

TIDM-ENERGY-WATCHDOG Single-Phase Electricity Sub-Meter for Smart Buildings

1 Features

- Fully Functional Smart Plug Tool Allows Quick and Efficient Development
- Measurements Performed and Displayed
 - Incoming AC Voltage, Current, and Frequency
 - Active Power, Reactive Power, Apparent Power, and Power Factor
 - Energy Consumption in kWh
- Uses MSP430AFE253IPWR
- Interface to Communication Modules
 - RS232
 - ZigBee
 - Sub-1GHz 802.15.4 or Proprietary
 - Wireless M-Bus
- Simple Push Buttons for Adjusting LCD Display and Time Settings
- Schematics and Software Are Included

2 General Description

TI's Energy Watchdog is a tool that enables system designers to quickly develop their own smart plug or sub-meter designs. It is a fully functional smart plug that is accompanied by hardware, software, and reference schematics.

3 Main Components

The appliance whose power consumption is to be measured is plugged into the female receptacle on the Energy Watchdog. The electrical cord with the male plug connects to the wall outlet. The LCD displays time, date, and electricity parameters. There are four keys from the left to right labeled as 1, 2, 3, and 4. At power up, the time is displayed on the LCD, and the LCD backlight is off. The Energy Watchdog starts in Mode 0 (see Table 1 for details).

Figure 1. MSP430 Energy Watchdog Tool

1

Main Components

www.ti.com

The Energy Watchdog has three modes of operation: Mode 0, Mode1, and Mode 2. Table 1 shows the details of each mode.

Mode 0 - Default Mode After Power Up							
Key Pressed	1	2	3	4			
Action	Toggle between time and date display	Go to electricity parameters display	Go to adjust date and time menu	Toggle backlight on and off			
Mode After Key Press	0	2	1	0			
Mode 1 - Time and Date Adjust Mode							
Key Pressed	1	2	3	4			
Action	Adjust digits	Go to next digits	Go to next group (time→date) or cancel adjust	Time or date adjust confirmation			
Mode After Key Press	1	1	1	0			
Mode 2 - Electricity Parameters Display Mode							
Key Pressed	1	2	3	4			
Action	Switch among electricity parameters ⁽¹⁾	Display time or date	None	Toggle backlight on and off			
Mode After Key Press	2	0	2	0			

Table 1. Mode of Operation

⁽¹⁾ Electricity parameters are displayed in this order:

- 1. Voltage (V)
- 2. Current (A)
- 3. Frequency (Hz)
- 4. Active Power (W)
- 5. Reactive Power (Var)
- 6. Apparent Power (VA)
- 7. Power Factor (cos(p))
- 8. Energy Consumption (kWh)

CAUTION

Do not exceed maximum ratings as shown on the label that is on the bottom of the MSP430 Energy Watchdog Tool.

4 Using the Energy Watchdog as a Development Tool

4.1 Functions

- **Measurement:** The Energy Watchdog measures the values of voltage, current, frequency, active power, reactive power, apparent power, power factor, and energy consumption (in kWh). The Energy Watchdog can measure up to 9999 kWh, after which the data is cleared to zero.
- **LCD Display:** Displays the voltage, current, frequency, active power, reactive power, apparent power, power factor, and energy consumption (in kWh). It also displays the date and time.
- **Real-Time Clock (RTC):** The RTC function can be optionally populated by users. The battery (P/N: LSG14250) on LSG1 location of the PCB can be soldered to supply power to the RTC.
- **Functional Commands:** Users can read electrical parameters using functional commands through the RF1, RF2, and UART interfaces.

4.2 Electrical Parameters

- EMC:
 - Contacted ESD Test: 10 kV
 - EFT/B Test (EFT): 4 kV
- Accuracy class: Class1

NOTE: The Energy Watchdog is designed to achieve Class 1 accuracy. However, as the Energy Watchdog is not calibrated in production, Class 1 accuracy cannot be ensured out of the box.

- Incoming frequency: 50 Hz to 60 Hz
- Incoming voltage: 110 V to 240 V
- Incoming current: 10 A Maximum

CAUTION

Operation at 10 A for extended periods of time is not recommended.

