicking invokes your default browser to download this designer's guide.

8 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/tool/msp430-haptouch-sdk
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Library Organization and Requirements

The HapticsLib.lib file is provided as object code. All the examples are provided as C source code,
contained within complete software projects.

The examples shown above are very simple and minimal. This reduces operations down to their
fundamental requirements, and avoids the confusion that can arise from more complex examples.

However, a more complex example is also available: the software for the HapTouch BoosterPack, which
is located in the other major directory of the HapTouch BoosterPack software. Most notably, the
BoosterPack software combines the haptics library with the MSP430 Capacitive Touch Library. It also
shows use both as an integrated-function device and fixed-function serial slave.

3.3 Tool Requirements
The library supports development with Code Composer Studio™ (CCS) and currently does not support
development with IAR Embedded Workbench™ or MSPGCC. Because the MSP430TCH5E's flash
memory is 16KB, and because the free version of CCS is code-size limited to 16KB, this free version can
be used for any TCH5E-based application.

The version of CCS used for development of the library was v5.4. It is expected to work with later
versions.

The library is a static library built using the EABI (ELF) output format, and any application using the library
must do the same. (The other CCS output format, COFF, has been deprecated.)

Figure 8. Output Format in CCS

3.4 Memory Requirements
The library requires a certain amount of flash and RAM memory. Table 2 shows values for the library only,
not including the application.

NOTE: These values are only shown as an example; refer to the *.map file in the \Debug directory of
the project for an actual breakdown.

Table 2. Memory Use

Type Use
(bytes)

RAM (not including stack) 163
Flash (code) 2.6K
Each Haptics Library effect bank added with HAPTIC_addBank() 1.8K

The RAM use is entirely static; no heap space is required.

These numbers reflect the library found in v1.00.00.00 of the HapTouch BoosterPack SDK.

The HapticsLib.lib file is built using the optimization settings shown in Figure 9. It uses the highest level of
optimization, with an emphasis on code size.

Figure 9. HapticsLib.lib Optimization Settings (CCS)

9SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Library Organization and Requirements www.ti.com

3.5 Use of MCU Peripheral Resources
The library does not directly use any of the TCH5E's peripherals. However, it uses callback functions to
access a means of driving a PWM signal, which is usually done with a Timer_A module. The developer
can choose which of the two Timer_A modules should be used, and which output pin for that timer will
output the signal.

The library also needs certain function calls to be made on certain periods. For example, non-audio
haptics applications must call an update function every 5 ms. Or, if using the audio haptics feature, the
application must make calls on 1 ms and 250 µs periods. Calling according to these periods usually
requires a timer. Although it is possible to use the WDT (watchdog timer) for this purpose, Timer_A has
more flexibility in setting its period, and thus the other Timer_A on the TCH5E is often a better choice.

Finally, the audio haptics function requires a means of acquiring a digitized audio signal. Usually this is
done with the TCH5E's ADC10 module.

Although these are the typical configurations, they are not required to be this way. For example, if desired,
the update calls could be driven from I/O toggles driven from an external source capable of the necessary
timing, saving one of the internal timers for other uses.

3.6 Data Types
All integer types used in the example project are C99-compatible.

Table 3. Data Types

Type Description
unsigned 8-bituint8_t

unsigned 16-bituint16_t

signed 8-bitint8_t

signed 16-bitint16_t

The HapticsLib.h file declares a special enumerated type for TRUE and FALSE, which is occasionally
used by the library. (In the event that these type names somehow conflict with application-specific defines
by the same name, the library will recognize any non-zero value as TRUE, and any zero value as FALSE.)

typedef enum
{

TRUE = 1,
FALSE = 0

}Boolean;

The library also defines some struct types. These are described in this document where their related
concepts are described.

3.7 Adding the Library into Your Project
Adding the library to any CCS project consists of the following simple steps.
1. Copy the \MSP430_Haptics_Library directory, containing HapticsLib.lib/h, into the target project
2. #include HapticsLib.h in any source file accessing the library
3. Ensure that include paths are implemented that allow any file calling the library to find HapticsLib.h.

This might be done using a global include path in the project settings.

10 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Design Considerations

4 Design Considerations
This section describes, in detail, various topics required to implementing haptics using the library and the
MSP430TCH5E.

4.1 Interfacing to an Actuator
Section 2 gave a general description of the actuator interface, which is also what you need to implement
in your system.

The MSP430TCH5E must output two signals to the DRV2603 or DRV8601:
• A PWM
• An enable signal

The TCH5E has two Timer_A instances, each of which is capable of driving this PWM. You must write the
callback functions to initialize this PWM and set its duty cycle; see Section 4.3.

Optionally, instead of outputting the enable signal from the MSP430TCH5E, you could permanently enable
the driver device. However, this can have a significant impact on the driver's power consumption, and so it
is recommended to only enable it when the PWM is being driven.

4.2 Actuator Selection and Corresponding Effect Banks
The library supports a wide variety of ERM and LRA actuators. Some have been qualified by Immersion
for both performance and durability, and are recommended. However, there are many other good
actuators on the market. If you want to use an actuator that is not on Immersion's certified list, see
Section 4.2.3.

Either way, it is important that the correct effect bank be chosen.

4.2.1 Effect Banks
In choosing the actuator, an appropriate effect bank must be selected for that actuator. Failure to choose
the right bank may result in sub-optimal performance, or could even damage the actuator. See Section 2.6
for additional description of effect banks.
Once chosen, the library needs to be initialized to use this bank, using the HAPTIC_addBank() and
HAPTIC_init() calls.

The Immersion Corporation has defined and created banks as part of the TS2200C TouchSense library,
on which the MSP430TCH5E Haptics Library is based. The bank definitions are shown in Table 4.

Table 4. Immersion Effect Bank Definitions
Actuator Actuator 90% Rise 90% BrakeActuatorEffect Bank Characteristics Rated Maximum Time at 3 V Time at -3 VType Voltage Voltage (ms) (ms)

A Best – with overdrive 1.3 3 (1) 40-60 10-20
B Very good – fast for light devices 3 3 40-60 5-15
C ERM Good – strong 3 3 60-80 10-20
D Acceptable 3 3 100-140 15-25
E Marginal 3 3 >140 >30

2-V RMS
F LRA Good drive (AC <30 Approx. 30

175 Hz)
(1) Overdrive voltage applied for less than 60 ms at a time.

Section 2.4 describes the actuator parameters in the table.

11SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Design Considerations www.ti.com

4.2.2 Using an Immersion-Certified Actuator
Immersion maintains a list of actuators certified for compatibility with the TS2200 TouchSense library, and
determines the appropriate effect banks. Certification indicates two things:
• The actuator has passed the TouchSense Actuator Performance test, which validates an actuator's

dynamic capabilities for reproducing vibration effects in the TouchSense System. It includes testing for
dynamic performance, acceleration, frequency response, and power efficiency.

• The actuator has passed the TouchSense Actuator Life Test, which is a crucial step to achieving
durability criteria established by one or more handset manufacturers. This test contains 1,000,000
touch cycles of on/off scenarios.

Certified actuators are shown in Table 5 for each effect bank.

Table 5. Immersion-Certified Actuators

Effect Bank Make and Model

• AWA GT-4168Bank A
• ZLIFE RP1342

Bank B • ZLIFE RF2323

• LNLON Y0408A-400050572-M021
• KOTL/Jinlong
• Z4TH5B1241993Bank C
• DMEGC DM-YK421-7G
• DMEGC DM-YK407-6F2
• KOTL/Jinlong Z4TL2B124167S

• DMEGC DM-YX403Bank D
• DMEGC DM-YX402-A

• AWA GH-4342 (bar)Bank E
• Jinlong C1030B028F (coin)

Bank F • SEMCO 1036 LRA 175-Hz resonance

4.2.3 Using a Non-Certified Actuator: Procedure for Determining the Appropriate Bank
If you want to use a non-certified actuator, the procedure below details how to determine the appropriate
bank. Note that these tests involve bypassing the driver device and applying the full rated voltage, or its
inverse braking voltage. All but the first step apply to ERM actuators.

This procedure was part of producing the list in the previous section.
1. If the actuator is LRA, with a definition similar to the one shown in Table 4, select effect Bank F.
2. If the actuator is rated for 1.3 V operation and can be overdriven with 3 V for up to 60 ms at a time,

select effect Bank A. (All other banks are designed for a 3-V voltage rating.)
3. If the actuator's 90% rise time at 3 V and 90% brake time at −3 V can be determined from the data

sheet, select the effect bank using the bank definitions in Table 4.
4. If these parameters cannot be discerned from the data sheet, you can obtain them by measurement,

and then select the effect bank using the bank definitions in Table 4.
To measure the rise time:
(a) Attach the actuator to a mass equivalent to the mass of the physical unit to be vibrated with the

haptics effect.
(b) Attach an accelerometer to the mass and view the accelerometer output on an oscilloscope.
(c) Rest the mass on a compliant surface, such as silicone or soft rubber.
(d) Apply a step-function +3-V dc voltage to the actuator.
(e) Using the accelerometer's output, note how long it takes for the acceleration amplitude to reach

90% of the steady-state (maximum) value.

