

Lattice TI ADC Demo

User's Guide

Introduction

This design demonstrates the ability of the LatticeECP2[™] FPGA to interface to the Texas Instruments (TI) ADS644X and ADS642X family of ADC ICs using the TI ADS6XXX-EVM (e.g. ADS6245EVM), LatticeECP2 Advanced evaluation board, and an interface card that connects them.

Demo Overview

The demo design uses the LatticeECP2 Advanced Evaluation Board, the LatticeECP2 Advanced - TI ADS6000 EVM Interface Card (Lattice-TI Interface Card), and one of the TI ADS6XXX-EVM evaluation boards. An input clock signal and the analog input signal are both connected to the TI ADS EVM board. The TI ADS EVM board will convert the analog signal to a digital value and send this value to the LatticeECP2 FPGA using a single LVDS data signal and two LVDS clock signals. The data is sent serially over the single data line. One of the clock signals is a bit clock to read the individual data bits in the serial data line. The other clock is a Frame clock to mark the start of a data word or frame. The TI ADS EVM board will generate the bit clock and Frame clock from the input clock signal.

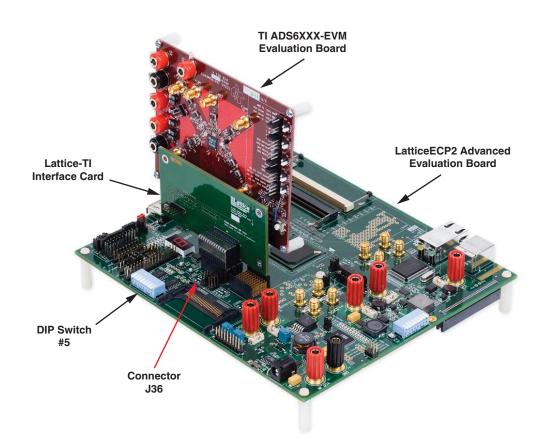
In this design, the LatticeECP2 FPGA reads the value of the digital signal from the TI ADS EVM board using the LVDS data and clock signals. The input data is captured by the LatticeECP2 FPGA using the built-in DDR registers and the 2X gearing function. The Frame clock is adjusted as required using the onboard PLL of the LatticeECP2 FPGA. The logic stores the first 1020 data samples into the onboard EBR memory block so they can be read out later. The design also incorporates the Lattice Reveal Logic Analyzer tool to allow the user to easily read out data values from the memory.

The TI ADS6xxx EVM boards are available in two versions. One is capable of a 12-bit analog-to-digital conversion and the other version is capable of 14-bit analog-to-digital conversion. This Demo is built for versions which use a 12-bit conversion. The TI ADS board is also available in either 2 or 4 channel versions. This Demo was developed using the 4-channel version of the TI ADS board, though using the 2-channel board is also possible.

The TI ADS6245EVM board can be set up to use either a single wire serial interface or a 2-wire serial interface. The 2-wire interface is recommended when using sample rates above 65 MSPS. When using the 2-wire interface, the data samples are split across both serial lines so that the bit clock frequency can be lower. The demo design uses the 1-wire interface and a sample rate of 60 MSPS. In this configuration, the data rate for the single serial wire is equal to or greater than the data rate for each of the 2 wires at the higher data sample rates.

Please see the TI ADS6XXX-EVM Board User Guide and the ADS6425 ADC Data Sheet for further details about the capabilities of the TI ADC devices.

Please see EB23, *LatticeECP2 Advanced Evaluation Board User's Guide*, for additional information about the evaluation board operation.


Test Setup

The demo design uses the LatticeECP2 Advanced Evaluation board, the Lattice-TI Interface Card, and the TI ADS6245-EVM evaluation boards. An analog signal is connected to the TI ADS board channel B, using SMA connector J11. An input clock signal is connected to the TI ADS board using SMA connector J12.

The TI ADS6245EVM board is plugged into the Lattice-TI Interface Card at connector J15 and this assembly is plugged into connector J36 on the LatticeECP2 Advanced Evaluation board. The connector number of the Lattice-TI Interface Card matches the mating connector on the board it connects to. Therefore, connector J15 on the Lattice-TI Interface Card connects to J15 on the TI ADS board, and connector J36 connects to J36 on the LatticeECP2 Advanced evaluation board.