• **Power Consumption**: ≤1 W

Table 2. Electrical Parameters

Parameter			Value	
Signal input	Wire conn	ection	Single phase direct connection	
	Voltage	Reference voltage	220 V or 110 V	
	voltage	Operation range	0.7 Un to 1.2 Un	
	Current	Basic current	5 A	
	Current	Maximum current	10 A	
	Frequency	,	40 Hz to 60 Hz	
Power			AC or DC 80 V to 270 V <1 VA	
Indicator LED Blinking Characteristics		5	Blink once for every 1/1600 kWh of energy consumed Pulse duration: 80 ms \pm 20%	
Communication			UART interface (physical layer is isolated) Communication rate: 2400 bps (RS232) Data check mode: N81	
Measurement class			Frequency: ± 0.1 Hz Active power: Class 1	
Display mode			LCD	
Environment			Operation temperature range: -10°C to 55°C Storage temperature range: -20°C to 75°C	

SLAU362A–July 2011–Revised January 2014 Submit Documentation Feedback

5 MSP430 Energy Watchdog Components

Figure 2. MSP430 Energy Watchdog Tool (Top View)

5.1 Main Components on Top Side of MSP430 Energy Watchdog

For a description of the main components of the Energy Watchdog, refer to Section 3.

5.2 AAA Battery Box

4

Put two (2) AAA batteries in the battery box on the bottom of the Energy Watchdog (refer to Figure 3) to supply power to externally connected RF modules. These batteries are required only if external RF modules are connected to the Energy Watchdog.

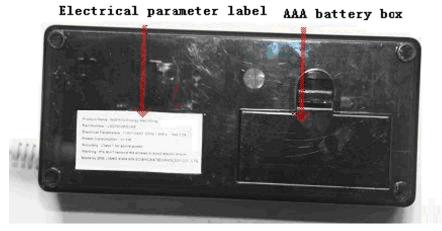


Figure 3. MSP430 Energy Watchdog Tool (Bottom View)

MSP430 Energy Watchdog Components

5.3 Interface Ports

Figure 4 shows the interface ports on the Energy Watchdog Tool.

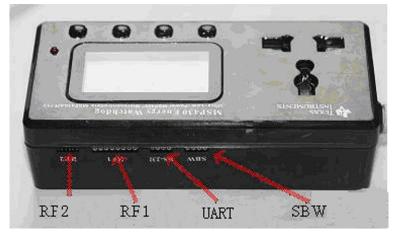


Figure 4. Interface Ports on the MSP430 Energy Watchdog Tool

• **SBW:** This interface can be used to connect tools to program and debug the MSP430AFE253 that is inside the Energy Watchdog.

CAUTION

The SBW interface is not isolated internally. External isolation must be added before connecting an emulation or debug tool to this interface. Failure to follow these instructions could damage the PC.

- **UART:** The UART interface can be used to access registers on the MSP430AFE253. This can be used to calibrate the Energy Watchdog or to communicate data to a remote location using RF.
- **RF1:** The RF1 interface can be connected to TI's RF modules with a 6-pin 1.27-mm pitch B-TO-B connector. RF modules are powered by the two AAA batteries inserted in the battery box.
- **RF2:** The RF2 interface can be connected to TI's RF modules with an 8-pin 2.0-mm pitch B-TO-B connector. RF modules are powered by the two AAA batteries inserted in the battery box.

NOTE: The UART communication between the MSP430 Energy Watchdog and the RF modules is at 2400 bps. All three interfaces (UART, RF1, and RF2) are isolated.

5

MSP430 Energy Watchdog Components

www.ti.com

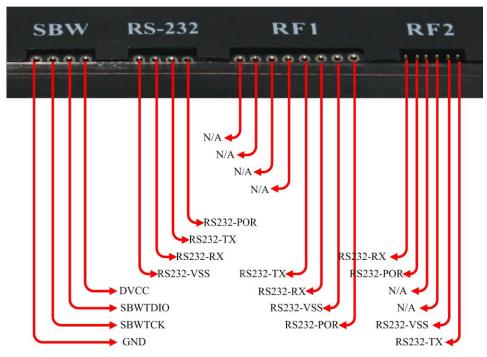


Figure 5 shows the pins used by the interface connections.

Figure 5. Detailed Pin Listing of the Energy Watchdog Interface Ports

6 UART Communication Commands

Table 3 shows the commands that can be used for the RF1, RF2, and UART interfaces.

Table 3. Communication Commands

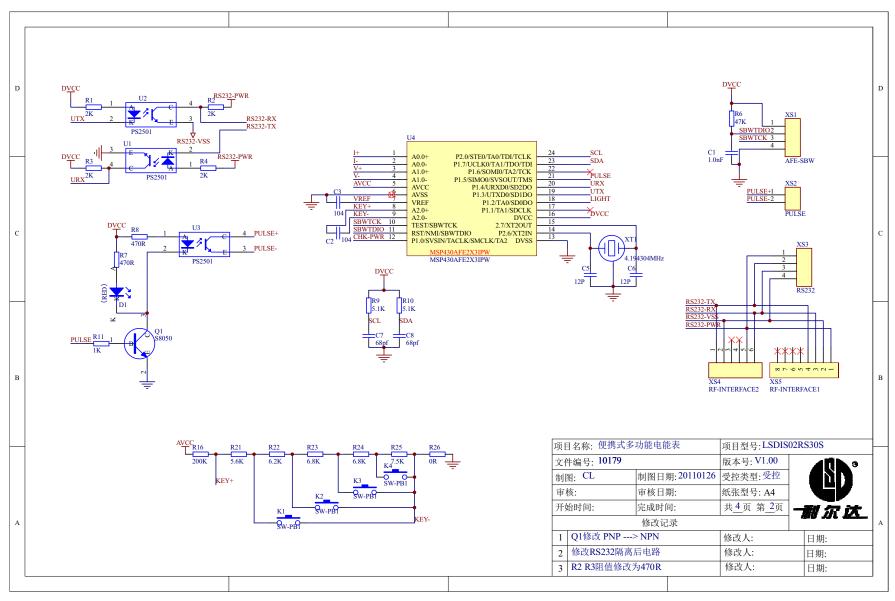

Read calibration registers				
HOST_CMD_GET_METER_I1RMS_OFFSET	0x40			
HOST_CMD_GET_METER_I1RMS_GAIN	0x42			
HOST_CMD_GET_METER_P1_GAIN	0x44			
HOST_CMD_GET_METER_P1_PHASE	0x46			
HOST_CMD_GET_METER_P1_OFFSET	0x48			
HOST_CMD_GET_METER_Q1_OFFSET	0x4A			
HOST_CMD_GET_METER_VRMS_GAIN	0x4C			
//V5				
HOST_CMD_GET_READINGS_VDC	0x4D			
HOST_CMD_GET_READINGS_I1DC	0x4E			
Read meter registers				
HOST_CMD_GET_READINGS_P1	0x60			
HOST_CMD_GET_READINGS_Q1	0x62			
HOST_CMD_GET_READINGS_S1	0x64			
HOST_CMD_GET_READINGS_VRMS	0x66			
HOST_CMD_GET_READINGS_FREG	0x67			
HOST_CMD_GET_READINGS_I1RMS	0x68			
HOST_CMD_GET_READINGS_PF1	0x6A			
HOST_CMD_GET_READINGS_ACTENERGY1	0x6C			
HOST_CMD_GET_READINGS_REACTENERGY1	0x6D			
//V5				
HOST_CMD_GET_READINGS_NEGTIVE_ACTENERGY1	0x6E			
HOST_CMD_GET_READINGS_NEGTIVE_REACTENERGY1	0x6F			
HOST_CMD_GET_READINGS_VWFS	0x70			
HOST_CMD_GET_READINGS_I1WFS	0x71			
Read configuration registers				
HOST_CMD_GET_METER_SYSCONF	0x74			
HOST_CMD_GET_METER_CSGCONF	0x75			
HOST_CMD_GET_METER_POWER_CONST	0x76			
HOST_CMD_GET_METER_START_CURRENT	0x77			
HOST_CMD_GET_READINGS_IE	0x78			
HOST_CMD_GET_READINGS_IFG	0x79			
HOST_CMD_GET_READINGS_STATUS	0x7A			
HOST_CMD_GET_READINGS_CHECKSUM1	0x7B			
HOST_CMD_GET_READINGS_WREN	0x7C			
HOST_CMD_GET_READINGS_METER_STATUS	0x7D			
HOST_CMD_GET_READINGS_RXBUF	0x7E			
HOST_CMD_GET_READINGS_TXBUF	0x7F			
Write calibration registers				
HOST_CMD_SET_METER_I1RMS_OFFSET	0x80			
HOST_CMD_SET_METER_I1RMS_GAIN	0x82			
HOST_CMD_SET_METER_P1_GAIN	0x84			
HOST_CMD_SET_METER_P1_PHASE	0x86			