12 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Design Considerations

To measure the brake time:
(a) Use the same setup as for the rise time.
(b) Apply a positive pulse as for the rise time allowing the acceleration to reach steady-state.
(c) Step down to −3 V and note the time it takes for the acceleration to fall to 10% of the steady-state

value. Do not apply this brake voltage long enough to cause the motor to spin in the reverse
direction. To be sure about this, begin with short brake pulses and increase their duration until the
exact brake time is determined.

5. If the effect bank cannot be determined by the above steps, then use a subjective process to select the
appropriate bank. Try driving some effects using each effect bank, and determine which one feels best.
While doing this, ensure that brake pulses driven by the test effects never cause the actuator to spin
backward. In other words:
(a) Attach the actuator to a mass equivalent to the mass of the physical unit to be vibrated with the

haptics effect.
(b) Select an effect bank
(c) Play a few different effects and note how they feel on the target mass. Use the same set of effects

in each effect bank for comparison.
(d) Play effects #0-5 using the effect bank. These effects are chosen because they use braking. If the

actuator ever moves backward while playing or stopping an effect, then the braking pulse was
applied too long; select a different effect bank.

(e) Repeat steps a through d for each effect bank.
(f) After trying all the effect banks, select the effect bank that seemed to provide the best effects,

without the actuator moving in the reverse direction.

Spinning an actuator backward can damage the actuator. It is important to ensure that brake pulses from
playing or stopping effects in the selected effect bank never cause the actuator to spin backward. If effects
in the selected effect bank cause the motor to spin backward, the effect bank is inappropriate for the
actuator and a different effect bank should be selected.

4.2.4 Representation of the Banks Within the Library
The library declares these items related to effect banks.

typedef enum
{

EFFBANK_MOTOR_A = 0,
EFFBANK_MOTOR_B,
EFFBANK_MOTOR_C,
EFFBANK_MOTOR_D,
EFFBANK_MOTOR_E,
EFFBANK_MOTOR_F

}EFFECT_BANK;

typedef struct
{

const uint8_t *peffectPtr;
EFFECT_BANK nBank;

}DSE_Table;

extern DSE_Table MOTOR_A;
extern DSE_Table MOTOR_B;
extern DSE_Table MOTOR_C;
extern DSE_Table MOTOR_D;
extern DSE_Table MOTOR_E;
extern DSE_Table MOTOR_F;

13SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Design Considerations www.ti.com

The enumerated type EFFECT_BANK creates an index for each bank, which can then be passed into
HAPTIC_init() to select the bank the library will use. The names EFFBANK_MOTOR_A,
EFFBANK_MOTOR_B, and so on refer to the Bank A, Bank B, and so on described in the previous
sections.

The type DSE_Table links each EFFECT_BANK index with an address pointer to the actual bank data
within the library; and in the declarations above, external references of this type to each bank are
declared. These are used when calling HAPTIC_addBank().

HAPTIC_addBank(MOTOR_A);
HAPTIC_init(EFFBANK_MOTOR_A, enableActCB, disableActCB, initActCB, setActDriveLevelCB);

Only banks that have been added with HAPTIC_addBank() can be referenced in HAPTIC_init().

Calling HAPTIC_addBank() is what causes that particular bank to be linked into the final application
image. Banks not added are not linked in. This is significant because each bank requires between 1.5K
and 2K of flash. Therefore, to add banks not actually used would waste flash memory.

If more than one actuator is physically attached to the MSP430TCH5E, then it is possible to add a bank
for each actuator, and dynamically call HAPTIC_init() to select whichever one is active. A separate set
of callback functions would then also be needed (see Section 4.3).
The selection made with HAPTIC_init() applies to both non-audio and audio applications.

4.3 Hardware Flexibility Through the Callback Functions
To enable the developer flexibility in choosing pins, peripherals, and layout, callbacks serve as an
abstraction layer between the library and the hardware.

Table 6. Defined Callback Functions

Callback Required Content
Enables the actuator; starts the PWM, and enables the lineenableActCB() driver
Disables the actuator; stops the PWM, and disables the linedisableActCB() driver

Initializes the haptics line driver deviceinitActCB()

Set the PWM duty cyclesetActDriveLevelCB(uint8_t)

(Audio only) Obtains a sample from the audio sourcesampleAdcCB()

As a result of these callbacks, the following flexibility is provided:
• Either Timer_A can be used to drive the PWM
• Any output pin on that timer can be used;
• Any I/O can be used to drive the enable signal (or none at all, if the driver's enable pin is statically

asserted)
• Audio sources other than ADC10 could be used

The developer must write code for these callbacks. Pointers to the callbacks are then passed into the
library with the HAPTIC_init() function. If audio haptics is to be implemented, the
HAPTIC_audioInit() function must also be called, which sets the audio-specific callback function.

The callbacks defined in the examples are probably very close to what is needed for most applications.

14 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Design Considerations

4.4 Initializing the Library
If not using the audio feature, initialization is fairly simple.

First, determine the appropriate effect bank, as described in Section 4.2. Then, ensure that the callbacks
are properly defined, as described in the previous sections.

Then call:

HAPTIC_addBank(MOTOR_A);
HAPTIC_init(EFFBANK_MOTOR_A, enableActCB, disableActCB, initActCB, setActDriveLevelCB);

The library is now ready for the application to make API calls to drive haptic effects.

If the audio feature is to be used, then two additional calls must be made:

HAPTIC_audioInit(sampleAdcCB);

HAPTIC_audioConfigStr audioSettings;
audioSettings.midpoint = 128;
audioSettings.wakeupThresh = 10;
audioSettings.inputMin = 20;
audioSettings.inputMax = 64;
audioSettings.strength = 127;
audioSettings.strengthAtFloor = 0;

HAPTIC_audioConfig(&audioSettings);

The settings for HAPTIC_audioConfig(), as well as the HAPTIC_audioConfigStr, are described in
Section 4.8.

4.5 Calling the Update Functions
The haptics engine must continuously be pushed by periodic update calls. The calls to be made, and
when, are shown in Table 7.

Table 7. Haptic Engine Update Calls

Function When
Non-Audio Applications

Every 5 ms ± 10%HAPTIC_update()

Audio Applications
Every 250 µs ± 10%HAPTIC_getConversion()

Every 1 ms ± 10%HAPTIC_audioUpdate()

Without making these calls, the engine essentially goes to sleep.

In non-audio applications, after an effect or sequence is loaded into the queue with
HAPTIC_playEffect() or HAPTIC_playSequence(), it must be fully played out (or stopped with
HAPTIC_stopEngine()) before another one can be loaded. Until then, calling HAPTIC_isEngIdle()
will return FALSE, because it is waiting for the loaded effect or sequence to be played.
HAPTIC_update() must be called every 5 ms until the loaded effect or sequence has completed.

15SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Effect is loaded using

HAPTIC_playEffect()

Sequence is loaded using

HAPTIC_playSequence()

HAPTIC_isEngineIdle() ?

TRUE

FALSE Call HAPTIC_update() to

update the PWM duty cycle

Done

Wait 5ms

Design Considerations www.ti.com

Figure 10. Haptics Engine Cycle for Playing a Haptics Effect or Sequence

In audio applications, HAPTIC_getConversion() first calls the sampleAdcCB() callback to sample the
audio signal, and then processes it. Every four times that HAPTIC_getConversion() is called,
HAPTIC_audioUpdate() must also be called, and this function updates the voltage applied to the
actuator based on the audio samples that have been received since the last call. (See Section 4.8 for
more information about the audio haptics engine.)

4.6 Haptics Effects
As described earlier, the effect is the fundamental building block of the haptics generated by the library.
The library contains 123 such effects (bearing in mind that two of these are null effects). The library
contains a constant in HapticsLib.h that defines how many there are:

#define TOTAL_EFF_COUNT 123

Most effects last under one second, and are fairly simple in nature. Most are fairly homogeneous or linear.
This is consistent with their role as elemental building blocks.
The function call HAPTIC_playEffect() can be used to play individual effects. As a parameter, it
accepts an effect index effIndex to be played, according to the list of effects given in Appendix A. Valid
indices are between zero and TOTAL_EFF_COUNT - 1.

16 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Sequence is loaded using

HAPTIC_playSequence()

dZ�����µ�v��[��(]�����((/v��Æ�]��

played out

dZ�����µ�v��[��(]�����]u�P���]��

waited

dZ�����µ�v��[�����}v���((/v��Æ�

is played out

dZ�����µ�v��[�����}v���]u�P���

is waited

Reached repeatCount ?

Up to MAX_PAIRS_IN_SEQ

effIndex/timeGap pairs

Done

www.ti.com Design Considerations

4.7 Haptics Sequences
Effects can then be chained together into sequences. A sequence consists of several effect pairs, with
each pair consisting of an effIndex and a timeGap.

The timeGap is a delay that will be placed after the corresponding effect, during which no haptics will be
generated. Because of the 5-ms period of HAPTIC_update(), the minimum time unit by which
sequences are played is a 5-ms tick. The time gap is expressed in the number of 5-ms ticks. It can be
anywhere from 0 ms to 1.27 seconds.
Finally, the sequence has a repeatCount – the number of times the sequence is to be repeated in
succession.

Figure 11 describes what happens when a sequence is played. In relation to Figure 10, it can be thought
of as containing the next level of detail. As indicated in Figure 10, if at any point in this flowchart
HAPTIC_isEngineIdle() is called, it will return FALSE.