The LatticeECP2 Advanced evaluation board and the Lattice-TI Interface Card both have a North indicator in the silkscreen just below the Lattice logo. When this North indicator is pointed up as you view the LatticeECP2 Advanced Evaluation board, the Lattice-TI Interface Card should be aligned so its J36 connector is facing toward the user's right. In this configuration, the TI ADS board component side is also facing to the user's right when it is plugged into the Lattice-TI Interface Card. A picture of the correct installation orientation is shown in Figure 1.

Figure 1. Physical Arrangement of the TI ADS6245EVM Board and LatticeECP2 Advanced Evaluation Board

The TI ADS6245EVM board uses jumpers to set various features on the board. The jumpers are located along the left edge of the board when viewed with the silkscreen text readable. The jumper settings should be adjusted to match the following:

J16	0dB Coarse gain, INT ref.	(default setting)
J17	DDR, 1 Wire	(default is DDR, 2 wire)
J18	14X, Rising edge	(default setting)
J19	DIV by 1	(default setting)
J20	MSB first, Offset Bin	(default is MSB first, 2's Comp)

The TI ADS6245EVM board will require a 3.3V power supply for this demo to function. The board also has +5V and -5V connectors which are not used for this demo. The +3.3V will be plugged into both the P1 and P3 connectors. P1 is the digital power source and P3 is the analog power source for the board, these can be connected together. The ground connections, P2 and P4 can also be connected together.

It is recommended to plug in the power cables to the TI ADS board before it is connected to the Lattice-TI Interface Card and the LatticeECP2 Evaluation board.

The pin assignments and a schematic of the Lattice-TI Interface Card are shown in Appendix A of this user's guide.

This design uses DIP switch #5 on the LatticeECP2 Evaluation board for different settings. The DIP switch #5 signal assignments are listed below.

Function Name	Switch Assignment	Demo Setting
Read enable	pos. 8	varies
PLL dphase[0]	pos. 7	down
PLL dphase[1]	pos. 6	down
PLL dphase[2]	pos. 5	down
PLL dphase[3]	pos. 4	Up
N/a	pos. 3	not used
	•	•
N/a	pos. 2	not used
Reset	pos. 1	down

The Reset switch will reset the FPGA logic when it is in the up position. After the reset has been accomplished, the switch should be set in the down position.

The Read enable switch is used to restart the read address counter. When the switch is set in the down position, the counter is reset. The switch should be moved to the up position to read the data from the FPGA.

The TI ADS6245EVM board will need an input clock signal of the same frequency as the sample rate. If the user wants the sample rate to be 60 MSPS, then the input clock must be 60 MHz. The clock signal must meet the requirements specified in the TI data sheet. The recommended clock source is a 1.5 VRMS sine-wave with a 0V offset. Other options are supported as shown in the TI data sheet.

The recommended analog input signal is 1V amplitude sine wave at 1/10th of the sample frequency (i.e., 6 MHz using 60 MSPS) and with a 0V offset. This signal should give an acceptable amplitude for the initial readings. The magnitude of the signal will vary with amplitude of the sine wave. Using this frequency ratio will give 10 samples per period of the sine wave so it should be easy to observe the basic shape of the input signal. For additional resolution of the input sine wave, the analog input signal frequency can be reduced to 1/20th of the sample frequency (i.e., 3 MHz). This is the ratio used for the sample data graphs shown in Figures 3 and 5 of this user's guide.

Operation

Connect the power cables to the TI ADS6245EVM board and verify that the jumpers on the card are set as shown above. Do NOT power on the TI ADS board at this time. Connect the Lattice-TI Interface Card to the TI ADS board. Then plug this assembly into the LatticeECP2 Advanced Evaluation board using connector J36, being sure to use the alignment described above. The arrangement should look like Figure 1.

Connect the clock input signal to the TI ADS board using SMA connector J12. Connect the analog input signal to the TI ADS board using SMA connector J11, channel B. (If you are using a 2-channel TI ADS6245EVM board, use SMA connector J10, channel A, when using the demo bitstream file).

