
1SLAA277–November 2005
Submit Documentation Feedback

Copyright © 2005, Texas Instruments Incorporated

TSC2003 WinCE 5.0 Driver

Application Report
SLAA277–November 2005

TSC2003 WinCE 5.0 Driver

Wendy X. Fang .. DAP Group, HPA

ABSTRACT
The TSC2003 Microsoft™ Windows™ CE 5.0 touch driver has been developed, and the code has been
tested on an Intel™ MainStone II development platform. This application report discusses the TSC2003
driver, including the hardware connection between the TSC2003 and the platform, the Windows CE 5.0
driver’s code and structure, and the installations. Project collateral discussed in this application report can
be downloaded from the following URL: www.ti.com/lit/zip/SLAA277.

Contents
1 Introduction ... 1
2 Connections .. 1
3 Touch Screen Driver .. 2
4 Installation .. 5
5 TSC2003 WinCE 5.0 Driver Code ... 6
6 References ... 6

List of Figures

1 TSC2003 Connections to MainStone II System ... 2
2 TSC2003 WinCE 5.0 Driver Files.. 3

List of Tables

Trademarks
Intel is a trademark of Intel Corporation.
Microsoft, Windows are trademarks of Microsoft Corporation.

1 Introduction
The TSC2003 WinCE 5.0 driver was developed for helping TSC2003 users to quickly set up, run, and use
the device and to shorten software driver development time. The TSC2003 touch driver was coded on the
standard WinCE touch device driver’s PDD (platform-dependent device) layer, and the PDD layer was
further split to have an additional processor-dependent layer (PDL) to make the TSC2003 driver easy to
port into different host processors. See TI application report SLAA187 for details on PDD and PDL.

The driver was developed and tested using a TSC2003EVM board (see SBAU109) and Intel MainStone II
platform with the PXA270 Step B0 processor (see reference 4).

2 Connections
The TSC2003 device must be wired and connected to a host processor where the device driver code is
ported and executed. The host processor controls TSC2003 through the interface that consists of three
digital signals:
• The I2C bus, two wires: SCL, and SDA
• The touch Pen-Down interrupt, PENIRQ.

For developing the TSC2003 driver, the TSC2003EVM and the Intel MainStone II development platform
with the PXA270 Step B0 processor were used. Figure 1 illustrates the wires and connections between
PXA27x and TSC2003.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA277
http://www.ti.com/lit/zip/SLAA277
http://www.ti.com/lit/pdf/SLAA187
http://www.ti.com/lit/pdf/SBAU109

MainStone II

PXA27x
Processor

TSC2003

GPIO0 PENIRQ
10

GND
6

VSS

F
P

G
A

Y−

X+

Y+

X−

2

3

4

5

 Touch Screen
(Integrated with

LCD)

SCL

SDA

12

11
GPIO118/SDA

GPIO117/SCL

Touch Screen Driver www.ti.com

2 SLAA277–November 2005
Submit Documentation Feedback

Copyright © 2005, Texas Instruments Incorporated

TSC2003 WinCE 5.0 Driver

Figure 1. TSC2003 Connections to MainStone II System

On the TSC2003EVM board, a connector to J2 was made to wire the three digital signals SCL, SDA, and
PENIRQ. For details on the connector J2 and other aspects of the TSC2003EVM, see SBAU109.

On the MainStone II system, the original touch/audio module, connected on the MainStone II main board,
was removed and replaced with the connections as shown in Figure 1. See reference 4 and other relevant
Intel documentation for additional information about the MainStone II Platform.

In addition to the three digital signal pins, the TSC2003 touch panel input signals, X+, X–, Y+ and Y–, are
connected to the corresponding pins on the MainStone II touch panel, as Figure 1 indicates.

3 Touch Screen Driver
Figure 2 lists the TSC2003 touch device driver’s code files. The files starting with “Host…” are the
processor-dependent code or PDL, such as HostTouch.CPP or HostI2CComm.H. The PDL code was
developed only for the PXA27x processor.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA277
http://www.ti.com/lit/pdf/SBAU109

TSC2003WinCE5Driver

TSCLIBTSCTOUCH

TSC2003Touch.CPP
TSC2003Touch.H
HostTouch.CPP
HostTouch.H

SOURCES
makefile

TSC2003I2C.C
HostI2CComm.C

SOURCES
makefile

INC

TSC2003I2C.H
HostI2CComm.H

TSC2003.cec

www.ti.com Touch Screen Driver

3SLAA277–November 2005
Submit Documentation Feedback

Copyright © 2005, Texas Instruments Incorporated

TSC2003 WinCE 5.0 Driver

Figure 2. TSC2003 WinCE 5.0 Driver Files

3.1 I2C Interface
The I2C bus is the control and data bus, through which the host processor sends address and control
commands to TSC2003 and reads the touch screen or other data back from TSC2003. The I2C
communication code was developed as a library and put into the directory, TSCLIB.

On the hardware side, the two TSC2003 I2C bus pins, SCL and SDA, were connected to the GPIO117
and GPIO118 of the PXA27x processor, respectively.

On the software side, the PXA27x GPIO, I2C, and Clock management control registers were set up to
communicate to the TSC2003 through the I2C. The setup was implemented at the routine, HWInitI2C(),
which is inside file HostI2CComm.C:
/////// // Function: void HWInitI2C(BOOL InPowerHandle) // Purpose: This function must be called
from the power handler // of the respective drivers using this library. This // function will
configure the GPIO pins according to // the functionality shown in the table below // Signals
Pin# Direction Alternate Function // SCL GPIO117 output 1 // SDA GPIO118] output(at init) 1
///////

BOOL HWInitI2C(BOOL InPowerHandle) { RETAILMSG(1,(TEXT("Setup Host GPIO & I2C for an I2C
Interface...\r\n")));

// init I2C control register (disabled I2C unit) g_pI2CRegs->icr = 0;

// enable I2C unit clock (the clock should be enabled first) g_pClockRegs-
>cken |= XLLP_CLKEN_I2C;

// set up GPIO g_pGPIORegs->GPDR3 |= GPIO_117_SCL; g_pGPIORegs-
>GPDR3 |= GPIO_118_SDA; g_pGPIORegs->GAFR3_U &= ~GPIO_I2C_MASK; g_pGPIORegs-
>GAFR3_U |= GPIO_117_AF1_SCL; g_pGPIORegs->GAFR3_U |= GPIO_118_AF1_SDA;

// Setup processor I2C slave address (used only when PXA27x is slave) g_pI2CRegs->isar = 0x007F;

// Set Processor I2C as master and enable the I2C g_pI2CRegs->icr = ICR_SCLEA; g_pI2CRegs-
>icr |= ICR_IUE;

DumpRegsGPIO(); DumpRegsI2C(); DumpRegsClock();

return(TRUE); }

Two other important I2C interface routines are the HWI2CWrite() and HWI2CRead(), which allow the
PXA27x to command the TSC2003, performing the touch data acquisition and to read the data back from
TSC2003. The complete I2C write and read transmissions have been defined as shown by Figure 12 and
Figure 13 of the TSC2003 data sheet (SBAS162).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA277
http://www.ti.com/lit/pdf/SBAS162

Touch Screen Driver www.ti.com

4 SLAA277–November 2005
Submit Documentation Feedback

Copyright © 2005, Texas Instruments Incorporated

TSC2003 WinCE 5.0 Driver

/////// // Function: HWI2CWrite Routine // Purpose: This routine allows PXA27x to write command
to TSC2003 // using I2C bus. /////// BOOL HWI2CWrite(UINT8 Command, BOOL InPowerHandle) {

UINT32 reg; if (!InPowerHandle) {

// write (TSC2003) device address + write "0" to I2C bus g_pI2CRegs-
>idbr = I2C_WRITE; reg = g_pI2CRegs-
>icr; reg |= (ICR_START | ICR_TB); reg &= ~ICR_STOP; g_pI2CRegs-
>icr = reg; if (HWI2CTxBusy(2000)) return(FALSE);

// write (TSC2003) command through I2C bus g_pI2CRegs->idbr = (UINT32) Command; reg = g_pI2CRegs-
>icr; reg &= ~ICR_START ; reg |= (ICR_TB | ICR_STOP); g_pI2CRegs-
>icr = reg; if (HWI2CTxBusy(2000)) return(FALSE);

// Clear the STOP bit always g_pI2CRegs-
>icr &= ~ICR_STOP; return (TRUE); } else { RETAILMSG(1, (TEXT("HW Writing Error...\r\n")));
return(FALSE); } }

/////// // Function: HWI2CRead Routine // Purpose: This routine allows the PXA27x to read data
from TSC2003 // using I2C bus. /////// BOOL HWI2CRead(UINT8 *bytesBuf, UINT8 bitFlag, BOOL
InPowerHandle) {

UINT32 reg; if (!InPowerHandle) { // start and device address + read "1" to I2C bus g_pI2CRegs-
>idbr = I2C_READ; reg = g_pI2CRegs-
>icr; reg |= (ICR_START | ICR_TB); reg &= ~ICR_STOP; g_pI2CRegs-
>icr = reg; if (HWI2CTxBusy(2000)) return(FALSE);

// read the TSC2003 registers' contents reg = g_pI2CRegs-
>icr; reg &= ~ICR_START; reg |= ICR_TB; if (Flag12bit) { reg &= ~(ICR_ACKNAK | ICR_STOP); } else
{ reg |= (ICR_ACKNAK | ICR_STOP); } g_pI2CRegs-
>icr = reg; if (HWI2CRxBusy(6000)) return(FALSE); reg = (g_pI2CRegs-
>idbr) & 0xFF; bytesBuf[0] = (UINT8) reg;

if (Flag12bit) { reg = g_pI2CRegs-
>icr; reg &= ~ICR_START; reg |= (ICR_TB | ICR_ACKNAK | ICR_STOP); g_pI2CRegs-
>icr = reg; if (HWI2CRxBusy(6000)) return(FALSE); reg = (g_pI2CRegs-
>idbr) & 0xFF; bytesBuf[1] = (UINT8) reg; }

// Clear the STOP and ACKNAK bits always g_pI2CRegs-
>icr &= ~(ICR_ACKNAK | ICR_STOP); return(TRUE);

} else { RETAILMSG(1, (TEXT("HW Reading Error...\r\n"))); return(FALSE); } }

3.2 Touch Screen Driver
In the MainStone II system, the interrupt PENIRQ pin has been connected to an FPGA, where the
PENIRQ was ORed with other secondary interrupts and fed to the PXA27x GPIO0 pin (see reference 4).
In this application, the TSC2003’s PENIRQ pin was wired to the MainStone II‘s PENIRQ pin, which
actually goes to the PXA27x GPIO0 pin (see Figure 1).

The touch device driver is in the directory TSCTOUCH, developed on the PDD layer of the standard touch
device driver structure.

In the TSC2003 touch driver, the TSC2003 PENIRQ is enabled to detect any touch on the screen and the
PENIRQ triggers the DdsiTouchPanelGetPoint () on the PDD layer whenever the PENIRQ becomes
active:
VOID DdsiTouchPanelGetPoint(TOUCH_PANEL_SAMPLE_FLAGS *pTipStateFlags, INT *pUncalX,INT *pUncalY)
{ static BOOL TouchIrq = TRUE; UINT32 InterruptType = SYSINTR_NOP; // RETAILMSG(1,(TEXT("Calling
DdsiTouchPanelGetPoint()\r\n"))); *pTipStateFlags = TouchSampleIgnore; if (TouchIrq) { // The pen
was previously up -

it just transitioned to down state. TouchIrq = FALSE; InterruptType = SYSINTR_TOUCH;
*pTipStateFlags = PDDSampleTouchScreen(pUncalX, pUncalY); // The next expected interrupt will
come from sampling timer // (pen-
up doesn't cause an interrupt). g_NextExpectedInterrupt = PEN_UP_OR_TIMER; //
RETAILMSG(1,(TEXT("GetPoint: pen from up to down ...\r\n"))); } else { // The timer irq ... //
The pen could now be either up or down at this point // -

we need to check. InterruptType = SYSINTR_TOUCH_CHANGED; // Read data if /PENIRQ is active so as
to read // the last data if available *pTipStateFlags = PDDSampleTouchScreen(pUncalX, pUncalY);
// The next expected interrupt will come from sampling time // (pen-
up doesn't cause an interrupt). g_NextExpectedInterrupt = PEN_UP_OR_TIMER;
//RETAILMSG(1,(TEXT("GetPoint: timer irq occurred ...\r\n"))); } if ((g_NextExpectedInterrupt ==
PEN_UP_OR_TIMER) && !HWGetTouchStatus()) { TouchIrq = TRUE; // the pen isn't currently down, send

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA277

www.ti.com Installation

5SLAA277–November 2005
Submit Documentation Feedback

Copyright © 2005, Texas Instruments Incorporated

TSC2003 WinCE 5.0 Driver

the MDD a pen-
up "event". *pTipStateFlags = TouchSampleValidFlag; // but send pen up to mdd // The next
expected interrupt will come from pen-
down event. g_NextExpectedInterrupt = PEN_DOWN; // RETAILMSG(1,(TEXT("GetPoint: pen is up
...\r\n"))); } // Make sure the next expected interrupt is configured and enabled.
PrepareNextInterrupt(g_NextExpectedInterrupt); // Tell the OAL to clear and unmask interrupt just
occurred. InterruptDone(InterruptType); // RETAILMSG(1,(TEXT("END Calling
DdsiTouchPanelGetPoint()\r\n"))); }

In the DdsiTouchPanelGetPoint () routine, the PDDSampleTouchScreen() is called to perform a
TSC2003Read():
// //--

// General Function for TSC2003 Control Register R/W // where "source" is the configuration bits
C3- C0 ; and // return R-Adjusted 12 or 8 bit data in [pWords[0] pWord[1]] //---------------------
--- // // Read an 12 or 8-
bits TSC2003 Data UINT16 TSC2003Read(UINT8 source, BOOL bInPowerHandler) { UINT8 pCommand,
pWords[] = {0, 0}; if (Flag12bit) { // command byte= [C3 C2 C1 C0 0 1 0 0] pCommand = ((source
<< 4) | 0x04); HWI2CWrite(pCommand, bInPowerHandler); HWI2CRead(pWords, 1, bInPowerHandler); //
adjusted data MSB=bit#11 & LSB=bit#0 // and return 10 MSBs return ((UINT16) (pWords[0] << 2) |
(UINT16) (pWords[1] >> 6)); } else { // command byte= [C3 C2 C1 C0 0 1 1 0] pCommand = ((source
<< 4) | 0x06); HWI2CWrite(pCommand, bInPowerHandler); HWI2CRead(pWords, 0, bInPowerHandler); //
return the right adjusted data MSB=bit#7 & LSB=bit#0 return ((UINT16) (pWords[0]<<2)); } }

In the TSC2003Read() performs a complete Write (see Figure 12 of SBAS162) and followed by a
complete Read (see Figure 13 of SBAS162) for reading a touch data (X or Y) from TSC2003.

4 Installation
This section presents the installation steps to run the TSC2003 WinCE5.0 drivers on the Intel MainStone II
Platform.

Included with the Microsoft Windows CE 5.0 platform builder CD ROM is the Board Support Package
(BSP) of the MainStone II, called \MAINSTONEII\, which may be located in your PC after installing the
Platform Builder 5.0 at, for example:

C:\WinCE500\PLATFORM\.

To install the TSC2003 Windows CE 5.0 driver into one of the MainStone II WorkSpaces, execute the
following steps.

4.1 Step I: Copy
1. Copy \TSC2003WinCE5Driver\TSC2003.cec file into:

C:\WINCE500\PUBLIC\COMMON\OAK\CATALOG\CEC\
2. Copy all files inside \TSC2003WinCE5Driver\INC\ into:

C:\WINCE500\PLATFORM\MAINSTONEII\SRC\INC\
3. Copy the directories TSCLIB and TSCTouch into:

C:\WINCE500\PLATFORM\MAINSTONEII\SRC\DRIVERS\

4.2 Step II: Set Up
This step sets up the catalog to include the TSC2003 device driver.
1. Run Platform Builder 5.0, and the Platform Builder IDE appears.
2. At the Platform Builder 5.0 IDE, open Manage Catalog Items from the menu File\Manage Catalog

Items …\. When the Manage Catalog Items window appears, click on Import button on the right side
of the window; navigate, find, and select TSC2003.cec in the directory:

C:\WINCE500\PUBLIC\COMMON\OAK\CATALOG\CEC\
Then click on Open, so that the item is ported in.

3. Click and drag to select all *.cec files in the Manage Catalog Items window, and then click on the
Refresh button to ensure that the new item is loaded.

4. Close the Manage Catalog Items window by clicking on its OK button.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA277
http://www.ti.com/lit/pdf/SBAS162
http://www.ti.com/lit/pdf/SBAS162

Installation www.ti.com

6 SLAA277–November 2005
Submit Documentation Feedback

Copyright © 2005, Texas Instruments Incorporated

TSC2003 WinCE 5.0 Driver

4.3 Step III: Open
This step, in the Platform Builder 5.0 IDE, opens a new or existing MainStone II workspace per the
application. The procedure is ignored here.

4.4 Step IV: Add
This step adds the TSC2003 device driver from the Catalog into the existing OS design.
1. In the Catalog window of the Platform Builder 5.0 IDE, find TI TSC2003 Touch Controller Driver,

right-click on it, and select Add to OS Design to add the touch controller driver to the OS.
2. As a result, the touch device driver appears under the Device Drivers section at the OSDesignView

window of the WorkSpace.

4.5 Step V: Modify
This step modifies the building device drivers so as to include TI TSC2003 touch driver.
1. Open the dirs file in the directory:

C:\WINCE500\PLATFORM\MAINSTONEII\SRC\DRIVERS\
2. Eliminate the original touch directory from the list, and add on the TSCLIB and TSCTOUCH. For

example: the dirs file could be
DIRS=\ # @CESYSGEN IF CE_MODULES_POINTER TSCLIB \ TSCTOUCH \ # @CESYSGEN ENDIF
CE_MODULES_POINTER # @CESYSGEN IF CE_MODULES_DEVICE # @CESYSGEN IF CE_MODULES_USBD hcd \ #
@CESYSGEN ENDIF CE_MODULES_USBD # @CESYSGEN IF CE_MODULES_SERIAL serial \ # @CESYSGEN ENDIF
CE_MODULES_SERIAL

3. Save and close the modified dirs file.

4.6 Step VI: Change
This step changes one secondary interrupt of the GPIO0 from the AC97 link to PENIRQ (TSC2003).
1. At the menu File\Open…, navigate, find, and open the software code file intr.c inside the directory:

C:\WINCE500\PLAFORM\MAINSTONEII\SRC\KERNEL\OAL\
2. Change the line in the BSPIntrInit() routine from:

OALIntrStaticTranslate(SYSINTR_TOUCH, IRQ_GPIO0_UCB1400);
To:

OALIntrStaticTranslate(SYSINTR_TOUCH, IRQ_GPIO0_PENIRQ);
3. Save and close the intr.c code file.

5 TSC2003 WinCE 5.0 Driver Code
To obtain the TSC2003 WinCE 5.0 driver code, contact the TI DAP Application Support Group at e-mail
address dataconvapps@list.ti.com.

6 References
1. TSC2301 WinCE Generic Drivers application report (SLAA187)
2. TSC2003EVM and TSC2003EVM-PDK User’s Guide (SBAU109)
3. TSC2003, I 2C Touch Screen Controller data sheet (SBAS162)
4. Intel PXA27x Processor Developer’s Kit, order number 278827-005

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA277
http://www.ti.com/lit/pdf/SLAA187
http://www.ti.com/lit/pdf/SBAU109
Bad link
Bad link: SBAS162

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	TSC2003 WinCE 5.0 Driver
	1 Introduction
	2 Connections
	3 Touch Screen Driver
	3.1 I2C Interface
	3.2 Touch Screen Driver

	4 Installation
	4.1 Step I: Copy
	4.2 Step II: Set Up
	4.3 Step III: Open
	4.4 Step IV: Add
	4.5 Step V: Modify
	4.6 Step VI: Change

	5 TSC2003 WinCE 5.0 Driver Code
	6 References

	Important Notice

