

Texas Instruments Robotics System Learning Kit

 Module 3
Lab 3: ARM Cortex M Architecture

Lab 3: ARM Cortex M Architecture

 2 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP076

3.0 Objectives

The purpose of this lab is to introduce the architecture of the Cortex M.

1. You will learn about registers, RAM, and flash ROM.
2. You will write an assembly function with input and output parameters,

which includes conditional and arithmetic operations.
3. You will learn debugging techniques like single stepping, breakpoints,

and watch windows.
4. You will use an automated test approach called black-box functional

testing to verify your algorithm is operating properly

Good to Know: We will be programming the robot challenge in C. However, the
compiler converts the C code into assembly code. It is this low-level code that
actually runs on the MSP432, which is a Cortex-M microcontroller. In this lab, you
will experience some of the details of how the microcontroller executes software.
Knowing these low-level details will make you a better high-level software
developer.

3.1 Getting Started

3.1.1 Software Starter Projects

Look at these three projects:
SimpleProject_asm (a simple project that implements a random number
generator),
LinearInterpolation_asm (an implementation of sine), and
Lab03_Assembly (starter project for this lab)

3.1.2 Student Resources (in datasheets directory-Links)

spmu159a.pdf , Cortex-M3/M4F Instruction Set

3.1.3 Reading Materials

Volume 1 Section 1.7, Chapter 3, and Section 5.3
Embedded Systems: Introduction to the MSP432 Microcontroller",
or
Volume 2 Sections 1.1, 2.1, and 2.5
Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller",

3.1.4 Components needed for this lab

Quantity Description Manufacturer Mfg P/N

1 MSP-EXP432P401R
LaunchPad TI MSP-EXP432P401R

3.1.5 Lab equipment needed (none)

3.2 System Design Requirements

Throughout the course you will acquire knowledge that will allow you to solve
many robot challenges. The goal of this lab is to better understand how the
computer performs tasks. We expect most students will complete the robot
challenge programming in C. However, in this lab you will write a simple function
in assembly.

Note: An optional add-on module is the GP2Y0A21YK0F distance sensor unit
composed an IR light source and an IR light sensor, also called a Proximity
sensor. Multiple distance sensors can be mounted on the robot, allowing the
software to know the distance to objects such as walls and other robots.

A sensor is physical device that converts a measurement parameter into an
electrical signal that can be processed by the microcontroller system. The
analog to digital converter (ADC) is input port on the microcontroller that
accepts an analog signal from 0 to 3.3V and converts it to a digital value from 0
to 16383. In this lab, we consider an IR distance sensor, GP2Y0A21YK0F,
together with a 14-bit ADC (0 to 3.3V converts to 0 to 16383) to create a system
that measures distance from the robot to the wall. Although this assignment is
specific for this sensor and this ADC, the general approach can be used for most
sensors and ADC’s.

More specifically, you will develop an assembly function that converts raw ADC
samples into a distance for this distance sensor. Let n be a 14-bit sample from
the ADC (0 to 16383), and D be the distance in mm. The basic form of this
nonlinear transfer relation is

D = 1195172/(n – 1058)

Typically, the calibration coefficients 1195172 and -1058 would be determined
empirically. However, for this assignment we will simply use these constants.

Lab 3: ARM Cortex M Architecture

 3 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP076

The maximum measurement distance for the sensor is 800 mm, so if the ADC
value is less than 2552, your function should return 800. The C prototype for your
function is

int32_t Convert(int32_t n);

However, since you are writing the function in assembly, you must adhere to a
programming standard, called ARM Architecture Procedure Call Standard
(AAPCS). There are many components of this standard, but the ones relevant to
this lab include:

• If there is one input parameter, it is passed in R0
• If there are two input parameters, they are passed in R0, R1
• If there are three input parameters, they are passed in R0-R2
• If there are four input parameters, they are passed in R0-R3
• If there is an output parameter, it is returned in R0
• The function can modify R0-R3, R12 freely
• If a function wishes to use R4-R11 then it must save and restore them

using the stack.
• If a function calls another, then it must save and restore LR
• Functions must balance the stack

Adhering this standard will allow you to develop assembly code that can be
called from C, and allow your C code to be called from assembly. In particular,
the compiler will adhere to this standard when creating object code.

3.3 Experiment set-up
This lab uses the LaunchPad without any input/output hardware.

3.4 System Development Plan
3.4.1 Functions and debugging

In this lab section you will build and debug the SimpleProject_asm example.
Using the debugger, observe the input and output parameters of the function
while you single step through the main program.

Answer the following:
i) How are data passed into Seed?
ii) How are results passed back from Rand?
iii) What happens to the LR register when a function is called?
iv) How does a function return?
v) How does the software access global RAM?

vi) What is the difference between storing data in a register and storing it
in global RAM?

vii) Where is the machine code stored?
viii) What do .data and .text mean?
ix) Where are the constants 1195172 and -1058 stored?
x) You can observe the variables M and n by placing their addresses

into a Memory Browser window.
xi) Using the step-over command, execute the Rand function multiple

times and observe the values in M and n. In particular, look at bit 0 of
M; what pattern do you see in bit 0?

Next you will build and debug the LinearInterpolation_asm project. If you are
unfamiliar with “linear interpolation”, do an Internet search on the topic to better
understand the math used in this project.

Using the debugger, place a breakpoint inside the Sin function, and use the
debugger observe the values of the registers during one execution of the Sin
function. From a programming theory standpoint, these registers are considered
local variables for the function.

Answer the following:
i) Can you prove the three subtract instructions will never overflow, when

calculating (Ix-x1), (y2-y1), and (x2-x1)?
ii) Can you prove the multiply instruction will never overflow, when

calculating (y2-y1)*(Ix-x1)?
iii) Can you prove it will never divide by zero?
iv) Why do we use SDIV instead of UDIV for this function?

Observe how this main program tests the Sin function. We call the form of testing
in main.asm Black Box functional testing, because the testing just sets inputs
and observes outputs. In other words, we look at the outside of the software and
not probe any of the internal details of the function. Black box testing looks at the
overall functionality of what software does without knowledge of how it works.

3.4.2 Distance Conversion

Write an assembly function that converts raw 14-bit ADC data to distance in mm.
Use .field statements to encapsulate the calibration parameters.

IRSlope .field 1195172,32
IROffset .field -1058,32
IRMax .field 2552,32

Lab 3: ARM Cortex M Architecture

 4 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP076

You can use the main program delivered as part of the Lab_Assembly project
to test your Convert function. Similar to LinearInterpolation_asm, this testing
approach is Black Box functional testing. This test program contains 16
test cases (inputs and expected outputs). The expected results are plotted as
Figure 1.

Figure 1. Expected results for the GP2Y0A21YK0F conversion function.

Run main and compare your results with expected values. It is ok if your results
differ by ±1 (which could be due to rounding).

3.4.3. Observing Compiler-Generated Assembly Code

Revisit one of the C examples you ran as part of Lab 1. Within the debugger,
open a Disassembly window. Single step the C code and observe the actual
instructions.

3.5 Troubleshooting

Convert doesn’t work:

• Using main, find an input value that does not work, write a simple main
program that calls your function with just that input, and single step your
program comparing your internal calculations with expected values.
Observing internal values is called white-box testing.

• If you are still having bugs, consult with your instructor and/or fellow
students. You may be interpreting the problem in a different way as the
testing procedure.

3.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.
The goal of this module is for you to know enough assembly language to be able
to interpret the machine-executable code generated by the compiler.

• What information do we store in ROM? Why?
• What information do we store in RAM? Why?
• What information do we store in R0-R12 registers? Why?
• How are R4-R11 different from R0-R3, R12?
• How is the LR used?
• How is the SP used?
• How is the PC used?
• How do functions work? Input parameters? Return parameter?
• Can you prove the (n – 1058) subtraction never overflows?
• Can you prove the division never attempts a divide by zero?
• Using integer division, what is the result of 1/n for any values of n

greater than 1? This error (loss of information) is called dropout.
• The input is a 14-bit number (0 to 16383), but the output is only a 10-bit

number (0 to 800). This reduction of four bits is a mild form of dropout.
How could you have reformulated the problem to have less dropout?

• Notice that SimpleProject_asm project uses just one source file, while
LinearInterpolation_asm Lab03_Assembly projects use two source
files. How are these two files used? What is the advantage of separating
the implementation software from the testing software?

• List the debugging techniques used in this lab.

0
100
200
300
400
500
600
700
800
900

0 5000 10000 15000

D
is

ta
nc

e
(m

m
)

14-bit ADC

Expected Results

Lab 3: ARM Cortex M Architecture

 5 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP076

3.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. You could extend the system or propose something
completely different. For example,

• Consider exhaustive testing that tries every possible 14-bit input from
0 to 16383. How would you generate the test cases? How would you
change the main program? What are the advantages of exhaustive
testing?

• The robot can have multiple proximity sensors. Redesign the Convert
function to handle three sensors, where each sensor has a unique set
of three calibration coefficients (IRSlope IROffset IRMax).

• Use the debugger to estimate the time it takes to execute your
Convert function.

• The Cortex M supports floating point arithmetic. Implement a floating
point version of the function and develop a means to test it. Compare
the accuracy and execution times for the two versions.

3.8 Which modules are next?

We will use the next few labs to create components we will need to control the
robot. The input/output are an important component of an embedded system.
The following modules will build on this module:

Module 4) Introduce C and develop some functions needed for the robot.
Module 5) Begin construction of the robot, including battery and
 voltage regulation
Module 6) Learn how to input and output on the pins of the microcontroller
Module 7) Study finite state machines as a method to control the robot
Module 8) Interface actual switches and LEDs to the microcontroller. This
 will allow for more inputs and outputs increasing the complexity
 of the system.

3.9 Things you should have learned

In this section, we review the important concepts you should have learned in
this module:

• Understand how the processor uses registers during execution
• Discover the differences between RAM and ROM and how the software

uses each.
• Perform arithmetic calculations in assembly with addition, subtraction,

multiplication, and division
• Understand how constants are stored on the microcontroller
• Make decisions with conditional branch assembly statements
• Use the debugger to single step and visualize variables
• Perform functional testing

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	RSLK MAX_3_Assembly_Lab_NEW
	3.0 Objectives
	3.1 Getting Started
	3.1.1 Software Starter Projects
	3.1.2 Student Resources (in datasheets directory-Links)
	3.1.3 Reading Materials
	3.1.4 Components needed for this lab
	3.1.5 Lab equipment needed (none)

	3.2 System Design Requirements
	3.3 Experiment set-up
	3.4 System Development Plan
	3.4.1 Functions and debugging
	3.4.2 Distance Conversion
	3.4.3. Observing Compiler-Generated Assembly Code

	3.5 Troubleshooting
	3.6 Things to think about
	3.7 Additional challenges
	3.8 Which modules are next?
	3.9 Things you should have learned

	TI-RSLKMax_Cover