Figure 11. Chronological Playback of a Sequence

17SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Design Considerations www.ti.com

In software, a sequence is defined by an instance of HAPTIC_sequence:

#define MAX_PAIRS_IN_SEQ 16
#define MY_MAX_PAIRS_IN_SEQ 5 // application-defined

typedef struct
{

uint8_t effIndex; // from zero to TOTAL_EFF_COUNT - 1
uint8_t timeGap; // counted in 5-ms ticks

}HAPTIC_seqEffPair;

typedef struct
{

uint8_t pairCount; // the number of valid pairs in effpairs[] for this instance
uint8_t repeatCount; // the number of times the sequence should be repeated
HAPTIC_seqEffPair effPairs[MY_MAX_PAIRS_IN_SEQ];

}HAPTIC_sequence;

A pointer to an instance of this struct is passed into the function HAPTIC_playSequence().

MAX_PAIRS_IN_SEQ is a value fixed by the library. MY_MAX_PAIRS_IN_SEQ is a value you can
configure; the only requirement is that it not exceed MAX_PAIRS_IN_SEQ. The reason it exists is that if
every instance of HAPTIC_sequence allocates RAM for the number of pairs defined by
MAX_PAIRS_IN_SEQ, this can add up to a significant amount of RAM. MY_MAX_PAIRS_IN_SEQ gives
you the opportunity to reduce the amount of RAM allocated per instance of HAPTIC_sequence.

4.8 Audio Haptics Engine
The audio haptics engine converts a stream of audio data into haptic effects. Audio data is usually
provided to the library from the MSP430TCH5E's on-chip ADC10 module, although alternate sources
could be used. The library then generates haptics effects.

The software for initializing and maintaining this functionality looks a little different than it does for non-
audio applications. It is described in this section, but you may also wish to see the example included with
this library called HapticsLibExample_AudioHaptics; see Table 1.

The amplitude of the incoming audio stream is analyzed. Large amplitudes are converted into strong
haptics effects; small ones into slight effects. An example where this feature might be used is in a game
controller playing a video game; a loud explosion would cause the actuator to shake the controller, helping
the person playing the game to experience the explosion.
The application must call HAPTIC_getConversion() every 250 µs. This means it is called at a 4kHz
rate. One of the first things this function does is call the sampleAdcCB() callback, which the developer
must write, to somehow obtain a sample of the audio signal. Usually this is done with the ADC10 module.
The library expects an 8-bit response, and so the two least significant bits of the ADC10 output would
need to be discarded. HAPTIC_getConversion() then performs analysis of the signal.

Then, on 1 ms intervals, the application must also call HAPTIC_audioUpdate(). (Note that this is one
call for every four calls of HAPTIC_getConversion().) This function further processes the data,
determines a new voltage at which the actuator should be driven, and applies it to the actuator using the
callbacks.

Given the 4-kHz sampling rate, it is expected that hardware pre-filtering is applied, limiting the incoming
signal to under 2 kHz to avoid aliasing.
During initialization, the AUDIOHAPTIC_init() function should be called, after HAPTIC_init(). This
should be followed by AUDIOHAPTIC_config() function, through which a number of parameters are
provided that instruct the library how to convert the audio into voltages for the actuator. These parameters
are shown in Table 8.

18 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

midpoint = 0

128

-127

inputMin

inputMax

wakeThresh

www.ti.com Design Considerations

Table 8. Audio-to-Haptics Parameters
Parameter Range Description

The value of the audio signal stream when there is no audio. If an incoming audio signal
0-255 has a bias voltage applied, this is the location within the ADC's numeric 8-bit outputmidpoint

range at which the bias voltage resides.
The threshold value, wherein if the signal amplitude stays underneath it, the function
HAPTIC_audioNoSignal() will return TRUE. This should be chosen as a value0-255 (1)wakeupThresh safely above the analog circuitry's noise floor. The value is expressed as units relative to
the midpoint.
A signal with an amplitude at this value will cause effects to be driven of the strength

0-255 (1) indicated by strengthAtFloor. The value is expressed as units relative to theinputMin
midpoint, and should be less than inputMax.

As signal amplitude increases from inputMin toward inputMax, the haptics effects
will increase linearly. Once at inputMax, the corresponding haptics effects will be of

0-255 (1)inputMax the strength indicated by maxStrength. Amplitudes above inputMax will still
generate at maxStrength. The value is expressed as units relative to the midpoint,
and should be greater than inputMin.

The strength at which the actuator will be driven when the amplitude is at inputMin.
0-255 (1)strengthAtFloor The value should be less than maxStrength. The value is expressed as units relative

to the midpoint, and should be less than maxStrength.

The strength at which the actuator will be driven when the amplitude is at inputMax.
0-255 (1) The value is expressed as units relative to the midpoint, and should be less thanmaxStrength

strengthAtFloor.
(1) Although the maximum value is shown as 255 in each case, it can only be this large if the midpoint is zero. The actual maximum

limit is (255 - midpoint).

An example waveform is shown in Figure 12. In the figure, midpoint has been set to half of the 256-
value range, or 128. All the other values are expressed as relative to that value, and it is this relative scale
that is shown at left.

Figure 12. Example Audio Config Values With Midpoint Set Halfway Through Range (128)

Figure 13 shows example settings when the midpoint has been set much lower, at 30. Notice that the
scale at left is different, because all the values are shown relative to the midpoint.

19SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

midpoint = 0

226

-29

inputMin

inputMax

wakeupThresh

Design Considerations www.ti.com

Figure 13. Example Audio Config Values With Midpoint Set at 30

If using ADC10, the choice of reference voltage is up to you. Whether 1.5 V or 2.5 V is chosen, the same
10-bit range is produced, and so it does not matter. This is primarily determined by the design of the
analog interface.

4.9 Serial Interface
As described in Section 3.2, the example HapticsLibExample_SerialSlave shows how to use the TCH5E
as a serial slave. Example code is shown for both the MSP430TCH5E itself, as well as for the host MCU.
Although just an example and specific to I2C, it might be usable as-is for some applications. For this
reason, the serial interface has its own reference section in this document (see Section 6).

The serial interface provides access to all the same functions as if called from the MSP430TCH5E
application; but being a serial interface, it does not provide all the same flexibility. For example, whether
the commands originate within the MSP430TCH5E software or from a host MCU, the TCH5E software is
still responsible for calling the periodic update functions and configuring the timers and ADC10. These
must be set at compile-time, not handled through the serial interface.

4.10 Power Management
In non-audio applications, while the haptics engine is playing back an effect or sequence that has been
loaded, the application is free to enter a low-power mode, as long as it maintains the PWM continuously
until the effect or sequence has been fully played. Once it has been fully played, the library requires
nothing of the MCU (CPU or clocks) while the non-audio haptics engine is idle.

Audio applications, in contrast, involve continuous activation of the PWM output. This continuous
operation is driven by repeated calls to HAPTIC_audioGetConversion() and
HAPTIC_audioUpdate(). Ceasing to call these essentially puts the engine to sleep.

The decision to sleep during audio haptics might be made by system-level factors, but a common case
might be to put the engine to sleep when there is no audio signal. The library tracks signal activity against
the wakeupThresh value that was set by HAPTIC_audioConfig(). The application can then call
HAPTIC_audioIsNoSignal(), which returns a boolean indicating whether there has been a signal
recently. If not, the application might choose to significantly slow the calls to
HAPTIC_audioGetConversion(). If a later call to HAPTIC_audioIsNoSignal() says a signal has
returned, the rate of calling HAPTIC_audioGetConversion() can return to 4 kHz, and calling of
HAPTIC_audioUpdate() can resume.

4.11 Clock and Timer Management
If the application does not use the audio feature, then there are generally no restrictions on MCLK speed,
provided that the PWM frequency is properly managed, as described in Section 2.3.

20 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Haptics Library API Calls

As mentioned previously, in non-audio applications, HAPTIC_update() must be called every 5 ms ±
10%. This completes fairly quickly, and so it can be called out of the interrupt service routine (ISR) of a
timer. The next questions to be answered are, which timer, and using which clock?

The timing is easy to accomplish with a Timer_A module driven by a calibrated DCO or a 32-kHz crystal.
However, the VLO's tolerance is too wide to accomplish ±10% timing. One option is to run the timer from
the DCO while HAPTIC_isEngIdle() returns FALSE, but switch to the VLO otherwise (or disable the
timer altogether), allowing the MSP430 to rest in LPM3 or LPM4.

The timing is a little difficult to accomplish with the watchdog timer (WDT) using the standard calibrated
DCO frequencies (1, 8, 12, or 16 MHz), because its clock selection is not as flexible. However, it is
possible to do.
If using the audio feature, HAPTIC_audioGetConversion() must be called every 250 µs. Every fourth
time, HAPTIC_audioUpdate() must also be called. This means both functions must execute within a
250-µs window, and it can be difficult to do this with an MCLK speed below 15 MHz.

Both of these audio functions can be executed out of a Timer_A ISR. Using the TI-calibrated 16-MHz DCO
speed for MCLK is always safe for audio; but if using a slower speed, it is recommended to measure the
execution of these functions and ensure they are completing within the 250-µs window.

5 Haptics Library API Calls
This section is a reference guide for the API calls.

5.1 Return Codes
Most of the API functions return a single-byte return code of type uint8_t. Table 9 shows the possible
values.

Table 9. Possible Return Codes
Pointer Description

The operation was a success.HAPTIC_SUCCESS

The haptics-playing operation could not be completed, because the engine is currentlyHAPTIC_ENG_NOT_IDLE playing another effect or sequence; and the function was instructed not to override effects
underway.
The haptics-playing operation could not be completed, because the queue was full. ThisHAPTIC_QUEUE_FULL means the loaded effect or sequence has not yet begun to be played, and often means that
HAPTIC_update() is not being called as it should be.

All functions in the library check to ensure the MSP430 derivative being used is the
MSP430TCH5E. If not, they fail, sometimes in unclear ways. The only function that returns a

HAPTIC_UNSUPPORTED_DEV code unique to this kind of failure (that is, HAPTIC_UNSUPPORTED_DEV) is
HAPTIC_init().

5.2 Callbacks
Four callback functions must be defined, both in non-audio and audio applications. These are
communicated to the library in HAPTIC_init(). If using the audio feature, sampleAdcCB() must also
be defined, and this is communicated to the library in HAPTIC_audioInit(). See Section 4.3 for
description of the callback functions.

Table 10. Haptics Library Callbacks
Name User-Implemented Functionality

Perform any initialization functions related to the actuator, including preparing the PWMinitActCB() output.

Electrically enable the actuator.enableActCB()

Electrically disable the actuatordisableActCB()

Adjust the duty cycle of the PWM driving the actuatorsetActDriveLevelCB(uint8_t)

Cause a sampling of the audio signal to occursampleAdcCB()

21SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Haptics Library API Calls www.ti.com

5.2.1 initActCB()
Description
Called by the library to perform any actions necessary to initialize the haptics actuator. This consists of:
• Configure the chosen Timer_A's output frequency
• Set a 50% duty cycle (which equates to no haptic motion)
• Prepare the PWM output pin, and initialize its output to low

The TCH5E has two Timer_A instances, and one of these must be chosen to drive the actuator's PWM.
Any output pin for that Timer_A instance can be chosen, giving flexibility to arrange timers and pins within
the application, as needed.

See Section 2.3 for a description of how to choose the PWM frequency.

The developer can choose to activate the timer in this function and only enable the output in
enableActCB(), or to not enable the timer in this function, and enable both the timer and output in
enableActCB(). Either way is acceptable, with no particular benefit either way.

For information about configuring Timer_A as a PWM, see the MSP430x2xx Family User's Guide
(SLAU144), the examples accompanying this library, and the MSP430TCH5E code examples.

Parameters

passed in/out None
Returns None

Example

void initActuator(void)
{

P3DIR |= (MOTOR_EN_PIN | MOTOR_PWM_PIN); // Set PWM/enable pins as outputs
P3OUT &= ~(MOTOR_EN_PIN | MOTOR_PWM_PIN); // Drive out low (driver EN is active-high)
P3SEL |= MOTOR_PWM_PIN; // Select function 'timer output'
TA1CCR0 = 255; // PWM period. (Be aware of changes to SMCLK!)
TA1CCR1 = 127; // CCR1. Sets the PWM duty cycle
TA1CTL = TASSEL_2 + MC_1; // Use SMCLK as input clock; UP mode
TA1CCTL1 &= ~OUTMOD_7; // Fixes the output to low

}

22 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU144
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Haptics Library API Calls

5.2.2 enableActCB()
Description
This is called by the library when haptics effects are to be driven. Its job is to enable the driver device, and
begin driving the PWM signal out of the TCH5E.

Parameters

passed in/out None
Returns None

Example

void enableActuator(void)
{

P3OUT |= MOTOR_EN_PIN; // Set the driver enable to high, enabling the actuator driver
TA1CCTL1 |= OUTMOD_7; // Sets the output to reset/set mode, activating the timer output

}

5.2.3 disableActCB()
Description
This is called by the library when haptics effects are completed. Its job is to de-activate the PWM signal
and the driver device.

Parameters

passed in/out None
Returns None

Example

void disableActuator(void)
{

P3OUT &= ~MOTOR_EN_PIN; // Set the driver enable to low, disabling the actuator driver
TA1CCTL1 &= ~OUTMOD_7; // Fixes the output to low, de-activating the timer output

}

23SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Haptics Library API Calls www.ti.com

5.2.4 setActDriveLevelCB()
Description
The library calls this every 5 ms throughout the playing of an effect (within HAPTIC_update()) to change
the duty cycle of the PWM driven by the chosen Timer_A instance and output pin.

The value dutyCycle is a number from 0 to 255, where 0 means 0% duty cycle and 255 means 100%. The
value should be converted into a value relative to the CCR0 value that set the PWM period in
initActCB(), such that the result divided by the CCR0 value is the same as dutyCycle/255. This
result should then be assigned to the Timer_A CCRx register corresponding with the PWM output pin.

Parameters

uint8_t passed in A number from 0 to 255, where 0 = 0% duty cycle and 255 = 100%dutyCycle

passed out None
Returns None

Example

void setActuatorDriveLevel(uint8_t dutyCycle)
{

TA1CCR1 = dutyCycle;
}

5.2.5 sampleAdcCB()
Description
This function is called by the library early within a call to HAPTIC_audioGetConversion(). Because
the latter function is called every 250 µs, this callback is also called on that same period. Note that this
produces an audio sampling rate of 4 kHz.

The callback should return a sampling of the input audio signal, which typically comes from the on-chip
ADC10 module.

The value must be 8 bit and in the range from 0 to 255. Because ADC10 outputs 10-bit values, this
generally requires throwing away the two least significant bits.

Parameters

passed in/out None

Returned An 8-bit audio valueuint8_t

Example

uint8_t sampleADC(void)
{

ADC10CTL0 |= (ENC | ADC10SC); // Sampling and conversion start
while (ADC10CTL1 & ADC10BUSY); // Wait for the conversion to finish
return ADC10MEM >> 2; // ADC10 outputs 10-bit, but the library requires 8-bit

}

24 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Haptics Library API Calls

5.3 Configuration Calls
These are calls that configure the haptics library for operation, necessary for both non-audio and audio
haptics.

Generally speaking, calls specific to audio haptics have the word "audio" as the first word after the
"HAPTIC_" prefix.

Table 11. Haptics Library Callbacks
Function Description

Registers the bank for potential use by the libraryHAPTIC_addBank()

Initializes the library, selects a bank, and assigns the callback functions to be usedHAPTIC_init()

Initializes the audio haptics function, and assigns the audio haptics callback functionHAPTIC_audioInit()

Configures the audio haptics input signal parametersHAPTIC_audioConfig()

5.3.1 HAPTIC_addBank()
Description
Registers an effect bank for use by the library. The primary effect of doing so is that this particular bank
becomes linked into the application's object code. Each bank consumes between 1.5K and 2K. The
application should only add banks needed by the attached actuators.
Only banks that have been added can be referenced in HAPTIC_init(). Because most applications only
have one actuator, it is usually the case that only one bank needs to be added.

Parameters

One of these predefined DSE_Table options, corresponding with the available
effect banks:
MOTOR_A

DSE_Table MOTOR_Bpassed in MOTOR_CactuatorTable
MOTOR_D
MOTOR_E
MOTOR_F

passed out None

uint8_t returned HAPTIC_SUCCESSresult

Example

HAPTIC_addBank(MOTOR_E);

25SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Haptics Library API Calls www.ti.com

5.3.2 HAPTIC_init()
Description
Initializes the effect sequence engine, and prepares the effect bank. This function needs to be called after
adding the banks.

The library only runs on an MSP430TCH5E device. Although all the library functions will fail, or operate
unreliably, if they are executed on a device other than the MSP430TCH5E, this particular function is
unique in that it will return HAPTIC_UNSUPPORTED_DEV if executed in this way.

Parameters

The index of the chosen bank. Must be one that was previous added withEFFECT_BANK passed in HAPTIC_addBank().bankIndex

void* passed in A pointer to the callback function for enabling the actuatorenableActCB

void* passed in A pointer to the callback function for disabling the actuatordisableActCB

void* passed in A pointer to the callback function for initializing the actuatorinitActCB

void* passed in A pointer to the callback function for setting the actuator's PWM duty cyclesetActDriveLevelCB

passed out None

uint8_t HAPTIC_SUCCESSreturned HAPTIC_UNSUPPORTED_DEVresult

Example

HAPTIC_init(bankIndex,
enableActCB,
disableActCB,
initActCB,
setActDriveLevelCB);

5.3.3 HAPTIC_audioInit()
Description
Initializes the audio haptics engine. This must be called first, before a later call to
HAPTIC_audioUpdate(). If the audio haptics engine is to be used, this function must follow any call to
HAPTIC_init().

HAPTIC_addBank() and HAPTIC_init() must be called prior to HAPTIC_audioInit().

Parameters

passed in A pointer to the callback function for sampling the audio signalvoid*

passed out None

uint8_t returned HAPTIC_SUCCESSresult

Example

HAPTIC_audioInit(sampleAdcCB);

26 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Haptics Library API Calls

5.3.4 HAPTIC_audioConfig()
Description
Initializes the parameters by which the audio haptics engine converts the input audio signal into haptics
effects. These parameters are described in Section 4.8.
This function must be called after HAPTIC_audioInit(), for proper operation. The default values are
undefined.

Parameters

HAPTIC_audioConfigStr* A pointer to a HAPTIC_audioConfigStr that has been populated with thepassed insettings appropriate values.
passed out None

uint8_t result returned HAPTIC_SUCCESS

Example

HAPTIC_audioConfig(settings);

27SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Haptics Library API Calls www.ti.com

5.4 Standard Haptics API Calls
These are calls used for non-audio haptics applications.

See Section 4.5 through Section 4.7 for a description of the life cycles of a haptics effect and sequence,
which is what these functions govern or of which they return status.

Table 12. Haptics Library Callbacks
Function Description

Load an effect into the haptics engine's queue. It will be played, as HAPTIC_update() isHAPTIC_playEffect() subsequently and repeatedly called.
Load a sequence of effects into the haptics engine's queue. It will be played, asHAPTIC_playSequence() HAPTIC_update() is subsequently and repeatedly called.

Ends playback of any effects or sequences currently underwayHAPTIC_stopEngine()

Performs the next incremental step in playing any effects or sequences in the engine'sHAPTIC_update() queue. Must be called every 5 ms.

Indicates whether an effect or sequence is currently being played.HAPTIC_isEngIdle()

5.4.1 HAPTIC_playEffect()
Description
Loads a new effect into the haptics engine's queue, and returns. As HAPTIC_update() is called every 5
ms, the effect will be played.
If timeout is non-zero, then the effect will be stopped after the indicated period has passed.

If bOverride is TRUE, then any effects or sequences currently being played will be aborted, and the new
effect played. If FALSE, then if an effect or sequence is already underway, it will be allowed to complete,
and this function will return HAPTIC_ENG_NOT_IDLE.

Parameters

uint8_t passed in The effect to be played; between zero and (TOTAL_EFF_COUNT - 1)effIndex

uint16_t The effect will stop playing after timeout × 5 ms. If zero, then no timeout willpassed in be applied.timeout

Boolean indicating how the function should respond if an effect is already
uint8_t underway. TRUE means it stops the previous effect or sequence and thenpassed in plays the new one. FALSE means it will return with the codebOverride

HAPTIC_ENG_NOT_IDLE.
passed out None

HAPTIC_SUCCESSuint8_t returned HAPTIC_ENG_NOT_IDLEresult HAPTIC_QUEUE_FULL

Example

HAPTIC_playEffect(1, 0, 0, FALSE);

28 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Haptics Library API Calls

5.4.2 HAPTIC_playSequence()
Description
Loads a new sequence into the haptics engine's queue, and returns. As HAPTIC_update() is called
every 5 ms, the effect will be played.
The sequence will be repeated repeatCount times. If repeatCount is zero, it will not be repeated;
meaning it will only be played once.
If bOverride is TRUE, then any effects or sequences currently being played will be aborted, and the new
effect played. If FALSE, then if an effect or sequence is already underway, it will be allowed to complete,
and this function will return HAPTIC_ENG_NOT_IDLE.

Parameters

HAPTIC_sequence* passed in A pointer to a properly populated HAPTIC_sequence structure.seq

Boolean indicating how the function should respond if an effect is already
uint8_t underway. TRUE means it stops the previous effect or sequence and then playspassed in the new one. FALSE means it will return with the codebOverride

HAPTIC_ENG_NOT_IDLE.
passed out None

HAPTIC_SUCCESSuint8_t returned HAPTIC_ENG_NOT_IDLEresult HAPTIC_QUEUE_FULL

Example

HAPTIC_sequence seq;
seq.pairCount = 3;
seq.repeatCount = 2;
seq.effPairs[0].effIndex = 4;
seq.effPairs[0].timeGap = 2;
seq.effPairs[1].effIndex = 5;
seq.effPairs[1].timeGap = 2;
seq.effPairs[2].effIndex = 6;
seq.effPairs[2].timeGap = 2;
HAPTIC_playSequence(&seq, TRUE);

5.4.3 HAPTIC_stopEngine()
Description
Stops any sequence currently playing, and clears it from the haptics engine's effect queue.

This function does not apply to the audio haptic engine.

Parameters

passed in None
passed out None

uint8_t returned HAPTIC_SUCCESSresult

Example

HAPTIC_stopEngine();

29SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Haptics Library API Calls www.ti.com

5.4.4 HAPTIC_update()
Description
Causes the library to make the next adjustment in actuator PWM value according to the haptics effect or
sequence being played. It does this using the user-defined callback functions. Must be called every 5 ms.

Parameters

passed in None
passed out None

uint8_t returned HAPTIC_SUCCESSresult

Example

HAPTIC_update();

5.4.5 HAPTIC_isEngineIdle()
Description
Returns FALSE if an effect or sequence is currently being played by the haptics engine; returns TRUE if
the engine is idle.

Parameters

passed in None
passed out None

TRUE: engine is idle
returned FALSE: engine is not idle, and instead is in the process of playing a haptics effectboolean

or sequence

Example

If(!HAPTIC_isEngineIdle())
{

HAPTIC_playSequence(&seq, FALSE);
}

30 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Haptics Library API Calls

5.5 Audio Haptics API Calls
These calls are specific to the audio haptics feature.

Table 13. Haptics Library Callbacks
Function Description

Prompts the library to get the next sample of audio data and analyze itHAPTIC_audioGetConversion

Prompts the library to update the PWM value, according to the result of processing theHAPTIC_audioUpdate last several audio samples
Indicates whether the incoming audio signal's amplitude is above or below theHAPTIC_audioNoSignal wakeupThresh value submitted by HAPTIC_audioConfig().

Puts the actuator into an idle position, and prepares the library for a period of
HAPTIC_audioShutdown HAPTIC_audioGetConversion() and HAPTIC_audioUpdate() not being

called on their usual periods.

5.5.1 HAPTIC_audioGetConversion()
Description
Prompts the library to get a sample of the incoming audio signal and analyze it. It samples the audio using
the sampleAdcCB() callback. The application should call this function every 250 µs.

Parameters

passed in None
passed out None

uint8_t returned HAPTIC_SUCCESSresult

Example

HAPTIC_audioGetConversion();

5.5.2 HAPTIC_audioUpdate()
Description
Prompts the library to update the PWM value applied to the actuator, based on recent audio samples
obtained with HAPTIC_audioGetConversion(). This function should be called every 1 ms, following
HAPTIC_audioGetConversion().

Parameters

passed in None
passed out None

uint8_t returned HAPTIC_SUCCESSresult

Example

AUDIOHAPTIC_update();

31SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Haptics Library API Calls www.ti.com

5.5.3 HAPTIC_audioIsNoSignal()
Description
Returns whether the library has identified a recent audio signal above the wakeupThresh value that was
configured using HAPTIC_audioConfig().

The function counts the number of times out of the last 16 calls to HAPTIC_audioGetConversion()
that the audio signal's peak amplitude remains under wakeupThresh. If the count reaches 16,
HAPTIC_audioIsNoSignal() begins to return TRUE. As the samples begin to be above
wakeupThresh, the count begins to decrement.

As such, it takes 16 successive low-amplitude samples to be counted as a lack of audio. But if the
amplitude hovers near wakeupThresh, the count will remain high, and the response of this function may
fluctuate.

This function can be used as an indication of whether the period of calling
HAPTIC_audioGetConversion() can be slowed, as well as the calling of HAPTIC_audioUpdate().

Parameters

passed in None
passed out None

boolean TRUE: No audio presentreturned FALSE: Audio presentresult

Example

uint8_t nowActive = !HAPTIC_audioNoSignal();

// If transition from audio to no audio
if(wasActive && !nowActive)
{

HAPTIC_audioShutdown();
TA0CCR0 = TIMERA_DURING_NOAUDIO_SIGNAL;

}

// If transition from no audio to active audio
if(!wasActive && nowActive)
{

TA0CCR0 = TIMERA_DURING_AUDIO_SIGNAL;
}

if(nowActive)
{

HAPTIC_audioUpdate();
}

wasActive = nowActive;

32 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Haptics Library API Calls

5.5.4 HAPTIC_audioShutdown()
Description
Stops the continuous driving of the actuator during audio haptics, and prepares the library for a period of
slowed activity.

Parameters

passed in None
passed out None

uint8_t returned HAPTIC_SUCCESSresult

Example

if(HAPTIC_audioNoSignal())
{

HAPTIC_audioShutdown();
slowTheTimer();

}

33SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

START

Condition

WRITE bit + 0x10

slave addr

cmd byte readback index dummy byte

STOP

Condition

I2C Serial Interface Commands www.ti.com

6 I2C Serial Interface Commands
The example HapticsLibExample_SerialSlave, located within the SDK zip file, shows use of the
MSP430TCH5E and library as an I2C serial slave device. The serial commands used in that interface are
described in this section.

The example actually contains two pieces of code: one for the MSP430TCH5E slave, and one for an I2C
master interfacing to it. In the example, an MSP430G2553 is used as the example slave; as a result, it can
be executed on a HapTouch BoosterPack mounted into a G2 LaunchPad. See the application report
Haptics and Capacitive Touch Using the MSP430TCH5E: the HapTouch BoosterPack (SLAA616).