Plug in a USB version of the Lattice ispDOWNLOAD[®] cable to the LatticeECP2 Advanced Evaluation board and your PC. Plug in the power adapter to the LatticeECP2 Evaluation board and turn on the power switch. Download the demo bitstream file to the LatticeECP2 device. Now power up the TI ADS board and turn on the analog input and clock sources. Put DIP switch #5, position 1, in the up position to initiate a reset of the design and then push it back down to run the design. Leave SW #5, position 8, in the down position for now.

The design will store the first 1020 data samples in an EBR memory block. The Reveal logic analyzer will be used to read some of the sample values back out of the memory. The memory read address is generated from a free running counter which will roll over automatically so that it is always reading from addresses 0-1023. Which values are read are a function of the address counter at the time that Reveal runs a trigger to sample the data in memory.

Start ispLEVER[®] on your PC and then open the demo design. Start Reveal and open the demo project (adc_serial12_ddr.rva). The Reveal demo project is set up for 20 triggers with 8 samples per trigger. If all 20 trigger values are not visible when Reveal is started you can change the zoom setting of the display. Run the Reveal Logic Analyzer by clicking the **RUN** icon on the toolbar or by using the menu. The data capture will start when read enable is set high. This is done by moving SW #5, position 8, to the UP position. The data value in read address 0

and address 1 will usually be empty. The remaining values should be correct. Additional runs of the logic analyzer will read data values from different memory addresses.

The memory read address is generated by a free running counter that will roll over automatically. There is not a way to read specific addresses from memory. Each run of the Reveal logic analyzer will read the values out of the memory location that is currently in the read address counter. If SW #5, position 8, is moved to the down position, the read memory address counter will be reset, but the data values in memory will not be changed. Moving SW #5, position 8, back to the up position will cause the design to begin reading data values out of memory again beginning with address zero. In order to change the data samples that are in memory, use the Reset switch, SW #5, position 1, to initiate a system reset.

The data is read out of the memory using a clock signal generated by a second PLL on the LatticeECP2 FPGA. This PLL uses the oscillator chip on the LatticeECP2 Advanced Evaluation board as its input signal. Therefore, the oscillator must be in place and functioning for the demo design to read the data out of the memory properly. The data is stored into the memory using the Frame clock signal from the TI ADS board.

Additional Design Notes

The demo design reads the data inputs on the transitions of the bit-clock, called bitclk in the design, using the builtin DDR registers and the 2X gearing. This is done using a generic DDR input block which is generated using IP Express and then instantiated in the design. Four data bits are read out of the DDR input registers and into a shift register to store them until all the data values are present and then the Frame clock signal will cause the values to be read out of the shift register and stored into the memory.

The Frame clock signal from the TI ADS6245EVM board is used as the input to a PLL and the CLKOS output of the PLL is used to create a shifted Frame clock, called Frame_S. This Frame_S signal is used to read the data into the shift register and into the memory as well. The PLL gives the user the ability to shift the Frame_S clock signal using the dynamic phase settings, which are set using the DIP switch on the LatticeECP2 Advanced Evaluation board. The shifted Frame_S clock signal must be properly aligned with the data in the shift register to read the correct data out.

If it becomes necessary to change the dynamic phase setting, it is recommended to use the SYNC test pattern output of the TI ADS6245EVM board. The SYNC test pattern for the TI ADS6245EVM is 111111000000 in the 12 bit versions of the TI ADS6245EVM board. For the Demo bitstream, the setting shown above (dphase[3:0] = 1000) has been tested and shown to produce good results. Adjusting this setting should only be necessary if the design has been changed significantly.

Once the dynamic phase setting has been adjusted, the TI ADS6245EVM board can be returned to the normal operating mode and the input data sampled.

Results

The results of several different demo runs are shown below. The values are displayed using the Lattice Reveal Logic Analyzer tool. The datout signal is shown highlighted in Figures 2 and 4. These figures show typical results that may be obtained when using this demo.

The input signal used was a sine wave of fixed magnitude for each run. The input sine wave is not synchronized to the sample clock, so the sample window can be at any location along the sine wave. Hence, the sample sine wave will appear to be phase shifted depending upon where the sample began. Included in Figures 3 and 5 are some Excel graphs of data that shows the input sine wave pattern for various test runs. Also included in these graphs is a calculated sine wave for comparison purposes.

