

Application Report SCAA102-June 2009

CMR Programming for DDR3 Registers

Christian Schmoeller

ICP - Clock Distribution Circuits

ABSTRACT

This application report provides direction for programming the Control Words (also known as Control Mode Registers or CMR) of DDR3 Register Buffers which are compliant with the JEDEC SSTE32882 specification.

Contents

1	Abou	It CMR Commands	2						
	1.1	Control Word Decoding	2						
	1.2	Requirements for Proper CMR Access	4						
2	Overview on Most Frequently Used CMR's								
	Example Pattern for Two Consecutive CMR Accesses								
		rences							

List of Tables

1	Control Word Decoding With Quad Chip Select Disabled	2
2	Control Word Decoding With Quad Chip Select Enabled	3

1

1 About CMR Commands

SSTE32882-compliant DDR3 registers have internal control bits (also known as Control Mode Registers or CMR) for adapting the configuration of certain device features.

If the device is operated in Dual Chip Select Mode (QCSEN#=HIGH), then the control bits are accessed by the simultaneous assertion of both DCS0# and DCS1# LOW.

If Quad Chip Select Mode is enabled (QCSEN#=LOW), then the control bits are accessed by the simultaneous LOW assertion of both DCS0# and DCS1# or DCS2# and DCS3# or all four DCS[n:0].

SSTE32882-compliant DDR3 Registers allocate decoding for up to 16 words of control bits, RC0 through RC15. Selection of each word of control bits is presented on inputs DA0 through DA2 and DBA2. Data to be written into the configuration registers must be presented on DA3, DA4, DBA0, and DBA1.

1.1 Control Word Decoding

The values to be programmed into each control word are presented on signals DA3, DA4, DBA0, and DBA1 simultaneously with the assertion of the control word access through DCS0# and DCS1# and the address of the control word on DA0, DA1, DA2, and DBA2.

CONTROL	SYMBOL			SIGNAL	-		MEANING				
WORD	STINIBUL	DCS0#	DCS1#	DBA2	DA2	DA1	DA0	MEANING			
None	n/a	Н	Х	Х	х	Х	Х	No control word access			
None	n/a	Х	н	Х	Х	Х	Х	No control word access			
Control word 0	RC0	L	L	L	L	L	L	Global Features Control Word			
Control word 1	RC1	L	L	L	L	L	Н	Clock Driver Enable Control Word			
Control word 2	RC2	L	L	L	L	Н	L	Timing Control word			
Control word 3	RC3	L	L	L	L	н	Н	CA Signals Driver Characteristics Control Word			
Control word 4	RC4	L	L	L	Н	L	L	Control Signals Driver Characteristics Control Word			
Control word 5	RC5	L	L	L	н	L	Н	CK Driver Characteristics Control word			
Control word 6	RC6	L	L	L	н	Н	L	Reserved			
Control word 7	RC7	L	L	L	Н	Н	Н	Reserved			
Control word 8	RC8	L	L	Н	L	L	L	Additional IBT Settings Control Word			
Control word 9	RC9	L	L	Н	L	L	Н	Weak drive mode, CKE power-down settings			
Control word 10	RC10	L	L	Н	L	Н	L	Encoding for RDIMM Operating Speed			
Control word 11	RC11	L	L	Н	L	н	Н	Operating Voltage VDD Control Word			
Control word 12	RC12	L	L	Н	Н	L	L	Reserved for future use			
Control word 13	RC13	L	L	Н	н	L	Н	Reserved for future use			
Control word 14	RC14	L	L	Н	Н	Н	L	Reserved for future use			
Control word 15	RC15	L	L	Н	Н	Н	Н	Reserved for future use			

Table 1. Control Word Decoding With Quad Chip Select Disabled

If QSCEN# is LOW, then the control word access can also be invoked by asserting DCS2# and DCS3# or all four DCS[n:0] simultaneously.

The reset default state of Control Words 0 .. 15 is 0. Control word access is independent of PLL lock and can be accessed at any time input receivers are active.