6.1 I2C Command Transaction Format
All the I2C transactions in this protocol consist of the host MCU writing a command to the TCH5E, perhaps
with some parameters. Then, after a brief delay, the response is read back from the TCH5E.

In I2C, each slave has an address, and only responds to reads or writes to that address. The master must
use this address to get a response from the slave. This value is defined in both the master and slave
examples:

#define I2C_SLAVE_ADDR_OF_TCH5E 0x10

In all transactions, the first byte written in the transaction toward the TCH5E is the command byte. Each
command byte corresponds with a command detailed in Section 6.2.

Most commands are then followed by parameter bytes. Once sent, the write portion of the transaction is
terminated with a STOP condition.

Table 14. Command Write (Host → TCH5E)

Byte Offset Field Direction Description
Host → TCH5E I2C START condition
Host → TCH5E Slave address + W

0 Command byte Host → TCH5E
1 Parameter #0 Host → TCH5E
2 Parameter #1 Host → TCH5E
⋮ ⋮ ⋮

Host → TCH5E I2C STOP condition

Figure 14. Host MCU Sending I2C Command to MSP430TCH5E Slave

The command in Figure 14, 0x30, is a CMD_READBACK. CMD_READBACK is always followed by a
readback index; in this case, 0x01, which is RB_PING. The dummy byte is not part of the protocol, but
rather resolves a problem that can occur with the USCI module when multiple system interrupts are
present that cause period timing delays, which can cause the I2C STOP ISR to be handled prior to the last
byte being received.

34 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/product/MSP430G2553
http://ti.com/tool/MSP-EXP430G2
http://www.ti.com/lit/pdf/SLAA616
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

START

Condition

0x10 slave addr +

READ bit
resp byte 0 resp byte 1

STOP

Condition

resp byte n-1 resp byte n dummy byte dummy byte

www.ti.com I2C Serial Interface Commands

After sending the command, the host MCU reads the response. In I2C reads, the host chooses how many
bytes to read within the boundaries of a START and STOP condition. In this protocol, the host MCU
knows how many bytes to expect for each command. Values are provided in the code, in the form of
CMD_LEN_xxxx, where xxxx reflects the command that was called.

Most commands return a single byte in their response, a command response byte. The exception is
CMD_READBACK, which may or may not return a command response, and always returns other data as
well, depending on what the readback index was.

Table 15. Response Read (Except for
CMD_READBACK)

Byte Offset Field Direction Description
Host → TCH5E I2C START condition
Host → TCH5E Slave address + R

0 Response code Host ← TCH5E
Host → TCH5E I2C STOP condition

Table 16. Response Read (CMD_READBACK)

Byte Offset Field Direction Description
Host → TCH5E I2C START condition
Host → TCH5E Slave address + R

0 Parameter #0 Host ← TCH5E
1 Parameter #1 Host ← TCH5E
⋮ ⋮ ⋮

Host → TCH5E I2C STOP condition

Figure 15 shows the response to the command that was sent in Figure 14.

Figure 15. Host MCU Reading Response From the MSP430TCH5E Slave

It will take the MSP430TCH5E software some time to complete the command. Until it does, the reads will
return the value CMDRESP_WAIT_FOR_RESP.

35SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

I2C Serial Interface Commands www.ti.com

6.2 Command Detail
The serial commands used in the example are listed in Table 17, as well as the haptics library function
calls that result from the serial commands.

Table 17. Haptics Library Callbacks

Serial Command Description
Non-Audio

CMD_PLAY_EFFECT Calls HAPTIC_playEffect()

CMD_PLAY_SEQ Calls HAPTIC_playSequence()

CMD_STOP_PLAYBACK Calls HAPTIC_stopEngine()

CMD_READBACK Reports status information about the haptics functionality
Causes the TCH5E to perform a PUC (power-up clear) resetCMD_RESET on itself

Audio-Related
CMD_AUDIOHAPTICS_ENABLE Calls HAPTIC_audioEnable()

CMD_AUDIOHAPTICS_CONFIG Calls HAPTIC_audioConfig()

The command CMD_READBACK can be used to pull any type of data from the TCH5E. In the current
implementation, is only has one valid index. However, more could easily be added.

Unlike other commands, the readback response does not need to have a response code as its first byte.

Table 18. Readback Indices

Serial Command Description
Returns the string "MSP430TCH5E". Can be used to determine if the TCH5ERB_PING device is alive and receiving commands.

For any command other than CMD_READBACK, the only byte returned during the read phase is a
response code. The commands all share a common set of codes; they are detailed below.

Most of these responses are generated by code that validates the command format, and if anything is
incorrect, the command is rejected before attempted. The exceptions are CMDRESP_QUEUE_FULL and
CMDRESP_ENG_NOT_IDLE, which generally means the slave attempted to act on the command, often
by calling a haptics library API. The response code in these cases often reflects what the API call
returned.

Table 19. Serial Command Response Codes
Status Byte Description

CMDRESP_SUCCESS The command succeeded.
CMDRESP_INVALID_CMD The command value was invalid.
CMDRESP_BAD_PARAM_LEN There were too many parameter bytes.
CMDRESP_QUEUE_FULL The effects queue was full, and as a result no effect (or sequence) was loaded.
CMDRESP_TIME_OOR The timeout value passed in with the command was not between 0 and 2000.
CMDRESP_EFF_INDEX_OOR The effect index was not between 0 and TOTAL_EFF_COUNT - 1.
CMDRESP_INVAL_RB_INDEX The readback index was invalid.
CMDRESP_REPEAT_OOR The repeat count was out of range.
CMDRESP_INVALID_INPUT The input was invalid, in some way not specified by the codes above.

An attempt was made to play an effect or sequence, but the haptics engine was
CMDRESP_ENG_NOT_IDLE not idle and the 'override' parameter had been set to false; therefore the attempt

aborted.
Until the MSP430TCH5E has finished handling the command, this is the value theCMDRESP_WAIT_FOR_RESP host MCU receives on the I2C interface.
During audio haptics, the software is configured to respond with this responseCMDRESP_CMD_INVALID_DURING_AUDIO code for any command other than one that causes it to exit audio haptics.

36 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com I2C Serial Interface Commands

6.2.1 CMD_PLAY_EFFECT
Description
This command calls the function HAPTIC_playEffect(). See the reference for that command, for more
information about what this command does.

Parameters

Byte Offset Field Description
0 Command The command byte: 0x54

The index of the effect to be played. Must be between zero and TOTAL_EFF_COUNT -1 effect 1.
2 timeout (low byte) If non-zero, imposes a timeout that stops the effect after timeout × 5 ms. The total

value must be ≤2000d. If zero, no timeout is imposed.3 timeout (high byte)
zero: if the effect engine is currently playing an effect or sequence when this command
is made, the function will return CMDRESP_ENG_NOT_IDLE and abort.

5 bOverride non-zero: if the effect engine is currently playing an effect or sequence when this
command is made, the previous effect or sequence will be aborted, and the effect sent
here will be played.

Return

Byte Offset Field Description
CMDRESP_SUCCESS
CMDRESP_QUEUE_FULL
CMDRESP_EFF_INDEX_OOR0 Response codes CMDRESP_TIME_OOR
CMDRESP_BAD_PARAM_LEN
CMDRESP_ENG_NOT_IDLE

37SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

I2C Serial Interface Commands www.ti.com

6.2.2 CMD_PLAY_SEQ
Description
This command calls the function HAPTIC_playSequence(). See the reference for that command, for
more information about what this command does.

Note that the input parameter list is roughly correlated with the standard definition for an effect sequence.
The only difference is that there is no pairCount value; instead, the list of effect pairs is terminated with
a 0xFF signature. The effect sequence is preceded by the command byte, and followed by the repeat
count. Everything in between is as specified in Section 4.7.

Parameters

Byte Offset Field Description
0 Command ID 0x50
1 Effect index #0 Must be between zero and TOTAL_EFF_COUNT - 1.

The number of 5-ms ticks the haptics engine should wait before generating the next2 Gap #0 effect. Must be 0-254.
3 Effect index #1 Must be between zero and TOTAL_EFF_COUNT - 1.

The number of 5-ms ticks the haptics engine should wait before generating the next4 Gap #1 effect. Must be 0-254.
⋮ ⋮
⋮ Last effect index

n-3 Last effect gap
n-2 End signature 0xFF

The number of times the sequence will be repeated. If zero, then it will not be repeated,n-1 Repeat Count meaning that it plays only once. Must be 0-254.
zero: if the effect engine is currently playing an effect or sequence when this command
is made, the function will return CMDRESP_ENG_NOT_IDLE and abort.

n Override non-zero: if the effect engine is currently playing an effect or sequence when this
command is made, the previous effect or sequence will be aborted, and the sequence
sent here will be played.

Return

Byte Offset Field Description
CMDRESP_SUCCESS
CMDRESP_QUEUE_FULL
CMDRESP_EFF_INDEX_OOR
CMDRESP_BAD_PARAM_LEN0 Response codes CMDRESP_INVALID_INPUT
CMDRESP_TIME_OOR
CMDRESP_REPEAT_OUTOFRANGE
CMDRESP_ENG_NOT_IDLE

38 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com I2C Serial Interface Commands

6.2.3 CMD_STOP_PLAYBACK
Description
This command calls the function HAPTIC_stopEngine(). See the reference for that command, for more
information about what this command does.

Parameters

Byte Offset Field Description
0 Command ID 0x52

Return

Byte Offset Field Description
0 Response codes CMDRESP_SUCCESS

6.2.4 CMD_READBACK
Description
This command returns various kinds of information from the haptics library. An index determine which
readback table is returned.

The one predefined readback index, RB_PING, can be used as a means of verifying that communication
with the MSP430TCH5E is working properly.

Parameters

Byte Offset Field Description
0 Command ID 0x30

Determines which information is returned by the readback command, according to the1 Readback_index following table.

Readback Indices

Readback Table Index Readback Table
0 RB_PING

Readback Table #0: Ping

Byte Offset Field Description
0 Data "M"
1 Data "S"
2 Data "P"
3 Data "4"
4 Data "3"
5 Data "0"
6 Data "T"
7 Data "C"
8 Data "H"
9 Data "5"
10 Data "E"

39SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

I2C Serial Interface Commands www.ti.com

6.2.5 CMD_AUDIOHAPTICS_ENABLE
Description
This command calls the function HAPTIC_audioEnable() or HAPTIC_audioDisable(), depending
on the parameter. See the reference for that command for more information about what this command
does.

Parameters

Byte Offset Field Description
0 Command ID 0x40

Non-zero: Enable1 Enable_Disable Zero: Disable

Return

Byte Offset Field Description
0 Response codes CMDRESP_SUCCESS

6.2.6 CMD_AUDIOHAPTICS_CONFIG
Description
This command calls the function HAPTIC_audioConfig(). See the reference for that command, for
more information about what this command does.
Note that the data format roughly correlates with the definition of a HAPTIC_audioConfigStr structure.
See Section 4.8 for information on how to configure these parameters.

Parameters

Byte Offset Field Description
0 Command ID 0x41
1 midpoint Must be between 0 and 255

2 wakeupThresh Must be between 0 and (255 - midpoint)

3 inputMin Must be between 0 and (255 - midpoint)

4 inputMax Must be between 0 and (255 - midpoint)

5 strengthAtFloor Must be between 0 and 255
6 strengthMax Must be between 0 and 255

Return

Byte Offset Field Description
0 Response codes CMDRESP_SUCCESS

40 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Suggested Reading and Resources

7 Suggested Reading and Resources

7.1 LaunchPad Websites
More information about the G2 LaunchPad, supported BoosterPacks, and available resources can be
found at:
• The G2 LaunchPad's tool page: resources specific to the G2 LaunchPad
• TI's LaunchPad portal: information about all LaunchPads from TI, for all MCUs
• The LaunchPad wiki: design resources and example projects from the community

7.2 Information on the MSP430TCH5E
At some point, you will probably want detailed information about the MSP430TCH5E device. For every
MSP430 device, the documentation is organized as shown in Table 20.

Table 20. How MSP430 Device Documentation is Organized
Document For MSP430TCH5E Description

The user's guide for the MSP430x2xx Family User's Architectural information about the device, including clocks, timers, CPU,
device's "family" Guide (SLAU144) all peripherals, and other features

MSP430TCH5E data sheetThe device's data sheet Device-specific information and all parametric information for this device(SLAS895)

7.3 Information on the DRV2603 and DRV8601
You will need information on these driver devices, which are part of the MSP430TCH5E solution. Data
sheets can be found in the product folders: DRV2603 and DRV8601. At the time of writing, only a very
limited data sheet is obtained when clicking on the data sheet link. The full data sheet is available by
clicking on the "Request the data sheet" link below the data sheet link (see Figure 16).

Figure 16. DRV2603 Product Page: Requesting the Full Data Sheet

7.4 Download Code Composer Studio
You will need one of these development environments.

As of this writing, the library supports development with only Code Composer Studio. Development with
IAR Embedded Workbench and MSP430GCC has not been tested.

41SLAU543–December 2013 MSP430TCH5E Haptics Library
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://ti.com/tool/MSP-EXP430G2
http://www.ti.com/launchpad
http://processors.wiki.ti.com/index.php/MSP430_LaunchPad
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAS895
http://www.ti.com/product/drv2603
http://www.ti.com/product/drv8601
http://www.ti.com/tool/ccstudio
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Suggested Reading and Resources www.ti.com

7.5 Actuator Information
Working with haptics requires the combination of several disciplines at once: electrical hardware, software,
and a unique application of mechanical principles. This library, document, and solution have tried to
address the first two, but a complete description of the mechanical aspects is outside the scope of this
solution.

The following resources are suggested as a means of learning haptics actuators:
• www.precisionmicrodrives.com: Precision Microdrives is a vendor of haptics actuators. They provide a

wealth of information for someone starting out with haptics, addressing in particular the hardware and
mechanical aspects. Although not included in Immersion's certified list, their actuators can be adapted
using the procedure in Section 4.2.3.

• Other actuator vendors may have good resources as well.
• www.immersion.com: Immersion is the industry leader in haptics, and originated the TouchSense

TS2200C library on which the MSP430TCH5E Haptics Library is based. They maintain information
there, including links to vendors of certified actuators.

• The documents on the product pages for the DRV2603 and DRV8601 can be useful in learning about
actuators. (This includes the data sheets themselves.)

7.6 MSP430Ware and the TI Resource Explorer
MSP430Ware is a complete collection of libraries and tools. By default, MSP430Ware is included in a
CCS installation. CCS and MSP430GCC users must download it separately from
www.ti.com/tool/msp430ware.

MSP430Ware includes the TI Resource Explorer, for easily browsing the tools.

7.7 MSP430TCH5E Code Examples
This is a set of very simple code examples that demonstrate how to use the MSP430TCH5E's entire set of
peripherals (for example, ADC10 and Timer_A). Every MSP430 derivative has a set of these code
examples. When writing code that uses a peripheral, they can often serve as a starting point. These
examples are available in the MSP430TCH5E product folder.

7.8 MSP430 Application Notes
There are many application notes at www.ti.com/msp430, with practical design examples and topics.

7.9 TI E2E Community
Search the forums at e2e.ti.com. If you cannot find your answer, post your question to the community.

7.10 Community at Large
Many online communities focus on the MSP430 – for example, www.43oh.com. You can find additional
tools, resources, and support from these communities.

42 MSP430TCH5E Haptics Library SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.precisionmicrodrives.com
http://www.immersion.com
http://www.ti.com/product/drv2603
http://www.ti.com/product/drv8601
http://www.ti.com/tool/msp430ware
http://www.ti.com/product/MSP430TCH5E
http://www.ti.com/msp430
http://e2e.ti.com
http://www.43oh.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com

Appendix A List of Haptics Effects

Table 21 shows all of the individual haptics effects that can be driven from the MSP430TCH5E Haptics
Library. The far right columns give suggested scenarios in which the effect might be used in an end
application.

To help narrow down your options, see the HapTouch GUI, provided within the same HapTouch SDK zip
file that contains this library. The GUI contains filters that help you quickly narrow down to the effect you
want.

Table 21. Haptics Effects
Effect Index Description Button Alert Gesture(in hex)

0 Strong Click – 100% X
1 Strong Click – 60% X
2 Strong Click – 30% X
3 Sharp Click – 100% X
4 Sharp Click – 60% X
5 Sharp Click – 30% X
6 Soft Bump – 100% X
7 Soft Bump – 60% X
8 Soft Bump – 30% X
9 Double Click – 100% X
A Double Click – 60% X
B Triple Click – 100% X X X
C Soft Fuzz – 60% X X
D Strong Buzz – 100% X X
E Empty NA NA NA
F Empty NA NA NA
10 Strong Click 1 – 100% X
11 Strong Click 2 – 80% X
12 Strong Click 3 – 60% X
13 Sharp Click 4 – 30% X
14 Medium Click 1 – 100% X
15 Medium Click 2 – 80% X
16 Medium Click 3 – 60% X
17 Sharp Tick 1 – 100% X
18 Sharp Tick 2 – 80% X
19 Sharp Tick 3 – 60% X
1A Short Double Click Strong 1 – 100% X
1B Short Double Click Strong 2 – 80% X
1C Short Double Click Strong 3 – 60% X
1D Short Double Click Strong 4 – 30% X
1E Short Double Click Medium 1 – 100% X
1F Short Double Click Medium 2 – 80% X
20 Short Double Click Medium 3 – 60% X
21 Short Double Sharp Tick 1 – 100% X
22 Short Double Sharp Tick 2 – 80% X
23 Short Double Sharp Tick 3 – 60% X
24 Long Double Sharp Click Strong 1 – 100% X
25 Long Double Sharp Click Strong 2 – 60% X

43SLAU543–December 2013 List of Haptics Effects
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

Appendix A www.ti.com

Table 21. Haptics Effects (continued)
Effect Index Description Button Alert Gesture(in hex)

26 Long Double Sharp Click Strong 3 – 30% X
27 Long Double Sharp Click Strong 4 – 100% X
28 Long Double Sharp Click Medium 1 – 100% X
29 Long Double Sharp Click Medium 2 – 80% X
2A Long Double Sharp Click Medium 3 – 60% X
2B Long Double Sharp Tick 1 – 100% X
2C Long Double Sharp Tick 2 – 80% X
2D Long Double Sharp Tick 3 – 60% X
2E Buzz 1 – 100% X X
2F Buzz 2 – 80% X X
30 Buzz 3 – 60% X X
31 Buzz 4 – 40% X X
32 Buzz 5 – 20% X X
33 Pulsing Strong 1 – 100% X X
34 Pulsing Strong 2– 60% X X
35 Pulsing Medium 1 – 100% X X
36 Pulsing Medium 2 – 60% X X
37 Pulsing Sharp 1 – 100% X X
38 Pulsing Sharp 2– 60% X X
39 Transition Click 1 – 100% X X
3A Transition Click 2 – 80% X X
3B Transition Click 3 – 60% X X
3C Transition Click 4 – 40% X X
3D Transition Click 5 – 20% X X
3E Transition Click 6 – 10% X X
3F Transition Hum 1– 100% X X
40 Transition Hum 2 – 80% X X
41 Transition Hum 3 – 60% X X
42 Transition Hum 4 – 40% X X
43 Transition Hum 5 – 20% X X
44 Transition Hum 6 – 10% X X
45 Transition Ramp Down Long Smooth 1 – 100 to 0% X X
46 Transition Ramp Down Long Smooth 2 – 100 to 0% X X
47 Transition Ramp Down Medium Smooth 1 – 100 to 0% X X
48 Transition Ramp Down Medium Smooth 2 – 100 to 0% X X
49 Transition Ramp Down Short Smooth 1 – 100 to 0% X X
4A Transition Ramp Down Short Smooth 2 – 100 to 0% X X
4B Transition Ramp Down Long Sharp 1 – 100 to 0% X X
4C Transition Ramp Down Long Sharp 2 – 100 to 0% X X
4D Transition Ramp Down Medium Sharp 1 – 100 to 0% X X
4E Transition Ramp Down Medium Sharp 2 – 100 to 0% X X
4F Transition Ramp Down Short Sharp 1 – 100 to 0% X X
50 Transition Ramp Down Short Sharp 2 – 100 to 0% X X
51 Transition Ramp Up Long Smooth 1 – 0 to 100% X X
52 Transition Ramp Up Long Smooth 2 – 0 to 100% X X
53 Transition Ramp Up Medium Smooth 1 – 0 to 100% X X
54 Transition Ramp Up Medium Smooth 2 – 0 to 100% X X

44 List of Haptics Effects SLAU543–December 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

www.ti.com Appendix A

Table 21. Haptics Effects (continued)
Effect Index Description Button Alert Gesture(in hex)

55 Transition Ramp Up Short Smooth 1 – 0 to 100% X X
56 Transition Ramp Up Short Smooth 2 – 0 to 100% X X
57 Transition Ramp Up Long Sharp 1 – 0 to 100% X X
58 Transition Ramp Up Long Sharp 2 – 0 to 100% X X
59 Transition Ramp Up Medium Sharp 1 – 0 to 100% X X
5A Transition Ramp Up Medium Sharp 2 – 0 to 100% X X
5B Transition Ramp Up Short Sharp 1 – 0 to 100% X X
5C Transition Ramp Up Short Sharp 2 – 0 to 100% X X
5D Transition Ramp Down Long Smooth 1 – 50 to 0% X X
5E Transition Ramp Down Long Smooth 2 – 50 to 0% X X
5F Transition Ramp Down Medium Smooth 1 – 50 to 0% X X
60 Transition Ramp Down Medium Smooth 2 – 50 to 0% X X
61 Transition Ramp Down Short Smooth 1 – 50 to 0% X X
62 Transition Ramp Down Short Smooth 2 – 50 to 0% X X
63 Transition Ramp Down Long Sharp 1 – 50 to 0% X X
64 Transition Ramp Down Long Sharp 2 – 50 to 0% X X
65 Transition Ramp Down Medium Sharp 1 – 50 to 0% X X
66 Transition Ramp Down Medium Sharp 2 – 50 to 0% X X
67 Transition Ramp Down Short Sharp 1 – 50 to 0% X X
68 Transition Ramp Down Short Sharp 2 – 50 to 0% X X
69 Transition Ramp Up Long Smooth 1 – 0 to 50% X X
6A Transition Ramp Up Long Smooth 2 – 0 to 50% X X
6B Transition Ramp Up Medium Smooth 1 – 0 to 50% X X
6C Transition Ramp Up Medium Smooth 2 – 0 to 50% X X
6D Transition Ramp Up Short Smooth 1 – 0 to 50% X X
6E Transition Ramp Up Short Smooth 2 – 0 to 50% X X
6F Transition Ramp Up Long Sharp 1 – 0 to 50% X X
70 Transition Ramp Up Long Sharp 2 – 0 to 50% X X
71 Transition Ramp Up Medium Sharp 1 – 0 to 50% X X
72 Transition Ramp Up Medium Sharp 2 – 0 to 50% X X
73 Transition Ramp Up Short Sharp 1 – 0 to 50% X X
74 Transition Ramp Up Short Sharp 2 – 0 to 50% X X
75 Long buzz for programmatic stopping – 100%, 10 seconds max X X
76 Smooth Hum 1 (No kick or brake pulse) – 50% X X
77 Smooth Hum 2 (No kick or brake pulse) – 40% X X
78 Smooth Hum 3 (No kick or brake pulse) – 30% X X
79 Smooth Hum 4 (No kick or brake pulse) – 20% X X
7A Smooth Hum 5 (No kick or brake pulse) – 10% X X
7B Empty NA NA NA
7C Empty NA NA NA
7D Empty NA NA NA
7E Empty NA NA NA
7F Empty NA NA NA

45SLAU543–December 2013 List of Haptics Effects
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU543

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	MSP430TCH5E Haptics Library
	1 Introduction
	2 Haptics System Overview
	2.1 Actuator Interface
	2.2 Actuator Types
	2.3 PWM Frequency
	2.4 Relationships Between Duty Cycle and Vibration
	2.5 Control of the PWM Duty Cycle: What is a Haptic Effect?
	2.6 Effect Banks: Tuning Duty-Cycle Waveforms to Actuator Types
	2.7 Two Types of Haptics: Effects and Sequences
	2.8 MSP430TCH5E: Integrated-Function and Serial Slave Configurations

	3 Library Organization and Requirements
	3.1 Hardware Assumptions
	3.1.1 MSP430 Device Derivative Requirement
	3.1.2 Driver Device Requirement
	3.1.3 Actuator Requirements

	3.2 Software Contents
	3.3 Tool Requirements
	3.4 Memory Requirements
	3.5 Use of MCU Peripheral Resources
	3.6 Data Types
	3.7 Adding the Library into Your Project

	4 Design Considerations
	4.1 Interfacing to an Actuator
	4.2 Actuator Selection and Corresponding Effect Banks
	4.2.1 Effect Banks
	4.2.2 Using an Immersion-Certified Actuator
	4.2.3 Using a Non-Certified Actuator: Procedure for Determining the Appropriate Bank
	4.2.4 Representation of the Banks Within the Library

	4.3 Hardware Flexibility Through the Callback Functions
	4.4 Initializing the Library
	4.5 Calling the Update Functions
	4.6 Haptics Effects
	4.7 Haptics Sequences
	4.8 Audio Haptics Engine
	4.9 Serial Interface
	4.10 Power Management
	4.11 Clock and Timer Management

	5 Haptics Library API Calls
	5.1 Return Codes
	5.2 Callbacks
	5.2.1 initActCB()
	5.2.2 enableActCB()
	5.2.3 disableActCB()
	5.2.4 setActDriveLevelCB()
	5.2.5 sampleAdcCB()

	5.3 Configuration Calls
	5.3.1 HAPTIC_addBank()
	5.3.2 HAPTIC_init()
	5.3.3 HAPTIC_audioInit()
	5.3.4 HAPTIC_audioConfig()

	5.4 Standard Haptics API Calls
	5.4.1 HAPTIC_playEffect()
	5.4.2 HAPTIC_playSequence()
	5.4.3 HAPTIC_stopEngine()
	5.4.4 HAPTIC_update()
	5.4.5 HAPTIC_isEngineIdle()

	5.5 Audio Haptics API Calls
	5.5.1 HAPTIC_audioGetConversion()
	5.5.2 HAPTIC_audioUpdate()
	5.5.3 HAPTIC_audioIsNoSignal()
	5.5.4 HAPTIC_audioShutdown()

	6 I2C Serial Interface Commands
	6.1 I2C Command Transaction Format
	6.2 Command Detail
	6.2.1 CMD_PLAY_EFFECT
	6.2.2 CMD_PLAY_SEQ
	6.2.3 CMD_STOP_PLAYBACK
	6.2.4 CMD_READBACK
	6.2.5 CMD_AUDIOHAPTICS_ENABLE
	6.2.6 CMD_AUDIOHAPTICS_CONFIG

	7 Suggested Reading and Resources
	7.1 LaunchPad Websites
	7.2 Information on the MSP430TCH5E
	7.3 Information on the DRV2603 and DRV8601
	7.4 Download Code Composer Studio
	7.5 Actuator Information
	7.6 MSP430Ware and the TI Resource Explorer
	7.7 MSP430TCH5E Code Examples
	7.8 MSP430 Application Notes
	7.9 TI E2E Community
	7.10 Community at Large

	Appendix A List of Haptics Effects

