

Application Report
SLAA169 – May 2003

Windows CE .NET Touch Screen, Keypad, and Audio
Device Drivers for the TSC2301

Bob Green and Wendy X. Fang Data Acquisition Products

ABSTRACT

This application report describes a Windows CE .NET driver for the TSC2301, a Texas
Instruments touch-screen/keypad controller, and a stereo audio codec device. Intel
PXA250 and PXA210 microprocessors are used as master processors for interfacing with
the TSC2301. The driver was built using the board support package (BSP) of Intel’s PCA
development kit for the HCDDBCTA1/Cotulla development platform. The sample code
discussed in this application report can be downloaded from
http://www.ti.com/lit/zip/SLAA169.

Contents

Introduction ... 1
Hardware Considerations ... 2
Software Architecture ... 3
Functional Description ... 3

System Setup .. 3
TSC2301 Touch panel Driver Overview .. 4
TSC2301 Keypad Driver Overview ... 6
SSP Overview ... 7
TSC2301 Audio Driver Overview .. 7

Source Code .. 10
Source Files .. 10
Installation Instructions .. 11

References ... 15

Figures
Figure 1. Integration of Monolithic Device Drivers Within the Windows CE System [1] 3

Tables
Table 1. Hardware Interface ... 2
Table 2. KeyPad Mapping .. 6
Table 3. Source Code for TSC2301 Driver .. 11

Introduction
Texas Instrument’s TSC2301 is a highly integrated analog interface device with touch screen
and keypad controller and stereo audio codec, an ideal selection for use in many hand-held
computation and communication applications.

http://www.ti.com/lit/zip/SLAA169

1

SLAA169

2 Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301

As a TSC2301 driver design example, this application report presents a Windows CE .NET
driver that was built using the board support package (BSP) of the Intel’s personal client
architecture (PCA) development kit with Intel’s PXA250 microprocessor. On the hardware side,
Intel’s HCDDBCTA1/Cotulla development platform was used and slightly modified to interface
with TI’s TSC2301 evaluation module (EVM). The driver described here is directly applied and
tested only with the same hardware structure and connections.

The methods described herein are some of the possible implementations and are intended to
serve as a guideline or example for hardware and software developers creating their own
solutions. The sample setup and drivers provided demonstrate only the basic functionality of the
TSC2301 with the PXA250, have not been extensively tested, and are not intended for use as is
in production systems.

This application report assumes that the reader is familiar with hardware, touch screen,
keyboard, and audio device driver development in general, and specifically the Microsoft
Windows Platform Builder 4.0 for Windows CE .NET development environment, the Texas
Instruments TSC2301 PDA analog interfaces, and the Intel PXA250 microprocessor and
development board.

Hardware Considerations

The development system used for this application report consists of a Texas Instruments
TSC2301EVM board, a slightly modified Intel HCDDBCTA1/Cotulla development platform, and
some additional cabling. The modifications made to the HCDDBCTA1 are minor and involve the
routing of the /PENIRQ signal to an unused external connection point. This facilitates the
connection of the /DAV signal from the TSC2301 to the HCDDBCTA1. The HCDDBCTA1
incorporates a four-wire resistive touch screen that is compatible with the TSC2301. The touch
screen is connected directly to the TSC2301EVM. In order to test the system, several additional
connections from the HCDDBCTA1 to the TI board have been added and are shown in Table 1.

Table 1. Hardware Interface

TSC2301 HCDDBCTA1 Description
/SS GP24, SSP_SFRM SPI communications interface
SCLK GP23, SSP_SCLK SPI communications interface
MOSI GP25, SSP_TXD SPI communications interface
MISO GP26, SSP_RXD SPI communications interface
LRCLK AC_SYNC Audio interface
I2SDIN AC_DOUT Audio interface
I2SDOUT AC_DIN Audio interface
BCLK AC_BITCLK Audio interface
MCLK GP32 Audio interface (system clock)
/KBIRQ GP4 Keypad interrupt
/DAV /PENIRQ Touch screen interrupt

SLAA169

Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301 3

The touch screen controller installed at the factory on the HCDDBCTA1 is the TI ADS7846 touch
screen controller. For this application report, the ADS7846 is disabled and the TSC2301 is
substituted. The /DAV signal from the TSC2301 is connected to the /PENIRQ signal (used by
the ADS7846) on the HCDDBCTA1. Ultimately, this signal becomes an interrupt to the PXA250.

Software Architecture

Both the touch panel and keypad drivers have been developed as layered drivers using the
Intel/Microsoft sample drivers as starting points. In addition, the touch panel driver relies upon
the driver design for the ADS7846. This approach helps reduce overall project risk, since the
model device driver (MDD) layer (supplied by Microsoft in the sample drivers) requires no
change. Only the DDSI functions in the PDD (platform-dependent driver) layer are modified for
this application. Refer to Figure 1.

Figure 1. Integration of Monolithic Device Drivers Within the Windows CE System [1]

Functional Description

System Setup
1. Set up the HCDDBCTA1/Cotulla development board in stand-alone configuration

according to the manufacturers’ documentation.
2. Update the platform files following the instructions included with Intel’s board support

package (BSP_WinCENet_DBPXA250_V3_00_008.exe).
3. Rebuild the platform following the instructions included with the Intel board support

package (BSP_WinCENet_DBPXA250_V3_00_008.exe).
4. Connect the TSC2301EVM board to HCDDBCTA1 development board. This requires

connections to be made that are listed in Table 1.
5. Download the image to the target (see Microsoft documentation).
6. Use the keyboard to run the calibration program from the Stylus application in the

Windows CE.NET control panel.

SLAA169

4 Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301

TSC2301 Touch Panel Driver Overview

The TSC2301 is configured to perform automatic X and Y conversions when the touch panel is
pressed. The TSC2301 asserts (active low) the DAV line after the X and Y data are ready for
reading. The DAV signal is shared among several ADC functional parts of the TSC2301. This
requires that the driver be written to support sharing this signal. Due to the operation of the DAV
logic and the timing of the touch panel driver, a pen up operation (pressure on the touch panel
released) may be missed. In order to deal with that issue, a timer in the TSC2301 is set to cause
an interrupt after a certain amount of time after a pen down operation (pressure put on the touch
panel). This timer acts as a watchdog and ensures that the pen up event is not missed. The
overall operation of the touch panel driver is discussed in the following paragraphs.

1. The driver loads. The touch panel driver is loaded into the system. This causes the
TSC2301 to be configured for continuous scanning. The GPIO line connected to DAV is
configured to detect the falling edge of the signal and then to generate an interrupt.

2. The touch panel is pressed. This causes the TSC2301 to perform X an Y conversions and
to assert DAV. The assertion of DAV in turn causes an interrupt to occur.

3. The touch panel driver interrupt handler is called. The interrupt handler
DdsiTouchPanelGetPoint has been constructed to deal with several different situations that
can occur due to the multiple uses of the DAV line with respect to the touch panel driver.
Protection against possible spurious interrupt conditions has also been built into the driver
as added protection. Close inspection of the source code for the driver is important in order
to gain a full operational understanding. The important decision points and actions of the
handler are summarized below:
a. The current state of the DAV line is checked.
b. If no other TSC2301 related driver is expecting DAV to be asserted, then this interrupt is

intended for the touch panel driver. Otherwise, an ignore message is returned to the
operating system and execution of the interrupt handler ends. A mutex is used to
indicate which functional portion of the TSC2301 is currently using DAV.

c. TSC2301 touch panel timer interrupts are disabled.
d. TSC2301 conversions are disabled so that the data is stable while being read.
e. The current state of the touch panel is determined (pressed—pen down,

or not pressed—pen up).

f. If this interrupt is in response to an assertion of the DAV line:
1) When the touch panel is pressed (pen down) and the DAV line is asserted, the

following occurs:
 This is an actual interrupt in response to a pen down condition.
 The X and Y value of the pen down is recorded.
 The touch panel timer interrupt is enabled (to catch the pen up event).
 TSC2301 conversions are enabled.
 A flag is set to indicate that the next type of interrupt expected is in

response to a pen up event or the touch timer.
 The recorded touch panel data is returned to the operating system and

execution of the interrupt handler ends.

SLAA169

Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301 5

2) Otherwise, if a pen up or touch timer interrupt is expected, the following occur:
 This is an actual interrupt in response to a pen up condition.
 TSC2301 conversions are enabled.
 A flag is set to indicate that the next type of interrupt expected is in

response to a pen down event.
 The recorded touch panel data is returned to the operating system and

execution of the interrupt handler ends.
3) Otherwise:

 This is an unexpected pen up event.
 The touch panel timer interrupt is enabled.
 An ignore message is returned to the operating system, and execution of

the interrupt handler ends.
g. Otherwise, if this interrupt is in response to a TSC2301 touch timer interrupt, the

following occur:
1) If the pen is up, and a pen up or timer interrupt is expected, the following occurs:

 This is a situation where the pen up event occurred but the DAV interrupt
associated with that event was missed.

 TSC2301 conversions are enabled.
 A flag is set to indicate that the next type of interrupt expected is in response

to a pen down event.
 The recorded touch panel data is returned to the operating system and

execution of the interrupt handler ends.
2) Otherwise, if DAV is asserted and the next expected interrupt is for a pen down

event, the following occur:
 This is a situation where the state of DAV is out of sync with what is

expected. The driver cleans up the current state.
 All registers in the TSC2301 are read, causing DAV to be not asserted.
 The touch panel timer interrupt is enabled.
 An ignore message is returned to the operating system, and execution of the

interrupt handler ends.
3) Otherwise the following occur:

 This is a spurious timer interrupt and no action is required.
 TSC2301 conversions are enabled.
 An ignore message is returned to the operating system, and execution of the

interrupt handler ends.
h. Otherwise the following occur:

1) This is an unknown interrupt.
2) TSC2301 conversions are enabled.
3) An ignore message is returned to the operating system and execution of the

interrupt handler ends.

4. The touch panel driver is unloaded. During the system shutdown procedure, the touch
panel driver is unloaded from the system. All memory allocated to the driver is recovered.

SLAA169

6 Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301

TSC2301 Keypad Driver Overview

The keypad driver works very similar to the touch panel driver. The KBIRQ is asserted (low)
when a key is pressed. As with the touch panel driver’s DAV line, KBIRQ also pulses high and
then low again as the TSC2301 continues scanning the keypad while a button is still down.
Again, this causes problems with recognizing the actual button up event. The keypad driver
uses an approach similar to that used in the touch panel driver. When KBIRQ interrupt fires, we
set a timer long enough to allow the TSC2301 to complete at least one more keypad scan.
When a timer interrupt occurs before the next KBIRQ interrupt, and the TSC2301 says that no
keys are pressed, it is assumed an actual button release occurs and acts accordingly. This
timer is set in the KeybdIstLoop function in KB_DIST.CPP and setting it to 1.5 times the
TSC2301’s debounce time works well.

The standard Windows AutoRepeat key functionality does not currently work with this driver due
to the fact that KBIRQ pulses high between each scan of the keypad. This pulse causes
another KBIRQ falling edge interrupt to occur before the autorepeat minimum timeout can occur.
Therefore no autorepeating occurs in this driver.

Two arrays (arrVkeys and arrScanCodes) at the top of TSC_KEYPD.CPP are used to map the
keypad keys to Windows Virtual Keys. Entry 0 in these arrays matches to Bit0 in the KEYDATA
register of the TSC2301. The current mapping of the keypad keys is shown in Table 2.

Table 2. KeyPad Mapping

TSC2301 Key Windows Virtual Key
0 ‘0’
1 ‘1’
2 ‘2’
3 ‘3’
4 ‘4’
5 ‘5’
6 ‘6’
7 ‘7’
8 ‘8’
9 ‘9’
A VK_LEFT
B VK_UP
C VK_RIGHT
D VK_DOWN
E VK_ESCAPE
F VK_RETURN

There are also two #defines (KEYREG_SETUP_VALUE and KEYMASKREG_SETUP_VALUE)
in TSC_SSP.H that are used to set up the TSC2301 KEY and KPMASK registers.

The keypad driver’s source code implements a system where the keypad is a stand-alone driver.
In addition, source code has been included which demonstrates how to combine the TSC2301
keypad driver with an existing PS2 keyboard driver. Even in the combined version, the
TSC2301 keypad still requires a dedicated GPIO input line for KBIRQ.

SLAA169

Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301 7

SSP Overview

In order to share the single SPI connection with the TSC2301 between both the touch panel and
the keypad drivers, a new module (tsc_ssp.cpp) was added to the DRVLIB library in the
XSC1BD platform. This module sets up, configures, and uses the PXA250’s SPI interface to
communicate with the TSC2301 and uses a named mutex to prevent collision between the two
drivers. Also, since the keyboard driver loads first, it initially resets and configures the TSC2301
with the touch driver, making any additional configuration changes required when it loads.

The PXA250’s SSP port is configured to use the Motorola SPI format with the SPH and SPO
registers configured to match the requirements of the TSC2301 as follows:
RIE_DISABLE,
TIE_DISABLE,
LBM_DISABLE,
SPO_IDLE_LOW,
SPH_HALF_DELAY,
MWDS_16_BIT,
TFT_ZERO,
RFT_SEVEN,
DSS_16_BIT,
FRF_MOTOROLA,
ECS_INTERNAL,
SSE_ENABLE,
SCR_600_KHZ,
GAFR1, GPIO_23_AF2_SCLK,
GAFR1, GPIO_24_AF2_SFRM,
GAFR1, GPIO_25_AF2_TXD,
GAFR1, GPIO_26_AF1_RXD,
GPDR, GPIO_23_OUTPUT,
GPDR, GPIO_24_OUTPUT,
GPDR, GPIO_25_OUUPUT,
GPDR, GPIO_26_INPUT,

TSC2301 Audio Driver Overview

This audio driver is implemented as a PDD layer using the model device driver (MDD) library —
Wavemdd.lib — supplied by Microsoft. See the following website for more details regarding the
MDD and PDD audio driver model.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wceddk40/htm/cxconmddpdd.asp

This PDD layer uses the TI SSP interface to control the audio capabilities of the TSC2301 while
using DMA transfers to the PXA250 I2S interface to actually send and receive audio data. Refer
to the appropriate chapters in the PXA250 and PXA210 Application Processors Developer’s
Manual for more information on DMA and I2S. A comprehensive description of these two
technologies is beyond the scope of this document.

SLAA169

8 Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301

This driver contains a few interesting features not commonly found in audio drivers.

In order to simultaneously play and record .WAV files of different sample rates, this driver
implements real time resampling while the TSC2301 hardware is always running at 44.1 kHz.
So, even though the TSC2301 records audio data at 44.1kHz, we can end up with a recorded
.WAV file at several lower sample rates. Conversely, .WAV files of lower sample rates are up
sampled before being output at 44.1kHz.

Automatic gain control has been implemented by examining the highest amplitude in each block
of recorded audio data. Users can specify a gain target and tolerance.

In addition, through PDD_AudioMessage (described below) two functions are opened to allow
user applications to directly set and read any TSC2301 register. This allows users with specific
needs to directly monitor or control unusual conditions with the TSC2301.

In general, the overall flow of the audio driver is well documented in Microsoft’s MSDN library.
However, a simplified description is offered here. Once the driver is initialized by the system,
user applications use the waveOut and waveIn functions to begin the audio data transfer. These
functions (after passing through the MDD driver layer) eventually call the PDD_WaveProc
function. These messages instruct the driver to open, start, and stop waveform playback and
record. PDD_WaveProc then calls various internal functions (described below) to actually
control the audio playback or record. The TI driver then sets up and controls the I2S interface
and the DMA required to support it, in addition to controlling the TSC2301 through the SSP
interface (described above).

The main functions of the PDD controlling the TSC2301 audio functionality are:

PDD_AudioInitialize performs any one-time initializations for the audio driver. In addition to
setting up the necessary DMA structures, the TI driver uses this function to initialize the SSP
interface to communicate with the TSC2301, and to modify default TSC2301 registers settings if
desired. The current driver uses the TSC2301 defaults as is because all relevant audio settings
are configured when a .WAV file is output or recorded.

PDD_AudioGetIntertuptType determines the cause of the audio interrupt and returns current
device status. The TI driver examines the DMA structures to determine the cause of the
interrupt and returns an appropriate status.

PDD_AudioMessage sends messages from user applications to the audio driver’s PDD layer.
Custom messages can be accessed through this function. It is ultimately called in response to
the waveOutMessage and waveInMessage called by the user application. Fourteen custom
audio messages are set up for user applications:

WPDN_PRIVATE_TSC_AUTO_GAIN_CONTROL: Allows users to configure the
automatic gain control by setting both the target gain (dwParam1) and the gain tolerance
(dwParam2). Setting dwParam1 to 0 turns off automatic gain control.

WPDN_PRIVATE_WRITE_TSC: Allows users to set any TSC2301 register. This passes
dwParam1 and dwParam2 along in a call to TSC2301GenericWriteReg(dwParam1,
dwParam2).

WPDN_PRIVATE_READ_TSC: Allows users to read any TSC2301 register. This
passes dwParam1 and dwParam2 along in a call to TSC2301GenericReadReg
(dwParam1, dwParam2).

SLAA169

Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301 9

WPDN_PRIVATE_TSC_SetInput_MIC: Sets the TSC2301 audio control register to have
both the left and right input set to the microphone input.

WPDN_PRIVATE_TSC_SetInput_AUX: Sets the TSC2301 audio control register to
have both the left and right input set to the corresponding auxiliary inputs.

WPDN_PRIVATE_TSC_SetInput_AUX_MIX: Sets the TSC2301 audio control register
to have both the left and right input set to the mono mix of the left and right auxiliary
inputs.

WPDN_PRIVATE_TSC_SetInput_AUX_SWAP: Sets the TSC2301 audio control
register to have both the left and right input set to the opposite auxiliary inputs (left input
is set to right auxiliary and vice versa).

WPDN_PRIVATE_TSC_SET_MIC_GAIN_0dB: Sets the microphone gain in TSC2301
audio control register to 0 dB.

WPDN_PRIVATE_TSC_SET_MIC_GAIN_6dB: Sets the microphone gain in TSC2301
audio control register to 6 dB.

WPDN_PRIVATE_TSC_SET_MIC_GAIN_12dB: Sets the microphone gain in TSC2301
audio control register to 12 dB.

WPDN_PRIVATE_TSC_SET_HPF_DISABLE: Disables the high pass filter in the
TSC2301 audio control register.

WPDN_PRIVATE_TSC_SET_HPF_1fs: Sets the high pass filter in the TSC2301 audio
control register to 0.1xFs.

WPDN_PRIVATE_TSC_SET_HPF_78fs: Sets the high pass filter in the TSC2301 audio
control register to 0.000078xFs.

WPDN_PRIVATE_TSC_SET_HPF_19fs: Sets the high pass filter in the TSC2301 audio
control register to 0.000019xFs.

PDD_WaveProc sends standard audio control messages to the audio driver’s PDD layer. This
function is used to implement all the waveOut and waveIn functions at the PDD level. The
WPDM messages passed to PDD_WaveProc are:

WPDM_CLOSE, WPDM_CONTINUE, WPDM_ENDOFDATA, WPDM_GETDEVCAPS,
WPDM_GETVOLUME, WPDM_OPEN, WPDM_PAUSE, WPDM_RESTART,
WPDM_SETVOLUME, WPDM_STANDBY, WPDM_START, WPDM_STOP.

Refer to the relevant Microsoft documentation for information regarding how these messages
are initiated by the user and passed through the MDD driver layer.

As stated above, PDD_WaveProc either handles the message itself or calls various internal
functions to handle each of these messages.

Below is a more detailed description of how the TI driver handles each of the WPDM message in
PDD_WaveProc.

SLAA169

10 Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301

WPDM_CLOSE: updates the appropriate internal reference count variable to signal the
DMA handling routines that the .WAV file has been closed.

WPDM_CONTINUE: calls either private_WaveInContinue() or
private_WaveOutContinue().

WPDM_ENDOFDATA: calls private_WaveOutEndOfData() for output .WAV files, and
returns MMSYSERR_NOTSUPPORTED for input .WAV files.

WPDM_GETDEVCAPS: calls private_WaveGetDevCaps().

WPDM_GETVOLUME: returns internally managed variable m_nVolume.

WPDM_OPEN: calls private_WaveOpen()

WPDM_PAUSE: calls private_waveOutPause() for output .WAV files, and returns
MMSYSERR_NOTSUPPORTED for input .WAV files.

WPDM_RESTART: calls private_waveOutRestart() for output .WAV files, and returns
MMSYSERR_NOTSUPPORTED for input .WAV files.

WPDM_SETVOLUME: sets m_nVolume and calls TSCSetVolume().

WPDM_STANDBY: calls private_WaveStandby();

WPDM_START: calls either private_WaveInStart() or private_WaveOutStart().

WPDM_STOP: calls either private_WaveInStop or private_WaveOutStop().

Source Code

Source Files

Table 3 lists the files that were added in or modified from Intel’s BSP, for developing this
application report. The TSC2301 driver files are grouped according to their basic functions. The
main Windows CE .NET platform directory is: C:\WINCE400\PLATFORM\XSC1BD.

The files given in Table 3 contain the individual functions used in these drivers. This application
report assumes the reader understands Windows CE, touch screen, keyboard, and audio drivers
in general; therefore it does not cover every function needed for a working driver. These
functions are required to be added or modified in order to work with the TSC2301. Other BSP
files from Microsoft or Intel are also needed but not listed here.

SLAA169

Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301 11

Table 3. Source Code for TSC2301 Driver

Group Sub-Directory File Name Basic Function Added/Modified
General (in the main) xsc1bd.bat Set no USB client for BSP Modified
General \drivers\drvlib\ SOURCES Add tsc_ssp.c to sources Modified
General \inc\ tsc_reg.h Define TSC2301 registers Added
General \drivers\drvlib\ tsc_ssp.c Handle TSC and SSP

communication
Added

General \inc\ tsc_ssp.h Contain TSC and SSP
communication protptypes and
configuration defines

Added

General \kernel\hal\ cfwXcs1.c Configure interrupts Modified
General \kernel\hal\arm\ intxcs1.c Interrupt service routines Modified
Touch \drivers\touchp\ tchpdd.cpp Touch screen functions Modified
KeyPad \drivers\kbdmouse\

KBDMSCOMMON\
ps2keybd.cpp Keypad functions Modified

Audio \drivers\WAVEDEV\ wavepdd.c Audio functions Modified
Audio \drivers\WAVEDEV\ wavepdd.h Define audio parameters Modified
Audio \drivers\WAVEDEV\ DMAC.h Redefine DMAC In/Out Modified
Audio \inc\ DMACbits.h Modified

Installation Instructions

After the system setup, described in the previous section, the following three new files need to
be copied in their entirety over the files from the Intel BSP:
C:\WINCE400\platform\xsc1bd\inc\tsc_reg.h
C:\WINCE400\platform\xsc1bd\drivers\tsc_ssp.c
C:\WINCE400\platform\xsc1bd\inc\tsc_ssp.h

Due to the large number of changes, the following three files need to be modified with code
patches. The TI website has associated zip files containing the necessary code patches:
C:\WINCE400\platform\xsc1bd\drivers\touchp\tchpdd.cpp
C:\WINCE400\platform\xsc1bd\drivers\kbdmouse\KBDMSCOMMON\ps2keybd.cpp
C:\WINCE400\platform\xsc1bd\drivers\WAVEDEV\wavepdd.c

All other modified files, listed in Table 3, must be updated according to the following descriptions
in order to work correctly with the TSC2301.
1. C:\WINCE400\platform\xsc1bd\XSC1BD.BAT

Under the Lubbock configuration, make sure that BSP_NOUSBCLIENT is set to 1 as shown
below.
Set BSP_NOUSBCLIENT=1

2. C:\WINCE400\platform\xsc1bd\Drivers\drvlib\sources:
* Add TSC_SSP.C to end of SOURCES entry.

SLAA169

12 Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301

3. C:\WINCE400\platform\xsc1bd\kelnel\hal\cfwXcs1.c

* In the function OEMInterruptEnable() under the SYSINTR_TOUCH case replace what is
there with the following:

v_pBLReg->int_set_clr &=~BB_TS_PEN;
v_pBLReg->int_msk_en |= BB_TS_PEN_EN;

* In the function OEMInterruptEnable() under the SYSINTR_TOUCH_CHANGED case
replace what is there with the following:

v_pBLReg->int_set_clr &=~BB_TS_PEN;
v_pBLReg->int_msk_en |= BB_TS_PEN_EN;

* In the function OEMInterruptDisable () under the SYSINTR_TOUCH case replace what is
there with the following:

v_pBLReg->int_msk_en &= ~BB_TS_PEN_EN;

* In the function OEMInterruptDone () under the SYSINTR_TOUCH case replace what is
there with the following:

v_pBLReg->int_set_clr &= ~BB_TS_PEN;
v_pBLReg->int_msk_en |= BB_TS_PEN_EN;

* In the function OEMInterruptDone () under the SYSINTR_TOUCH_CHANGED case
replace what is there with the following:

v_pBLReg->int_set_clr &= ~BB_TS_PEN;
v_pBLReg->int_msk_en |= BB_TS_PEN_EN;

4. C:\WINCE400\platform\xsc1bd\kelnel\hal\arm\intxsc1.c

* In the function OEMInterruptHandler(), add the following just before the first #ifdef
PLAT_LUBBOCK statement:

// Bg 16SEP02 - copying this variable from function below
// to allow us to fix a problem where the touch driver's interrupt gets missed.

unsigned int InterestingInterrupts;

* Several lines down, add the two lines designated by “>” between the lines without the “>”
designation:

v_pDrvGlob
(PDRIVER_GLOBALS)DRIVER_GLOBALS_PHYSICAL_MEMORY_START;

> // Bg 16SEP02 - copying this variable from function below
> InterestingInterrupts = v_pBLReg->int_set_clr & v_pBLReg->int_msk_en;

SLAA169

Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301 13

//Read the interrupt pending register
ipreg_copy = v_pICReg->icip;

* Also in the function OEMInterruptHandler(), add the following lines designated by the “>”
just before return SYSINTR_TOUCH_CHANGED;

INTC_M1_INT_DIS(v_pICReg->icmr);
TIMER_M1_INT_CLR(v_pOSTReg->ossr);
v_pDrvGlob->tch.timerIrq=1;
> v_pDrvGlob->tch.touchIrq = 0;

* In the section under else if(ipreg_copy & INTC_GPIO80_2), add the following before the
#ifdef PLAT_SANDGATE

RETAILMSG(1, (TEXT("OEMInterruptHandler - INTC_GPIO80_2\r\n")));

// Bg 22OCT02 - see if GPIO_4 (which we are using for the keypad interrupt has
gone off).
if (v_pGPIOReg->GEDR_x & GPIO_4) // now we have a pen down interrupt
{

RETAILMSG(1, (TEXT("OEMInterruptHandler - GPIO_4 - GEDR_x: 0x%X, GPLR_x:
0x%X\r\n"), v_pGPIOReg->GEDR_x, v_pGPIOReg->GPLR_x));

// clear the interrupt
//v_pGPIOReg->GFER_x &= ~GPIO_4;
//v_pGPIOReg->GEDR_x |= GPIO_4;

return SYSINTR_KEYBOARD;

}

* In the function FPGAInterruptHandler(), add the following else section to the
return SYSINTR_TOUCH;

// Bg 06JUL02 - adding support for BB PEN IRQ
// this is critical - otherwise we'll never get the PEN interrupt
else if (InterestingInterrupts & BB_TS_PEN) // PENIRQ WENT LOW

{

v_pBLReg->int_msk_en &= ~BB_TS_PEN;
//Disable interrupt

v_pDrvGlob->tch.touchIrq=1;
v_pDrvGlob->tch.timerIrq=0;

// BgBgBg
//RETAILMSG(1, (TEXT("FPGAInterruptHandler -- PENIRQ SYSINTR_TOUCH!\r\n")));

return SYSINTR_TOUCH;
}

SLAA169

14 Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301

5. C:\WINCE400\platform\xsc1bd\drivers\wavedev\wavepdd.h

* Replace and/or redefine the currently defined private messages with the following:

//Private Messages
#define WPDM_PRIVATE_RET_NOTSUPPORTED MMSYSERR_NOTSUPPORTED

#define WPDM_PRIVATE 10000
#define WPDM_PRIVATE_WRITE_TSC (WPDM_PRIVATE+1)
#define WPDM_PRIVATE_READ_TSC (WPDM_PRIVATE+2)
#define WPDM_PRIVATE_TSC_SetInput_MIC (WPDM_PRIVATE+3)
#define WPDM_PRIVATE_TSC_SetInput_AUX (WPDM_PRIVATE+4)
#define WPDM_PRIVATE_TSC_SetInput_AUX_MIX (WPDM_PRIVATE+5)
#define WPDM_PRIVATE_TSC_SetInput_AUS_SWAP (WPDM_PRIVATE+6)
#define WPDM_PRIVATE_TSC_SET_MIC_GAIN_0dB (WPDM_PRIVATE+7)
#define WPDM_PRIVATE_TSC_SET_MIC_GAIN_6dB (WPDM_PRIVATE+8)
#define WPDM_PRIVATE_TSC_SET_MIC_GAIN_12dB (WPDM_PRIVATE+9)
#define WPDM_PRIVATE_TSC_SET_HPF_DISABLE (WPDM_PRIVATE+10)
#define WPDM_PRIVATE_TSC_SET_HPF_1fs (WPDM_PRIVATE+11)
#define WPDM_PRIVATE_TSC_SET_HPF_78fs (WPDM_PRIVATE+12)
#define WPDM_PRIVATE_TSC_SET_HPF_19fs (WPDM_PRIVATE+13)
#define WPDM_PRIVATE_TSC_SET_DAC_GAIN (WPDM_PRIVATE+14)
#define WPDM_PRIVATE_TSC_SET_BYPASSS_VOLUME (WPDM_PRIVATE+15)
#define WPDM_PRIVATE_TSC_AUTO_GAIN_CONTROL (WPDM_PRIVATE+16)

#define WPDN_PRIVATE_DEBUG_PLAYBACK_RATE (WPDM_PRIVATE+100)

6. C:\WINCE400\platform\xsc1bd\drivers\wavedev\dmac.h

* Add the following between the definitions of MAC_AC97_MICAB_CMD_MASK and
DMA_RCV_A_DESCRIPTOR_BASE_PHYSICAL:

// 24JUL02 - Bg adding DMA support for I2S
#define DMAC_I2S_RCV_FIFO 0x40400080
#define DMAC_I2S_XMIT_FIFO 0x40400080

#define DMAC_I2S_RCVAB_CMD_MASK 0x4023C000 //0100 00000 01 000 11 10 0 0000000000000
#define DMAC_I2S_XMITAB_CMD_MASK 0x8043C000 //1000 00000 10 000 11 10 0 0000000000000
#define DMAC_I2S_MICAB_CMD_MASK 0x4023C000 //0100 00000 01 000 11 10 0 0000000000000

7. C:\WINCE400\platform\xsc1bd\inc\dmacbits

Comment out the definitions of DMAC_AC97AUDIOXMIT, DMAC_AC97AUDIORCV, and
DMAC_AC97MIC, and redefine the following:

#define DMAC_I2SXMIT (0x1 << DMA_CH_OUT)
#define DMAC_I2SRCV (0x1 << DMA_CH_RCV)
#define DMA_AUDIO_INTR (DMAC_I2SXMIT | DMAC_I2SRCV)

SLAA169

Windows CE .NET Touch Screen, Keypad, and Audio Device Drivers for the TSC2301 15

References

1. “Writing Device Drivers from Microsoft’s CE 3.0”, Microsoft
2. TSC2301 data sheet, Texas Instruments (SLAS371)
3. HCDDBCTA1/Cotulla Development Platform - User’s Guide, Intel
4. HCDDBCTA1 I/O Baseboard – Schematic Diagram, Intel
5. Intel PCA Development Kit – Installing Microsoft Windows CE.NET, Intel
6. Intel Cotulla Microprocessor Development Board Support Package for Microsoft

Windows CE .NET and Pocket PC2002 – User’s Guide, Intel
7. Intel PXA250 and PXA210 Application Processors Developer’s Manual, Intel
8. Related documentation for Windows CE Platform Builder 4.0

Many of these documents, as well as other related documentation, can be downloaded from the
respective websites, or found on CDs provided by manufacturers:

http://www.ti.com
http://developer.intel.com
http://www.microsoft.com/windows/embedded/ce/tools/default.asp

Windows is a trademark of Microsoft
Intel® is a registered trademark of Intel Corporation
SPI is a trademark of Motorola

http://www.ti.com/
http://developer.intel.com/
http://www.microsoft.com/windows/embedded/ce/tools/default.asp

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	Contents
	Introduction
	Hardware Considerations
	Table 1. Hardware Interface

	Software Architecture
	Figure 1. Integration of Monolithic Device Drivers Within the Windows CE System [1]

	Functional Description
	System Setup
	TSC2301 Touch Panel Driver Overview
	TSC2301 Keypad Driver Overview
	Table 2. KeyPad Mapping

	SSP Overview
	TSC2301 Audio Driver Overview

	Source Code
	Source Files
	Table 3. Source Code for TSC2301 Driver

	Installation Instructions
	#define DMAC_I2SXMIT (0x1 << DMA_CH_OUT)

	References