There were a total of 16 different data sets collected using sine wave inputs at varying frequencies and amplitudes. In Table 1, the conditions for these 16 test runs are shown.

Table 1. Test Run Conditions

Test Run #	Sample Rate	Input Frequency	Input Amplitude
1	60 MSPS	6 MHz	725 mV
2	60 MSPS	6 MHz	725 mV
3	60 MSPS	6 MHz	860 mV
4	60 MSPS	6 MHz	860 mV
5	60 MSPS	3 MHz	810 mV
6	60 MSPS	3 MHz	810 mV
7	60 MSPS	3 MHz	910 mV
8	57.5 MSPS	2.875 MHz	900 mV
9	57.5 MSPS	2.875 MHz	900 mV
10	57.5 MSPS	2.875 MHz	1.11 V
11	57.5 MSPS	2.875 MHz	1.11 V
12	57.5 MSPS	2.875 MHz	1.39 V
13	56 MSPS	2.8 MHz	1.51 V
14	56 MSPS	2.8 MHz	1.51 V
15	56 MSPS	2.8 MHz	1.68 V
16	56 MSPS	2.8 MHz	1.68 V

Figure 2. Figure 2. Test #7: Using a sine wave input at 3 MHz with a 60 MSPS sample rate. Sine wave amplitude is 910 mVolts as measured with oscilloscope.

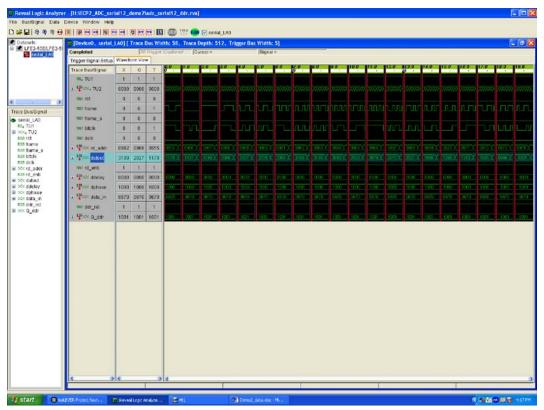


Figure 3. Graph of results for tests 5, 6, and 7. All tests at 60 MSPS - Amplitudes varied (calculated cosinewave generated in Excel for comparison).

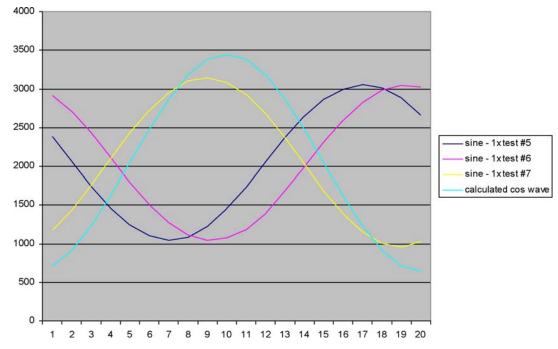


Figure 4. Test #14 Using a sine wave input at 2.8 MHz with a 56 MSPS sample rate. Sine wave amplitude is 1.51V as measured with oscilloscope.

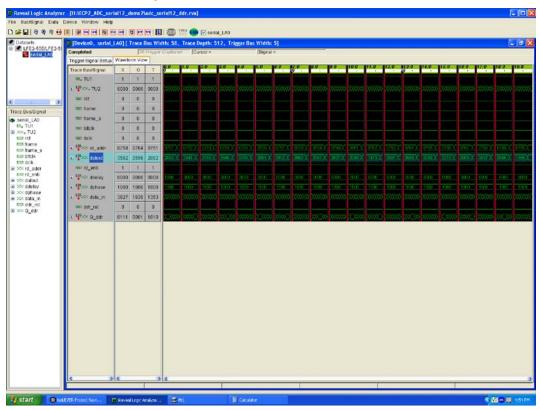
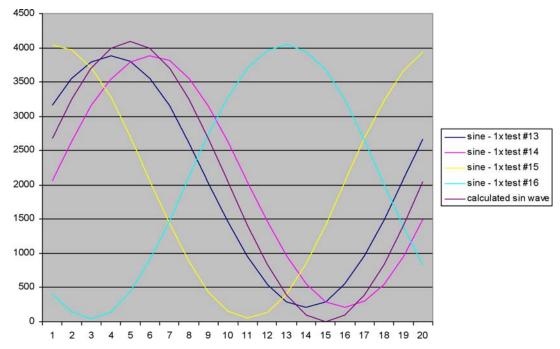
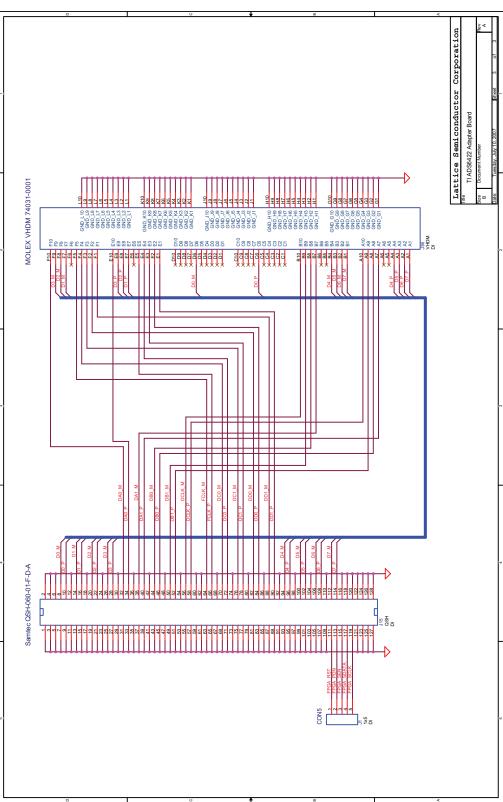



Figure 5. Graph of results for tests 13 through 16. All tests at 56 MSPS - Amplitudes varied. (Calculated sine wave generated in Excel for comparison).

Technical Support Assistance

Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: techsupport@latticesemi.com Internet: <u>www.latticesemi.com</u>

Revision History


Date	Version	Change Summary
January 2008	01.0	Initial release.

Appendix A. Lattice-TI Interface Card Pin Assignments and Schematic

J36 Connector	LatticeECP2 Pin	Signal Name	T/C	Dual Function	TI Signal Name	J15 Connector
A1	R23	PR55A	Т		D7_P	114
B1	R24	PR55B	С		D7_M	112
A2	T21	PR57A	Т		D6_P	108
B2	R22	PR57B	С		D6_M	106
A3	R21	PR51A	Т		D5_P	102
B3	N22	PR51B	С		D5_M	100
A4	T22	PR59A	Т		D4_P	96
B4	T20	PR59B	С		D4_M	94
E1	P19	PR53A	Т		DD1_P	90
F1	P21	PR53B	С		DD1_M	88
E2	P25	PR56A	Т		DD0_P	84
F2	P26	PR56B	С		DD0_M	82
E3	R25	PR58A	Т	RDQS58	DC1_P	78
F3	R26	PR58B	С		DC1_M	76
E4	U20	PR61A	Т	GDLLT_FB_A	DC0_P	72
F4	T19	PR61B	С	GDLLC_FB_A	DC0_M	70
E5	T26	PR60A	Т	GDLLT_IN_A	FCLK_P	66
F5	T25	PR60B	С	GDLLC_IN_A	FCLK_M	64
A10	U25	PR63A	Т	GPLLT_IN_A	DCLK_P	58
B10	U24	PR63B	С	GPLLC_IN_A	DCLK_M	56
A9	W26	PR67A	Т	RDQS67	DB1_P	52
B9	W25	PR67B	С		DB1_M	50
A8	Y26	PR69A	Т		DB0_P	46
B8	AA26	PR69B	С		DB0_M	44
A7	U26	PR65A	Т		DA1_P	40
B7	V26	PR65B	С		DA1_M	38
E10	V23	PR70A	Т		DA0_P	34
F10	W24	PR70B	С		DA0_M	32
E9	U19	PR68A	Т		D3_P	28
F9	U21	PR68B	С		D3_M	26
E8	V25	PR66A	Т		D2_P	22
F8	V24	PR66B	С		D2_M	20
E7	U23	PR64A	Т	GPLLT_FB_A	D1_P	16
F7	U22	PR64B	С	GPLLC_FB_A	D1_M	14
C6	N21	PR47A	Т	VREF1_3	D0_P	10
D6	N18	PR47B	С	VREF2_3	D0_M	8
D10	N19	PR49B	С			
C10	N20	PR49A	Т			
C5	M24	PR42B		BANK 2		

Lattice Semiconductor

Figure 6. Schematic

Appendix B. Demo Reference Design Verilog Sample Code

```
11
// DEMO - Serial ADC interface to Lattice ECP2/M FPGA
// _____
// _____
// Copyright (c) 2007 by Lattice Semiconductor Corporation
// ------
11
// Permission:
11
11
   Lattice Semiconductor grants permission to use this code for use
   in synthesis for any Lattice programmable logic product. Other
11
   use of this code, including the selling or duplication of any
11
   portion is strictly prohibited.
11
11
// Disclaimer:
11
11
   This VHDL or Verilog source code is intended as a design reference
11
   which illustrates how these types of functions can be implemented.
11
   It is the user's responsibility to verify their design for
11
   consistency and functionality through the use of formal
   verification methods. Lattice Semiconductor provides no warranty
11
   regarding the use or functionality of this code.
11
11
// _____
11
11
                 Lattice Semiconductor Corporation
                 5555 NE Moore Court
11
                 Hillsboro, OR 97214
11
11
                 U.S.A
//
11
                 TEL: 1-800-Lattice (USA and Canada)
11
                     (503)268-8001 (other locations)
11
11
                 web: http://www.latticesemi.com
11
                 email: techsupport@latticesemi.com
//
11
   _____
11
  This is the top level module of the:
11
  Serial ADC interface to Lattice ECP2/M FPGA Demo design using:
11
11
11
     12 bit Data input from Analog to digital converter using a
11
     serial single channel. Uses generic DDR input module with 2X Gearing
11
  Supported devices for implementing this design:
11
    * LatticeECP2/M
11
    * LatticeXP2 (not tested yet)
11
11
11
// _____
// $Header:
11
// Revision History :
// ------
// Ver :| Author :| Mod. Date :| Changes Made:
                       : 11/27/07 : Initial Release
// V1.0 :| J.D.
```

