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ABSTRACT
Without a hardware multiplier, multiplication and division require many instruction cycles, especially in C
code. This report describes a method to perform multiplication and division with only shift and add
instructions without a hardware multiplier. The method is based on Horner's method. The MSP430™
microcontroller (MCU) can perform a register shift or add in one instruction cycle. This allows fast
execution of multiplications and divisions using Horner's method. This method not only produces accurate
results but also provides a very good dynamic range, because it does not depend on finite word length
effects like some of the conventional methods. This document also describes the Canonical Signed Digit
(CSD) representation of numbers, which further reduces the computational load when used with this
method for multiplication and division. Note that Horner's method requires the multiplier or the divisor to be
known in advance to function.

The source code that is described in this application report is available from www.ti.com/lit/zip/slaa329.
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Trademarks
MSP430 is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

1 Introduction
Numbers can be broadly classified as fixed point or floating point. The fixed-point number representation
is limited to positive and negative integers, while floating-point numbers can also represent fractions.
MCUs typically support only fixed-point numbers and calculate only fixed-point arithmetic. Therefore,
alternate methods must be devised to calculate floating-point arithmetic. This also leads to a loss in
precision due to finite word length effects. Some microcontrollers do not have a hardware multiplier and
rely on algorithms based on repeated addition to perform multiplication and division operations. This
method consumes many instruction cycles and exhibits limited precision. The Horner's method is tailor-
made for such processors without much loss in precision.

2 Horner's Method
The Horner's method requires the multiplier or the divisor to be known in advance. This is not a serious
limitation, because few applications perform multiplication or division of numbers that change at runtime.
After this value is established, the multiplication or division can be performed efficiently with just shift and
add operations. The operand is denoted by X, the multiplier by M, and the divisor by D.

2.1 Multiplication
In explaining this method, first is considered the multiplication of two unsigned fractions.

2.1.1 Example 1: Unsigned Multiplication of Two Fractions
Let the number 0.12345 be multiplied by the constant 0.14325. The 12-bit binary representations of these
numbers are:

X = 0.12345 = 0.000111111001b
M = 0.14325 = 0.001001001010b

The conventional method to perform this multiplication is:
0.12345 × 0.14325 = (0.000111111001b)(2–3 + 2–6 + 2–9 + 2–11)

= 0.000000111111b +
0.000000000111b +
0.000000000001b +
0.000000000000b

0.000001000111b = 0.017333984375

The correct result of this multiplication is 0.0176842125, and the above method results in an absolute
error of 0.000350228125, which is approximately 1.5 LSB. This error can be attributed to finite word length
effects due to register width limitations. As the number of bits allocated for the fractions increase this error
is reduced. The Horner's method aims to reduce this error while maintaining the same register widths.

The Horner's algorithm is based on the positions of the 1s in the multiplier and their distance to the
immediate 1 to their left. This is done starting from the rightmost bit position and moving left until the last 1
before the binary point.

In the binary equivalent of the multiplier 0.14325 = 0.001001001010b, starting from the right the first 1
occurs at bit position 2–11. The difference in position of this 1 to its immediate 1 to the left is two. Similarly
the difference for the 1 in bit position 2–9 is three and so on.
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If the number to be multiplied is denoted as X, the design equations can be written as:

Step 1: Set the intermediate result equal to the operand X and start with the rightmost 1.

X × 2–2 + X = X1 For the first iteration, the weight 2–2 is applied to the intermediate result as the
distance of the rightmost 1 (bit position 2–11) in the multiplier to its next 1 (bit
position 2–9) is two. The operand X is added to account the occurrence of the 1 at
bit position 2–9. The result of this addition is now stored as the intermediate result
after this step.

Step 2: Proceed to the next 1 in bit position 2–9

X1 × 2–3 + X = X2 The weight 2–3 is now applied to the intermediate result (updated in Step 1),
because the distance of the 1 in bit position 2–9 to its next 1 (bit position 2–6) is
three. The operand is again added for the reason explained in Step 1.

Step 3: Proceed to the next 1 in bit position 2–6

X2 × 2–3 + X = X3 The weight 2–3 is applied to the intermediate result (updated in Step 2) and the
operand added.

Step 4: Proceed to the last 1 in bit position 2–3

Final result = X3 × 2–3 The factor 2–3 is applied to the intermediate result (updated in Step 3), as it is
the weight at the position of the leftmost 1. The operand is not added this time,
because all of the 1s have been taken into account.

This approach can be validated by back substituting the intermediate results.

Final result = X3 × 2–3 = (X2 × 2–3 + X) × 2–3 = [(X1 × 2–3 + X) × 2–3 + X] × 2–3

= {[(X2 × 2–2 + X) × 2–3 + X] × 2–3 + X} × 2–3

= X × (2–11 + 2–9 + 2–6 + 2–3)

This result matches with the multiplication discussed earlier. The algorithm with X = 0.000111111001b
when implemented gives:

X1 = X × 2–2 + X = 0.000001111110b +
0.000111111001b

X1 → 0.001001110111b

Similarly,

X2 = X1 × 2–3 + X = 0.000001001110b +
0.000111111001b

X2 → 0.001001000111b

And,

X3 = X2 × 2–3 + X = 0.000001001000b +
0.000111111001b

X3 → 0.001001000001b
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Final result = X3 × 2–3 = 0.000001001000b = 0.017578125

This has an absolute error of 0.0001060875 which is just 0.434534 LSB. Thus Horner's method gives a
better result for the same width limitations. Also, the method described uses only shift and add operations.
The procedure remains the same if the operand is a negative fraction. Numerical examples for various
combinations of the operand (X) and multipliers (M) are given in Section 3.

2.2 Division
Now that Horner's method is shown to work for multiplication with good accuracy, it is easily extended to
division. The fact that division by a number is a multiplication by its reciprocal is used to explain the
approach. The examples shown in Section 3 indicate that Horner's method works flawlessly for all types of
multipliers. Only one example that implements division is shown.

2.2.1 Example 2: Unsigned Division of an Integer by a Floating Point Number
Consider the division of the number X = 441 by the factor 41.8375.

X = 441 = 0110111001b

D = 41.8375 = 0101001.1101011001b

M = 1/41.8375 = 0.0239020018 = 0.0000011000011110b

The design equations for this division are:

Step 1: Set the intermediate result equal to the operand X and start with the rightmost 1

X × 2–1 + X = X1 For the first iteration, the weight 2–1 is applied to the intermediate result as the
distance of the rightmost 1 (bit position 2–15) in the multiplier to its next 1 (bit
position 2–14) is one. The operand X is added to account the occurrence of the 1 at
bit position 2–14. The result of this addition is now stored as the intermediate result
after this step.

Step 2: Proceed to the next 1 in bit position 2–14

X1 × 2–1 + X = X2 The weight 2–1 is now applied to the intermediate result (updated in Step 1),
because the distance of the 1 in bit position 2–14 to its next 1 is one. The operand is
again added for the reason explained in Step 1.

Step 3: Proceed to the next 1 in bit position 2–13

X2 × 2–1 + X = X3 The weight 2–1 is applied to the intermediate result (updated in Step 2) and the
operand added.

Step 4: Proceed to the next 1 in bit position 2–12

X3 × 2–5 + X = X4 The weight 2–5 is applied to the intermediate result (updated in Step 3) and the
operand added.

Step 5: Proceed to the next 1 in bit position 2–7

X4 × 2–1 + X = X5 The weight 2–1 is applied to the intermediate result (updated in Step 4) and the
operand added.

Step 6: Proceed to the last 1 in bit position 2–6
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Final result = X5 × 2–6 The factor 2–6 is applied to the intermediate result (updated in Step 5) as it is
the weight at the position of the leftmost 1. The operand is not added this
time, because all the 1s have been taken into account.

The correct result for this division is 10.5407827, and the result obtained is 10 with the fractional part
discarded with an error of 0.5407827, similar to the error in conventional methods.

All types of operands and multipliers shown in the previous section and Section 3 can be extended to the
process of division to produce the desired results.

2.3 Canonical Signed Digit Representation (CSD)
The efficiency of Horner's method can be further improved by using the Canonical Signed Digit (CSD)
format to represent the multiplier or divisor. The CSD format aims to reduce the number of add operations
during multiplication and division. The CSD format has a ternary set as opposed to a binary set in number
representation. The symbols used in this format are {0, 1, 1}, with 1 representing –1. The goal is to group
consecutive 1s and change them to a ternary representation from binary representation. This is done
starting from the rightmost 1 and proceeding left until the last 1. By doing so, the final CSD representation
never has adjacent 1s or 1s. This representation is effective when there are many adjacent 1s in the
binary representation.

Consider the 12-bit representation of 0.12345 = 0.000111111001b.

The CSD format can be used here to group the consecutive 1s. Starting from the rightmost bit, the first 1
occurs at the position 2–12. This 1 does not have an adjacent 1 to its left and hence not modified. The next
1 at position 2–9 has five adjacent 1s to the left of it. These six 1s are combined and 1 is placed at the
rightmost bit position (2–9), zeros at the remaining positions (2–8 to 2–4) and a 1 at the bit position 2–3 (one
position left to leftmost 1 of the original sequence). This process is repeated for additional groups of 1s
that are encountered. The CSD representation now becomes:

0.12345 = 0.001000001001CSD

Horner's method using CSD format reduces the number of add operations during multiplication.
Section 2.3.1 is the same as Section 2.1.1, with the roles of the multiplier and multiplicand interchanged.
The method gives exact results with reduced number of add operations.

2.3.1 Example 3: Unsigned Multiplication of Fractions Using Horner's Method and CSD
Representation

X = 0.14325 = 0.001001001010b

M = 0.12345 = 0.001000001001CSD

The ternary representation results in a slight modification to Horner's method. The design equation now for
an operand X becomes:

Step 1: Set the intermediate result equal to the operand X and start with the rightmost 1.

X × 2–3 – X = X1 For the first iteration, the weight 2–3 is applied to the intermediate result as the
distance of the rightmost 1 (bit position 2–12) in the multiplier to its next 1 or –1 (bit
position 2–9) is three. The operand X is now subtracted (instead of being added) to
account the occurrence of the –1 (instead of a 1) at bit position 2–9. The result of
this subtraction is now stored as the intermediate result after this step.

Step 2: Proceed to the next 1 or –1 (in this example) at bit position 2–9

X1 × 2–6 + X = X2 The weight 2–6 is applied to the intermediate result (updated in Step 1) and operand
added, because 1 is encountered at bit position 2–3.
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Step 3: Proceed to the last 1 in bit position 2–3

Final result = X2 × 2–3 The factor 2–3 is applied to the intermediate result (updated in Step 2) as it is
the weight at the position of the leftmost 1 (or –1). The operand is not added
this time, because all the 1s (or –1s) have been taken into account.

The algorithm with X = 0.001001001010b when implemented gives:

X1 = X × 2–3 – X = 0.000001001001b –
0.001001001010b

X1 → .110111111111b = Sign bit

Similarly,

X2 = X1 × 2–6 + X = .111111110111b +
0.001001001010b

X2 → 0.001001000001b

Final result = X2 × 2–3 = 0.000001001000b = 0.017578125

By grouping consecutive 1s, the number of add operations is reduced from 6 to 2. A few things can be
observed with the results obtained. In this example, interchanging the roles of multiplier and multiplicand
produced similar results. Hence, the absolute error in this case is also 0.0001060875, which is just
0.434534 LSB.

The CSD representation holds for integers as well, with a similar procedure. Additional care must be taken
while grouping the 1s in doing the conversion to CSD of fractions and integers. The grouping of 1s must
be done taking each group independently, one at a time. An example of the integer 441 represented in
CSD is shown below:

441 = 0110111001b = 1001001001CSD

Step 1 441 = 0110111001b = 0111001001CSD

Step 2 441 = 0111001001CSD = 1001001001CSD

Additional examples using the CSD format in conjunction with Horner's method is shown in Section 3.

2.4 Summary
The performance of Horner's method with and without CSD representations has been implemented on the
MSP430 architecture. Comparisons of the number of instruction cycles for each multiply and divide is
made for Horner's method against its C equivalent and the existing algorithms. The C code and the
associated assembly files have been included in a zip file accompanying this application report. Their
descriptions are provided in Section 4. The examples considered are (41 × 441), (41 × 441.8375),
(9280/41), and (1500/37.12345) for integer-integer and integer-float multiplication and division,
respectively.

2.4.1 Results
Table 1 shows a comparison among the methods. For the integer-float multiplication example, the
accuracy of Horner's method is almost perfect, which is not the case with existing conventional algorithms.
Also, if the multiplier were a pure fraction, scaling of the multiplier to the nearest integer must be done
before the use of conventional algorithms.
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(1) The C library is part of the IAR Embedded Workbench Ver. 3.41A, written for the MSP430 family of devices.
(2) The algorithms have been explained in the book Computer Organization, Carl Hamacher, Zvonko Vranesic, and Safawat Zaky, 3rd

Edition, McGraw Hill Publication, 1990.
(3) Includes cycles for type conversion from float to integer as part of a requirement of the algorithm used.

Table 1. Observations for the Methods Discussed

Type Methods Instruction
Cycles

Code Size
(bytes) Results Absolute Error

Integer-Integer Multiplication
(41 × 441)

CLIB (1) 77 50 18081 0
Existing methods (2) 107 54 18081 0

Horner 15 32 18081 0
Horner+CSD 13 30 18081 0

Integer-Integer Division
(9280 / 41)

CLIB 183 80 226 0
Existing methods 191 28 226 0

Horner 23 48 226 0
Horner+CSD 21 44 226 0

Integer-Float Multiplication
(41 × 441.8375)

CLIB 427 (3) 322 18115.3375 0
Existing methods 107 54 18081 34.3375

Horner 32 66 18115 0.3375
Horner+CSD 29 60 18115 0.3375

Integer-Float Division
(1500 / 37.12345)

CLIB 476 500 40.4057 0
Existing methods 191 28 40 0.4057

Horner 24 50 40 0.4057
Horner+CSD 22 46 40 0.4057

2.4.2 Tradeoffs
Table 1 results are used as a comparison of speed, accuracy and memory requirements. The MSP430
CPU implements Horner's algorithms extremely quickly with its single cycle shift and add operations. The
Horner's method, when compared to the existing methods, is extremely fast and maintains the same level
of accuracy for integer-integer multiplications and better accuracy for integer-float multiplications. Division
is also performed extremely fast with limited accuracy. The error in Horner's method is similar to existing
methods for integer-integer division. The results for integer-float divisions can be improved by representing
the divisor by a higher number of bits, with an insignificant increase in cycle count. There is no provision to
obtain the remainder during division in Horner's method, which is not the case with the existing algorithms.
The most important benefit of Horner's method is the multipliers and divisors suffer very little from finite
word length effects. Although the examples considered had only 12- or 16-bit word lengths, each of them
can be implemented with large precision with proportional increase in the number of shift and add
operations. The memory requirement is much higher for Horner's method, because the code is different
for each multiplier or divisor. In cases where speed is of prime concern, this is not a serious limitation.
Also Horner's method requires the multiplier or the divisor to be known in advance, which is not the case
with the other methods. This does not pose any limitation to filtering operations and other standard
conversions, where the multipliers and divisors do not change during runtime.
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3 Additional Examples
This section includes examples to help you better understand Horner's method for various types of
operands and multipliers.

3.1 Example 4: Signed Multiplication of Fractions With Multiplicand Negative
Consider the example when –0.12345 is multiplied by the constant 0.14325. The representation of this
negative fraction in the 2s complement format is:

X = –0.12345 = .111000000111b

M = 0.14325 = 0.001001001010b

where is the sign bit representing –1.

The design equations for this numerical example are shown.

X1 = X × 2–2 + X = 1.111110000001b +
1.111000000111b

X1 → 1.110110001000b

X2 = X1 × 2–3 + X = 1.111110110001b +
1.111000000111b

X2 → 1.110110111000b

X3 = X2 × 2–3 + X = 1.111110110111b +
1.111000000111b

X3 → 1.110110111110b

Final result = X3 × 2–3 = 1.111110110111b = –0.017822265625, which has an absolute error of
0.000138053125, which is just 0.565466 LSB.

The above example shows that the method is accurate, regardless of the sign of the operand X. If the
multiplier were a negative number, the above procedure remains exactly the same, except that in the end
the operand X is subtracted due to the sign bit of the multiplier. The design equations for this are shown in
Example 5.
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3.2 Example 5: Signed Multiplication of Fractions With Multiplier Negative
If the multiplier is now considered to be –0.12345 and the operand X to be 0.14325. The binary
representations are:

M = –0.12345 = .111000000111b

X = 0.14325 = 0.001001001010b

where is the sign bit representing –1.

X × 2–1 + X = X1

X1 × 2–1 + X = X2

X2 × 2–7 + X = X3

X3 × 2–1 + X = X4

X4 × 2–1 + X = X5

Final result = X5 × 2–1 – X

With the present operands the absolute error obtained is 0.000138053125, which is 0.565466 LSB.

The previous examples considered fraction-fraction multiplication exhibiting the better accuracy of this
method over others. This method can also be employed when the multiplier is any integer or real number.
The procedure for this is very similar to the previous method, with a slight change. In microcontrollers, the
operand X is usually data coming from the analog-to-digital converter (ADC), which is a fixed-point
number. Typical examples are considered with the operand X a fixed point and the multiplier an integer or
a real number.

3.3 Example 6: Unsigned Multiplication of Integers
Consider the value of X to be 41 and the multiplier is 441.

X = 41 = 0101001b

M = 441 = 0110111001b

The only change when the multiplier is an integer is the algorithm starts looking for 1s starting from the
leftmost bit and moves right. Similar to the approach for fractions the difference in bit positions of the
neighboring 1s is used as weights. Because the direction is from left to right, the weights all become
positive powers of 2 rather than negative. The design equation for this example is:

X × 21 + X = X1

X1 × 22 + X = X2

X2 × 21 + X = X3

X3 × 21 + X = X4

X4 × 23 + X = X5

Final result = X5 × 20

The final result becomes the result X5 weighted by 20 (the bit position of the rightmost 1).

The absolute error obtained for this multiplication is zero.
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3.4 Example 7: Signed Multiplication of Integers With Multiplier Negative
The design equations would slightly change if the multiplier was negative. Consider the multiplier to be
–441 instead for the same X.

X = 41 = 0101001b

M = –441 = 001000111b

The design equations now become:

–X × 23 + X = X1 The sign bit causes the operand to be negative in the first equation.
X1 × 24 + X = X2

X2 × 21 + X = X3

X3 × 21 + X = X4

Final result = X4 × 20

The absolute error obtained for this multiplication is zero.

If the multiplier is a real number with an integer part and fractional part, the method is just a combination
of the two types discussed so far. The algorithm is now divided into two parts, one for the integer part of
the multiplier and the other for the fractional part of the multiplier. This approach is explained in
Example 8.

3.5 Example 8: Unsigned Integer-Float Multiplication
Consider the multiplier to be defined as 441.8375 and the operand X is 41.

X = 41 = 0101001b

M = 441.8375 = 0110111001.1101011001b

The fact to note here is that this method is independent of word length for the multiplier. The overhead
would only be in the number of shifts and adds to be done.

The design equations for this example is given by:

X × 21 + X = X1

X1 × 22 + X = X2

X2 × 21 + X = X3

X3 × 21 + X = X4

X4 × 23 + X = X5

Intermediate result due to integer part = X5 × 20

X × 2–3 + X = X1

X1 × 2–1 + X = X2

X2 × 2–2 + X = X3

X3 × 2–2 + X = X4

X4 × 2–1 + X = X5

Intermediate result due to fractional part = X5 × 2–1

Adding the above two results gives us the final solution. The absolute error obtained for this multiply is just
the fractional part and is 0.3375 LSB.

The procedure is very similar if the multiplier is a negative real number, as shown in Section 3.6.
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3.6 Example 9: Signed Integer-Float Multiplication With Multiplier Negative
Consider the multiplier to be defined as –441.8375, and the operand X is 41.

X = 41 = 0101001b

M = –441.8375 = 001000110.0010100111b

The design equations for this example is given by:

–X × 23 + X = X1

X1 × 24 + X = X2

X2 × 21 + X = X3

Intermediate result due to integer part = X3 × 21

X × 2–1 + X = X1

X1 × 2–1 + X = X2

X2 × 2–3 + X = X3

X3 × 2–2 + X = X4

Intermediate result due to fractional part = X4 × 2–3

Adding the above two results gives us the final solution. The absolute error obtained for this multiply is just
the fractional part and is 0.6625 LSB.

3.7 Example 10: Unsigned Integer Multiplication With CSD
Consider the example of an integer-integer multiplication using Horner's method using the CSD format,
with the operand X being 41 and multiplier 441.

X = 41 = 0101001b

M = 441 = 0110111001b = 1001001001CSD

The design equations are

X1 = X × 23 – X = 00101001000b –
00000101001b

X1 → 00100011111b

X2 = X1 × 23 – X = 100011111000b –
000000101001b

X2 → 100011001111b

X3 = X2 × 23 + X = 100011001111000b +
000000000101001b

X3 → 100011010100001b

Final result = X3 = (100011010100001)b = 18081

The absolute error obtained for this multiplication is zero.

The design equations remain the same if the operand X were a negative number.
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3.8 Example 11: Unsigned Integer-Float Multiplication With CSD Format
When the multiplier is a real number say 441.8375 and the operand X is a positive integer say 41, the
design equations become:

X = 41 = 0101001b

M = 441.8375 = 0110111001.1101011001b = 1001001010.0010101001CSD

The design equations for this example is given by:

X × 23 – X = X1

X1 × 23 – X = X2

X2 × 22 + X = X3

Intermediate result due to integer part = X3 × 21

X × 2–3 – X = X1

X1 × 2–2 – X = X2

X2 × 2–2 – X = X3

Intermediate result due to fractional part = X3 × 2–3

Adding the above two results gives us the final solution. The absolute error obtained for this multiplication
is just the fractional part and is 0.3375 LSB.

A point to be noted here is if the rightmost bit is 1, the design equations start with a negative X weighted
and added or subtracted with X depending on the next bit being 1 or –1, respectively.

3.9 Example 12: Signed Integer-Float Multiplication With Multiplier Negative in CSD Format
Consider the example if the multiplier was negative and the operand X a positive number 41 with the
multiplier –441.8375.

X = 41 = 0101001b

M = –441.8375 = 1001000110.0010100111b = 001001010.0010101001 CSD

The design equations are:

–X × 23 + X = X1

X1 × 23 + X = X2

X2 × 22 – X = X3

Intermediate result due to integer part = X3 × 21

–X × 2–3 + X = X1

X1 × 2–2 + X = X2

X2 × 2–2 + X = X3

Intermediate result due to fractional part = X3 × 2–3

Adding the above two results gives the final solution. The absolute error obtained for this multiplication is
just the fractional part and is 0.6625 LSB.
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4 Source Code
The following source code files implement multiplication and division. Some of these examples assume
that the incoming operand is a 12-bit sample from the ADC. You can download these files from
www.ti.com/lit/zip/slaa329.

multiply_int.c – source file calling four math functions. All the functions perform multiplication of two 16-
bit integers to give a 16-bit integer result. The "main()" function calls each of these functions.

mul.s43 – assembly source file containing an existing scheme for integer-integer multiplication using only
shift and add operations. This source file is called by function "main()" in the source file multiply_int.c and
multiply_float.c.

horner_mul_int.s43 – assembly source file containing the Horner's scheme for integer-integer
multiplication. This source file is called by function "main()" in the source file multiply_int.c.

csd_mul_int.s43 – assembly source file containing the Horner's scheme using the CSD format for
integer-integer multiplication. This source file is called by function "main()" in the source file multiply_int.c.

multiply_float.c – source file calling four math functions. All the functions perform multiplication of a 16-bit
integer with a floating point number to give a 16-bit integer or float result. The "main()" function calls each
of these functions.

horner_mul_float.s43 – assembly source file containing the Horner's scheme for integer-float
multiplication. This source file is called by function "main()" in the source file multiply_float.c.

csd_mul_float.s43 – assembly source file containing the Horner's scheme using the CSD format for
integer-float multiplication. This source file is called by function "main()" in the source file multiply_float.c.

div_int.c – source file calling four math functions. All the functions perform division of two 16-bit integers
to give a 16-bit integer result. The "main()" function calls each of these functions.

div.s43 – assembly source file containing an existing scheme for integer-integer division using only shift
and add operations. This source file is called by function "main()" in the source file div_int.c and
div_float.c.

horner_div_int.s43 – assembly source file containing the Horner's scheme for integer-integer division.
This source file is called by function "main()" in the source file div_int.c.

csd_div_int.s43 – assembly source file containing the Horner's scheme using the CSD format for integer-
integer division. This source file is called by function "main()" in the source file div_int.c.

div_float.c – source file calling four math functions. All the functions perform division of a 16-bit integer
with a floating point number to give a 16-bit integer or float result. The "main()" function calls each of these
functions.

horner_div_float.s43 – assembly source file containing the Horner's scheme for integer-float division.
This source file is called by function "main()" in the source file div_float.c.

csd_div_float.s43 – assembly source file containing the Horner's scheme using the CSD format for
integer-float multiplication. This source file is called by function "main()" in the source file div_float.c.
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