Table 3. Communication Commands (continued)

7 Schematics

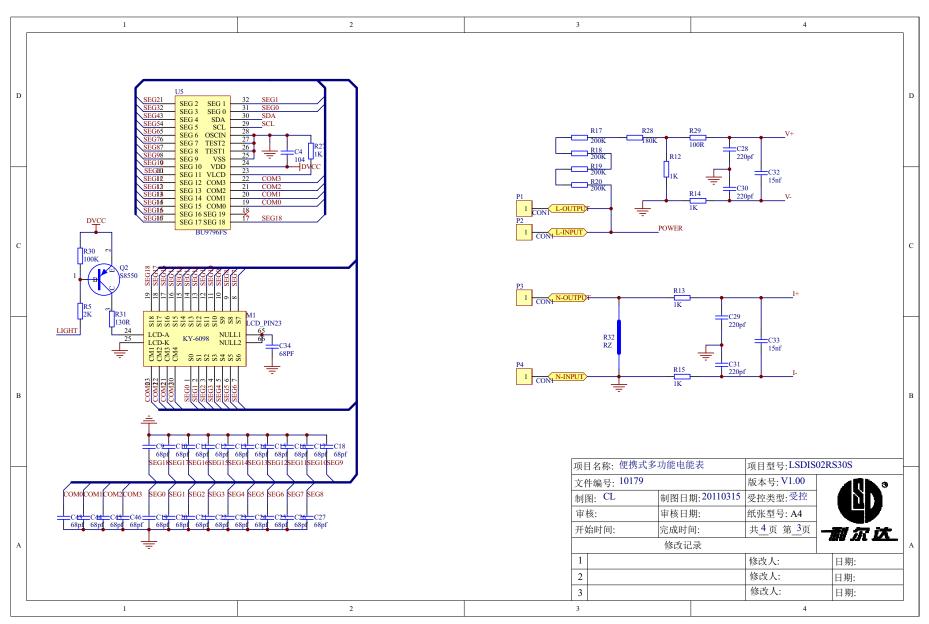


Figure 6. Schematics, 1 of 3

Schematics

www.ti.com

Figure 7. Schematics, 2 of 3

Schematics

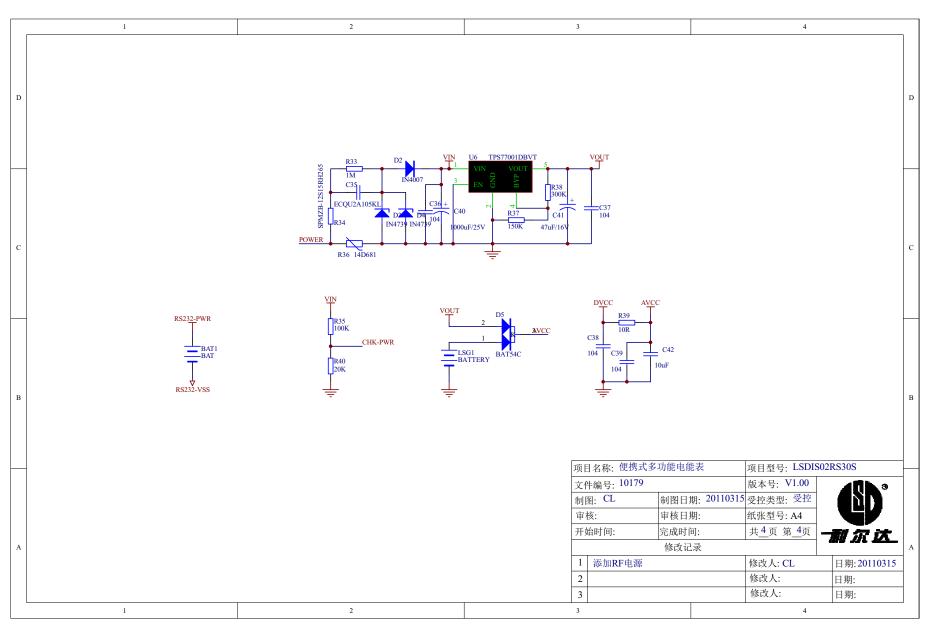


Figure 8. Schematics, 3 of 3

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated