I

TeEXAS

INSTRUMENTS

Application Report
SLAA475A—0October 2010—Revised March 2019

MSP430x09x Analog Pool: Feature Set and Advanced Use

Sebastian Fritz

ABSTRACT

MSP430 Europe

The MSP430x09x is the first native 0.9-V device in the portfolio of the MSP430 family. It is designed to be
supplied from a single coin cell with a voltage range between 1.65 V and 0.9 V. While the MSP430x09x is
almost identical to other MSP430™ microcontrollers (MCUs) with respect to digital features and
peripherals, the MSP430x09x introduces a new analog module named the analog pool (A-Pool). In
addition to a general overview of the various modules found within the MSP430x09x family, this
application report provides a detailed discussion of the analog pool.

Contents
1 MSPA30X0OX OVEIVIEW 4ttt tuustsssnasssssasssssasnssssasesssassssssssestssssnessssnestssssnesssssnessssnnnssssnnnes 2
2 F Y = (oo T =0 o I 2T = o T | P 3
21 LT 01U LI T 1= = 4
2.2 INtErNal REfEIENCE 1ttt e 4
23 Starting and Stopping the A-POOl......ieiiiiiiii i 4
2.4 (] 9] 0= Tt= 1 (o] gl =0T Yo 1o o IS 5
25 e = L D O 1 X 1T o S 7
2.6 e =L NI T 1 o Tod 1T o 8
2.7 ISV T X 1T o 18
2.8 USE Of MUIIPIE FEAIUIES . .uviteiieiiite i e r e aan e rans 19
29 Temperature Measurements With the A-POOIcviiiiiiii s 20
2.10 Fractional and Integer NUMDBDEr USEuuiiiiiiesiiiieesiiintesssaneessannnessaanneesssnnnessssnnesssnnnness 20
2.11 APINTB and APFRACTB Use With ATBU and EOCBUccvieiisiisiriiiniineneriinssnsesesnnas 20
b o o I I o o =T ST 11 | o= S 20
2.13 Filtering ADC Conversions With Digital FIltersc.eeviiiiiiiiii i rn e raaaeeas 21
3 RSB0 0= 22
4 LR S] (] 1] 0T 22
List of Figures
1 MSP430L092 Functional BIOCK DIagrameeisessesisiiseesiiissssisasssssaassssssansssssannnsssaannssssannnsssnnns 2
2 Functional Block Diagram of the Analog POOIieeiiiiiiiiiiri s s aees 3
3 Example of Comparator FUNCLON ... s e s aeaes 6
4 EXamPpPle Of DAC FUNCHON 1.ttt ittt e rs st e s s e s s e s s s s s s sae s tsaa e et saa e e st s n e st sannnessannnns 8
5 Example of ADC With External Signal and Counter STOP LOGIC. . .uuurueiiueirieiiitiiieiineriieiiiessinrianneas 9
List of Tables
1 RV 0] 1= Vo = Vo = 0= G =T g o1 4
2 Comparison Between Different Measurement Methodsvveiiiiiiiiiiiiiiiiri i 17
3 Dependencies of Divider-to-Signal ACCUIACY v.uvuuueeristiriserisrerseiassssissrassssiss i 18
Trademarks
MSP430 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
SLAA475A—-0October 2010—-Revised March 2019 MSP430x09x Analog Pool: Feature Set and Advanced Use 1

Submit Documentation Feedback

Copyright © 2010-2019, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

MSP430x09x Overview www.ti.com

1 MSP430x09x Overview

The MSP430x09x allows the user to target applications such as motor control, IR communications, and
power monitoring. The main differences between the MSP430x09x and other MSP430 MCUs are:

* Native 0.9-V device

» No memory that holds information over a power cycle

» Software ROM module to support loading code to and from external memory

» JTAG pins shared with 1/O functionality

* Programmable analog module (A-Pool)

» Emulation mode for ROM code development

e Password protected ROM code

The MSP430x09x consists of several modules (see Figure 1). Two 16-bit timers are available and make it
possible to have capture/compare functionality on every port pin. The compact clock system lets you set
the correct application frequency. In addition, an analog pool (A-Pool) module is implemented. The A-Pool
contains an 8-bit DAC, comparator, and surrounding logic. The A-Pool can be configured to support
higher-level functions such as an 8-bit ADC or SVM. Furthermore, 11 I/O pins are available, four of which
are used as JTAG communication pins by default. As a software module, the bootloader found in the
MSP430L092 allows loading the application code from external memory.

RST/NMI/SVMOUT Vee GND/Vss P1.0to P1.6 P2.0t0 2.3
. ’
. ’
] LF-OSC]
. ’
. HF-0SC :
: Reset kB RAM 1/0 Port P1L 1/0 Port P2L :
CLKIN—¢&—P»i esel 2KB ROM 7 1/0s with 4 1/0Os with ’
: Clock ’ ACLK Int-Logic (Loader) (128:%2187)928 Interrupt Interrupt :
: System ' SMCLK Capability Capability :
. ’
. MCLK ’
[BT ST ' J
(] !]
. i ’
. i u
‘ crua i '
0 Working ’
: Registers :
. o
. ’
. ’
[} [}
: :
TS Tt g awatac Analog- '
’ ' Watchd Timer0_A3 Timer1_A3 Pool 4
. Debug OTA ULV-Ref ’
H uLv WDTA -Rel., ’
H support Brownout 8-Bit ADC, [}
[} . 3CC 3CC 8-Bit DAC 4
. CORE 32/16-Bit . : !) ’
¢ Registers Register Comparator, '
VREF_» SVS :
‘ '
..-.------.--.--.------.--.------.--.---------.--.------.--.------.--.--.-----.’
Figure 1. MSP430L092 Functional Block Diagram
2 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

www.ti.com Analog Pool (A-Pool)
2 Analog Pool (A-Pool)

The A-Pool module in the MSP430x09x supports several analog functions at 0.9 V, depending on the user
software. The reference voltage for the A-Pool is supplied by an internal 256-mV reference or by an
external reference that can be input through a port pin. The clock frequency can be selected from several
clock sources and can also be divided within the A-Pool. The A-Pool provides these analog functions:

e Comparator

* 8-bit elementary DAC

» 8-hit ADC

» Supply voltage monitor (SVM)
» Temperature sensor

» Ultra-low-voltage reference

The core of the A-Pool is a comparator and two multiplexers. The multiplexers are used to select the
signals for the positive and negative inputs of the comparator. In addition, a counter and specific start and
stop logic are used for the ADC and DAC operations. The inputs to the A-Pool can be divided to select the
correct voltage range. Table 1 shows the different levels for the input channels.

PSELXx
4
VREFEN REFON o000
0001
0010 CMPON oswP DFSETx
0011 TT
Reference 0100 - CxIFG logic
VREF—o0 Sha e o101 + 2 > —
o110 itchi » CxOUT
2;:):) _ ES y oLK Glitching
M% from A-Z logic > :\LIOM::EG logic
DBON DEN
OSEL 0 o
q
Hcf O—————» Aout
A0 —\N\ CLKSEL
A1—\N 1 EOCIFG logic
A2—\\\, 2
A3V VLOCLK -#[00
MCLK {01
Vee smcLk |19 = CBSTP
p
9 Pre-Scaler -8 SBSTP
by 1/2/4/8/16/32 = TBSTP
s Clock TAO.1
CLKDIVx Logic
% % TA0.0
% % xeLK = TAOEN
ADC-DAC-SAR-REG [| ~a TA1EN
Up-Dn Counter SEOC TA1.0
! 1 Start Stop Logic
. CONVON SLOPE SAREN
APVDIV Register

MDB and buffer register
Figure 2. Functional Block Diagram of the Analog Pool
The A-Pool can be a powerful tool when used to implement and execute analog functions. To enable

better performance and to avoid unintended behavior, the recommendations in this application report
should be taken into account.

SLAA475A—0October 2010—Revised March 2019 MSP430x09x Analog Pool: Feature Set and Advanced Use 3
Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS

INSTRUMENTS
Analog Pool (A-Pool) www.ti.com
2.1 Input Dividers
The inputs to the A-Pool can be divided to select the correct voltage range (see Table 1). For measuring
the supply voltage, an internal divider is also implemented. The inputs A0 to A4 have programmable
dividers included to allow the measurement of a higher voltage range. The A0 and Al input channel
voltage range can be expand to 500-mV input level; the A2 and A3 input channel voltage range can be
expand up to 2-V input level.
Table 1. Voltage Range per Channel
250-mV Input Range 1-V Input Range 2-V Input Range
LEL LS AXDIVX = 0 AXDIVX = 1 AXDIVX = 2
A0 v — —
Al v — —
A2 v v v
A3 v v v
2.2 Internal Reference
Because of the internal reference update mechanism, the VREF can slightly change over time. To avoid
this behavior and have better performance, add a 220-nF capacitor at the VREF pin. This increases the
accuracy of the A-Pool module and should be used for high-performance measurements.
2.3 Starting and Stopping the A-Pool
The A-Pool is controlled by the user software. Depending on the analog function, the A-Pool can be
started and stopped in several ways.
To start the A-Pool in a comparator mode the first time or after making any changes to the comparator
settings, it is recommended to use the following code.
APCTL = APPSEL_X+APNSEL_X; // Make new settings for comparator input
APCNF |= LCMP+CMPON; // Trigger filter again +
// Start comparison
Depending on the filter settings, the comparison starts at one of these two lines. With a filter setting of O
(DFSET = 0) the comparison starts immediately after the write of APCTL. In this case, the second line is
not needed. With any other filter setting, the comparison starts with the execution of the second line,
because the filter settings must be updated again. This can be done by a dummy write to the LCMP bit,
which is bit 4 in the APCNF register.
The following code shows a comparator example with the internal DAC as the first input and an external
voltage as the second input. The sample code also changes the inputs for the comparator to show the
appropriate restart mechanism. A toggle on CxOUT output can be observed when a voltage higher than 0
is provided to the Al input.
#include "msp4301092_h"
void main(void)
{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
P1DIR = BIT3; // Set CxOUT to port pin
P1SELO = BIT3;
P1SEL1 = BIT3;
APINT = 0x00; // Set compare value to O
APCNF = CMPON+APREFON+DBON+CONVON+DFSET_2; // Comparator on +
// Reference on +
// Buffer on +
// Conversion on +
4 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS

INSTRUMENTS
www.ti.com Analog Pool (A-Pool)
// Filter on
while(1)
{
APCTL = APNSELO+APNSEL2+0SEL; // Set DAC as pos input +
// Set AO as neg input +
// Switch DAC to multiplexer
APCNF |= LCMP+CMPON; // Trigger filter again +
// Start comparison
APCTL = APPSELO+APPSEL2+0SEL ; // Set DAC as neg input +

// Set AO as pos input +

// Switch DAC to multiplexer
APCNF |= LCMP+CMPON; // Trigger filter again +

// Start comparison

The DAC functionality is enabled by setting the CONVON bit to 1. Any change in the APINT or APFRACT
register triggers an immediate change in the analog voltage that is either provided to the AOUT pin or
used internally, depending on the A-Pool configuration.

The ADC functionality is enabled either by setting the RUNSTOP bit to 1 or by using external trigger
sources for starting the ADC. The RUNSTOP bit can be used for a direct software start trigger and is
located in the APCTL register. To avoid any unpredictable behavior, TI recommends always writing the
APCTL register word-wise or with a bit set on the RUNSTOP register. Arithmetical or logical operations on
the APCTL register, even with an unaffected RUNSTOP bit, can trigger unexpected behavior. The code
shippets in this application report always use a word-wise write to the APCTL register.

For stopping an ADC conversion, any one of several methods can be used. A hard stop can be done
either by setting the RUNSTOP bit to 0 or by using external triggers. In addition, the ADC stops at the
measured value when the CBSTP bit is set to 1, or the ADC can be stopped at the highest or lowest value
when SBSTP bit is set to 1, depending on the selected slope.

2.4 Comparator Function

To use the A-Pool as a comparator, the multiplexer must be configured correctly and the comparator itself
must be enabled. Two flags (CRIFG and CFIFG) are generated for rising and falling edge detection,
respectively, when the comparator is in clocked mode. Clocked mode is used when AZCMP bit is set to 1
or the AZSWREQ function is used. In CTEN mode, no rising or falling edge flags are generated, because
the flag generation logic is disabled. To observe the comparator status in this mode, the CxOUT bit can be
used.

A small digital filter is implemented for deglitching purposes. The user can decide between several filter
options, from no filtering up to a majority vote of three out of five samples. The filtering consumes up to
five additional comparator clocks and should be selected properly depending on the user application.

The comparator output signal itself is routed out to a dedicated port pin and can be used for external
observations or as an input for additional hardware. To be more flexible, it is also possible to switch out
the inverted comparator signal. Based on this signal, several flags such as the EOC flag or the rising and
falling edge flags are generated (see Figure 3).

SLAA475A—0October 2010—Revised March 2019 MSP430x09x Analog Pool: Feature Set and Advanced Use 5

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

Analog Pool (A-Pool)

13 TEXAS
INSTRUMENTS

www.ti.com

VREFEN

VREF—O

REFON

Reference
256 mV

A0 —WN\,
A1\

A2 —\\N\

A3 — VW

3

ﬁ%%?
}

APVDIV Register

Vce

.

3

CMPON OSWP DFSETx
+ TT —» CxIFG logic
w 0 De- o
- 1)~ _{iitching > CxOUT
- 32 xCLK > SVMIFG logi
from A-Zlogic g o ogic
LOPE
OSEL DBON ODEN
1 >—J/
B o P Aout
CLKSEL .
) EOCIFG logic
VLOCLK ‘00
MCLK ?1
smcLk |19 -m CBSTP
J
Pre-Scaler —8 SBSTP
by 1/2/4/8/16/32 ' m TBSTP
[iea Clock TA0.1
D/A-8 CLKDIVx Logic
xCLK — TAO0.0
T8 @ TAOEN
ADC-DAC-SAR-REG [| —# TA1EN
Up-Dn Counter SEOC TA1.0

. i
CONVON t SLOPE SAREN

MDB and buffer register

Figure 3. Example of Comparator Function

Start Stop Logic

This following code shows how to configure a simple comparator function with A0 and Al as inputs.

APCTL
APCNF
APOMR

APNSELO; // Set AO as pos.
CMPON; // Switch on comparator
AZCMP; // Set comparator to clocked zero compensated long term comparison

input and Al as neg. input

Within this comparison mode it is possible to use the CRIFG and CFIFG flags for interrupt generation and
comparator output change reaction.

The comparator is used in the clocked auto-zero compensation mode. This means that every two clock
cycles the comparator offset is eliminated within the auto-zero phase. During this time, the comparator
does not generate any output. To avoid this dead time, the comparator can be switched into a continuous
enable mode, as shown in the following code.

APCTL
APCNF
APOMR

APNSELO; // Set AO as pos.
CMPON; // Switch on comparator
CTEN; // Set comparator into continuous time mode for all operations

input and Al as neg. input

Using this mode, it is not possible to use the CRIFG and CFIFG flag, because the comparator is not in a
clocked mode. To observe the output of the comparator, the COMPOUT bit can be used.

MSP430x09x Analog Pool: Feature Set and Advanced Use

Copyright © 2010-2019, Texas Instruments Incorporated

SLAA475A—-0October 2010—Revised March 2019

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

I

TEXAS
INSTRUMENTS

www.ti.com Analog Pool (A-Pool)

A clocked mode can be established in several ways. First would be the use of the auto-zero compensation
mode, which is the default mode after a reset. Second would be the software request for an auto-zero
phase. Third would be an ADC conversion with the implemented SAR logic.

2.5 8-Bit DAC Function
Within the MSP430x09x, an 8-bit DAC is implemented to generate voltages between 0 and 256 mV. The
reference voltage for the DAC is the 256 mV generated internally from the reference module. The DAC
voltage either can be used internally as an input for the comparator selected with the multiplexers or can
be switched out on the AOUT pin. To set a voltage, the APINT register must be filled with the correct
value, and the output buffer select (OSEL) and DAC buffer enable signal (DBON) bits must be set. To
output the analog voltage on the port pin, it is necessary also to set the output driver (ODEN) bit. Any
change of the APINT value is directly visible on the generated analog voltage.
A simple DAC code example follows. On the AOUT pin, a rising wave can be observed. Figure 4 shows
the used paths through the A-Pool.
#include "msp4301092.h"
void main(void)
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
APCNF = DBON+CONVON+APREFON; // Enable DAC buffer +
// Enable conversion +
// Enable reference
APCTL = ODEN+OSEL; // Set DAC output to pin +
// Select output buffer
while (1)
{
APINT = APINT + 1; // Increment APINT value
b
3
SLAA475A—-0October 2010—-Revised March 2019 MSP430x09x Analog Pool: Feature Set and Advanced Use 7

Submit Documentation Feedback

Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

Analog Pool (A-Pool)

13 TEXAS
INSTRUMENTS

www.ti.com

PSELx
4
VREFEN
REFON CMPON OSWP DFSETx
VREF—o R;fsesrence + TT - CxIFG logic
mV & 0 De-
- 1] 1 citching P CxOUT
- 342 XxCLK)
from A-Z logic > SVMIFG logic
SLOPE
osgL PBON ODEN
[
» AOUT
AQ—VVV CLKSEL
A1—\N 1 EOCIFG logic
A2—\N\/N\
A3— VW VLOCLK
MCLK
Vee SMCLK L= CBSTP
)
9 Pre-Scaler —H SBSTP
by 1/2/4/8/16/32 | = TBSTP
aN Clock TAO0.1
B CLKDIVx Logic
% % TA0.0
CLK
% %) ™ TAOEN
ADC-DAC-SAR-REG B 3 TA1EN
D Up-Dn Counter SEOC TA1.0

2.6

26.1

CONVON

‘ ‘ Start Stop Logic
t SLOPE SAREN

APVDIV Register
MDB and buffer register

Figure 4. Example of DAC Function

8-Bit ADC Function

The MSP430x09x can be configured to perform one of two different types of 8-bit A/D conversions: a SAR
logic is implemented or a ramp generator with the APINT counter register can be used. With both
methods, the result is stored in the APINT register. For the DAC, comparator, and multiplexer blocks, the
APINT register is used. One comparator input is the signal to be measured, and the other signal is the
DAC output. To observe the internal signal that is used for the A/D conversion, the path to the AOUT pin
can be enabled by setting the OSEL, DBON, and ODEN bits to 1.

ADC Conversion Using Ramp

The APINT counter starts at the current APINT value and counts either up or down, depending on the
status of the SLOPE bit. When the comparator output signal changes, an end-of-conversion signal is
generated and can be used to stop the counter (see Figure 5). The value in the APINT register is then the
measured value of the input signal. When using the ramp generator method, four different methods are
possible to recalculate internal offsets and errors that are coming from the A-Pool module itself. For
example, the comparator has always a little offset, which can create either higher or lower result values. In
addition, an overdrive error can occur out of the internal logic of the A-Pool. With a high A-Pool input
frequency, the module might not react fast enough to stop the counter correctly.

MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

www.ti.com

Analog Pool (A-Pool)

VREFEN
REFON CMPON OSWP DFSETx
Reference TT —» CxIFG logic
VREF—O 256 mv k N .
- [T~ Glitching P> CxOuT
- ¥° xCLK i
from A-Z logic > SVMIFG logic
SLOPE
OSEL DBON ODEN
»—v o » Aout
A0\,
A1\ GLKSEL ‘ EOCIFG logic
A2 —\\N\ 2
A3—\W\ VLOCLK -#{00 |
MCLK 01
Vee | Vee smcLk TJ19 -uCBSTP
§6R »
9 Pre-Scaler —# SBSTP
by 1/2/4/8/16/32 = TBSTP
R imm Clock TAO0.1
D/A8 I~ || cLKDIVx Logic
—TAO0.0
R CLK
ﬁ ﬁ % § TS * = TAOEN
ADC-DAC-SAR-REG [| = TA1EN
Up-Dn Counter SEOC . TA1.0
4 ‘ * Start Stop Logic
. CONVON SLOPE SAREN
APVDIV Register
MDB and buffer register
Figure 5. Example of ADC With External Signal and Counter Stop Logic
SLAA475A—0October 2010—Revised March 2019 MSP430x09x Analog Pool: Feature Set and Advanced Use 9

Submit Documentation Feedback

Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

Analog Pool (A-Pool) www.ti.com

2.6.1.1 ADC Conversion Without Error Compensation

An ADC conversion for digital filtering can be implemented with a single ramp conversion. This
measurement method should be preferred when an exact accuracy is not so important and if the general
voltage range of the input signal should be identified. The counter starts at 0 and counts up to the
measured voltage. In this method, no error compensation is included. The following example code shows
a single ramp conversion from AO in a 500-mV range. A single conversion is done, and the value is saved
in the result variable.

#include "msp4301092_h"
unsigned char result;
void main(void)
{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
APCNF = CMPON+DBON+CONVON+APREFON; // Enable comparator on +
// Enable DAC buffer +
// Enable conversion +
// Enable reference

APVDIV = AODIV; // Set 500mV input range

APINT = 0x00; // Clear ADC-DAC-REG

APIE |= EOCIE; // Enable end of conversion interrupt
_BIS_SR(GIE); // Switch on global interrupts

APCTL = CBSTP+SBSTP+APPSELO+APPSEL2+0SEL ;
// Set DAC buffer output to PSEL +
// Select output buffer +
// Enable Comparator based stop +
// Enable Saturation based stop +
APCTL |= RUNSTOP; // Start conversion
while (1);
b
#pragma vector=APOOL_VECTOR // A-Pool interrupt service routine
__interrupt void APOOL_ISR(void)
{
switch(__even_in_range(API1V,8)) // Add offset to PC and delete flag
{
case
case

: break;

result = APINT; // Save value in variable
break;

case 4: break;
case 6: break;
case 8: break;
default: break;

T
3

N O

2.6.1.2 ADC Conversions With Overdrive Compensation

The APINT or APFRACT counter that is used to save the result does not stop immediately after the
comparator changes its state. Especially with a high-frequency A-Pool input clock, a significant error may
occur. To avoid this counting error, it is possible to use the ADC in an overdrive-compensation mode, as
shown in the following code.

#include "msp4301092.h""

unsigned char result[2]; // result array
unsigned char i = 0; // counting variable
void main(void)

{

// Stop watchdog timer to prevent time out reset

WDTCTL = WDTPW + WDTHOLD;

APCNF = CMPON+DBON+CONVON+APREFON; // Enable comparator on +
// Enable DAC buffer +

10 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

www.ti.com

Analog Pool (A-Pool)

APVDIV = AODIV;

APINT = 0x00;
APIE |= EOCIE;
_BIS_SR(GIE);

//
//
//
//
//
//

Enable conversion +

Enable reference

Set 500mV input range

clear ADC-DAC-REG

Enable end of conversion interrupt
Switch on global interrupts

APCTL = APPSELO+APPSEL2+0SEL+CBSTP+SBSTP;

APCTL |= RUNSTOP;
_BIS_SR(LPMO) ;
APINT = APINT + O;

//

//
//
//
//
//
//
//
//
//

Set DAC buffer output to PSEL +

Enable DAC buffer +

Enable conversion +

Enable reverence +

Select output buffer +

Enable Comparator based stop +
Enable Saturation based stop +
Start conversion

Go to LPMO

Add an offset for counting

APCTL = APPSELO+APPSEL2+0SEL+CBSTP+SBSTP+SLOPE;

APCTL]= RUNSTOP;
_BIS_SR(LPMO);
asm(*'nop');
while(1);
3
#pragma vector=APOOL_VECTOR
__interrupt void APOOL_ISR(void)
{
switch(__even_in_range(API1V,8))
{
case O:
case 2

break;
result[i++] = APINT;

//

//
//
//
//
//
//
//
//
//

//

//

Set DAC buffer output to PSEL +

Enable DAC buffer +

Enable conversion +

Enable reverence +

Select output buffer +

Enable Comparator based stop +
Enable Saturation based stop +
Switch to falling slope +
Start conversion

Go to LPMO

A-Pool interrupt service routine

Add offset to PC and delete flag

// Save value in result array

__bic_SR_register_on_exit(CPUOFF); // Exit LPMO

break;
break;
break;
break;
break;

case 4:
case 6:
case 8:
default:

Both values are stored in the result array for later use. The user application must make sure that the start
value of counting is in the correct range. The addition of a fixed number to the APINT or APFRACT
register can create problems when the measured value is near the upper or lower counting border. The
user application must avoid an overflow of the APINT or APFRACT register.

2.6.1.3

ADC Conversions With Offset Compensation

The comparator itself can have an internal offset. This offset can cause a significant error in the results.
To compensate for this error, the ADC can be used in an offset-compensation mode. In this mode, it is
necessary to make two measurements with changed inputs. The following code shows how to implement

this.

#include "msp4301092.h""
unsigned char result[2];

//

result array

SLAA475A—0ctober 2010—Revised March 2019
Submit Documentation Feedback

MSP430x09x Analog Pool: Feature Set and Advanced Use 11

Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

Analog Pool (A-Pool) www.ti.com

unsigned char i = 0; // counting variable

void main(void)

// Stop watchdog timer to prevent time out reset

WDTCTL = WDTPW + WDTHOLD;

APCNF = CMPON+DBON+CONVON+APREFON; // Enable comparator on +
// Enable DAC buffer +
// Enable conversion +
// Enable reference

APVDIV = AODIV; // Set 500mV input range

APINT = 0x00; // Clear ADC-DAC-REG

APIE |= EOCIE; // Enable end of conversion interrupt
_BIS_SR(GIE); // Switch on global interrupts

APCTL = APPSELO+APPSEL2+0SEL+CBSTP+SBSTP;
// Set DAC buffer output to PSEL +
// Select output buffer +
// Enable Comparator based stop +
// Enable Saturation based stop +

APCTL |= RUNSTOP; // Start conversion
_BIS_SR(LPMO); // Go to LPMO
APINT = 0xO00; // clear ADC-DAC-REG

APCTL = APNSELO+APNSEL2+0SEL+CBSTP+SBSTP+0SWP;
// Set DAC buffer output to NSEL +
// Select output buffer +
// Enable Comparator based stop +
// Enable Saturation based stop +
// Inverted comparator output is used +

APCTL |= RUNSTOP; // Start conversion
_BIS_SR(LPMO); // Go to LPMO
asm("'nop');
while(1);
b
#pragma vector=APOOL_VECTOR // A-Pool interrupt service routine
__interrupt void APOOL_ISR(void)
{
switch(__even_in_range(API1V,8)) // Add offset to PC and delete flag
{
case 0: break;
case 2: result[i++] = APINT; // Save value in result array
__bic_SR_register_on_exit(CPUOFF); // Exit LPMO
break;

case 4: break;
case 6: break;
case 8: break;
default: break;
}

3

2.6.1.4 ADC Conversions With Overall Compensation

This compensation includes all compensation methods previously mentioned and allows the most
accurate measurement. The internal offset and the overdrive error are handled by the following code.

#include "msp4301092.h"

unsigned char result[4]; // result array
unsigned char i = 0; // counting variable
void main(void)

{

// Stop watchdog timer to prevent time out reset

WDTCTL = WDTPW + WDTHOLD;

APCNF = CMPON+DBON+CONVON+APREFON; // Enable comparator on +
// Enable DAC buffer +
// Enable conversion +
// Enable reference

12 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

www.ti.com

Analog Pool (A-Pool)

APVDIV = AODIV;
APINT = 0x00;
APIE |= EOCIE;
_BIS_SR(GIE);

//
//
//
//

Set 500mV input range

clear ADC-DAC-REG

Enable end of conversion interrupt
Switch on global interrupts

APCTL = APPSELO+APPSEL2+0SEL+CBSTP+SBSTP;

APCTL |= RUNSTOP;
_BIS_SR(LPMO);
APINT = APINT + O;

//

//
//
//
//
//
//
//
//
//

Set DAC buffer output to PSEL +

Enable DAC buffer +

Enable conversion +

Enable reverence +

Select output buffer +

Enable Comparator based stop +
Enable Saturation based stop +
Start conversion

Go to LPMO

Add an offset for counting

APCTL = APPSELO+APPSEL2+0SEL+CBSTP+SBSTP+SLOPE;

APCTL |= RUNSTOP;
_BIS_SR(LPMO);
APINT = 0x00;

//

//
//
//
//
//
//
//
//
//
//

Set DAC buffer output to PSEL +

Enable DAC buffer +

Enable conversion +

Enable reverence +

Select output buffer +

Enable Comparator based stop +
Enable Saturation based stop +
Switch to falling slope +
Start conversion

Go to LPMO

clear ADC-DAC-REG

APCTL = APNSELO+APNSEL2+0SEL+CBSTP+SBSTP+OSWP;

APCTL |= RUNSTOP;
_BIS_SR(LPMO) ;
APINT = APINT + O;

//
//
//
//
//
//
//
//

Set DAC buffer output to NSEL +
Select output buffer +

Enable Comparator based stop +
Enable Saturation based stop +
Inverted comparator output is used +
Start conversion

Go to LPMO

Add an offset for counting

APCTL = APNSELO+APNSEL2+0SEL+CBSTP+SBSTP+0OSWP+SLOPE;

APCTL |= RUNSTOP;
_BIS_SR(LPMO);
asm("'nop');
while(1);
3
#pragma vector=APOOL_VECTOR
__interrupt void APOOL_ISR(void)
{
switch(__even_in_range(API1V,8))
{
case O:
case 2

break;
result[i++] = APINT;

//
//
//
//
//
//
//
//

//

//

//

Set DAC buffer output to NSEL +
Select output buffer +

Enable Comparator based stop +
Enable Saturation based stop +
Inverted comparator output is used +
Switch to falling slope +

Start conversion

Go to LPMO

A-Pool interrupt service routine

Add offset to PC and delete flag

Save value in result array

bic_SR_register_on_exit(CPUOFF); // Exit LPMO

break;
case 4: break;
case 6: break;
case 8: break;
default: break;
}
3

SLAA475A—0ctober 2010—Revised March 2019
Submit Documentation Feedback

MSP430x09x Analog Pool: Feature Set and Advanced Use

Copyright © 2010-2019, Texas Instruments Incorporated

13

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

Analog Pool (A-Pool) www.ti.com

2.6.1.5 Windowed ADC Conversion

If the voltage range of the input voltage is known, the ADC can also be used in a windowed mode. The
counting of the ADC starts at a specific value and decreases the runtime of the ADC. For a comparison of
the conversion methods, see Section 2.6.4. For an input voltage in a range of 250 mV to 500 mV, the
following code can be used.

#include "msp4301092.h""
unsigned char result;
void main(void)
{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
APCNF = CMPON+DBON+CONVON+APREFON; // Enable comparator on +
// Enable DAC buffer +
// Enable conversion +
// Enable reverence

APVDIV = AODIV; // Set 500mV input range

APINT = 0x80; // Start measurement at 250mV

APIE |= EOCIE; // Enable end of conversion interrupt
_BIS_SR(GIE); // Switch on global interrupts

APCTL = CBSTP+SBSTP+APPSELO+APPSEL2+0SEL ;
// Set DAC buffer output to PSEL +
// Select output buffer +
// Enable Comparator based stop +
// Enable Saturation based stop +

APCTL |= RUNSTOP; // Start conversion
_BIS_SR(LPMO); // Go to LPMO
asm(*'nop');
while (1);
3
#pragma vector=APOOL_VECTOR // A-Pool interrupt service routine
__interrupt void APOOL_ISR(void)
{
switch(__even_in_range(API1V,8)) // Add offset to PC and delete flag
{
case O0: break;
case 2: result = APINT; // Save value in variable

__bic_SR_register_on_exit(CPUOFF);// Exit LPMO

break;
case 4: break;
case 6: break;
case 8: break;
default: break;
T
3

2.6.2 ADC Conversion Using SAR

In addition to the ramp method, a SAR conversion is also implemented. Within 8 clock cycles, the SAR
implementation reaches the measured value with an accuracy of 1 bit. The SAR logic does not
compensate for any internal offsets of the A-Pool module. The following code shows the settings to use
the SAR logic.

#include "msp4301092.h""
unsigned char result; // Result variable
void main(void)
{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
APCNF = CMPON+DBON+CONVON+APREFON; // Enable comparator on +
// Enable DAC buffer +

14 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS

INSTRUMENTS
www.ti.com Analog Pool (A-Pool)

// Enable conversion +
// Enable reference

APVDIV = AODIV; // Set 500mV input range

APIE |= EOCIE; // Enable end of conversion interrupt

APOMR |= SAREN; // Enable SAR logic

_BIS_SR(GIE); // Switch on global interrupts

APCTL = APPSELO+APPSEL2+0SEL+RUNSTOP;
// Set DAC buffer output to PSEL +
// Select output buffer +
// Start conversion
_BIS_SR(LPMO); // Go to LPMO
asm("'nop');
while(1);
3
#pragma vector=APOOL_VECTOR // A-Pool interrupt service routine
__interrupt void APOOL_ISR(void)
{
switch(__even_in_range(API1V,8)) // Add offset to PC and delete flag
{
case 0: break;
case 2: result = APINT; // Save value in variable
break;
case 4: break;
case 6: break;
case 8: break;
default: break;

SLAA475A—-0October 2010—-Revised March 2019 MSP430x09x Analog Pool: Feature Set and Advanced Use 15

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

Analog Pool (A-Pool)

13 TEXAS
INSTRUMENTS

www.ti.com

2.6.3 Multiple ADC Conversions
The A-Pool can sample up to four external analog voltages with individual voltage dividers for each input
channel. The conversions are done sequentially, and the user applications must select the sample
channel. The APINTB register can be used to save the last sampled value during the conversion of the
next channel.
The following code shows the sample of three channels (A0 to A2) with different input dividers.
#include "msp4301092_h"
unsigned char result[3]; // result array
unsigned char i = 0; // counting variable
void main(void)
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
APCNF = CMPON+DBON+CONVON+APREFON+EOCBU;
// Enable comparator on +
// Enable DAC buffer +
// Enable conversion +
// Enable reference +
// Enable EOC buffer
APVDIV = AODIV+A1DIV+A2DIVO; // Set A0 to 500mV input range
// Set Al to 500mV input range
// Set A2 to 1V input range
APINT = Ox00; // Clear ADC-DAC-REG
APIE |= EOCIE; // Enable end of conversion interrupt
_BIS_SR(GIE); // Switch on global interrupts
APCTL = APPSELO+APPSEL2+0SEL+CBSTP+SBSTP;
// Set DAC buffer output to PSEL +
// Set AO to NSEL +
// Select output buffer +
// Enable Comparator based stop +
// Enable Saturation based stop +
APCTL |= RUNSTOP; // Start conversion
_BIS_SR(LPMO); // Go to LPMO
APINT = 0xO00; // clear ADC-DAC-REG
APCTL = APPSELO+APPSEL2+APNSELO+OSEL+CBSTP+SBSTP;
// Set DAC buffer output to PSEL +
// Set Al to NSEL +
// Select output buffer +
// Enable Comparator based stop +
// Enable Saturation based stop +
// Inverted comparator output is used +
result[0] = APINTB; // Save fTirst value
APCTL |= RUNSTOP; // Start conversion
_BIS_SR(LPMO); // Go to LPMO
APINT = 0x00; // clear ADC-DAC-REG
APCTL = APPSELO+APPSEL2+APNSEL1+0SEL+CBSTP+SBSTP;
// Set DAC buffer output to PSEL +
// Set Al to NSEL +
// Select output buffer +
// Enable Comparator based stop +
// Enable Saturation based stop +
// Inverted comparator output is used +
result[1] = APINTB; // Save second value
APCTL |= RUNSTOP; // Start conversion
_BIS_SR(LPMO); // Go to LPMO
result[2] = APINTB; // Save third value
APCTL |= RUNSTOP; // Start conversion
_BIS_SR(LPMO); // Go to LPMO
asm(*'nop');
while(1);
3
#pragma vector=APOOL_VECTOR // A-Pool interrupt service routine
16 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback

Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

I

TEXAS

INSTRUMENTS

www.ti.com

Analog Pool (A-Pool)

2.6.4

2.6.5

__interrupt void APOOL_ISR(void)

{
switch(__even_in_range(API1V,8))
{
case 0: break;
case 2:

break;

case 4: break;
case 6: break;
case 8: break;
default: break;
T

}

// Add offset to PC and delete flag

__bic_SR_register_on_exit(CPUOFF); // Exit LPMO

Comparison Between Different Measurement Methods

To compare the different methods regarding accuracy and speed, a few basic conditions must be taken
into account. The parameters for the following comparisons are:

e Because both program execution time and measurement time are relevant for the comparison, the
program and ADC are supplied with the same clock speed.

* The input value that is measured with the different methods is in the middle of the measurement range.

This means the correct value is 0x80 in integer mode.

* The internal reference is used. One count step equals 1 mV.

e The Program Execution Clock Cycles column in Table 2 shows all clock cycles that are necessary to
execute the measurement. No interrupt service routines or additional overhead, such as clock module
settings, are included. The program execution cycle counter was determined by the cycle counter of

the IDE.

» The compared programs are not using filters.
» All observations and measurement are done at room temperature.

e The treated errors are only errors that can occur because of the design structure. In addition, the ADC
values can be changed by noise.

Table 2 shows comparison of the conversion methods regarding execution speed and measurement

accuracy.

Table 2. Comparison Between Different Measurement Methods

Maximum | Program Execution Measurement Only Clock Overall Clock Cycles

MIEEELTEETT b E e Error Clock Cycles Cycles * Error Needed
Ramp without compensation +3 44 (70) 128 £+ 3 169 to 175
Ramp with offset compensation +1 68 (150) 2x (128 +1) 322 to 326
Ramp with overdrive
compensation 2 68 (142) 2x (128 = 2) 320 to 328
Ramp with overall compensation +0 138 (288) (2x(128+2) + (2% (128 £ 1)) 692 to 704
Windowed ramp without
compensation +3 44 (71) 16+ 3 57 to 63
(starting point 0x70)
Windowed ramp with overall
compensation +0 152 (288) (2x(16£2)+ (2% (16 +1)) 210 to 222
(starting points 0x70 and 0x90)
SAR logic +1 39 8 47

Error Dependencies

The errors themselves have different dependencies, such as the reference voltage or the A-Pool clock.

The overdrive error is dependent on the A-Pool clock frequency. A high frequency increases the possibility
that an overdrive error occurs. With the highest clock frequency, the maximum error is 1 voltage step.

SLAA475A—0ctober 2010—Revised March 2019
Submit Documentation Feedback

MSP430x09x Analog Pool: Feature Set and Advanced Use 17

Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

Analog Pool (A-Pool) www.ti.com

The internal reference is refreshed on a regular time base. Between the refresh cycles, the reference can
have a slight drift, which can have an impact on the measurement. The update frequency of the reference
is selected to meet the specification limits shown in the data sheet.

Depending on the input divider for the signal, the resolution of the signal is limited. The accuracy changes
with divider settings. Table 3 shows these dependencies.

Table 3. Dependencies of Divider-to-Signal Accuracy

Divider Setting L Asﬁgt‘];?cy G
1 1mv
2 2mv
4 mV

2.7 SVM Function
The A-Pool can be used to implement a supervision voltage monitor function. The integrated V. divider
provides the V. divided by 8 or divided by 4 for better observation accuracy. A nearly full battery can be
easily observed by the V. divided by 8. Lower battery voltages should be observed with the V. divided
by 4 to get a higher resolution of the supply voltage.
The customer has the choice between a comparator-based and an ADC-based implementation. Using the
ADC, the application can measure the internal V.. voltage and can take actions depending on the
measured value. The comparator-based solution compares the desired voltage level with the divided V¢
voltage.
To generate an SVM, the divided V. input must be connected to the comparator. Furthermore, the
VCCDIVEN bit must be set to 1 to enable the internal V. ladder. The measured value shows the current
Vc value divided by the selected divider. The following code shows a simple V.. observation using the
comparator functionality. An SVMIFG flag is generated when the voltage falls below the selected limit.
Unlike the SVM functions known from other MSP430 devices, this SVM implementation triggers only one
event at the moment when the V. crosses the selected limit. If the V. level is below this limit, no
additional SVM flag is generated by the logic.
#include "msp4301092_h"
void main(void)
{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
P1DIR |= BITO; // Indicates VCC crosses SVM level
APOMR |= CTEN; // Enable CTEN mode
APINT = 163; // Set voltage level 1300mV / 8 = 163mV
APVDIV |= VCCDIVEN; // Enable VCC divider
APCNF = CMPON+DBON+CONVON+APREFON; // Enable comparator on +
// Enable DAC buffer +
// Enable conversion +
// Enable reference
APCTL = APPSEL2+APPSEL1+APNSEL2+APNSELO+OSEL ;
// Set voltage divider to PSEL +
// Set DAC output to NSEL +
// Select output buffer
SFRIFG1 &=~ SVMIFG; // Clear SWM flag
APCNF |= CMPON; // Start comparison
while(l)
{
if (SFRIFG1 & SVMIFG) // Check if SVM flag is set
{
P10OUT ~= BITO; // Indicates VCC crosses SVM level
SFRIFG1 &=~ SVMIFG; // Clear SVM flag
3
18 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

www.ti.com

Analog Pool (A-Pool)

}
}

2.8 Use of Multiple Features

The A-Pool is not limited to providing only one of the available functions in an application. The user can
decide when to provide a specific function for the application. For this, the timers or a software-based

solution can be used. The following code shows a simple A/D conversion and SVM monitoring with

software triggers. The observed V. voltage is 1.25 V, and the measured channel is A0 with 500-mV

range.

#include "msp4301092_h"
unsigned char result;
void main(void)

{

// Stop watchdog timer to prevent time out reset

WDTCTL = WDTPW + WDTHOLD;

P1DIR |= BITO; // Indicates VCC crosses SVM level
APVDIV |= AODIV+VCCDIVEN; // Enable VCC divider
// Set 500mV input range
_BIS_SR(GIE); // Switch on global interrupts
APCNF = CMPON+DBON+CONVON+APREFON; // Enable comparator on +
// Enable DAC buffer +
// Enable conversion +
// Enable reference
APOMR |= CTEN; // Enable CTEN mode
APIE |= EOCIE; // Enable end of conversion interrupt
while(l)
{
APINT = 156; // Set voltage level 1250mV / 8 = 156mV
APCTL = APPSEL2+APPSEL1+APNSEL2+APNSELO+OSEL;
// Set voltage divider to PSEL +
// Set DAC output to NSEL +
// Select output buffer
SFRIFG1 &=~ SVMIFG; // Clear SVM flag
APCNF |= CMPON; // Start comparison
ifT (SFRIFG1 & SVMIFG) // Check if SVM flag is set
{
P10UT ~= BITO; // Indicates VCC crosses SVM level
SFRIFG1 &=~ SVMIFG; // Clear SWM flag
3
APINT = 0x00; // Clear ADC-DAC-REG
APCTL = CBSTP+SBSTP+APPSELO+APPSEL2+0SEL ;

APCTL |= RUNSTOP;
_BIS_SR(LPMO) ;
b

¥
#pragma vector=APOOL_VECTOR

__interrupt void APOOL_ISR(void)
{
switch(__even_in_range(API1V,8))
{
case O0: break;
case 2: result = APINT;
__bic_SR_register_on_exit(CPUOFF);
break;
break;
break;
break;

case 4:
case 6:
case 8:

//
//
//
//
//
//

//

//

//
//

Set DAC buffer output to PSEL +
Select output buffer +

Enable Comparator based stop +
Enable Saturation based stop +
Start conversion

Go to LPMO

A-Pool

interrupt service routine

Add offset to PC and delete flag

Save value in variable

Exit LPMO

SLAA475A—0ctober 2010—Revised March 2019
Submit Documentation Feedback

MSP430x09x Analog Pool: Feature Set and Advanced Use

Copyright © 2010-2019, Texas Instruments Incorporated

19

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

Analog Pool (A-Pool) www.ti.com

default: break;
3
T

2.9 Temperature Measurements With the A-Pool

Like other MSP430 ADCs, the A-Pool has an integrated temperature sensor that can be used to observe
the current temperature. To do so, select one of the ADC measurement methods (uncompensated,
compensated ramp, or SAR) and set the internal temperature sensor to one of the comparator inputs. In
addition, the temperature sensor itself must be enabled by setting the TMPSEN bit to 1. The measured
ADC value represents the current temperature.

2.10 Fractional and Integer Number Use

The A-Pool can perform calculations using either unsigned integer or fractional numbers. For this, the user
has the choice between the APINT and APFRACT registers, which are both mapped to the same logic 16-
bit register. The APINT register represents the lower 16 bits of this register, and the APFRACT register
represents the upper 16 bits. Writing to one of these registers also enables the preferred mode.

2.11 APINTB and APFRACTB Use With ATBU and EOCBU

These two registers are implemented for advanced use. In combination with the EOCBU bit, a measured
value can be stored in a buffer for later treatment. This is useful when multi-channel ADC conversions are
being performed, for example, to handle the newest value while the next ADC conversion is running in
parallel.

In addition, the registers can be also used to provide new data on a regular time base. Using the ATBU bit
and the capture compare register of the Timer_AO0 (TAOCCR1), the new data can be written from the
buffer to the count register on a regular basis. This can be used, for example, to provide new data to the
DAC before the new analog value is needed.

2.12 A-Pool Trigger Sources

The A-Pool has three trigger sources. The triggers can be used to provide specific analog voltages on a
dedicated time and can be also used to stop any A-Pool activity.

For stopping the A-Pool, it is possible to use the Timer_AO capture/compare register 1 (CCR1). To do so,
the stop signal must be generated by the application, and the TBSTP bit must be set to one.

Two timer capture compare registers (Timer_A0 CCRO and Timer_Al CCRO0) can be used to start the A-
Pool. To do so, the TAOEN and TAL1EN bits must be set accordingly.

The following code shows how to start and stop the A-Pool with Timer_AO0. The starting and stopping ADC
ramps can be observed on the AOUT pin. The ADC ramp does not stop at a specific voltage level,
because no SBSTP or CBSTP bits are set.

#include "msp4301092.h"

void main(void)

{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;

TAOCCRO = 600; // Set start value to 600

TAOCCR1 = 300; // Set stop value to 300

TAOCCTLO = OUTMOD_3; // Set CCRO outmode to Set/Reset
TAOCCTL1 = OUTMOD_3; // Set CCRO outmode to Set/Reset
TAOCTL = TASSEL_2+MC_1+TACLR; // Set SMCLK to timer clock source +

// Set timer to up mode +

// Clear timer count register
APCNF = CMPON+DBON+CONVON+APREFON+TAOEN;

// Enable comparator on +

// Enable DAC buffer +

// Enable conversion +

20 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

www.ti.com Analog Pool (A-Pool)

// Enable reference +
// Enable TimerAO start

APCTL = APPSELO+APPSEL2+0SEL+ODEN+TBSTP;
// Set DAC buffer output to PSEL +
// Select output buffer +
// Enable output driver +
// Enable timer based stop

while (1);

3

2.13 Filtering ADC Conversions With Digital Filters

For ADC conversions that use the ADC ramp mechanism, it can make sense to use the internal digital
filter to get more stable values. To do so, the digital filters must be triggered each time the measurement
method is changed. Similar to the comparator function, the application must provide an additional write to
LCMP of the APCNF register. The following code shows how this can be done.

#include "msp4301092_h"
void main(void)
{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
APCNF = CMPON-+DBON+CONVON+APREFON+DFSET_1;
// Enable comparator on +
// Enable DAC buffer +
// Enable conversion +
// Enable reference +

_BIS_SR(GIE); // Switch on global interrupts
APCTL = APPSELO+APPSEL2+0SEL+CBSTP+SBSTP;
// Set DAC buffer output to PSEL +

// Enable DAC buffer +

// Enable conversion +

// Enable reverence +

// Select output buffer +

// Enable Comparator based stop +
// Enable Saturation based stop +

APCNF |= LCMP; // Trigger filter again
APCTL |= RUNSTOP; // Start conversion
_BIS_SR(LPMO); // Go to LPMO

As a side effect, the filter can increase the deviation of the measured values depending on the selected
filter settings. This must be taken into account when using these measured values. These filter methods
also manage any possible deviation from the filter itself.

When the SAR logic is used for measurement, filtering is not useful, because of the way the SAR logic
works. Wrong measurement values are the consequence of using filters in combination with the SAR
logic.

SLAA475A—-0October 2010—-Revised March 2019 MSP430x09x Analog Pool: Feature Set and Advanced Use 21

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

13 TEXAS
INSTRUMENTS

Summary www.ti.com

3 Summary

The modules of the MSP430x09x enable the user to cover a great bandwidth of applications. With the A-
Pool, the MSP430x09x contains a very powerful module that can be easily used for several kinds of
analog operations. The use is highly software based, and the internal components make the use easy. In
addition, the A-Pool is the first analog circuit that is designed for this low voltage range and that delivers
accurate values and results. Because of its features, the A-Pool can be used in many customer
applications, especially for single-battery applications without any external boost functionality necessary.

4 References
1. MSP430L092, MSP430C09x mixed-signal microcontrollers data sheet
2. MSP430x09x Family User's Guide

22 MSP430x09x Analog Pool: Feature Set and Advanced Use SLAA475A—-0October 2010—-Revised March 2019

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A
http://www.ti.com/lit/pdf/SLAS673
http://www.ti.com/lit/pdf/SLAU321

13 TEXAS
INSTRUMENTS

www.ti.com Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from October 21, 2010 to March 18, 2019 Page

« Format updates and editorial changes throughout dOCUMENToiiiiii e s e r e s s anneeas

SLAA475A—0October 2010—Revised March 2019 Revision History 23

Submit Documentation Feedback
Copyright © 2010-2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA475A

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	MSP430x09x Analog Pool: Feature Set and Advanced Use
	1 MSP430x09x Overview
	2 Analog Pool (A-Pool)
	2.1 Input Dividers
	2.2 Internal Reference
	2.3 Starting and Stopping the A-Pool
	2.4 Comparator Function
	2.5 8-Bit DAC Function
	2.6 8-Bit ADC Function
	2.6.1 ADC Conversion Using Ramp
	2.6.1.1 ADC Conversion Without Error Compensation
	2.6.1.2 ADC Conversions With Overdrive Compensation
	2.6.1.3 ADC Conversions With Offset Compensation
	2.6.1.4 ADC Conversions With Overall Compensation
	2.6.1.5 Windowed ADC Conversion

	2.6.2 ADC Conversion Using SAR
	2.6.3 Multiple ADC Conversions
	2.6.4 Comparison Between Different Measurement Methods
	2.6.5 Error Dependencies

	2.7 SVM Function
	2.8 Use of Multiple Features
	2.9 Temperature Measurements With the A-Pool
	2.10 Fractional and Integer Number Use
	2.11 APINTB and APFRACTB Use With ATBU and EOCBU
	2.12 A-Pool Trigger Sources
	2.13 Filtering ADC Conversions With Digital Filters

	3 Summary
	4 References

	Revision History
	Important Notice