			SIC	GNAL							
CONTROL WORD	SYMBOL	DCS[n:0]#	DBA2	DA2	DA2 DA1		MEANING				
None	n/a	НХНХ	Х	Х	Х	Х					
None	n/a	НХХН	Х	Х	х	Х					
None	n/a	XHXH	Х	X X X		Х	No control word access				
None	n/a	XHHX	Х	Х	х	Х					
None	n/a	LLLH	Х	Х	Х	Х					
None	n/a	LLHL	Х	Х	х	Х					
None	n/a	LHLL	Х	Х	Х	Х	Illegal input states				
None	n/a	HLLL	Х	Х	х	Х					
Control word 0	RC0		L	L	L	L	Global Features Control word				
Control word 1	RC1		L	L	L	Н	Clock Driver Enable Control word				
Control word 2	RC2		L	L	н	L	Timing Control word				
Control word 3	RC3		L	L	н	н	CA Signals Driver Characteristics Control word				
Control word 4	RC4		L	Н	L	L	Control Signals Driver Characteristics Control word				
Control word 5	RC5		L	Н	L	н	CK Driver Characteristics Control word				
Control word 6	RC6		L	Н	н	L	Reserved				
Control word 7	RC7	LLHH Or HHLL Or	L	Н	н	н	Reserved				
Control word 8	RC8		Н	L	L	L	Additional IBT Settings Control Word				
Control word 9	RC9		Н	L	L	н	Weak drive mode, CKE power down settings				
Control word 10	RC10		Н	L	н	L	Encoding for RDIMM Operating Speed				
Control word 11	RC11		Н	L	Н	Н	Operating Voltage VDD Control Word				
Control word 12	RC12		Н	Н	L	L	Reserved for future use				
Control word 13	RC13		Н	Н	L	н	Reserved for future use				
Control word 14	RC14		Н	Н	Н	L	Reserved for future use				
Control word 15	RC15		Н	Н	н	н	Reserved for future use				

Table 2. Control Word Decoding With Quad Chip Select Enabled

1.2 Requirements for Proper CMR Access

To write a correct CMR command to the register, several requirements must be fulfilled and are listed as follows.

- Parity bit is correct.
 - In all cases address and command parity is checked⁽¹⁾ during control word write operations.
 DRAS#, DCAS#, and DWE# are included in the parity computation. Remember that the parity bit for the corresponding data is expected one clock cycle after the data. If a parity error is detected, ERROUT# is asserted and the command is ignored.
 - Ensure that your test platform is asserting proper parity. Not all test boards may do this correctly. A
 possible workaround may be changing the number of ones in your CMR command from odd to
 even or vice versa. This can be done by changing values of unused CMR bits or DRAS#,DCAS#,
 and DWE#.
- Register is not busy.
 - For correct execution on a CMR access, the device may not be busy with previous tasks like previous CMR access or the second or third cycle of a MRS command. However, CMR accesses are allowed during stabilization of the PLL.
- Register is not in CKE Power-down Mode.
 - If RC9 bit DBA1 is set to 1, then at least one of the inputs DCKE0 or DCKE1 must be HIGH during CMR access and t_{MRD}. Register Qn outputs including QxCKE0, QxCKE1, QxODT0, and QxODT1 remain in their previous state. The device pulls QxCSn# HIGH during control word access.
- Unused Address inputs are LOW.
 - According SSTE32882 JEDEC specification, DA5 through DA15 must be LOW to access the control registers.
- Enough Settling Time
 - Any change to these control words require some time for the device to settle. For changes to the control word setting, the controller needs to wait a certain time after the last control word access before further access to the DRAM can take place.
 - For any changes to the clock timing (RC2 bit DBA1, RC6 bit DA4, and RC10 and RC11 bits DA3 and DA4), this settling may take up to t_{STAB} (= 6 μs) time.
 - In all other cases, t_{MRD} (= 8 clock cycles) applies. All inputs DCS[n:0] must be kept HIGH during that time.
- (1) All address and command input signals are added up and the last bit of the sum is compared to the parity signal delivered by the system at the input PAR_IN one clock cycle later. If they don't match the device pulls the open drain output ERROUT# LOW. The control signals (DCKE0, DCKE1, DODT0, DODT1, DCS[n:0]#) are not part of this computation.

www.ti.com

2 Overview on Most Frequently Used CMR's

The following illustration shows an overview of all relevant register control words and their possible settings. Reserved control words and functions are not included in this overview.

RC0	DBA2	DA2	DA1	DA0	DBA1 DBA0 DA4 DA3
	0	0	0	0	B Outputs A Outputs 0: enabled* 0: enabled* 1: disabled 1: disabled 1: disabled Dutputs 0: enabled* 1: disabled Description 0: disabled* 1: enabled
RC1	DBA2	DA2	DA1	DA0	DBA1 DBA0 DA4 DA3
	0	0	0	1	Y3/Y3# Y2/Y2# 0: enabled* 0: enabled* 1: disabled 1: disabled 1: disabled 1: enabled
RC2	DBA2	DA2	DA1	DA0	DBA1 DBA0 DA4 DA3
	0	0	1	0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
RC3/4/5	DBA2	DA2	DA1	DA0	DBA1 DBA0 DA4 DA3
CA	0	0	1	1	
Control	0	1	0	0	B Output Drive strength A Output Drive strength 00: light* 00: light*
Clock	0	1	0	1	01: moderate01: moderate10: strong10: strong11: superstrong11: superstrong
RC8	DBA2	DA2	DA1	DA0	DBA1 DBA0 DA4 DA3
	1	0	0	0	When MIRROR = HIGH IBT 0: IBT off* 000: as selected in RC2* 1: IBT on 100: 200 Ω 100: 300 Ω 111: off
RC9	DBA2	DA2	DA1	DA0	DBA1 DBA0 DA4 DA3
	1	0	0	1	CKE Powerdown WEAK DRIVE (during DCSn = HIGH 0x: disabled* 00: Float/drive as defined in RC0* 10: CKE PD with IBT on; QDT = f(DODT) 11: CKE PD with IBT off; QODT = LOW
RC10	DBA2	DA2	DA1	DA0	DBA1 DBA0 DA4 DA3
	1	0	1	0	Operating Speed node 000: DDR3-800* 001: DDR3-1066 010: DDR3-1333 011: DDR3-1600 111: DDR3-667
RC11	DBA2	DA2	DA1	DA0	DBA1 DBA0 DA4 DA3
	1	0	1	1	×) Default setting 00: 1.5 V* 01: 1.35 V

www.ti.com

Example Pattern for Two Consecutive CMR Accesses

3	3 Example Pattern for Two Consecutive CMR Accesses																														
Cycle	RESET	PAR_IN	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DAG	DA5	DA4	DA3	DA2	DA1	DA0	DRAS#	DCAS#	DWE#	DBA2	DBA1	DBA0	DCSO	DCS1	DCKE0	DCKE1	DODT0	DODT1	Comment
0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	Write RC0 ⁽¹⁾ , enabling float mode
2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	Set correct parity for CMR access
3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	Wait for at least 8 clock cycles.
5	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	Before next transfer or command
6	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
7	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
8	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
9	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
10	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
11	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	1	1	0	0	Write RC9 ⁽¹⁾ , enabling weak drive + CKE PD.
12	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	Set correct parity for CMR access.
13	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
14	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	Wait for at least 8 clock cycles.
15	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	Before next transfer or command
16	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
17	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
18	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	0	
19	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	0	0	1	0	0	Continue your pattern here.

⁽¹⁾ Register Control Word Selection Bits, Data Bits, and corresponding Parity and CS Bits are marked in bold and colored font

www.ti.com

4 References

- 1. SN74SSQE32882, 28-Bit to 56-Bit Registered Buffer With Address Parity Test, One Pair to Four Pair Differential Clock PLL Driver data sheet (<u>SCAS857</u>)
- SN74SSQEA32882, 28-Bit to 56-Bit Registered Buffer With Address Parity Test, One Pair to Four Pair Differential Clock PLL Driver data sheet (<u>SCAS879</u>)
- 3. SSTE32882 JEDEC Specification

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Broadband	www.ti.com/broadband
DSP	dsp.ti.com	Digital Control	www.ti.com/digitalcontrol
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Military	www.ti.com/military
Logic	logic.ti.com	Optical Networking	www.ti.com/opticalnetwork
Power Mgmt	power.ti.com	Security	www.ti.com/security
Microcontrollers	microcontroller.ti.com	Telephony	www.ti.com/telephony
RFID	www.ti-rfid.com	Video & Imaging	www.ti.com/video
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated