{'f TEXAS
INSTRUMENTS

for the TLV320AIC20 HPA Data Converter

Application Report
SLAA166 — January 2003

TMS320C54x DSP Reference Framework & Device Driver

Randy Wu

ABSTRACT

The TLV320AIC20 is a high performance analog (HPA) data converter geared for voice-
band digital applications (typically 8-kHz sampling rates). The TLV320AIC20EVM is an
evaluation module that connects to a Tl DSP starter kit (DSK) via a standard AIC
motherboard (Part no. AICDEVPLATEVM). The EVM contains two AIC20 dual-codec
devices connected in a cascaded configuration, allowing the user to configure four
separate but simultaneous /O channels using a host processor, such as the
TMS320VC5416™ DSP low-power device.

This application note, along with the associated source code (which provides the standard
data pass-through system allowing DSP algorithms to be inserted for digital signal
processing), explains how to use the provided reference platform to evaluate the data
converter, create AlC20-based device drivers, insert sample algorithms to apply digital
signal processing to the data streams, and how to use the provided eXpressDSP™
software framework as the foundation for developing actual AlIC20-based applications. A
complete Code Composer Studio™ project with all the source code (completely written in
C for readability, portability, maintainability, and ease of use) is available for download
along with this application note. Project collateral discussed in this application note can be
downloaded from the following URL: http://www.ti.com/lit/zip/SLAA166.

Semiconductor Sales & Marketing / Digital Applications

Contents
I 111 o T LW T T o 3
2 Reference Platform Setup and Program Executioncccccoiiiiiiiiiiiiiinirnsnsccrcrrrs s sses s 3
3 What IS @XPreSSDSP ™72 ...t cses s ses s e ss e s s e s s e e s s e s s e e e s sesasasasesnnas 9
4 TMS320 DSP Algorithm Standard (XDAIS)......ccco i 10
5 TMS320VC5416™ DSP Starter Kitcceceerereurureressreresssesesssesesssssesssssesasssessssssesssssssssassssssas 10
6 TLV320AIC20EVM and the DSP-Codec Development Platformoeeeeeeeeeeeeeneennvennsennnes 1
7 Software Reference FrameworK s 13
7.1 Data Channel Processing Threadsccuuuiiiiiiiiiiiiiiie e 14
7.1.1 Sample-by-Sample ProCeSSINGuuuuuuiiuiiiiiii e 15
7.1.2 Frame-Based ProCeSSiNgcouiiuuiiiiiiiiii ittt 16
7.2 Data Channel State ODJECESuuiiiiiiiiiie e 17
7.3 Data Channel Algorithm Creation.................c 18
7.4 System-SpecCific INHIAliZatioNoooiii i 20
7.5 Algorithm Benchmarkingcoooooiiiii i 20
8 DSK5416_AIC20EVM DEViCe DIIVEree s s ssssssssssssssssssnnnsnnnnnas 23
8.1 Requirements for Writing the Device Driverccccc 23
8.1.1 Host Processor Considerations and Configuration.................ccccocoiiiiiiiiinns 23
8.1.2 AIC20EVM DeViCe CautiONS......ccceeiiiiiieee ettt e e e e e e ee e e e e e e e nnnes 23
TMS320VC5416 DSP, eXpressDSP, and Code Composer Studio are trademarks of Texas Instruments.
Other trademarks are the property of their respective owners. 1

http://www.ti.com/lit/zip/SLAA166

‘5‘ TEXAS

SLAA166 INSTRUMENTS
8.2 Defining the Interface to the DeVIiCe DIIVETooiiiiiiii e 24
8.2.1 Framework Interaction With the Driver ..., 24
8.2.2 DIrIVEIr FUNCLIONS ... 25
8.2.3 Relevant Data StrUCIUIES.........cooiiiiiieeeeeeee e e e 25
8.3 Implementation of the DeVviCe DIVETccooviiiiiiiiiieei et 27
8.3.1 Design Decisions and Core COdE........cccoeiiiiiiiiiiieeei e, 27
8.3.2 Coding Conventions, File Structure, and Packagingccccooeeeiiiiiiieiiiiiiieeee e, 33
8.4 Changing Device and Channel Parameters During Run-Time..........cccccciiiiiiiiiiiii e 34
8.4.1 RuUN-Time Control FUNCHONScoieieeiee e e e e e 34
8.4.2 RUN-TIMe CoNtrol TAr€AMccoiiiiieiiieieeee et e e e e e e e anees 38
8.5 Development of System-Specific AIC20 Device Driversccccccvvveeiiieiiiiiiieeeeeeeeeeeeeeeeee 42
L0 0 4 Vo LT =TT o 42
T 3 = =T =T 4T 42
Figures
Figure 1. DSK5416-AIC20EVM Host-Target Development Platformcccovimmmiiiiiniicccinennnn, 4
Figure 2. DSK5416-AIC20EVM Combination (TOP VIieW)ciciiiemminnnnsssnse s sssssnnees 5
Figure 3. AIC20EVM I/O Default Channel Selections and Connections.............cccceerriiniiisinnnnnnnen 6
Figure 4. Code Composer Studio Sample Workspace and Project........cccccceevirmireerirerieeeneeeeneennenns 8
Figure 5. Code Composer Studio Run Free Commandcccocoveermninnmmrnnnnssnsnnsssss s sssses 9
Figure 6. TMS320VC5416™ DSP Starter Kit (DSK) BOArdccccceurueemrucemiecieenseesseesssesssesssensns 11
Figure 7. AIC Motherboard (DSP-Codec Development Platform).........ccccconiiiiiimmmnnnnnccciinnnnns 11
Figure 8. AIC20 Evaluation Module (EVM) ... s snnes 12
Figure 9. 2-Device (4-Channel) Cascade Connection to Host Processor Serial Port 13
Figure 10. eXpressDSP™ Reference Framework Architecture............ccococcceceeeereeeeeeeeeseeessssssnsnnns 14

Figure 11. Framework Channels: Data FIOW.........cccoiiiiiiiiiiiiiiiiiieciecereeccs e eees e eeee e eeese e e e ss e ss s s s s s s snnssnnes 15
Figure 12. Configuring and Viewing DSP/BIOS Statistics (STS) Objectsccccevevrvvrrvereeeeeeeeennns 22
Figure 13. Time Division Multiplexing: Slot Assignment for Data and Control Words................ 23
Figure 14. Reference Platform: Hardware and Software Architecture.........cccccceevirriiiiiiiiiiicninennns 24
Figure 15. RCV and XMT Ping-Pong Buffer Format.............cooovimiiiie i eseseeeesssess s ees s see e e 25
Figure 16. Cascade Channel Configuration (Global Shadow Registers)..........ccccccmrrriiniiiiiiinnnnns 27
Figure 17. DSP Peripheral Configuration Using CSL..........ccooiiiiiiiiiiiiiiiciisssssesnsse s ee e se e s s eesseenes 28
Figure 18. McBSP Interrupt Service Routines Configuration ... 31
Figure 19. Host CCS GEL Sliders for Changing Channel Volumes.........cccccoecciimemmnnniinnsssssssnnenns 40
Figure 20. DSP/BIOS Timer ISR and Control Thread Configuration.........cccccccevevrviiiiiieiiisvieeeeeennns 41
Tables

Table 1. Configuration for AIC20EVIM s 5
Table 2. Configuration for AIC Motherboard..............ooccciimmiiii e 5
Table 3. DSK5416_AIC20EVM Default I/0 Codec Channel Settingsccovvvveeevereveeeeeeeeeeeeneeenns 26
Table 4. DSK5416_AIC20EVM Sampling Frequency Settingscccccerriiniiiiinnnssnnnnssccsnnenes 29
Table 5. DSK5416_AIC20EVM McBSP Write Decision per Receive Interruptccceeeeeee. 33
Table 6. DSK5416_AIC20EVM Example Naming Conventionscceeevereeeeeeeeeeeesssssssesssessnnnnes 33
2 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'}‘ TEXAS
INSTRUMENTS SLAA166

1 Introduction

The TLV320AIC20 dual-channel codec device, like all data converters used in a digital
signal processing system, needs a host processor to control the device during run-time of
the system. For example, a TMS320 ™ DSP Platform can be used to filter the voice of a
microphone of a headset, and/or apply some noise cancellation algorithm to the
microphone, left ear, and right ear channels of the headset. A DSP is the ideal processor to
set up the AIC20 to sample the different channels of analog-to-digital converters at some
conventional sample rate (e.g. 8 kHz) and process those samples through the filter and
noise reduction algorithms on the DSP. The DSP then routes the processed samples back
to the digital-to-analog converters, producing the desired voice-band outputs. Other popular
applications include (but not limited to) digital hearing aids, interactive toys with voice
recognition and/or speech synthesis capabilities, modems, and cell/speaker-phones.

Writing software device drivers (i.e. the physical layer of code which allows communications
with hardware devices) can be a challenge. It involves knowing the details of the device, as
well as how the host processor needs to interact with the device (and vice versa) to get the
desired results. This application note (and provided source code) is meant to give potential
users of the AIC20 device a reference platform for evaluation and actual development. The
source code is written completely in C to provide the ultimate in portability, readability,
maintainability, and reusability. The device driver itself is packaged in a modular style so
that only minor changes need to be implemented to use the driver for different hardware
configurations (e.g. connecting the AIC20 device to a different peripheral of the host
processor) without affecting the overall interface of the device driver.

A simple reference framework is provided as an example to demonstrate how the device
driver is used in a typical digital signal processing system. We have chosen to use the
popular TMS320VC5416™ DSP starter kit as the development platform. This allows the
system developer to get started in a matter of minutes simply by obtaining a C5416DSK,
AIC20EVM, AIC motherboard, and the source code provided with this application note.

By not starting from scratch every time a new project is commenced, DSP developers get to
market quicker than starting with a blank piece of paper. Texas Instruments is fully
committed to providing our DSP developers with as much off-the-shelf content as possible
so that less time is spent for each system design. This strategy is implemented as TI's
eXpressDSP™ software and development tool set.

2 Reference Platform Setup and Program Execution

This application note (and accompanying source code) allows potential AIC20 data converter
users to get something up and running quickly, and it allows for evaluation of the device and the
DSP algorithms which can be applied to the data stream of the device. The remainder of this
application note discusses the reference framework and device driver in detail. For those who
just want to get the DSK and EVM combination running with a host PC (as shown below) and
not worry about the implementation details, follow the steps in this section and read the
remainder of this application note as time allows to fully understand how to use the reference
framework (RF) and learn how the device driver was implemented. This section describes how
to configure the target hardware and set up the C5416DSK-AIC20EVM sample project code to
run in real-time along with a host PC running code composer studio.

Before starting this setup procedure (starting on the following page), the following hardware
components must be obtained:

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
3

‘5‘ TEXAS
SLAA166 INSTRUMENTS

e DSP Platform: Complete TMS320VC5416™ DSP starter kit (DSK)
e HPA Platform: AIC motherboard & TLV320AIC20 evaluation module

e Voice-band input device(s) (of preferred choice): microphone, handset, headset, signal tone

generator, etc.t
t If using a high-quality stereo device to simulate voice input (such as a CD player, MP3 player, Walkman, PC Soundcard,
etc.) the output of the AIC20EVM will result in decreased sound quality due to the voice-band 8-kHz samplingrate.

¢ Voice-band output device(s) (of preferred choice): mini speakers (8 Q2), handset(150 Q),
headset(150 Q), oscilloscope (to view output signals), etc.

™~
29900009 AIC20
2 gan0o0a EVM
00000000
J 00000000 (TOP)
_
VOICE/SOUND INPUTS & OUTPUTS
™~
AIC
‘ MOTHER
/! BOARD
[T — MIDDLE
o ()
HOST DEVELOPMENT PC
(RUNNING CODE
COMPOSER STUDIO)
C5416 DSK
>‘ (BOTTOM)
Yﬁ
®
0 ol |

)
5V DC @

POWER 100-240V
SUPPLY e

Figure 1. DSK5416-AIC20EVM Host-Target Development Platform OUTLET

4 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'}‘ TEXAS
INSTRUMENTS SLAA166

1. Download the corresponding application note source code from the same web site this
application note was downloaded and extract the files onto the PC that is used as the
host development platform.

2. Verify that the jumper settings on both AIC boards match the information in the following
tables (use the factory default jumper settings for the DSK).

Table 1. Configuration for AIC20EVM

JUMPER POSITION DESCRIPTION
W1 Installed Connects 3.3-V analog drive power ground to AGND (vs no connection)
w2 2-3 Connects the first device’s FSD to the second device’s FS (vs connecting the
first device’s FSD to constant high[1] or low[0])
W3 Not installed (1 — 2 connects first channel’s FSD to high[1]; 2 — 3 connects FSD to low[0])
w4 1-2 Connects the first device’s M/S high[1] to make it the master of the cascade
w5 Installed Connects analog and digital grounds together

Table 2. Configuration for AIC Motherboard

JUMPER POSITION DESCRIPTION
W1 1-2 Codec EVM system power-up through DSK board (vs external power supply)
w2 1-2 MCLK source: Use DSP’s CLKOUT (vs onboard 100-MHz oscillator)

3. Connect the AIC motherboard and AIC20EVM to the C5416DSK (using the included
standoffs and screws) as shown below. The correct combination of the three boards
results in a multilayered PCB interconnection with the top board being the AIC20EVM,
the middle board being the AIC motherboard, and the bottom being the C5416DSK
board. The C5416DSK board should be almost completely covered by the AIC20EVM
and AIC motherboard when connected (from top view).

@eel®[eeleelesles] [®

E - AICOMOTHERBOARD ~
E I 00 o @RESET

@| ©0o000000 |:| gg |:| o

E 90000000 I ool b 00

@ 05000000 00

®| ocooocoo000 |:| 83
E 00 |:| Oo

2 ol oo 18,

R R R RIS |[mm -

L ~orrerr—b5358088858888888880558833858888888 @
1 ﬁ I

Figure 2. DSK5416-AIC20EVM Combination (Top View)

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
5

{? TEXAS

SLAA166 INSTRUMENTS

NOTE: The reference software acts as a simple pass-through of all data samples for each
codec channel. At system start-up, every I/O channel is active using 8-kHz sampling rate and
16-bit data samples. To power down specific codec channels at run-time, the device driver
source code needs to be modified and rebuilt. In the main driver file dsk5416_aic20evm.c
(found in the \drivers subdirectory), locate the DSK5416 AIC20EVM setup () function and
modify the following code:

/* The following 4 lines will power down each codec channel */

//DSK5416 AIC20EVM chanConfigParams
//DSK5416 AIC20EVM chanConfigParams
//DSK5416 AIC20EVM chanConfigParams
//DSK5416:AIC2OEVM:chanConfigParams

MST CHAN1].reg[CR3A] |= PWDN; // master chl power down
MST CHANZ2].reg[CR3A] | PWDN; // master ch2 power down
SLV CHAN1].reg[CR3A] |= PWDN; // slave chl power down
SLv:CHANZJ.reg[CR3A] |= PWDN; // slave ch2 power down

To actually power down any specific codec channel, simply uncomment the line of code which
corresponds to the channel to be shut down and then rebuild the dsk5416_aic20evm_[54
(near calls/returns) and dsk5416_aic20evm_I54f (far) library project files found in the \drivers
subdirectory (be sure to Rebuild All to ensure all files are built in their corresponding near or
far memory models). Then, rebuild the sample application project (dsk5416_aic20evm.pijt).

4. Connect the desired voice-based devices (inputs and outputs) to the AIC20EVM
connectors (input/output TB’s and the input Jack) as shown below (TB = terminal block
for a balanced, differential 2-wire connection; HNS = handset; HDS = headset).

INPUT MST CH1 LINET (+/-) Codec #1 :LINEO(+/—) OUTPUT MST CH1
P TBII4 —————T P —+—®» TBIJS >
| SMARTDM Addr = 0011b 1
1 1
1 1
1 1
INPUT MST CH2 MICT (+/-) | Codec #2 ISPKO (+/-) OUTPUT MST CH2
P JackJi6 | — P —+—p{ TBIR2 >
1 SMARTDM Addr = 0010b 1
1 1
1 1
e e e e e 1
T T T TEr s |
| AIC20 #2 (SLAVE) 1
1 1
1
INPUT SLV CH1 HNST (+/-) : Codec #1 |SPKO (+/-) OUTPUT SLV CHI
» TBJIY —— TP ——» TBJ11
| SMARTDM Addr = 0001b 1
1 1
1 1
1 1
INPUT SLV CH2 HDSTI (+/-) | Codec #2 JHDSO (+/-) OUTPUT SLV CH2
p TBJI3 ———+P —+——P» TBJ3 >
1 SMARTDM Addr = 0000b :
1
1 1
e e e e e 1

Figure 3. AIC20EVM |/O Default Channel Selections and Connections

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'}‘ TEXAS

INSTRUMENTS SLAA166

NOTE: The polarity of the wire (+ or -) connections to the TB does not matter. The unique, self-
assigned SMARTDM addresses are discussed in a later section, but they are basically used to
identify which codec’s control register data is being sent back to the host processor whenever
the host wants to read specific control register contents of a codec.

5. Set up the C5416DSK host-target platform and invoke Code Composer Studio (C5416
DSK CCS) as per the Quick Start Guide that comes with the C5416DSK package. Make
sure both the DSK and CCS can be started without any communications errors. If using
a spectrum digital XDS-based emulator is preferred, then invoke C5000 CCS instead.

6. Load one of the following CCS workspace files (File = Workspace =» Load Workspace):
e audioapp_dsk5416usb.wks (if using the provided C5416DSK USB cable directly)
e audioapp_xds510pp.wks (if using a spectrum digital XDS510-based PP emulator)
e audioapp_xds510usb.wks (if using a spectrum digital XDS510-based USB emulator)

NOTE: For the workspace file to load properly for the XDS emulator configuration, make sure
that there is a CPU named CPU_1 when running the C5000 code composer studio setup
program. If the workspace file fails to load completely, proceed to the next step.

7. Load the audioapp.out (File =& Load Program) executable (located in the Debug
subdirectory). Start the sound source(s) on any or all of the inputs, then Debug = Run
the program. You should now hear the sound input(s) at the corresponding channel
sound output(s).

WARNING:

When running CCS and the C5416DSK under normal emulation mode, the JTAG
channel, at times, becomes busy and causes interference to the voice channels.
If this random noise is not desired or causes the analysis to be impossible,
choosing the Run Free option (found under the CCS Toolbar Debug column)
instructs CCS to not communicate with the target emulator while the DSP is
running. The BUSY LED on the DSK should no longer flash during run-time (for
the USB emulation configuration). Please note that none of the real-time
analysis screens are able to update during this period but the target continues
to run freely.

8. Toinsert DSP algorithms, locate the processBuffer () function in the audioapp.c
source file. Every (pointer to the) sample from every channel passes through this
function. This is where the DSP processing routine(s) can be inserted to apply signal
processing to any of the AIC20 channels. The default sampling rate is set for 8 kHz on
all channels. The resulting processed voice-band outputs can then be analyzed indetail.

9. To learn how to leverage the existing reference framework for such things as evaluating
DSP algorithms, building actual system code, writing a system-specific AIC20 device
driver, learning how the DSK5416_AIC20EVM device driver was designed and
implemented, or understanding how eXpressDSP™ components can be leveraged to
reduce time-to-market, read the remaining sections of this application note.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
7

*ﬂ‘ TEXAS

SLAA166 INSTRUMENTS
B s bt ke bpecraiam aglt @ TP - Dl - Dl Cogvgeacsss v Tk b DO Tisks - | sl s] I _‘mﬂ
[um-—ﬁmmmmmmmmu _..ﬂ]_l
PRI TR Jﬂﬂh‘ﬁ M| S R EE ifl-ir#i.mil‘
e— =|[omg] | Al OONEEHEA
o l! — l.l "'i'nlll o Froem [IBES4 16 :'.ll"':l'lEl:\.-'rl-l Channel a Igﬁ;ar , Dample #izputFrame, Zample ‘ln:;
L] f j‘”"‘: Sample intermBuf [DERS416_ATCI0EVM_NUMCHRNE] ;
IF in) mbwa it b retord bigk-to wk tzme (timer coonter] hefors csilties Ist 10T L
B (o (/w0 Canfly STS_mnt [Gutehlgine. CLE_getheime()js = =
] S (o} Garesynd Fls 5T = =tigine. CLK_geths {113
& _—II:_“- ¢ FIE algoritla cazng ==t T mEecTLive Eample | Fiwrent chachwl
,. =l i B JERT di & Haispy () bebd &6 placabslder for &5 SlieFhbATa AiFl s ®
> E'lwr‘ memcpy |LinteTnBuf, fuputFrame, DERS415_ATCICEV_KUMCHAIE ; J
| 1 . * galculate mlapzed tipe Cor 1st slporithe to sxecsbe. tr high-res clock cyol
g jgi:: sl STa. rh- f'-lm-‘t-r-iilgl:'ll'. CLF _s=tht l.mll 'l
W ;":'i::':‘t_.‘ ¥ racal=l ..|' rdis SEK TiEE |([TLEEY COMnmTET L = - L) id S1QErichiE =
E- jl-- BT ET5_ewi | EaTeAlyTRe, I:Ll_q-.-r.h Lo |] &
| H"..IL ' ¢ grplify the sigael in ixtermediste bufieT ar tore Te=nls i ot i
| T | | Hhrhu'hr'm'hl lghen] -'Ia'-'i--.. [Sample ®)&int nmill-f. r-"ltpll“Er-L'rlH
s 3
: jlal | M
e vkl 54 JE S dilregt ealashin] 500" ol Sdla_Takt Compleate 175 | Cman foigd| TS Arage
Linkpngs Bl Startlp cosplate. bRl sckPil - £ B a
i T RETSE TREMITeE I Ae e &7
1 % o 1 PRI 1w IR] T kL T BT R
aky I"j'__' :f'_":'!:_':';.__,_ . - [AN D) AP
g EaE S AL T szfagiine LR A2 F. 5 KR
EEEE""""f IL-LI HI“J | = [N PEMGwE 5 4400608 EeE EL

!Eiﬂﬂ@ﬂlr#i Pmirarsbstos |[§ momsira s Wpsscsen | WEIHIRRADIIOD

For e, e L !.n‘l&l.'.l!-

Figure 4. Code Composer Studio Sample Workspace and Project

CAUTION:

et Y (00 | Peak AN

| 1
§136 W

Halting the processor and then restarting the processor could result in data
words being written into control register timing slots inadvertently. Whenever
the target is stopped, it is always a good idea to reset the CPU and reload the
program before running the target again.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

*f; TEXAS

INSTRUMENTS SLAA166
] Srinabik o S irewms gl 3o0F | - U5 - Dol Comrguoies Srwilin 'TH4 1B S Tonds - [alabeaspa] .
;hummmmmmwmmu |
dEFEH Tied | | AahA @F o= il ET 4% %S¢

IPmm
| I o E
ey i :5H|:IIEI:I fE B E T
7 ep Oves Fa
& #, oo=El | e Shit+F]
T e p— = puutd] B
o | : . t piosPoag;
&= 2 & mﬂ RS —
#0 o g 3
il o Pasy == BTN |
STt Pl e Fil ot i . . I
E =l A ELLL Op Fit | I
S T et T T b [GKE |-'|Il.-_}"l. I.L-l"l ILIIII:IT.'\.! P t-|:_|-':.-'|_-:'l"¢l|_'.'| -
5 CERSA1E_ATCIIEV _shuflerimtPiag [MET_(HAHZ 5] =
] gty GRS 416 _ALCIIEW_gbefierimsPisg (5L (HAH1 D] =
= Featmr LoES416_AL[CIOEYH _|F:JI'|'H|:-!: Fis _| "'r HRI2 2]
=l new ceatral warda an [
—:'I.I et il l'EI‘Z'E-iIE-_.i.[l::':E'.’H_-Bn”u.r:-'_l Pi I._J I-'.":'I' ':I.:..."'JI 'I Y
| NEESALE_ALCIDEVH ghul lersmtPang [FET_CHARS C I.l.-F LB _ALCZOEVS gqin
" (1Fia Ve 5K S416_ALCIOEVM =Buf ForincPiag (SLY_CHAI O] = DSKEW16 ALC2EW abu g
' X
Linking: 2| |13 Cinsrd Tois Lo M
3 it L mckPd 1M 1l 1} I
filld Complete, e P TiE el 15N it AIE i ik
Ex 0 Warnis ERET) | FED_s S ITENREed (TWee EXU
IH sadli HTh IFNIN-NR ZUNEeA] % HE
| || e 1 T a-R 1 7aeEn ™ s
AR, o f Lol | irj | g 4 PR el 1 A PR=iAn R e an
|3 Pt II.'\qI.-.'! ﬂ
p::ﬂlﬂn el iy
Oy
W uawryg
W des
|:|:,|:|1F|, | L |
| B LIN_repage
W
h.u.l'-
|||||||.|||| e ||.| ey I EETEN I <kl a o 7 i)
CONTERIE Bt T
£l ¥ mani] SL2EVH rere reperee neomiad 7| LN B, Pl I
R+ E g Tt il Dmssd oy Lri 80l |

3 Wh

'I-'II HEQEE F IO || wosirsik i et gﬂmmmnﬁ..l

Code Composer Studio Run Free Command

Figure 5.

at Is eXpressDSP™?2

FENE EY LF T LT LA e

TI's real-time eXpressDSP™ software and development tool strategy includes three tightly
knit ingredients that empower developers to tap the full potential of TMS320™ DSPs:

1.
environment
2. Target content software
a.
b.
reuse
C.
applications
3.

integrated into systems

DSP/BIOS: Scalable, real-time software foundation
TMS320 DSP algorithm standard (XDAIS): coding guidelines for interoperability and

Code Composer Studio — the world’s most powerful DSP integrated development

Reference frameworks: design-ready starterware code common to many

Third party network: a growing base of TI DSP-based products that can be easily

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

9

‘5‘ TEXAS
SLAA166 INSTRUMENTS

Each element is designed to simplify DSP programming and move development from a custom
crafted approach to a new paradigm of interoperable software from multiple vendors supported
by a worldwide infrastructure. All of these components have been used in the development of
the DSP reference framework and AlC20 device driver described by (and provided with) this
application note.

NOTE: For more detailed information on all components of eXpressDSP™, please refer to TI's
one-stop shop for DSP development on the Internet: www.dspvillage.com.

4 TMS320 DSP Algorithm Standard (XDAIS)

The TMS320™ DSP algorithm standard, also known as XDAIS (pronounced DAY-yiss), is a
DSP. A single standard set of coding conventions and application programming interfaces
(APIs) for algorithm creators to wrap the algorithm for system-ready use in any application.
In the past, algorithm creators had to re-engineer an algorithm to integrate it into each
different system. Now, the algorithms are written once by the creator and reused widely by
the system integrators. The standard includes algorithm programming rules, which when
followed by the algorithm creators, enable interoperability of compliant algorithms in the
same system. Algorithm standardization increases the quantity and quality of algorithms
available for faster use by OEMs. TI's third party network provides off-the-shelf compliant
algorithms for ease of integration and reduced time-to-market.

All of TI's generic eXpressDSP™ reference frameworks, as well as the specific framework
used in this application note, allows the developer to seamlessly integrate any algorithm
which is XDAIS-compliant without having to re-engineer the algorithm module nor modify
the system code to instantiate and execute the algorithms. To provide an example and to
create entry points into the framework, two fully XDAIS-compliant algorithms developed by
Tl, the FIR_Tl and VOL_T]I algorithms are used in the sample framework and applied to the
data stream of the AIC20 cascade. These two algorithms are easily replaced with the
specific algorithms to be evaluated with the AIC20EVM.

5 TMS320VC5416™ DSP Starter Kit

The TMS320VC5416™ DSP starter kit (DSK) is a low-cost development platform designed
to speed the development of power-efficient applications based on TI's TMS320C54x™
DSPs. The kit, which provides new performance-enhancing features such as USB
communications and true plug-n-play functionality, gives both experienced and novice
designers an easy way to get started immediately with their innovative product designs.

NOTE: For more detailed information on all components of eXpressDSP™, please refer to TI's
one-stop shop for DSP development on the Internet: www.dspvillage.com.

10 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

http://www.dspvillage.com/
http://www.dspvillage.com/

{'}‘ TEXAS
INSTRUMENTS SLAA166

1 1

S I00n @ —

— 3 []
1 0 [

USB Connector (to PC)

5416
DSP

Connects to AIC
Motherboard

@ |]

EXPANSION PERIPHERAL INTERFACE

Reset
Power > DI >
’J:L'(‘ Connector Pushbutton brp I I I I

Switches

Figure 6. TMS320VC5416™ DSP Starter Kit (DSK) Board

6 TLV320AIC20EVM and the DSP-Codec Development Platform

The TLV320AIC20 is a true low-cost low-power highly integrated high-performance dual
voice codec designed with new technological advances. It features two 16-bit analog-to-
digital (A/D) channels and two 16-bit digital-to-analog (D/A) channels, which can be
connected to a handset, headset, speaker, microphone, or a subscriber line via a
programmable analog crosspoint. The maximum sampling rate is 26 KSPS (with on-chip
IIR/FIR filter) and 104 KSPS (with IIR/FIR bypassed).

An AIC20 EVM is available to quickly evaluate the codec device. This board plugs into a
generic AIC motherboard (also referred to as the DSP-Codec Development Platform) that
plugs directly to the expansion peripheral interface (EPI) connector of the C5416 DSK. By
combining these three boards, a reference platform can be used to quickly evaluate the
AIC20 device as well as XDAIS-compliant algorithms used to process the data streams.
The AIC expansion board allows any AlC-based EVM to be plugged directly into any DSK
expansion peripheral Interface connector.

@ AIC MOTHERBOARD @
gg 0 |:| O o O |E|RESET
0

Connects to 8 8
AIC EVM | g
0 00

ool @
oo| @

o 00 0
ol (18,
- Connects to
OO0 I EA// DSK EPI
3080898988883388080808084898303030s 4 ()| (from bottom)
Figure 7. AIC Motherboard (DSP-Codec Development Platform)

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
11

SLAA166

‘? TEXAS
INSTRUMENTS

AIC20 #2
(Slave)

AIC20 #1
(Master)

The AIC20EVM board contains two AlIC20 devices connected in a cascaded configuration.
One device serves as the master while the other device is the slave. Each device contains
two data channels, resulting in a total of four independent data channels supported on the
EVM. When the EVM is connected to the DSK, the devices communicate to the
C5416DSP’s multichannel buffered serial port (McBSP) via time division multiplexed (TDM)
stream. The SMART time division multiplexed serial port (SMARTDM) of the AIC20 uses
the four wires DOUT, DIN, SCLK, and FS to transfer data into and out of the AIC20 device.
The SMARTDM allows for a serial connection of up to 16 AIC20 devices to a single host
serial port. The SMARTDM feature automatically adjusts the number of time slots per
frame sync (FS) to match the number of codecs in the serial interface so that no time slot is
wasted. Each time slot contains a 16-bit word representing sample or control information.
When the master AIC20 device is reset, each codec in the cascade assigns itself a unique
4-bit SMARTDM address which is used to identify the time slot used for sending control
register information from the codec back to the host processor.

@ool®[cie[eie[ee[e.] [| 3.5 mm jack
E 55 (input to #2)
L = I 00

00000000 00

% 00000000 >|:| [gg

=1 00000000 |:| 0 o[Connects to
O 2ocooans | 00 AIC Motherboard
D[o00000000 ’D 00 (from bottom)

= i
|g O ool
— ‘
@eel®eeleeleelel] 1< 3.5 mm jack
(input to #1)

Figure 8. AIC20 Evaluation Module (EVM)

Figure 9 shows how the 2 AlIC20 devices on the AIC20EVM connect to the DSP in the
C5416DSK. The AIC20 closest to the DSP’s McBSP is the Master device that provides the
FS signal to the DSP. The FS acts as a signal to the DSP so that it knows when to write
and read data to/from the correct TDM slot within the FS period. On the falling edge of the
FS signal should be the read or write from/to the first Master channel’s slot. Figure 9 shows
the slot within the FS period that corresponds to the channels in the cascade. This
configuration allows a single McBSP to talk to any number of cascaded AlIC20 devices, up
to a maximum of eight devices (each AlIC20 device supports two codec channels, resulting
in a maximum of (8 x 2) = 16 time division multiplexed (TDM) channels in a single serial
data stream).

NOTE: Up to four AIC20EVMs can be stacked on top of the AIC motherboard to achieve the

16-TDM cascaded channel configuration, but requires minor modifications to the existing device
driver as the provided driver is configured for a single AIC20EVM (two devices / four channels).

12 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{"r‘ TEXAS

INSTRUMENTS SLAA166
CLKOUT
DR [
DX
FSX
MCLK |[¢—e
FSR FS TLV320AIC20 P
[#1] DIN[* »
CLKX (MASTER) pout
SCLK
CLKR FSD M/S
TMS320C5416 |
McBSP v 33V
FS
TLV320AIC20 MCLK
[#2] DIN[* M
(SLAVE) pout
>|scLK
FSD

M/S
EJ J:
I0VDD -

Figure 9. 2-Device (4-Channel) Cascade Connection to Host Processor Serial Port

7 Software Reference Framework

DSP/BIOS is TI's real time operating system foundation. It provides multiple thread
scheduling, memory management services, hardware abstraction/configuration, real-time
analysis capabilities, interprocess communication, and structured device driver 1/O.

Applications which use DSP/BIOS take advantage of all the common DSP real-time kernel
services with easy-to-use API's and hand-optimized program modules for increased
portability, maintainability, reusability, and reduced time-to-market.

Accelerating the software development process for designers of DSP-based applications, Tl
produces and supports a series of DSP software reference frameworks (RF). The design-
ready RFs are getting-started solutions for designers in the early stages of application
development, featuring easy-to-use source code that is common to many applications. With
TI's RFs, many of the initial low-level design decisions are eliminated, allowing developers
more time to focus on the code that truly differentiates products. Designers can choose the
specific RF that best meets their system needs and then populate the RF with XDAIS-
compliant algorithms, creating specific applications for a wide range of end equipments.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
13

SLAA166

{5’ TEXAS
INSTRUMENTS

TIProvided

eXpressDSP Generic App lication

Customer Ad ap tation

U n ique behaviore.g.Internet Audio P layer W

ebPhone,DigitalHearing Aid

drive rs
CustomDSP/BIOSI/ODrivers

Leverage LIO /P IP /SIO D river
Additionaldriverse.g.UART,DAA

Customer target hardware '

CSL DSP/BJOS ™

TMS320 C5000/C6000 DSP
TIDSK/EVMe.g.C5416DSK

Figure 10. eXpressDSP™ Reference Framework Architecture

The reference framework used in this application note is built on the same DSP/BIOS
foundation and allows the developer to easily insert various XDAIS algorithms to evaluate
digital signal processing on the data channels as well. There is also a simulated host
control capability where a control thread is periodically scheduled to run on the target and
checks a shared device I/O area memory space. If the host sets certain flags, the target can
perform the appropriate function during run-time. GEL sliders are provided as an example
to change certain parameters during run-time.

7.1 Data Channel Processing Threads

14

In this application note example, a single thread of execution is used to read a single
sample from each of the AIC20 ADC'’s at a time, and then each sample is subsequently
sent back out to the same channel’'s DAC. Using this convenient entry point, any number of
DSP algorithms can be inserted to apply sample-by-sample or frame-based DSP
processing on every channel. The AlIC20 device driver exposes a pair of receive and
transmit ping-pong buffers to pass data between itself and the framework (this is discussed
in greater detail in the device driver section of this application note).

The audioapp.c source file contains the main framework code. The processBuffer ()
function is automatically called every time a sample from all AIC20 channels have been
read at the end of each FS period (i.e. Rcv ping or pong buffer has just been filled up by the
device driver). The processBuffer () can be configured for either sample-by-sample
processing or frame-based processing. It gets samples from the currently filled Rx buffer
and place them in the corresponding Tx ping-pong buffer. This is where the processing is
applied to each sample (or the entire frame of data samples) as the Rx data is being
transferred to the Tx buffer by the CPU.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'? TEXAS

INSTRUMENTS SLAA166

7.1.1 Sample-by-Sample Processing

void processBuffer (void)

{

short pingPong;

pingPong = SWI getmbox () ;

if
//

}

(pingPong == PING) {
insert algorithm(s) here to fill up PING output buffer
DSK5416 AIC20EVM gBufferXmtPing[MST CHAN1 D] =

processSample (MST CHAN1, &DSK5416 ATC20EVM gBufferRcvPing[MST CHAN1 D]); // MST Chl
DSK5416 AIC20EVM gBufferXmtPing[MST CHAN2 D] =

processSample (MST CHAN2, &DSK5416 AIC20EVM gBufferRcvPing[MST CHAN2 D]); // MST Ch2
DSK5416 AIC20EVM gBufferXmtPing[SLV CHAN1 D] =

processSample (SLV_CHAN1, &DSK5416 AIC20EVM gBufferRcvPing[SLV _CHAN1 D]); // SLV Chl

DSK5416 AIC20EVM gBufferXmtPing[SLV CHAN2 D] =
processSample (SLV_CHAN2, &DSK5416 AIC20EVM gBufferRcvPing[SLV_CHAN2 D]); // SLV Ch2

else { // pingPong == PONG

// insert algorithm(s) here to fill up PONG output buffer
DSK5416 AIC20EVM gBufferxmtPong[MST CHAN1 D] =

processSample (MST CHAN1, &DSK5416 AIC20EVM gBufferRcvPong[MST CHAN1 D]); // MST Chl
DSK5416_AIC20EVM gBufferXmtPong[MST_CHAN2 D] =

processSample (MST CHAN2, &DSK5416 AIC20EVM gBufferRcvPong[MST CHAN2 D]); // MST Ch2
DSK5416 AIC20EVM gBufferXmtPong[SLV CHANl D] =

processSample (SLV_CHAN1, &DSK5416 AIC20EVM gBufferRcvPong[SLV CHAN1 D]); // SLV Chl
DSK5416 AIC20EVM gBufferXmtPong[SLV_CHAN2 D] =

processSample (SLV_CHAN2, &DSK5416 AIC20EVM gBufferRcvPong[SLV CHAN2 D]); // SLV Ch2

In this case, the processSample () function is called on every new sample that is read into the
receive data buffer that has just been filled by the device driver. This is where one or more
algorithms can be applied to the sample before it is written to the output buffer. The sample
framework comes with simple, fully XDAIS-compliant finite impulse response (FIR) and
volume/gain control (VOL) algorithms (developed by TI) that are applied in sequence to every
sample received from each data channel.

FIR_TI XDAIS VOL_TI XDAIS
> ALGORITHM > ALGORITHM

' ¢

(FRAMEWORK)

RCYV PING-
PONG BUFFERS

(DSK5416 AIC20EVM DRIVER)
! i

XMT PING- |«
PONG BUFFERS

Figure 11. Framework Channels: Data Flow

These entry points serve as placeholders for the real algorithms that could be inserted and
evaluated with the AIC20EVM data streams. Most XDAIS algorithms come packaged with
<ALGORITHM> apply () functions which in most cases can be inserted at the FIR apply ()
and VOL apply () entry points. XDAIS algorithms allow for ease of integration, especially
when swapping out one XDAIS algorithm module for another.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
15

{? TEXAS

SLAA166 INSTRUMENTS

Uintl6 processSample (DSK5416 AIC20EVM Channel chan, Uintl6é *inputSample)

{
Sample tmpl, tmp2;

STS set (&stsAlgFir, CLK gethtime());
FIR apply (thrAudioproc[chan].algFIR, (Sample *)inputSample, &tmpl);
STS delta(&stsAlgFir, CLK gethtime()); // measure FIR algorithm execution time

STS set (&stsAlgVol, CLK gethtime());
VOL_apply (thrAudioproc[chan].algVOL, &tmpl, &tmp2);
STS delta(&stsAlgFir, CLK gethtime()); // measure VOL algorithm execution time

return ((Uintlo)tmp2);

7.1.2 Frame-Based Processing

To reduce the overhead of calling the same processing function(s) on every sample on every
channel and/or to simply evaluate the same algorithm processing on all cascaded channels, a
processFrame () function is also supplied as another option for the framework:

void processBuffer (void)

{

short pingPong;
pingPong = SWI getmbox();

if (pingPong == PING) { // Fill up Xmt Ping output buffer
processFrame (MST CHAN1, (Sample *)&DSK5416 AIC20EVM gBufferRevPing[MST CHAN1 D],
(Sample *)&DSK5416 AIC20EVM gBufferXmtPing[MST CHAN1 DJ]);
}
else { // pingPong == PONG
// Fill up Xmt Pong output buffer
processFrame (MST CHAN1, (Sample *)&DSK5416 AIC20EVM gBufferRecvPong[MST CHAN1 D],
(Sample *)&DSK5416 AIC20EVM gBufferXmtPong[MST CHAN1 DJ]);

16

In this case, processFrame () can run any algorithm that supports frame-based or block-
oriented processing. In other words, the current samples from every channel are treated
as a single frame of multiple samples and can be processed by a single function call, to
apply the same processing function to each channel from the current FS period. In this
application note example, the DSP CPU loading is normally reduced by up to 23% when
switching from sample-by-sample processing to frame-based processing.

NOTE: If choosing the processFrame () option, be sure to only use an algorithm that can
process each sample in a frame independently from the other samples in the frame. The FIR_TI
algorithm will only work using the processSample () option since each frame of data contains
samples from different channels, since a typical filter-type algorithm needs to operate on
consecutive samples from the same sound stream.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'? TEXAS

INSTRUMENTS SLAA166

7.2

Void processFrame (DSK5416 AIC20EVM Channel algChan,
Sample *inputFrame, Sample *outputFrame)

{
Sample intermBuf [DSK5416 AIC20EVM NUMCHANS];

/* record high-res clock time (timer counter) before calling 1lst algorithm */
STS set (&stsAlgOne, CLK gethtime());

/* FIR algorithm cannot process consecutive samples from different channels
so just do a memcpy() here as a placeholder for an alternate algorithm */
memcpy (&intermBuf, inputFrame, DSK5416 AIC20EVM NUMCHANS*sizeof (Sample));

/* calculate elapsed time for 1st algorithm to execute, in high-res clock cycles */
STS delta (&stsAlgOne, CLK gethtime());

/* record high-res clock time (timer counter) before calling 2nd algorithm */
STS set (&stsAlgTwo, CLK gethtime());

/* amplify the signal in interm. buffer and store result in output frame buffer */
VOL_apply (thrAudioproc[algChan] .algVOL, (Sample *)&intermBuf, outputFrame);

/* calculate elapsed time for 2nd algorithm to execute, in high-res clock cycles */
STS delta (&stsAlgTwo, CLK gethtime());

On return from the processFrame () function call, the processed samples filled up the
corresponding transmit ping or pong output buffer and be sent out to the device driver. For
best results, XDAIS-compliant algorithms should be used for ease of integration and
interoperability, especially when integrating algorithms from multiple sources/vendors.

Data Channel State Objects

A global array of channel structures (named thrAudioproc[] of data structure type
ThrAudioproc) is declared during compile time and is initialized during run-time. Once
initialized, the framework code can access each of the data channel’s state information at any
time. Currently, these channel structures store the unique algorithm instance objects that are
used for the processing of each channel. The structure definition is found in the thrAudioproc.h
header file, and can be modified to include any additional channel state information as required
by the application developer.

/*
* Here we define a structure that contains all the "private"
* thread information: algorithm handles, input pipe(s), output

* pipe(s), intermediate buffer(s), if any, and all the other
* information that encapsulates thread state for each channel.
*/
typedef struct ThrAudioproc {
/* algorithm(s) */
FIR Handle algFIR; /* an instance of the FIR algorithm */
VOL Handle algVOL; /* an instance of the VOL algorithm */

/* everything else that is private for a thread comes here */

} ThrAudioproc;

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
17

{? TEXAS

SLAA166 INSTRUMENTS

7.3

18

ThrAudioproc thrAudioproc[DSK5416 AIC20EVM NUMCHANS] = {
{ /* data channel #1 (Master Channel 1) */

/* algorithm handle(s) (to be initialized in runtime) */
NULL, /* algFIR */
NULL, /* algVoL */

/* everything else private for the thread */
}, /* end data channel #1 */

{ /* data channel #2 (Master Channel 2) */

/* algorithm handle(s) (to be initialized in runtime) */
NULL, /* algFIR */
NULL, /* algVoOL */

/* everything else private for the thread */
}, /* end data channel #2 */

{ /* data channel #3 (Slave Channel 1) */

/* algorithm handle(s) (to be initialized in runtime) */
NULL, /* algFIR */
NULL, /* algVoL */

/* everything else private for the thread */
}, /* end data channel #3 */

{ /* data channel #4 (Slave Channel 2) */

/* algorithm handle(s) (to be initialized in runtime) */
NULL, /* algFIR */
NULL, /* algVoL */

/* everything else private for the thread */

}, /* end data channel #4 */

The above code shows the global thrAudioproc[] array defined in source code and its ability
to take on default settings within each channel structure. Each array element (channel
structure) corresponds to one of the data channels on the AIC20EVM. Fields such as the
algorithm handles are set during run-time since the XDAIS algorithms in this example are
created and initialized during system start-up, and additional structure fields can be added as
needed.

Data Channel Algorithm Creation

The thraudioprocinit () function references the thraudioproc[] array and take care of
querying the XDAIS algorithms for their memory requirements, dynamically allocate those
memories from internal and/or external memory heaps defined by the user, and store the
handles to the newly-created algorithm instance objects so that each channel can reference its
own set of algorithm instances.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'? TEXAS

INSTRUMENTS SLAA166

Void thrAudioprocInit(Void)
{
/* declaration of filter, volume parameter structures */
FIR Params firParams;
VOL Params volParams;
Int 1i;

for (i = 0; i < DSK5416 AIC20EVM NUMCHANS; i++) {
/*
* Set the parameters structure to the default, i.e.
* the one used in i<alg>.c, and modify fields that are different.

*/
firParams = FIR PARAMS; /* default parameters */
firParams.coeffPtr = /* filter coefficients */
(Short *)filterCoefficients[i];
firParams.filterLen = /* filter size */
sizeof (filterCoefficients[i]) / sizeof(Sample);
firParams.framelLen = 1; /* frame size */

/* create algorithm instance for channel #i */
thrAudioproc[i] .algFIR = FIR create(&FIR IFIR, &firParams);

/
Confirm that the instantiation was successful. If it failed,
most likely the heap is not big enough. To find out the needed
value (rather than to guess), in appThreads.c you can do
ALGRF setup (EXTERNALHEAP, EXTERNALHEAP); i.e. force all
allocation in external memory, run the initialization functions,
* and examine the reports from UTL showAlgMem() below.
*/
UTL assert(thrAudioproc[i].algFIR != NULL);

P T

/* and show algorithm memory usage */
UTL showAlgMem(thrAudioproc[i].algFIR);

/* do the same for the VOLume algorithm: create parameters structure */
volParams = VOL PARAMS; /* default parameters */
volParams.frameSize = DSK5416 AIC20EVM NUMCHANS; /* frame size */

/* create instance, confirm creation success, show memory usage */
thrAudioproc[i].algVOL = VOL_create(&VOL_IVOL, &volParams);

UTL assert(thrAudioproc([i].algVOL != NULL);

UTL showAlgMem(thrAudioproc[i].algVOL);

The FIR create () and VOL create () are XDAIS standardized <ALGORITHM> create ()
wrapper functions which are called to automate the process of dynamically creating a XDAIS
algorithm instance object pertaining to the specific algorithm which is referenced by the
<ALGORITHM> designation. Since all XDAIS-compliant algorithms implement a standard
interface for algorithm instance creation, each <ALGORITHM> create () function references
the same generic ALGRF create () function that is implemented by the RF ALGRF standard
library that can be used to instantiate any XDAIS-compliant algorithm. The creation parameters
for the algorithm instances are also set in this function — i.e. all algorithm create-type code is
bundled in this single function which is called once during system initialization.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
19

{? TEXAS

SLAA166 INSTRUMENTS

7.4 System-Specific Initialization

Finally, the main () function contains all of the one-time system initialization code. In a
DSP/BIOS application, the main () function is called once and must return to give control
over to the DSP/BIOS scheduler. The DSK board and device driver (and all DSP
peripherals associated with the device) need to be initialized once within main ().

Once main () has finished execution and returns, the DSP/BIOS scheduler takes control
over the system and is ready to service hardware/software interrupts and execute tasks and
background functions. Any additional run once code should be added to main () since it
only runs once in a DSP/BIOS system on reset.

Void main ()

{

// Initialize the DSK Board
DSK5416_init();

// Initialize the AIC20EVM Device Driver as a whole
if (DSK5416_AIC20EVM_init()) {
DSK5416_AIC20EVM setup () ;
DSK5416_AIC20EVM hDevice = DSK5416 AIC20EVM open () ;

LOG printf (&logTrace, "main(): AIC20EVM reset sequence successful.\n");

}

else {
LOG printf (&logTrace, "main(): Could not establish presence of AIC Motherboard!!!\n");
SYS exit (0);

}

// Initialize the XDAIS algorithm modules as a whole
FIR init();

VOL_init () ;

// Create the algorithm instances for each channel state structure
thrAudioprocInit () ;

// Return and drop into the DSP/BIOS environment

The FIR init () and VOL_ init () are XDAIS standardized <ALGORITHM> init () master
initialization functions which are called to initialize the XDAIS algorithm modules as a whole
during system initialization, before any XDAIS algorithm instances are created in the system.
The thraudioprocInit () function, as described in the previous section, is used to instantiate
the channel state objects representing each data stream in the system.

7.5 Algorithm Benchmarking

20

This RF includes two DSP/BIOS statistics (STS) objects used to benchmark the FIR_TI and
VOL_TI algorithm performance. Each STS object accumulates the following statistical
information about an arbitrary 32-bit wide data series:

e Count. The number of values in an application-supplied data series
e Total. The sum of the individual data values in this series

e Maximum. The largest value already encountered in this series

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{"r‘ TEXAS
INSTRUMENTS SLAA166

Using the count and total, the CCS statistics view plug-in calculates the average on the host.
Additional custom STS objects are added to the system using the DSP/BIOS configuration file
(*.CDB) which is part of the CCS project. The following STS run-time API’s allow the target
application to maintain the various statistics:

e STS add() — updates the count, total, and maximum using the value provided
e STS set () —sets a previous value for reference

e STS delta() --accumulates the difference between the value currently passed in and
the previous value which was set by the most recent call to STS set () orSTS reset ()

By using custom STS objects and various combinations of STS operations, the following
statistics can be computed automatically:

e Count the number of occurrences of an event

e Track the maximum and average values for a variable in the program
e Track the minimum value for a variable in the program

e Time events or monitor incremental differences in a value

¢ Monitor differences between actual values and desired values

The following code sample uses the STS operations to programmatically accumulate the
amount of instruction cycles elapsed by using paired STS set () & STS delta() function
calls around each algorithm function call. The CLK_gethtime () functionis a DSP/BIOS API
used to read the current value of the high-resolution timer counter; thus the unit of measurement
is the number of instruction cycles.

In this case, the STS object stsAlgOne is used to store statistics each time the FIR apply ()
function is called, and the stsAlgTwo is used to benchmark the VOL_apply () algorithm
execution times.

/* record high-res clock time (timer counter) before calling FIR algorithm */
STS_set (&stsAlgOne, CLK_gethtime());

/* apply filter and store result in temp buffer */
FIR apply (thrAudioproc[chan].algFIR, (Sample *)inputSample, &tmpl);

/* calculate elapsed time for FIR algorithm to execute, in high-res clock cycles */
STS_delta (&stsAlgOne, CLK gethtime());

/* record high-res clock time (timer counter) before calling 2nd algorithm */
STS_set (&stsAlgTwo, CLK_gethtime());

/* amplify the signal and store result in temp buffer */
VOL_apply (thrAudioproc([chan].algVOL, &tmpl, &tmp2);

/* calculate elapsed time for 2nd algorithm to execute, in high-res clock cycles */
STS_delta (&stsAlgTwo, CLK gethtime());

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
21

{? TEXAS
SLAA166 INSTRUMENTS

The statistics are viewed in real-time with the statistics view plug-in by choosing the CCS
DSP/BIOS =» Statistics View menu item. The reference framework project already comes with
the Statistics View window open and configured to show the statistics for both of the included
STS objects (stsAlgOne and stsAlgTwo). More STS objects can be inserted to benchmark other
portions of system code as needed. To create an STS object, right-click the STS — Statistics
Object Manager icon and select Insert STS. Right-click on the newly created STS object and
select Rename to give the STS object a meaningful name. This is the name of the STS object
used in the corresponding programmatic calls to the STS API’s in the system code to gather
statistics during run-time of the system without ever halting the target processor. The statistics
data is sent from the target to the host only during CPU idle time using a host-target
communications technology called real-time data exchange (RTDX™). DSP/BIOS real-time
analysis data is always transferred via RTDX which is completely nonintrusive and never breaks
the real-time processing functionality of the DSP system.

B sy bk | g tieai Dagtal TP | - 5 - itk 1 oo Slwae 05| 5 DGR Taadi = [masila aqynille] _._'Jﬂ
o Mo G Obiet Wew et Oebag Pofie G Coten e (Comios) ke K
& @ p i l— vlu-.w-:i' A | E el =] 6% 0 &
wrhanp =i tahay o [
e L
Ba | O 8 e EE L i'-ri.l:vl.-h.l'l'-nll
I ———r o fE, [
= ¥ T
i [T = Erwaid Dala S 178 0 2 |.- JPRTo E——
PR o g Sie e p—— reveey
_l R B Felnrwiiiad i, mpmd] L P Sk pemcdEe L
FHu ST RN = Li585- Bt L) M e u
= = (L3 IR Canfg n e T e Ll e P rrd bt
& - Lo Qe _ ol i
S 4 | o mreanad FMias r: E'!'.'-!‘:I.l.l-\'.:l\.:l'm-.- | - k
AE i | Fechain = 1 EN._barpetty I - 1
ﬁ ,ﬂ i fLErmes : H:Il.ll;'\r-cl I
] revord ot el T I
S ke th AT Ry T T T T
1] mmoys = B enchronesiTn
A cdamiEe & = | T Cupe
i | | | e et
1_S4ldplemins brossgonalgen® awdlospp.odb =| |[=r3 Camsrd Tuned [L
e Lacktrd 1441 1 1] L
Huild Complete, pracazdiutiodos LA NE e D06 '.":lﬁl':"'_“:_'ﬂ.lllr ITiine '1‘I‘?.'
= [P PED_ s AN T6ln o
I bl DR o AT B) 1 R 1
i - T 7 Bl e+) BATT
il i Tty T TR 1 BEEITEs+H I "Il_
[A5, Cmagen), i TR
I-_ T e Ty [S S S Lagtisre I.|-\.|:1|-.-p ﬂ 10T
- ¥ AEBETER BE CONTENTS: (nii :I oo i
| W1 AEGETEH MG CTINTENTS Nl
| 131 AEGETER BE CIRTENTS (a1 s
| [= PRl 5euc =
| [T = FRAME STMC =
| (3 AEGETER €6 COMTENTS [k B b
* NLGETER IECINTERTS (i
i} REGETER BE CONTERTS [2 o
g ESRRTEEl | e
P B TE e Seabis Ves
B | DEDSE P DO Epses e, |[§ vigrsii et FRE BT L LCT-L T BT

Figure 12. Configuring and Viewing DSP/BIOS Statistics (STS) Objects

22 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'}‘ TEXAS
INSTRUMENTS SLAA166

8

8.1

8.1.1

8.1.2

DSK5416_AIC20EVM Device Driver

Requirements for Writing the Device Driver

In general, writing a device driver requires detailed knowledge of both the host processor and
the device itself. Without understanding how the host processor and device interface to each
other and the exact timing of communication between the two, writing the device driver can be a
very difficult task, especially when one does not have an expensive logic analyzer and other
sophisticated instruments. The device driver should also implement a modular and easy-to-
understand interface. The baseline driver developed here is the DSK5416_AIC20EVM driver.

Host Processor Considerations and Configuration

In this case, the host processor is a TMS320VC5416 DSP with three on-chip serial ports, or
multichannel buffered serial ports (McBSPs). Each McBSP is bi-directional (i.e. capable of
receiving and transmitting data simultaneously using the same port, therefore, a single McBSP
is used to communicate with the device, which in this case is an AIC20EVM. When the
AIC20EVM is plugged into the C5416DSK, all device lines connect to McBSP #1 of the DSP.
Refer to Figure 9 to see exactly which lines are connected between the host and cascade of
AIC20 devices. In addition, the McBSP receive mode must be set for 1-bit delay since the
AIC20 always responds with its DOUT data delayed by 1 bit for every word.

AIC20EVM Device Cautions

To the host processor, the AIC20EVM is a single device in the system. The AIC20EVM contains
two AIC20 devices connected in a cascade configuration. One device acts as the master while
the other acts as the slave. The master device is the AIC20 closest to the DSP. The master
AIC20 device provides a Frame Sync signal to the DSP so that the DSP knows when a
complete frame of data has been received from the AIC20EVM. Within this FS period, there are
four data and four control timing slots. Each slot corresponds to a specific channel within the
overall AIC20 cascade of devices. It is important that the device driver reads and writes data
from/to the correct timing slot; otherwise the host processor will be communicating the wrong
data to the wrong channel. These eight timing slots per FS period make up a time-division
multiplexed data stream — i.e. each channel reads/writes data at a specific time slot within the
overall FS period.

Master FS I_ |_

94— Dpata Frame ———P%—— cControl Frame — P¢—— Data Frame ——— "

AIC20 #1 AIC20 #2 AIC20 #1 AIC20 #2

DINor |siave |Master | Master | Slave |Slave |Master [Master |Slave | Slave |Master | Master |siave Slave
DOUT |Chan 2| Chan1|Chan2|Chan1 |Chan2 |Chan1]|Chan2 |Chan1| Chan2|Chan1|Chan2 |Chan1 | Chan2

Time Slots

Figure 13. Time Division Multiplexing: Slot Assignment for Data and Control Words

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
23

SLAA166

{? TEXAS

INSTRUMENTS

8.2

8.2.1

24

Defining the Interface to the Device Driver

The details of how the host and device interact with one another help to determine the specific

interface of the device driver. The interface should be easy to understand, easy to use, and
present a modular solution to encapsulate and abstract as much detail as possible from the
application framework.

Framework Interaction with the Driver

The following diagram shows how a framework interacts with the DSK5416_AIC20EVM device

driver module. The relevant data structures and functions are shown in the diagram:

Rx and Tx ping-pong buffers: Frame buffers used to read data from the device driver and
store data to be sent out by the device driver

Driver functions: APls to initialize, execute, and close the device driver

Channel configuration array: an array of configuration parameters used to set the attributes

for each individual channel of the AIC20 cascade

SPECIFIC APPLICATION LAYER

GENERIC REFERENCE FRAMEWORK

CHANNEL A XDAIS REAL-TIME
MANAGEMENT ALGORITHMS ANALYSIS
XMT PING- RCV PING-PONG DRIVER CHANNEL
PONG BUFFERS BUFFERS FUNCTIONS CONFIGURATION
(APIs) ARRAY
DSK5416 AIC20EVM DEVICE DRIVER
DSP/BIOS REAL-TIME SOFTWARE FOUNDATION &
CHIP SUPPORT LIBRARY
TMS320VC5416 AIC AIC20 USB JTAG EMULATION &
DSK BOARD MOTHERBOARD EVM RTDX™ TECHNOLOGY

Figure 14. Reference Platform: Hardware and Software Architecture

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{"r‘ TEXAS

INSTRUMENTS SLAA166

8.2.2 Driver Functions

There are a minimum of three functions that need to be invoked by the framework. The function
prototypes can be found in the device driver's header file <dsk5416_aic20evm.h>.

e DSK5416 AIC20EVM init () —needs to be called only once during system initialization

e DSK5416 AIC20EVM setup () —needs to be called to set up channel configuration
parameters before opening the device

e DSK5416 AIC20EVM open () —needs to be called to physically set up and start the
device after the init() and setup() functions have been executed

e DSK5416 AIC20EVM close () —can be called by the framework to power down the entire
AIC20 device cascade for system shutdown purposes

823 Relevant Data Structures

8.2.3.1 Ping-Pong Buffers

The DSK5416_AIC20EVM device driver defines four global buffers used to pass data between
device and framework. The typical ping-pong buffering scheme is implemented, meaning there
are two receive buffers and two transmit buffers. When one receive buffer fills up, the driver
begins to fill the other receive buffer. Similarly, when the framework wants to output data to the
device, it should switch back and forth between transmit buffers each time a buffer becomes full.

ARRAY 0 1 2 3 4 5 6 7
INDEX SLAVE MASTER MASTER SLAVE SLAVE MASTER MASTER SLAVE
CHAN 2 CHAN 1 CHAN 2 CHAN 1 CHAN 2 CHAN 1 CHAN 2 CHAN 1
CONTROL DATA DATA DATA DATA CONTROL | CONTROL | CONTROL
REG WORD WORD WORD WORD REG REG REG

SLV_CHAN2_C MST_CHAN1_D MST_CHAN2_D SLV_CHAN1_D SLV_CHAN2_D MST_CHAN1_C MST_CHAN2_C SLV_CHAN1_C

Figure 15. RCV and XMT Ping-Pong Buffer Format

The following enumerated types, defined in the header file <dsk5416_aic20evm.h>, are used to
locate specific channel information within each buffer, rather than trying to remember which time
slot corresponds to which channel’s data and control information:

/* Enumerated types for array locations in the DSK5416 AIC20EVM buffers */
typedef enum DSK5416 AIC20EVM BufferIndex {

SLV_CHAN2 C, // "Slave" Channel 2 CTRL slot
MST CHAN1 D, // "Master" Channel 1 DATA slot
MST CHAN2 D, // "Master" Channel 2 DATA slot
SLV_CHAN1 D, // "Slave" Channel 1 DATA slot
SLV_CHAN2 D, // "Slave" Channel 2 DATA slot
MST CHAN1 C, // "Master" Channel 1 CTRL slot
MST CHAN2 C, // "Master" Channel 2 CTRL slot

SLV_CHAN1 C // "Slave" Channel 1 CTRL slot
} DSK5416 AIC20EVM BufferIndex;

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
25

{? TEXAS

SLAA166 INSTRUMENTS

8.2.3.2 Channel Configuration Array

26

Within the device driver interface, there is an array (of size DSK5416_AIC20EVM_NUMCHANS) of
channel configuration parameters that is declared globally so that both framework and device
driver can access them. Each element of the array is just a structure that contains all of the
possible control register settings that pertain to a specific channel. The device driver initializes
each channel’s structure with a set of common default values during compile time. However,
there are certain parameters that cannot be the same for each channel, such as the input (ADC)
and output (DAC) settings. Before the device driver sends out these control register settings
during device initialization, the device driver code itself needs to be modified manually to
incorporate settings other than the default.

In the example source file dsk5416_aic20evm.c, locate the following portion of code that is part
of the DSK5416 AIC20EVM setup () function:

Void DSK5416 AIC20EVM setup ()
{
// ** TODO: Configure the unique configuration parameters for each channel **
DSK5416 AIC20EVM chanConfigParams[MST CHAN1].reg[CR6A] LINEI; // master chl ADC
DSK5416 AIC20EVM chanConfigParams[MST CHAN2].reg[CR6A] MICI; // master ch2 ADC
DSK5416 AIC20EVM chanConfigParams[SLV_CHAN1].reg[CR6A] HNSI; // slave chl ADC
[]]

DSK5416_ AIC20EVM chanConfigParams[SLV_CHAN2].reg[CR6A HDSI; // slave ch2 ADC
DSK5416 AIC20EVM chanConfigParams[MST CHAN1].reg[CR6B] = LINEO; // master chl DAC
DSK5416 AIC20EVM chanConfigParams[MST CHAN2].reg[CR6B] = SPKO; // master ch2 DAC
DSK5416 AIC20EVM chanConfigParams[SLV_CHAN1].reg[CR6B] = SPKO; // slave chl DAC
DSK5416 AIC20EVM chanConfigParams[SLV_CHAN2].reg[CR6B] = HDSO; // slave ch2 DAC

}

The above code is setting each channel's ADC and DAC lines for a specific configuration. Here
is where any other control register modifications can be added and set for each channel. The
above code which is supplied out of the box with the associated sample code results in the
following voice device I/O configuration on the AIC20EVM board:

Table 3. DSK5416_AIC20EVM Default I/0 Codec Channel Settings

AIC20EVM CASCADE | EVM INPUT | CODEC INPUT LINE | EVM OUTPUT CODEC OUTPUT LINE
CHANNEL CONNECTION CONNECTION
Master channel #1 J14 (+/-) Line input (LINEI) J5 (+/-) Line output (LINEO) [600 Q]
Master channel #2 J16 (3.5 mm MIC input (MICI) J2 (+/-) Speaker output (SPKO) [8 Q]
input jack)
Slave channel #1 J19 (+/-) Hand set input (HNSI) J11 (+/-) Speaker output (SPKO) [8 Q]
Slave channel #2 J13 (+/-) Head set input (HDSI) J3 (+/-) Head set output (HDSO) [150 Q]
CAUTION:

Disconnecting and reconnecting the sound sources from the codec input lines
during normal operation could result in unwanted noise spikes input to the
channels and cause the DSK5416_AIC20EVM device driver to stop working
altogether.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'r‘ TEXAS
INSTRUMENTS

SLAA166

The device header file <aic20.h> contains the configuration structure definition that is used for
each channel. A set of default control registers is set in this header file and can be changed

freely by the application developer so that a known default set of control registers is

programmed for all AIC20 cascaded channels during the DSK5416 AIC20EVM open ()
function call. The default sampling rate as specified in the <aic20.h> file that is packaged with
the sample application code is 8 kHz for each channel. Making changes to the sampling
frequency may involve reconfiguring the DSP CLKOUT which is based on the DSP clock speed.

ARRAY
INDEX

reg[0]
reg[1]
reg[2]
reg[3]
reg[4]
reg[5]
reg[6]
reg[7]
reg[8]
reg[9]
reg[10]
reg[11]
reg[12]
reg[13]

WARNING:
Do not change the bit fields that determine the different register contents for a
Control Register with the same number (e.g. control register #5 has four sub-
registers: CRs # 5A, 5B, 5C, 5D). Typically, the 1 or 2 most significant bits of the
control word determine which sub-register of the overall control register gets
programmed. Refer to the <aic20.h> file comments that identify these bit fields.

0 1 2 3
MASTER MASTER SLAVE SLAVE
CHAN 1 CHAN 2 CHAN 1 CHAN 2
CONTROL CONTROL CONTROL CONTROL
REGISTERS REGISTERS REGISTERS REGISTERS
CR #01 CR #01 CR #01 CR #01
CR #02 CR #02 CR #02 CR #02
CR #3A CR #3A CR #3A CR #3A
CR #3B CR #3B CR #3B CR #3B
CR#3C CR#3C CR#3C CR#3C
CR#3D CR #3D CR#3D CR#3D
CR #4A CR #4A CR #4A CR #4A
CR #4B CR #4B CR #4B CR #4B
CR #5A CR #5A CR #5A CR #5A
CR #5B CR #5B CR #5B CR #5B
CR#5C CR#5C CR#5C CR#5C
CR #5D CR #5D CR #5D CR #5D
CR #6A CR #6A CR #6A CR #6A
CR #6B CR #6B CR #6B CR #6B

Figure 16. Cascade Channel Configuration (Global Shadow Registers)

8.3 Implementation of the Device Driver

8.31 Design Decisions and Core Code

8.3.1.1

DSP Peripherals and Initialization Sequence

Before the DSP can communicate with the AIC20 devices, its McBSP must be configured during
the system initialization phase. TI's chip support library (CSL) tools and APIs are used to easily
configure the McBSP #1 so that it can properly receive and transmit data from/to the device.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

27

*ﬂ' TEXAS

SLAA166 INSTRUMENTS

28

The chip support library can be used in two ways — via a DSP/BIOS configuration file (*.CDB), or
by programmatically invoking APls. The DSK5416_AIC20EVM device driver uses the CSL in
both ways. To configure the McBSP, the audioapp.cdb file is used to store information on how
the serial port should be configured at startup. To see the settings that are required for proper
receive and transmit operation of the McBSP, double-click on the audioapp.cdb file that is part of
the CCS project in the Project View window. Expand the Chip Support Library category and
then expand the MCBSP Multichannel Buffered Serial Port and then the MCBSP Channel
Configuration categories. Right-click on the mcbspCfgO0 icon and select Properties.

B aifgan ik | Rpest i Dagial 1T 0 - G0 - o gl § pavpesiss Shella 5l § DSE Taale o\ ¥}
ﬂuuuuw-_nummmnm1umuw-u
W r R W KA @ SN EE| A e
| [Rmre— #]|iatug S - LA
B 0EMDEEd |
B [T T eio
s e Ll Bamta] Cials S 1T Dol P Rlach B (Ml 177 |
=il Pyt hr FRTEY 4 [-
L" < 3 o 8 El'l:ﬂlmlﬂ' : -:.:llﬁp.r! :.\\:-.FE\IC ared CLCC e Sl P Prm ! Tram y :
n 1l EGFROCE (ooig \} v o lwhirg I Cloch Mee [CLI004) Exiarm I
: o | o P ——— P T P (LR S
i 5 g -:!m-n}m- 1 | Clock Bl pL v Faleug Erige 1
H ieckeds o, v L | | Frae-ms Py) dace Hagh \
- i T b 9 i Chic Fegponi Librry I P Dot (AT Db I
¥ I wesapand ¥ 4%, - Drsct Marmrp Sarsmn Cogdcoles : Trarami Dekey PIATIA] P |
o ‘r g S - Eeemric Pusgenn gl it Prumm L PHE | e man
= B] b ol Ml e Bioed Sorim Pt 1 | | song Liwget Phsed (rwtin | IBddts 1
| e S Cond 0N PHES | | e st 16-bats 1
m 1 o P — ————— |_h o T Purss | (FREEM)] .
1 5 o BT o AT Misrusges 1 i T Fuesl (P[P] I
ﬁ —— i LT = = ——— 1 |tk Fpr ivvea (TACTRA [|
AR Intwraupk Ficda SEHTHY Faws P S 1
L TEF. - Tirae Dorexn : Earky 11 Syme Feaporan (FFHG1 Fastut g |
N AT Coivmymisiidare) (O Hi Carnpaedge PO Fril
it i OIS - waidy Tane Devos 1 Fraedl Fegie-Tyid Sasls Extinrd 1
1 | Confiues D8, P5E, CLER, g CLES s Serd Bt P Ties |
1 Clio b Pdocde [T = (7] (OLEAMT resra 1
| | ot Mo i = 1 Jocrcnaey QAR O |
ok Pokerty (CLIRF] Flang Ecigm
: Framre Tvre Pesandy (PRT| Ao :
1 e oy (PLAA TR 14
LT] L 1
: W Lt Praseea TEWEREWI 16-sis 1
B e g P] (BT FI ji-biy
| | WorcyPrars M| R B |
1 | WorcnPrars P FrELES) 4 |
1 Dwtmct: S B | FERCERE) (2] &) 1
I Fde JIPST P
| | oare-svm e iy Evtrva |
| | £t Pt Sunc Bempnge (RIS Fesshant Tredon 1
| | Sgrefiek i hrtilicataan JRULEST) Lot sty e 1
1 L orsprdirey (PO 0 RAT s Cerapancing-FEE. Fra 1
-;E_ L |
RO I Fis el (=i

Bre| NEDESE FIT Prien | Epcesn |[§ oo Erra | (@S HIME R AR SLR saw
Figure 17. DSP Peripheral Configuration Using CSL

The DSP/BIOS system takes care of initializing the McBSP based on these settings. Once the
McBSP #1 is configured, only a single call to a CSL API needs to be performed. Once the
McBSP has started, a series of control words, based on the contents of the global channel
configuration array, is sent out in a single stream all at once. DSK5416 AIC20EVM open ()
must be called after the one-time call to DSK5416 AIC20EVM init ().

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{'? TEXAS

INSTRUMENTS SLAA166

DSK5416 AIC20EVM DeviceHandle DSK5416 AIC20EVM open ()
{
IRQ enable (IRQ EVT XINTI1);

MCBSP_start (C54XX_MCBSP_hMcbsp, MCBSP_XMIT START | MCBSP RCV_START |
MCBSP_SRGR_START | MCBSP SRGR FRAMESYNC, 220);

// Send out all the Control Register data for all channels
DSK5416_AIC20EVM programAllRegs () ;

IRQ enable (IRQ EVT RINTI1);

8.3.1.2 Configuring DSP Speed, DSP CLKOUT, and AIC20 Sampling Frequency

A master clock (MCLK) signal must be provided to drive each AlIC20 device. All of the AIC20’s
operations and timings are driven off the incoming MCLK signal. In turn, each AIC20 generates
a serial clock (SCLK), which is then fed back to the McBSP to drive the read/write bit timings.

The TMS320VC5416 ™ DSP is capable of operating at a maximum speed of 160 MHz. Based
on the DSP speed, a CLKOUT can be generated to drive an external device such as the AIC20.
In essence, the CLKOUT serves as the MCLK for the AIC20 cascade. The VC5416 allows the
CLKOUT to be derived from the DSP speed divided by a factor of 1, 2, 3, or 4.

On the C5416DSK board, a 16-MHz oscillator feeds the CLKIN to the DSP. The DSP PLL
multiplier value (PLLMUL) allows the DSP speed to be set as a multiple of the CLKIN, up to 160
MHz. For this reference platform, 144 MHz was chosen for the DSP speed. Why was 160 MHz
not chosen — the maximum speed allowable for the TMS320VC54167?

According to the AIC20 data manual, the sampling frequency is set by the following formula:
Fs=[MCLK/(16 xMxNxP)]
{10 MHz <= (MCLK / P) <= 25 MHz}, {1 <=M <= 128}, {1 <= N <= 16}, {1 <= P <= 8}

By inspection, we see that the MCLK (DSP CLKOUT) value, as well as the restrictions on the
values of M, N, P, determine the attainable sampling frequency. In order to achieve exactly 8-
kHz sampling rate and get closest to the maximum DSP speed, 144 MHz was chosen because:

CLKOUT = DSP Speed /PLLDIV = 144 MHz / [1, 2, 3, 4] = 144 MHz / 3 = 48 MHz

Using a CLKOUT of 48 MHz, it is possible to achieve exactly 8 kHz, 12 kHz, and 24 kHz
sampling rates with the DSP running at 144 MHz. For example, to get exactly 8 kHz, we can
choose M=15, N=5, P=5 so that [48 MHz /(16 x 15 x 5 x 5)] = 8 kHz. It is possible to achieve 16-
kHz sampling frequency, but the DSP speed would only be 128 MHz out of a possible 160 MHz.

Table 4. DSK5416_AIC20EVM Sampling Frequency Settings

SAMPLING M N P DSP PLLMUL | DSP PLLDIV DSP SPEED DSP CLKOUT
FREQUENCY (AIC20 MCLK)

8 kHz 15 5 5 8(+1) 3 144 MHz 48 MHz

12 kHz 10 5 5 8(+1) 3 144 MHz 48 MHz

16 kHz 10 5 5 7(+1) 2 128 MHz 64 MHz

24 kHz 5 5 5 8(+1) 3 144 MHz 48 MHz

Note: Achieving 16-kHz sampling rate requires DSP speed and CLKOUT to be reconfigured from the default values.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
29

{? TEXAS
SLAA166 INSTRUMENTS

8.3.1.3 Interrupt Service Routines

ISR Initialization Code

The interrupt service routines (ISRs) are initialized using TI's standard Chip Support Library
(CSL) APls. These easy-to-use API’s allow the device driver's DSK5416 AIC20EVM init ()
function to dynamically plug the ISR into the vector table as well as enable global interrupts.

DSK5416 AIC20EVM DeviceHandle DSK5416 AIC20EVM init ()

{
Uintle6 index;

// Set up the SWWSR, BSCR, SWCR registers
EBUS_config (&DSK5416_ AIC20EVM myMemConfig) ;

// Check for Motherboard connection and force reset if it's there
if (DSK5416 DC REG & DSK5416 DC DETECT) ({

DSK5416 DC REG &= DSK5416 DC NO RST;

DSK5416 DC_REG |= DSK5416 DC RESET;

for (index = 0; index < EB RESET DELAY; index++)

DSK5416 AIC20EVM delay (EB_RESET DELAY) ;

DSK5416 DC REG &= DSK5416 DC NO RST;
}
else

return (FALSE);

// Clear any pending interrupts (IFR)
IRQ clear (IRQ EVT RINTI1);
IRQ clear (IRQ EVT_XINTI1);

// Place the HWI hooks at the proper spots in the interrupt vector table
// NOTE: only use IRQ plug() when NOT using the DSP/BIOS HWI Dispatcher!!!
IRQ plug(IRQ EVT RINT1, &DSK5416 AIC20EVM rcvXmtSample);

IRQ plug(IRQ EVT XINT1, &DSK5416 AIC20EVM frameSync);

// Enable interrupts globally (INTM)
IRQ globalEnable() ;

// Device initialization successful
return (TRUE);

The McBSP transmitter is initialized to generate an interrupt on every new FS detected. The
McBSP receiver will be initialized to generate an interrupt on every RRDY Event, which means
each time a new data word has been received at the McBSP and shifted into the data receive
register (DRR). The CPU can directly access the DRR without much of a performance hit, since
it is a memory mapped register (MMR) that resides in DSP internal data memory. The details of
what happens during every McBSP Tx and Rx interrupt are discussed in the following section.

30 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{"r‘ TEXAS

INSTRUMENTS SLAA166
- McBSP Tx Interrupt generated on everyFS —p»
Master FS
94— pataFrame — P4 Control Frame — P4 pata Frame — ®
D_OUT Slave | Master | Master | Slave |[Slave |Master | Master | Slave | Slave | Master | Master |Slave | Slave
Time Slots |Chan 2| Chan 1 [Chan 2| Chan 1 |Chan 2 | Chan 1] Chan 2 [Chan 1 | Chan 2 | Chan 1 |Chan 2 [Chan 1 | Chan 2
McBSP Rx Interrupt generated on every incoming sample

Figure 18. McBSP Interrupt Service Routines Configuration

McBSP Transmit ISR (Tx Event = FSX Detected)

The FS signal from the master AIC20 device is connected to the FSX and FSR inputs of the
McBSP. This configuration allows the DSP to detect the FS at the McBSP, generate an
interrupt, and have the interrupt serviced. The function DSK5416 AIC20EVM frameSync () is
implemented to increase a global frame sync counter, as well as tell the DSP that the current
data word coming into the McBSP DRR corresponds to the first timing slot of the FS period. A
global index array is used to point to the current time slot. Each time the FS interrupt occurs,
this index is simply set to 0 which serves as the pointer to the first array element of the receive
buffer. The McBSP Rx ISR relies on the Tx ISR to reset the buffer index each time a new FS
signal is detected at the McBSP FSX input.

interrupt void DSK5416 AIC20EVM frameSync ()
// Called when FSX detected
{
// Update counter to signal that another FS has just been detected
DSK5416 AIC20EVM gFsCounter++;
// Reset timing slot pointer
DSK5416_AIC20EVM gBufferIndex = 0;

McBSP Receive ISR (Rx Event = RRDY Detected)

The McBSP’s receive mode can be configured to generate a special interrupt each time a new
data word has been read at the McBSP. Therefore, the logical function for the associated ISR
would be to just read in the current contents of the DRR. The global buffer index is always
pointing to the current time slot which just corresponds to a specific position in the receive buffer
array. Once the data has been read and written to the receive buffer, the buffer index is
incremented for the next data word to be read at the McBSP. When the index reaches the
frame buffer size, that signals that the buffer is full and needs to be processed. A DSP/BIOS
software interrupt (SWI) is posted which invokes the processBuffer () function where the
data can be consumed by the application framework.

TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter
31

{? TEXAS
SLAA166 INSTRUMENTS

In a DSP/BIOS-based scheduling system, the highest priority SWI runs, but can be preempted
by all hardware interrupts (HWIs). In this example, the hardware interrupts are used to read and
write the actual data values while the SWis are used to perform the less urgent (but still real-
time critical) DSP processing functions on the filled receive buffers. The McBSP receive ISR
keeps track of how many words have been written into the current receive ping-pong buffer, and
when the buffer is full (i.e. FS period completed), the SWI processing function is posted and runs
in the context of the DSP/BIOS scheduler when no HWIs are being serviced.

Since both receive and transmit modes are driven by the same serial clock (SCLK) of the AIC20
cascade, it would make sense for the device driver to transmit an output sample for every input
sample that is received. So, the McBSP receive ISR immediately writes out a sample from the
current Tx buffer right after a new sample has been read into the current Rx buffer. However,
since the McBSP transmit mode is double-buffered, whatever data word is written to the data
Xmit register (DXR) appears on the data bus exactly 2 time slots in the future. So, the ISR must
look ahead two channels and get that channel’s data to write out during each current read cycle
(triggered by an RRDY event).

For example, if the current received word is master channel 1’s data, then the Tx data for slave
channel 1 must be written to the McBSP immediately after the read (buffer index 1=>2=>[3]). If
the current Rx timing slot is slave channel 1’s CR contents, then the Tx data for master channel
1 (buffer index 7=>0=>[1]) must be immediately written to the McBSP to assure it falls within the
correct timing slot 2 cycles in the future, due to the double-buffered nature of the McBSP
transmitter. See the following Table for the lookahead decision-making process on which Tx
buffer sample must be sent out depending on the current Rx buffer index. In summary, every
read cycle (i.e. every RRDY receive event) must include one read and one write operation by
the host processor to keep the TDM DIN and DOUT data streams continuous. The

DSK5416 AIC20EVM rcvXmtSample () function is plugged into the vector table as the ISR to
run for every McBSP RRDY event.

interrupt void DSK5416 AIC20EVM rcvXmtSample() // Called for every McBSP RRDY Receive event

{
static short DSK5416 AIC20EVM pingOrPong = PING;

if (DSK5416 AIC20EVM pingOrPong == PING) {
// Read the current DOUT word
DSK5416 AIC20EVM gBufferRcvPing[gBufferIndex] = MCBSP_readl6 (C54XX MCBSP hMcbsp) ;

// Write out the DIN word for the corresponding future timing slot
MCBSP_writel6 (DSK5416 AIC20EVM gBufferXmtPingl[(gBufferIndex+RXTXOFFSET) % (BUFFSIZE)]) ;
// Increment timing slot pointer for next read
DSK5416_AIC2OEVM_gBufferIndex++;
// Post SWI if frame buffer full
if (DSK5416 AIC20EVM gBufferIndex == DSK5416 AIC20EVM BUFFSIZE) ({
SWI_or (sprocessBufferSwi, PING); n B
DSK5416 AIC20EVM pingOrPong = PONG;
}
}
else { // DSK5416 AIC20EVM pingOrPong == PONG
<repeat above code exactly but for the PONG Rx & Tx buffers>
}

32 TMS320C54x DSP Reference Framework & Device Driver for the TLV320AIC20 HPA Data Converter

{"r‘ TEXAS

INSTRUMENTS SLAA166
Table 5. DSK5416_AIC20EVM McBSP Write Decision per Receive Interrupt
BUFFER | CURRENT READ (DOUT) TIME SLOT | TX BUFFER | (DIN) TIME SLOT DATA TO IMMEDIATELY
INDEX BASED ON CURRENT RX BUFFER ARRAY WRITE TO DXR AFTER CURRENT READ
(RX) INDEX VALUE LOCATION (DOUT) FROM DRR
0 SLAVE CHANNEL #2 CONTROL 2 MASTER CHANNEL #2 DATA
1 MASTER CHANNEL #1 DATA 3 SLAVE CHANNEL #1 DATA
2 MASTER CHANNEL #2 DATA 4 SLAVE CHANNEL #2 DATA
3 SLAVE CHANNEL #1 DATA 5 MASTER CHANNEL #1 CONTROL
4 SLAVE CHANNEL #2 DATA 6 MASTER CHANNEL #2 CONTROL
5 MASTER CHANNEL #1 CONTROL 7 SLAVE CHANNEL #1 CONTROL
6 MASTER CHANNEL #2 CONTROL 0 SLAVE CHANNEL #2 CONTROL
7 SLAVE CHANNEL #1 CONTROL 1 MASTER CHANNEL #1 DATA

8.3.2 Coding Conventions, File Structure, and Packaging

The DSK5416_AIC20EVM device driver code follows the standard coding conventions used in
all eXpressDS