
1SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

Application Report
SLAA725–January 2017

Random Number Generation Using MSP430FR59xx and
MSP430FR69xx Microcontrollers

Akash Patel, Caleb Overbay ... MSP430 Applications

ABSTRACT
Random number generation has a role in a variety of applications, such as cryptography and tamper
detection.

In digital systems, it becomes difficult to introduce the concept of true randomness as a machine executes
code in the sequence it is programed. This introduces the notion of true random number generators
(TRNGs) and pseudorandom number generators (PRNGs), also known as deterministic random bit
generators (DRBGs). TRNGs use some source of entropy to provide for randomness in the system, while
PRNGs rely on a seed to generate a sequence of numbers that can be realized as deterministic (that is,
starting with the same seed will produce the same set of numbers).

This application report reviews an implementation of a Counter Mode Deterministic Random Byte
Generator (CTR-DRBG) on MSP430FR59xx and MSP430FR69xx microcontrollers (MCUs). A C code
implementation along with an example of its use can be found in FRAM Utilities.

Contents
1 Introduction ... 2
2 Overview of Operation .. 2
3 Using the Software Package ... 5
4 Benefits of FRAM .. 6
5 Security of the CTR-DRBG ... 6
6 Degree of Randomness... 6
7 References ... 8
Appendix A Raw NIST Test Data ... 9
Appendix B Raw Diehard Test Data... 13

List of Figures

1 Basic Process of Generating Pseudorandom Bytes .. 2
2 Basic Process of Instantiation.. 4
3 Basic Update Process... 4
4 Basic Generation Process .. 5
5 CTR-DRBG Diehard P-Value Distribution Results .. 8

List of Tables

1 CTR-DRBG Parameter Requirements .. 3
2 CTR-DRBG Diehard P-Value Distribution Results .. 7

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725
http://www.ti.com/tool/msp-fram-utilities

Introduction www.ti.com

2 SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

Trademarks
All trademarks are the property of their respective owners.

1 Introduction
This application report discusses the implementation of a Counter Mode Deterministic Random Byte
Generator (CTR-DRBG) on the MSP430FR59xx and MSP430FR69xx microcontrollers. The
implementation utilizes the unique 128-bit true random seed found in the Device Descriptor Information
(TLV) as a source of entropy into a block cipher algorithm. Subsequently, pseudorandom bytes can be
generated. This CTR-DRBG has been developed in accordance with Section 10.2 of NIST SP 800-90A
Rev. 1 using the AES-128 block cipher algorithm. In this document, the National Institute of Standards and
Technology (NIST) provides various techniques to generate random bytes in a deterministic fashion
dependent on a sufficiently random entropy source.

The MSP430FR59xx and MSP430FR69xx microcontrollers include an AES256 Hardware Accelerator (see
the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide). This
dedicated accelerator can perform encryption (and decryption) of 128-bit data with 128-bit (as well as 192-
bit and 256-bit) keys. This implementation can be done on other families of devices; however, using
software to do the encryption proves less efficient than running it on dedicated hardware. This family also
enables the benefits of FRAM, which are discussed in Section 4.

The correctness of the implementation in FRAM Utilities was verified using the DRBG test vectors
provided by NIST that meet the appropriate parameter requirements of the CTR-DRBG discussed in this
document. These parameters include AES-128 encryption, using a derivation function, no prediction
resistance, no reseeding, no additional input, and no personalization string. These vectors can be found
by going to csrc.nist.gov and searching "CAVP Testing: Random Number Generators".

2 Overview of Operation
The following sections describe the operation of the CTR-DRBG implementation provided in the
accompanying software package. The CTR-DRGB was standardized by NIST and a more detailed
description can be found in Section 10.2 of NIST SP 800-90A Rev. 1.

Figure 1 shows the basic process for generating pseudorandom bytes. Before generating anything, the
working state must always be loaded from FRAM. Then, depending on necessity, the device is
instantiated. Instantiation is a one-time process that must occur at the creation of the CTR-DRBG. After
the device has been instantiated, pseudorandom bytes can be generated. Finally after generation, the
working state must be saved to FRAM to reflect updates that took place during the generation process.
Loading from and saving to FRAM is a crucial part of this implementation. The full benefits of FRAM in this
application are further explored in Section 4.

Figure 1. Basic Process of Generating Pseudorandom Bytes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/tool/msp-fram-utilities
http://csrc.nist.gov/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

www.ti.com Overview of Operation

3SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

Table 1 lists the essential parameters and their required bit lengths according to the NIST publication
mentioned previously. These parameters are discussed and used throughout this document.

Table 1. CTR-DRBG Parameter Requirements

Parameter Requirement
Input and Output Block Length (blocklen) 128 bits
Key Length (keylen) 128 bits
Seed Length (seedlen = outlen + keylen) 256 bits
Entropy Input Length seedlen
Max Number of Bits per Request 211 bits
Maximum Requests Between Reseeds (reseed_interval) 248 requests

2.1 CTR-DRBG Working State
The CTR-DRBG is based on a working state that is loaded from and saved to FRAM before and after any
pseudorandom bytes are generated. This working state consists of a key, data (v), and instantiated_flag.
The key and data (v) are used as inputs to the block encrypt algorithm (AES-128) while the
instantiated_flag is used to signal whether or not the CTR-DRBG has been instantiated on the device
before.