// _____

```
module serial(rst, clki, bitclk, frame, data sd0, rd enb, dphase, clock1, clock2
       , lock pll, clkop, frame s, datout, rd addr, wr enable, dclk, Q ddr );
input rst, clki, bitclk, frame ;
input data sd0, rd enb ;
input [3:0] dphase ;
output clock1, clock2 ;
wire clock1, clock2 ;
output lock pll, clkop, frame s ;
output [11:0] datout ;
output [9:0] rd addr ;
output wr enable ;
      wr enable ;
req
output dclk ;
output [3:0] Q ddr ;
      rst pll ;
reg
      reset pulse ;
req
reg
      ddr rst ;
      [11:0] data_in ;
reg
      [11:0] datareg0 ;
reg
//req
         [11:0] datareq1, datareq2, datareq3;
         [11:0] datareg4, datareg5, datareg6, datareg7;
//reg
      [9:0] wr addr ;
req
       [9:0] rd addr ;
reg
       [3:0] rd addr delay ;
reg
/* Verilog module instantiation template generated by SCUBA ispLever v70 SP1 Build (25) */
/* Module Version: 3.6 */ /* Fri Nov 16 19:44:08 2007 */
/* parameterized module instance */
PLL frame PLL frame (.CLK(frame), .RESET(rst pll), .DPAMODE(1'b1), .DPHASE0(dphase[0]),
.DPHASE1(dphase[1]),
    .DPHASE2(dphase[2]), .DPHASE3(dphase[3]), .CLKOP(clkop), .CLKOS(frame s), .LOCK(lock pll));
/* parameterized module instance */
ecp2 pll ecp2 pll1 (.CLK(clki), .RESET(rst pll), .CLKOP(clock1), .CLKOK(clock2), .LOCK());
/* Verilog module instantiation template generated by SCUBA ispLever v70 Prod Build (55) */
/* Module Version: 4.1 */ /* Wed Aug 15 11:34:57 2007 */
/* parameterized module instance */
RAM dp RAM ul (.WrAddress(wr addr), .RdAddress(rd addr), .Data(datareg0), .RdClock(clock1),
    .RdClockEn(rd enb), .Reset(rst), .WrClock(frame s), .WrClockEn(1'b1), .WE(wr enable),
.Q(datout));
```

```
// PLL reset pulse at startup or if PLL loses lock
always @(posedge clki)
    begin
   if (lock pll)
      reset pulse = 1'b0 ;
   else
      if (reset pulse )
      rst pll = 1'b0;
      else
      begin
      rst pll = 1'b1 ;
       reset pulse = 1'b1 ;
       end
     end
/* Verilog module instantiation template generated by SCUBA ispLever v70 SP1 Build (25) */
/* Module Version: 3.3 */ /* Fri Nov 16 10:44:12 2007 */
/* parameterized module instance */
DDR qen DDRin1 (.EClk(bitclk), .SClk(dclk), .Rst(ddr rst), .Data(data sd0), .Q(Q ddr));
// Shift register to capture the serial data from generic DDR module on positive edge dataclk
always @(posedge dclk or posedge rst)
   begin
      if (rst)
      begin
       data_in = 12'b00000000000 ;
       end
      else
      begin
       data in[11] = data in[7] ;// shift register to accumulate data bits
       data in[10] = data in[6];
       data in[9] = data in[5];
       data_in[8] = data_in[4] ;
       data in[7] = data in[3];
       data_in[6] = data_in[2] ;
       data_in[5] = data_in[1] ;
       data_in[4] = data_in[0] ;
       data_in[3] = Q_ddr[0];// add new data bit into shift register
       data_in[2] = Q_ddr[2] ;// first data bit read is Q drr[0]
       data in[1] = Q ddr[1]; // 2nd bit read is Q drr[2], 3rd bit read is Q drr[1]
       data in[0] = Q ddr[3];// last data bit read is Q drr[3]
              // this bit order is due to mapping used by
              // IP Express when module is generated - mapping shown below:
              // .QA0(Q[0]), .QA1(Q[1]), .QB0(Q[2]), .QB1(Q[3])
       end
   end
// data capture at frame signal
always @(posedge frame s or posedge rst)
   begin
      if (rst)
      begin
       datareg0 = 12'b00000000000;
       end
      else
       begin
```

```
datareq0 = data in ;// add new data into shift register
      end
   end
// memory write address counter
always @(posedge frame s or posedge rst)
   if (rst)
      wr addr = 9'b000000000 ;// initialize the memory write address counter
   else
      begin
      if (wr addr == 10'b1111111100)// disable write enable when address = 1111111100
          wr enable = 1'b0 ;// to prevent overwriting data in memory
      else
          if (ddr rst)
            wr_enable = 1'b0 ;
          else
            begin
             wr enable = 1'b1 ;
             wr addr = wr addr + 1 ;// increment the address counter
             end
      end
// memory read address counter
always @(posedge frame s or posedge rst)
   begin
      if (rst)
      begin
      rd addr delay = 4'b0000 ;// initialize the delay counter
      rd addr = 10'b0000000000 ;// initialize the memory read address counter
      end
      else
      if (rd enb)
         begin
         rd_addr_delay = rd_addr_delay + 1 ;// increment delay counter
         else
            rd_addr = rd_addr ;// else hold present value
         end
      else
         begin
         rd addr delay = 4'b0000 ;// reset the read address delay counter when rd enb is '0'
         rd addr = 10'b0000000000;// reset the memory read address counter when rd enb is '0'
         end
   end
// DDR module reset - hold the DDR module in reset until the PLL frame is locked
always @(posedge frame or posedge rst)
   if (rst)
     ddr rst = 1'b1;
   else
      if (lock pll)
      ddr rst = 1'b0;
      else
      ddr_rst = 1'b1 ;
endmodule
```

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright 2008, Texas Instruments Incorporated