By default, the accompanying software package stores the working state in the FRAM section InfoMemD.
The working state holds the "secret values" key and v that are critical to maintaining the security of the
CTR-DRBG. For this reason, if your application requires additional security, TI recommends locking the
JTAG after the device has been programmed to keep the working state from being accessed outside the
device. See Section 5.2 for more information regarding locking the JTAG.

NOTE: The reseed counter as described in the NIST publication is not realized in this
implementation. Section 2.7 includes more information on this and any implications.

2.2 Source of Entropy and Nonce
The MSP430FR59xx and MSP430FR69xx MCUs provide a 128-bit true random seed found in the Device
Descriptor Information (TLV) at hex address 0x1A30. This seed is used as the entropy input to instantiate
the CTR-DRBG.

The CTR-DRBG also requires a nonce at the time of instantiation. According to the NIST publication, the
nonce must be a value that is expected to repeat no more than a 64-bit random string would be expected
to repeat. A value fitting this description can be found in the Device Descriptor Information (TLV) and
includes the lot and wafer ID, die x position, and die y position. The combination of these three values is
unique to every device and provides a sufficient nonce for instantiation.

2.3 Instantiation
The CTR-DRBG requires instantiation to initialize the working state before any pseudorandom bytes can
be generated. The instantiation process does several things, including obtaining sufficient entropy input
and initializing the working state.

Figure 2 shows the basic process undergone when instantiating the CTR-DRBG. When obtaining the
source of entropy, the instantiation function retrieves the true random seed found in the Device Descriptor
Information (TLV). However, this seed is only a 128-bit value and, as described in Table 1, a sufficient
entropy source must be 256 bits in length. The expansion of the seed into a 256-bit value is realized
through the use of a derivation function discussed in Section 2.4.

This entropy source is then used to initialize the working state with the use of the update process
described in Section 2.5.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725

Overview of Operation www.ti.com

4 SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

Figure 2. Basic Process of Instantiation

2.4 Derivation Function
The MSP430FR59xx and MSP430FR69xx MCUs can only provide a 128-bit true random source of
entropy, but 256 bits are required to ensure the CTR-DRBG meets security requirements. To expand this
value to sufficient length, a derivation function requiring a nonce must be used. This derivation function
takes advantage of the AES256 accelerator on this family of devices to distribute the 128-bit entropy
throughout the wider bit string and provides a suitable means of utilizing the 128-bit true random seed
found in the TLV.

2.5 Update Process
At the heart of instantiation and generating pseudorandom bytes is an update function that updates the
working state of the CTR-DRBG using provided_data as well as AES-128 encryption. This function is
responsible for the actions listed in Figure 3.

Figure 3. Basic Update Process

The provided_data is the source of entropy when update is being used for instantiation. Otherwise, the
provided_data is zero. According to the NIST standard, the provided_data could also be additional input.
However, this feature is optional and not supported in the accompanying software package and is why the
provided_data is typically zero.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725

www.ti.com Overview of Operation

5SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

2.6 Generating Pseudorandom Bytes
Similar to the update process, generating pseudorandom bytes involves the use of AES-128 encryption to
populate an array of random bytes. This function is responsible for the actions shown in Figure 4.

Figure 4. Basic Generation Process

As can be seen, the generation process is very similar to the update process. Generation involves the
following steps:
1. Load a cipher key
2. Loop through the steps of incrementing data (v) and encryption
3. Build the random bytes
4. Use the update process to update the working state

The provided_data passed to the update process is zero due to this implementation not supporting
additional input.

2.7 Reseeding
Every time the CTR-DRBG is instantiated or reseeded, a new source of entropy is required. The true
random seed found in the MSP430FR59xx and MSP430FR69xx MCUs is programmed during production
and cannot be updated or changed. For this reason, the CTR-DRBG implementation in the accompanying
software package does not support reseeding.

Even though reseeding is not supported, Table 1 shows that the maximum requests between reseeds is
248. This number is much larger than even the write endurance of the FRAM at 1014 and is sufficient for
most if not all applications.

3 Using the Software Package
To generate pseudorandom bytes, call the rng_generateBytes function with the number of requested
bytes and a pointer to where they should be stored. The function can generate random bytes only in
multiples of keylen. Figure 1 shows a diagram of the internal workings of the rng_generateBytes function
and how it generates pseudorandom bytes. Also, Figure 12 in Section 10.2.1 of NIST SP 800-90A Rev. 1
provides a more detailed view of this software flow diagram. See the FRAM Utilities Users Guide for more
information on how to use the API.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/FRAM_Utilities/latest/exports/FRAM-Utilities-UsersGuide.pdf

Benefits of FRAM www.ti.com

6 SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

4 Benefits of FRAM
FRAM (Ferroelectric Random Access Memory) provides key benefits in this random number generation
application. As it is necessary to save the state of the CTR-DRBG in nonvolatile memory, FRAM is the
better choice over flash or EEPROM due to its faster read and write times, lower power consumption, and
better data reliability (see FRAM FAQs for more information). These benefits help maintain the working
state of the CTR-DRBG in case of power failure or other unexpected device resets.

5 Security of the CTR-DRBG
This implementation of the CTR-DRBG meets the minimum security requirements recommended by the
NIST publication. However, there are still ways a potential threat could compromise security by accessing
the working state, random seed, and nonce through JTAG. Also, even though this algorithm has been
verified as correct and meets the minimum security requirements, not all features described in the NIST
publication are implemented. This section describes what features are not present, why those decisions
were made, and how to make it more difficult for external threats to access the working state, random
seed, and nonce.

NOTE: Throughout the process of creating pseudorandom numbers, values critical to security are
placed on the stack. Where applicable in the accompanying software package, these values
are cleared before returning from the function in which they are created.

5.1 Personalization String, Reseeding, and Prediction Resistance
This implementation does not support personalization strings, reseeding, or prediction resistance as
described in the NIST publication. See Section 2.7 for an explanation of why this reseeding is disabled.
The personalization string is an optional feature and is not implemented to reduce the burden on the
consuming application. Finally, prediction resistance is not implemented because of the need to constantly
reseed when this feature is available.

5.2 Access to the Working State and JTAG Lock
The working state of the CTR-DRBG holds the "secret values" key and data (v) that are crucial to the
security of the numbers generated. Access to these would allow prediction and backtracking of the
pseudorandom numbers generated. Also, access to the 128-bit random seed and nonce located in the
Device Descriptor Table would allow similar prediction and backtracking.

The MSP430FR59xx and MSP430FR69xx MCUs can lock the JTAG either with or without a password.
This is a way of keeping data on the devices from being read through the JTAG interface. While locking
the JTAG is not a perfect solution to protecting the working state, nonce, and random seed from
unauthorized access, the lock makes access much more difficult.

If you are concerned about the security of your application that is using this CTR-DRBG, TI highly
recommends taking advantage of the JTAG locking feature. More information regarding this feature can
be found in MSP430 Programming With the JTAG Interface and MSP Code Protection Features.

6 Degree of Randomness
There are several common ways to extensively test the randomness of data generated by a
pseudorandom number generator. The Diehard suite and the NIST suite are both widely used batteries of
statistical tests that verify the quality of a pseudorandom number generator. Both of these test suites were
run on the CTR-DRBG described in this document and the results suggest the data generated is close to
true randomness. To run these tests, 23.4 million random bytes were generated on an MSP430FR5969
MCU. These bytes were then used as input to the suites. Further information on the individual suites as
well as raw data and test results can be found in the following sections and appendices.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725
http://www.ti.com/lit/ml/slat151/slat151.pdf
http://www.ti.com/lit/pdf/slau320
http://www.ti.com/lit/pdf/slaa685

www.ti.com Degree of Randomness

7SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

6.1 NIST Test Suite
The CTR-DRBG in the accompanying software package was subjected to the NIST test suite described in
NIST SP 800-22 Revision 1A. This suite consists of fifteen statistical tests each returning a p-value. The
data provided to the tests was broken into eight binary sequences for the random excursion tests and ten
binary sequences for all others. The p-values were analyzed by the test suite and a clear pass or fail
result was given.

For a test to be considered successful, at least 7 out of 8 binary sequences must pass the random
excursion tests, and eight out of ten for everything else. All tests passed these criteria, strongly suggesting
that the pseudorandom numbers generated by the CTR-DRBG are very close to being truly random.
Appendix A lists the raw data organized by the test that produced the result.

6.2 Diehard Test Suite
The CTR-DRBG implemented in the accompanying software package was also subjected to the Diehard
suite of tests. This suite consists of 12 statistical tests, and each returns a varying number of p-values. For
the data to be truly random, these p-values should be evenly distributed on [0, 1). This means that ten
percent of the p-values output from the test suite should be found from 0.0 to 0.1, another ten percent
from 0.1 to 0.2, and so on.

Table 2 is an interpretation of the results of the Diehard test suite. As can be seen, in each 0.1 increment,
ten percent of the p-values are expected to be observed. These observed values followed this trend very
closely with the lowest percentage seen being 7.44% and the highest being 13.02%. Unfortunately, the
tests do not define a margin that the numbers should fall within to classify them as passing and is why the
NIST test suite was also run on this data.

Table 2. CTR-DRBG Diehard P-Value Distribution
Results

P-Value Range Observed Percent ‘Expected’ Percent
0.0–0.1 8.84% 10%
0.1–0.2 13.02% 10%
0.2–0.3 9.77% 10%
0.3–0.4 9.77% 10%
0.4–0.5 11.16% 10%
0.5–0.6 8.84% 10%
0.6–0.7 9.30% 10%
0.7–0.8 12.09% 10%
0.8–0.9 9.77% 10%
0.9–1.0 7.44% 10%

In a more compelling fashion, Figure 5 reiterates what can be seen in Table 2. The red line represents the
ideal distribution of p-values, and the blue line represents every observed p-value. Although the observed
results are not perfect, they show a strong indication that the implementation discussed in this document
is producing pseudorandom numbers that are very close to ideal. Appendix B lists the raw data produced
by the Diehard suite, including p-values and the tests they were generated from.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf

References www.ti.com

8 SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

Figure 5. CTR-DRBG Diehard P-Value Distribution Results

7 References
• MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and MSP430FR69xx Family User's Guide
• FRAM FAQs
• Recommendation for Random Number Generation Using Deterministic Random Bit Generators (NIST

Special Publication 800-90A, Revision 1)
• MSP Code Protection Features
• MSP430 Programming With the JTAG Interface
• A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic

Applications (NIST Special Publication 800-22, Revision 1A)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725
http://www.ti.com/lit/pdf/SLAU367
http://www.ti.com/lit/pdf/SLAT151
http://www.ti.com/lit/pdf/SLAA685
http://www.ti.com/lit/pdf/SLAU320

9SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

Appendix A
SLAA725–January 2017

Raw NIST Test Data

A.1 NIST Test Suite Data
--
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES
--

generator is <rand_nums.32%gt;
--

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
--

2 1 2 0 1 1 1 2 0 0 0.739918 10/10 Frequency
0 2 2 1 0 0 0 1 2 2 0.534146 10/10 BlockFrequency
2 1 1 0 1 0 1 0 3 1 0.534146 10/10 CumulativeSums
2 1 1 1 1 0 1 1 0 2 0.911413 10/10 CumulativeSums
0 2 1 1 3 0 1 1 0 1 0.534146 10/10 Runs
1 1 0 1 1 4 0 1 0 1 0.213309 10/10 LongestRun
3 0 2 1 0 0 0 0 0 4 0.017912 10/10 Rank
1 2 0 0 1 2 2 1 1 0 0.739918 9/10 FFT
2 2 0 0 3 1 0 0 1 1 0.350485 10/10 NonOverlappingTemplate
0 2 2 1 0 2 2 1 0 0 0.534146 10/10 NonOverlappingTemplate
0 2 2 2 1 0 1 2 0 0 0.534146 10/10 NonOverlappingTemplate
1 1 2 1 3 0 1 1 0 0 0.534146 10/10 NonOverlappingTemplate
1 0 0 2 3 3 0 1 0 0 0.122325 10/10 NonOverlappingTemplate
2 1 0 3 1 0 0 0 2 1 0.350485 10/10 NonOverlappingTemplate
0 0 3 0 0 0 3 1 1 2 0.122325 10/10 NonOverlappingTemplate
2 2 0 0 2 0 1 1 2 0 0.534146 10/10 NonOverlappingTemplate
1 1 2 1 2 0 2 0 0 1 0.739918 10/10 NonOverlappingTemplate
2 1 1 0 1 2 0 2 1 0 0.739918 9/10 NonOverlappingTemplate
0 2 0 1 0 1 1 1 4 0 0.122325 10/10 NonOverlappingTemplate
3 0 0 0 0 2 1 2 2 0 0.213309 10/10 NonOverlappingTemplate
1 1 0 0 1 0 3 4 0 0 0.035174 9/10 NonOverlappingTemplate
0 0 1 4 0 2 1 1 0 1 0.122325 10/10 NonOverlappingTemplate
2 1 1 1 0 2 0 1 1 1 0.911413 10/10 NonOverlappingTemplate
2 1 2 1 1 0 0 0 1 2 0.739918 10/10 NonOverlappingTemplate
1 0 2 1 0 0 1 1 2 2 0.739918 10/10 NonOverlappingTemplate
2 1 0 0 2 3 0 1 1 0 0.350485 10/10 NonOverlappingTemplate
1 1 0 1 0 1 2 2 0 2 0.739918 10/10 NonOverlappingTemplate
0 2 0 0 1 1 2 1 0 3 0.350485 10/10 NonOverlappingTemplate
0 0 0 1 0 1 2 0 1 5 0.008879 10/10 NonOverlappingTemplate
3 0 1 0 0 1 2 1 0 2 0.350485 10/10 NonOverlappingTemplate
1 2 2 1 1 0 2 0 0 1 0.739918 10/10 NonOverlappingTemplate
3 2 1 0 2 0 1 1 0 0 0.350485 9/10 NonOverlappingTemplate
1 0 0 4 0 0 2 0 2 1 0.066882 10/10 NonOverlappingTemplate
0 0 1 1 1 1 1 1 3 1 0.739918 10/10 NonOverlappingTemplate
1 0 4 1 1 0 0 1 0 2 0.122325 10/10 NonOverlappingTemplate
0 1 0 0 0 2 1 3 2 1 0.350485 10/10 NonOverlappingTemplate
1 1 0 1 4 2 0 1 0 0 0.122325 9/10 NonOverlappingTemplate
3 0 1 1 1 0 0 0 2 2 0.350485 9/10 NonOverlappingTemplate
0 0 3 0 3 1 0 2 0 1 0.122325 10/10 NonOverlappingTemplate
1 2 1 1 2 1 0 0 1 1 0.911413 10/10 NonOverlappingTemplate
2 0 2 1 1 1 1 1 1 0 0.911413 10/10 NonOverlappingTemplate
2 1 1 0 2 0 1 0 1 2 0.739918 10/10 NonOverlappingTemplate
2 1 1 0 0 2 1 1 2 0 0.739918 10/10 NonOverlappingTemplate
2 0 2 2 1 0 2 0 1 0 0.534146 10/10 NonOverlappingTemplate
3 0 0 3 1 1 0 0 1 1 0.213309 9/10 NonOverlappingTemplate

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725

NIST Test Suite Data www.ti.com

10 SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

1 0 0 2 2 1 1 0 2 1 0.739918 10/10 NonOverlappingTemplate
0 0 0 1 1 1 0 4 2 1 0.122325 10/10 NonOverlappingTemplate
0 1 0 0 1 1 1 5 1 0 0.017912 10/10 NonOverlappingTemplate
2 0 2 0 3 0 1 0 2 0 0.213309 10/10 NonOverlappingTemplate
0 1 1 1 1 3 0 0 2 1 0.534146 10/10 NonOverlappingTemplate
0 0 0 1 1 1 1 2 3 1 0.534146 10/10 NonOverlappingTemplate
2 2 2 2 0 0 1 0 1 0 0.534146 10/10 NonOverlappingTemplate
0 0 1 4 2 0 2 0 1 0 0.066882 10/10 NonOverlappingTemplate
0 2 0 1 1 0 4 0 0 2 0.066882 10/10 NonOverlappingTemplate
2 1 2 0 1 0 1 0 1 2 0.739918 10/10 NonOverlappingTemplate
0 2 1 0 2 2 1 0 1 1 0.739918 10/10 NonOverlappingTemplate
1 0 1 0 1 0 1 5 1 0 0.017912 10/10 NonOverlappingTemplate
2 1 1 0 1 1 0 1 1 2 0.911413 9/10 NonOverlappingTemplate
1 1 0 1 2 2 0 1 0 2 0.739918 10/10 NonOverlappingTemplate
0 1 2 0 0 0 3 0 2 2 0.213309 10/10 NonOverlappingTemplate
0 0 0 0 0 2 6 0 2 0 0.000089 * 10/10 NonOverlappingTemplate
0 0 2 1 1 2 1 1 1 1 0.911413 10/10 NonOverlappingTemplate
2 1 3 2 1 1 0 0 0 0 0.350485 10/10 NonOverlappingTemplate
1 3 1 1 1 2 0 1 0 0 0.534146 10/10 NonOverlappingTemplate
0 1 0 5 0 0 2 1 1 0 0.008879 10/10 NonOverlappingTemplate
4 0 0 1 0 0 2 2 0 1 0.066882 10/10 NonOverlappingTemplate
0 2 0 0 2 1 2 0 1 2 0.534146 10/10 NonOverlappingTemplate
1 1 0 2 2 1 0 2 1 0 0.739918 10/10 NonOverlappingTemplate
0 2 2 1 0 2 1 0 1 1 0.739918 10/10 NonOverlappingTemplate
2 0 1 0 0 1 3 1 0 2 0.350485 9/10 NonOverlappingTemplate
2 3 0 1 1 1 1 0 1 0 0.534146 10/10 NonOverlappingTemplate
0 1 1 2 0 1 1 0 1 3 0.534146 10/10 NonOverlappingTemplate
0 0 1 3 1 0 0 3 1 1 0.213309 10/10 NonOverlappingTemplate
2 1 1 0 0 0 0 1 2 3 0.350485 10/10 NonOverlappingTemplate
0 1 2 1 0 2 1 1 1 1 0.911413 10/10 NonOverlappingTemplate
1 1 0 1 3 0 0 0 2 2 0.350485 10/10 NonOverlappingTemplate
1 0 3 1 0 2 0 1 1 1 0.534146 9/10 NonOverlappingTemplate
1 1 2 1 1 0 2 0 1 1 0.911413 10/10 NonOverlappingTemplate
0 2 1 1 2 1 0 0 2 1 0.739918 10/10 NonOverlappingTemplate
2 1 2 2 0 1 0 2 0 0 0.534146 9/10 NonOverlappingTemplate
0 2 0 1 1 0 2 1 3 0 0.350485 10/10 NonOverlappingTemplate
0 3 0 1 2 2 0 1 1 0 0.350485 10/10 NonOverlappingTemplate
2 2 0 0 3 1 0 0 1 1 0.350485 10/10 NonOverlappingTemplate
2 0 2 1 1 0 0 1 2 1 0.739918 10/10 NonOverlappingTemplate
0 0 2 0 2 2 2 2 0 0 0.350485 10/10 NonOverlappingTemplate
0 1 2 2 2 0 1 2 0 0 0.534146 10/10 NonOverlappingTemplate
2 2 0 0 0 0 1 3 1 1 0.350485 10/10 NonOverlappingTemplate
1 1 1 3 1 1 1 1 0 0 0.739918 10/10 NonOverlappingTemplate
2 0 0 3 2 0 1 1 1 0 0.350485 10/10 NonOverlappingTemplate
0 2 1 1 2 0 0 3 1 0 0.350485 10/10 NonOverlappingTemplate
0 1 1 2 0 0 2 1 2 1 0.739918 10/10 NonOverlappingTemplate
0 1 0 2 2 0 1 1 1 2 0.739918 10/10 NonOverlappingTemplate
0 2 1 1 0 1 0 1 3 1 0.534146 10/10 NonOverlappingTemplate
0 1 1 3 1 1 0 1 2 0 0.534146 10/10 NonOverlappingTemplate
1 3 0 2 0 1 1 2 0 0 0.350485 10/10 NonOverlappingTemplate
5 0 1 0 0 0 0 2 0 2 0.004301 9/10 NonOverlappingTemplate
2 1 1 1 0 2 1 1 1 0 0.911413 10/10 NonOverlappingTemplate
0 2 0 0 0 1 1 2 3 1 0.350485 10/10 NonOverlappingTemplate
0 1 1 0 2 1 3 1 0 1 0.534146 10/10 NonOverlappingTemplate
1 1 0 1 1 1 1 0 3 1 0.739918 10/10 NonOverlappingTemplate
1 1 1 0 1 2 0 1 1 2 0.911413 10/10 NonOverlappingTemplate
1 0 2 0 2 0 3 0 2 0 0.213309 10/10 NonOverlappingTemplate
0 1 2 0 3 1 1 0 2 0 0.350485 10/10 NonOverlappingTemplate
2 1 2 2 1 0 1 1 0 0 0.739918 10/10 NonOverlappingTemplate
0 1 1 2 2 2 0 2 0 0 0.534146 10/10 NonOverlappingTemplate
1 1 1 1 1 0 0 5 0 0 0.017912 10/10 NonOverlappingTemplate
0 1 1 1 1 2 0 1 2 1 0.911413 10/10 NonOverlappingTemplate
0 1 0 0 2 2 2 2 0 1 0.534146 10/10 NonOverlappingTemplate
1 0 0 0 1 1 5 2 0 0 0.008879 10/10 NonOverlappingTemplate
4 1 0 0 3 0 1 0 0 1 0.035174 9/10 NonOverlappingTemplate
0 1 0 3 0 0 2 3 0 1 0.122325 10/10 NonOverlappingTemplate

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725

www.ti.com NIST Test Suite Data

11SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

0 1 1 1 3 2 1 0 0 1 0.534146 10/10 NonOverlappingTemplate
0 1 2 0 1 1 2 1 0 2 0.739918 10/10 NonOverlappingTemplate
0 0 1 2 2 2 1 0 1 1 0.739918 10/10 NonOverlappingTemplate
3 0 0 3 2 0 0 1 0 1 0.122325 10/10 NonOverlappingTemplate
2 0 1 0 0 1 1 0 3 2 0.350485 10/10 NonOverlappingTemplate
1 0 4 0 0 1 2 2 0 0 0.066882 10/10 NonOverlappingTemplate
1 2 0 1 2 1 2 0 1 0 0.739918 10/10 NonOverlappingTemplate
0 0 1 2 1 0 2 1 1 2 0.739918 10/10 NonOverlappingTemplate
0 1 1 0 2 2 1 1 1 1 0.911413 10/10 NonOverlappingTemplate
1 2 1 1 2 0 0 2 0 1 0.739918 10/10 NonOverlappingTemplate
2 0 0 3 0 1 1 0 2 1 0.350485 10/10 NonOverlappingTemplate
1 2 0 0 1 2 0 1 2 1 0.739918 10/10 NonOverlappingTemplate
0 3 0 0 2 3 1 0 0 1 0.122325 10/10 NonOverlappingTemplate
0 0 2 1 1 0 1 1 2 2 0.739918 10/10 NonOverlappingTemplate
0 0 0 1 2 1 2 2 1 1 0.739918 10/10 NonOverlappingTemplate
2 2 0 2 1 2 1 0 0 0 0.534146 9/10 NonOverlappingTemplate
1 4 0 2 0 0 0 1 1 1 0.122325 10/10 NonOverlappingTemplate
0 2 0 1 1 1 1 1 2 1 0.911413 10/10 NonOverlappingTemplate
1 0 2 1 1 1 3 0 0 1 0.534146 10/10 NonOverlappingTemplate
2 0 0 1 1 1 2 1 1 1 0.911413 10/10 NonOverlappingTemplate
0 1 2 1 1 1 0 1 2 1 0.911413 10/10 NonOverlappingTemplate
1 2 0 1 0 1 2 1 2 0 0.739918 9/10 NonOverlappingTemplate
0 1 1 0 2 1 1 0 3 1 0.534146 10/10 NonOverlappingTemplate
2 4 0 0 0 0 0 3 1 0 0.017912 9/10 NonOverlappingTemplate
1 0 0 0 2 1 3 1 0 2 0.350485 10/10 NonOverlappingTemplate
1 2 1 2 0 1 0 2 0 1 0.739918 10/10 NonOverlappingTemplate
3 1 1 2 0 0 2 1 0 0 0.350485 10/10 NonOverlappingTemplate
1 1 1 0 2 1 1 1 2 0 0.911413 10/10 NonOverlappingTemplate
1 2 0 1 2 0 3 0 0 1 0.350485 10/10 NonOverlappingTemplate
2 2 1 0 0 1 1 2 1 0 0.739918 9/10 NonOverlappingTemplate
1 0 1 3 1 0 1 0 2 1 0.534146 10/10 NonOverlappingTemplate
0 1 0 2 1 0 3 2 0 1 0.350485 10/10 NonOverlappingTemplate
1 4 1 0 0 0 1 1 1 1 0.213309 10/10 NonOverlappingTemplate
2 1 0 0 3 2 1 0 1 0 0.350485 10/10 NonOverlappingTemplate
0 0 1 2 1 2 0 1 2 1 0.739918 10/10 NonOverlappingTemplate
2 2 0 0 0 1 2 1 1 1 0.739918 10/10 NonOverlappingTemplate
2 2 0 2 0 0 2 1 0 1 0.534146 9/10 NonOverlappingTemplate
2 1 0 0 1 1 2 1 1 1 0.911413 10/10 NonOverlappingTemplate
3 0 1 1 1 2 0 1 0 1 0.534146 10/10 NonOverlappingTemplate
0 0 1 3 1 1 0 1 1 2 0.534146 10/10 NonOverlappingTemplate
3 0 1 2 2 0 1 1 0 0 0.350485 9/10 NonOverlappingTemplate
2 1 0 0 0 2 2 1 0 2 0.534146 10/10 NonOverlappingTemplate
0 0 1 1 1 4 2 1 0 0 0.122325 10/10 NonOverlappingTemplate
0 0 3 1 1 0 1 2 1 1 0.534146 10/10 NonOverlappingTemplate
0 3 0 1 2 2 0 1 1 0 0.350485 10/10 NonOverlappingTemplate
0 3 1 1 0 1 1 1 1 1 0.739918 10/10 OverlappingTemplate
0 2 2 2 0 2 2 0 0 0 0.350485 10/10 Universal
1 0 3 0 2 1 2 0 1 0 0.350485 10/10 ApproximateEntropy
1 1 0 0 1 1 2 1 1 0 ---- 7/8 RandomExcursions
1 0 0 1 1 0 1 0 2 2 ---- 7/8 RandomExcursions
0 1 0 1 2 1 0 0 1 2 ---- 8/8 RandomExcursions
0 1 0 0 0 1 2 2 1 1 ---- 8/8 RandomExcursions
1 0 1 1 0 1 1 0 2 1 ---- 8/8 RandomExcursions
0 1 0 0 3 1 0 2 1 0 ---- 8/8 RandomExcursions
1 1 2 0 0 2 1 1 0 0 ---- 8/8 RandomExcursions
1 1 2 2 0 0 0 1 1 0 ---- 8/8 RandomExcursions
2 3 0 0 0 0 0 2 1 0 ---- 7/8 RandomExcursionsVariant
3 1 1 0 0 0 0 0 2 1 ---- 8/8 RandomExcursionsVariant
2 1 1 1 0 0 0 1 1 1 ---- 8/8 RandomExcursionsVariant
1 0 1 3 0 0 1 1 1 0 ---- 8/8 RandomExcursionsVariant
1 0 2 1 0 1 2 0 0 1 ---- 8/8 RandomExcursionsVariant
1 0 0 2 3 0 0 0 0 2 ---- 8/8 RandomExcursionsVariant
1 0 0 2 1 0 1 3 0 0 ---- 8/8 RandomExcursionsVariant
0 1 1 0 1 0 1 1 0 3 ---- 8/8 RandomExcursionsVariant
0 0 2 1 0 2 0 1 1 1 ---- 8/8 RandomExcursionsVariant
0 1 1 3 2 0 0 0 1 0 ---- 8/8 RandomExcursionsVariant

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725

NIST Test Suite Data www.ti.com

12 SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

0 1 1 1 3 1 0 1 0 0 ---- 8/8 RandomExcursionsVariant
1 1 0 0 2 0 2 0 1 1 ---- 8/8 RandomExcursionsVariant
1 0 1 1 1 0 1 0 1 2 ---- 8/8 RandomExcursionsVariant
1 0 1 1 0 1 2 0 1 1 ---- 7/8 RandomExcursionsVariant
1 0 1 1 0 0 1 3 1 0 ---- 8/8 RandomExcursionsVariant
1 0 0 1 1 0 1 1 1 2 ---- 8/8 RandomExcursionsVariant
1 0 0 1 0 2 0 0 0 4 ---- 8/8 RandomExcursionsVariant
0 1 1 0 0 1 1 2 1 1 ---- 8/8 RandomExcursionsVariant
2 2 0 2 0 2 0 1 0 1 0.534146 10/10 Serial
3 0 0 1 0 1 1 1 3 0 0.213309 10/10 Serial
0 2 0 2 2 1 0 0 1 2 0.534146 10/10 LinearComplexity

- -
The minimum pass rate for each statistical test with the exception of the
random excursion (variant) test is approximately = 8 for a
sample size = 10 binary sequences.

The minimum pass rate for the random excursion (variant) test
is approximately = 7 for a sample size = 8 binary sequences.

For further guidelines construct a probability table using the MAPLE program
provided in the addendum section of the documentation.
- -

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725

13SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

Appendix B
SLAA725–January 2017

Raw Diehard Test Data

B.1 NIST Test Suite Data

Test P-Values

Birthday Spacing
0.57692 0.619324 0.024827 0.431826 0.038608
0.575724 0.832611 0.986409 0.15656

Overlapping 5-Permutation 0.035669 0.147976
Binary Rank Test for 31x31
Matrices 0.395666

Binary Rank Test for 32x32
Matrices 0.867359

Binary Rank Test for 6x8
Matrices

0.76077 0.71749 0.15782 0.17364 0.65062
0.66416 0.36365 0.26746 0.83291 0.64876
0.69357 0.01542 0.20571 0.86797 0.49402
0.2764 0.73343 0.41972 0.91576 0.42456
0.20789 0.36411 0.17734 0.25563 0.51928

Bitstream

0.80805 0.12357 0.56282 0.46154 0.81932
0.73491 0.99792 0.38662 0.29847 0.80549
0.54712 0.67202 0.20255 0.75516 0.63408
0.53228 0.30009 0.46804 0.4028 0.01558

Overlapping Pairs Sparse
Occupancy

0.8265 0.7219 0.0086 0.5612 0.1392 0.5936
0.9399 0.1245 0.4995 0.4899 0.2216 0.2384
0.1155 0.0547 0.2341 0.1026 0.952 0.1102
0.7334 0.8444 0.0948 0.6396 0.9936

Overlapping Quadruples
Sparse Occupancy

0.7475 0.9292 0.8206 0.3555 0.7603 0.4941
0.0338 0.7799 0.9676 0.2922 0.3771 0.5973
0.3392 0.0811 0.8847 0.7849 0.4163 0.7635
0.694 0.707 0.4644 0.7994 0.322

0.1116 0.024 ;0.1222 0.1358 0.4269

DNA

0.917 0.9806 0.1266 0.347 0.1992 0.9152
0.8294 0.7657 0.5384 0.5571 0.0419
0.677 0.0429 0.5466 0.1784 0.3416

0.2283 0.5929 0.662 0.1606 0.1761
0.7755 0.8309 0.707 0.7602 0.4178
0.2579 0.1777 0.6927 0.1754 0.8309

Count the 1s

0.639839 0.637017 0.136661 0.353537 0.524947 0.490358
0.645311 0.225209 0.894011 0.263088 0.404978 0.359262
0.527177 0.999997 0.400865 0.374214 0.476745
0.36752 0.398881 0.337615 0.507594 0.448888
0.042498 0.403684 0.714383 0.251934 0.649043

Parking Lot
0.928018 0.065925 0.276387 0.753306 0.819442
0.753306 0.659449 0.842447 0.218799 0.261324

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725

NIST Test Suite Data www.ti.com

14 SLAA725–January 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Random Number Generation Using MSP430FR59xx and MSP430FR69xx
Microcontrollers

Test P-Values

Minimum Distance Test

0.304473 0.358987 0.296069 0.008007 0.931874
0.838527 0.461866 0.937948 0.47756 0.851651
0.12529 0.04575 0.178803 0.020863 0.894159
0.648139 0.109445 0.911124 0.539006 0.421783

3D Spheres

0.57879 0.70432 0.11952 0.47698 0.15765
0.92923 0.06343 0.1865 0.09282 0.51931
0.71436 0.10352 0.70533 0.34363 0.03167
0.31895 0.54511 0.88435 0.38395 0.7099

Sqeeze 0.433047

Overlapping Sums
0.669995 0.961213 0.873515 0.347101 0.69825
0.434938 0.791825 0.823428 0.482064 0.293836

Runs 0.943872 0.655636 0.113751 0.246329
Craps 0.145735 0.043456

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA725

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Random Number Generation Using MSP430FR59xx and MSP430FR69xx Microcontrollers
	1 Introduction
	2 Overview of Operation
	2.1 CTR-DRBG Working State
	2.2 Source of Entropy and Nonce
	2.3 Instantiation
	2.4 Derivation Function
	2.5 Update Process
	2.6 Generating Pseudorandom Bytes
	2.7 Reseeding

	3 Using the Software Package
	4 Benefits of FRAM
	5 Security of the CTR-DRBG
	5.1 Personalization String, Reseeding, and Prediction Resistance
	5.2 Access to the Working State and JTAG Lock

	6 Degree of Randomness
	6.1 NIST Test Suite
	6.2 Diehard Test Suite

	7 References
	Appendix A Raw NIST Test Data
	A.1 NIST Test Suite Data

	Appendix B Raw Diehard Test Data
	B.1 NIST Test Suite Data

	Important Notice

