
SBAA165 – March 2009
Submit Documentation Feedback

TSC2005/6 Linux® Drivers 1

Application Report
SBAA165 – March 2009

TSC2005/6 Linux® Drivers
Data Acquisition Products

ABSTRACT

This application report describes the TSC2005 and TSC2006 touch drivers for the
Linux® operating system to help customers to implement designs using the TSC2005 or
the TSC2006 touch-screen controllers from Texas Instruments. It also discusses the
drivers and associated code. The Linux driver code can be integrated into a customer's
software system under different host processors. These drivers have been tested and
used on the Atmel AT91SAM9261EK platform.
The TSC2005 and TSC2006 devices are completely touch driver compatible with one
another. For clarity and ease of reading, this document only refers to the TSC2005, but
application of the Linux drivers for the TSC2006 is identical, unless otherwise noted.
Project collateral discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/SBAA165.

Contents
1 Description... 2
2 System Details .. 3
3 TSC2005 Touch Driver .. 4
4 Environment Details .. 8
5 Board Power-Up .. 9
6 Configuration Parameters .. 10
7 References ... 10

 List of Figures

1 TSC2005 Linux Driver Architecture .. 2
2 TSC2005 Connection Diagram ... 3
3 TSC2005 Touch Driver Code Organization ... 4
4 TSC2005 Touch Driver Initialization ... 5

Linux is a registered trademark of Linus Torvalds.
Microsoft, Windows are registered trademarks of Microsoft Corporation.
SPI is a trademark of Motorola.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://focus.ti.com/docs/prod/folders/print/tsc2005.html
http://focus.ti.com/docs/prod/folders/print/tsc2006.html
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3820
http://www.ti.com/lit/zip/SBAA165

2 TSC2005/6 Linux® Drivers SBAA165 – March 2009
Submit Documentation Feedback

Linux Applications/X Server/Qt/GTK GUI Subsystem

Hardware

Description www.ti.com

1 Description
The TSC2005 Linux driver acts as a standard input driver based on an SPI™ slave driver. This
configuration is described in the block diagram shown in Figure 1, which depicts the position of the driver
in the Linux kernel and the various interfaces it uses and feeds.

Figure 1. TSC2005 Linux Driver Architecture

Development of the Linux driver for the TSC2005 involves the following tasks:
• Developing a driver module that implements SPI data communications with the TSC2005.
• Developing a driver module that initializes and captures the general-purpose input/output (GPIO) data

from the host processor.
• Inclusion of the device entry into the Linux kernel list of SPI devices.

SPI

Linux Kernel

Linux Kernel consisting of
2

SPI controller driver and I C contoller driver
for AT 91SAM9261

TSC2005

Driver

Linux Kernel consisting of

Input Subsystem

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/

SBAA165 – March 2009
Submit Documentation Feedback

TSC2005/6 Linux® Drivers 3

PINTDAV

MOSI

MISO

SS

SPICLK

RST

TSC2005 X+
EVM Y−

X−
Y+

PB0

PA1

PA0

PA28

PA2

AT91SAM9261EK PC7

X_right
Y_low
X_left
Y_up

www.ti.com System Details

2 System Details

2.1 Architecture

Figure 2 shows a connection diagram for the TSC2005.

Figure 2. TSC2005 Connection Diagram

The Atmel AT91SAM9261EK board has an onboard ADS7843 touch-screen controller. The digital and
analog lines to the touch-screen controller device were isolated to provide the TSC2005 evaluation
module (EVM) with the X+, Y+, X–, and Y– lines. The 3.3V power supply and ground required for the
TSC2005 EVM were also provided by the onboard 3.3V source and ground.

2.2 Interface Details: Digital Interface
Table 1 summarizes the AT91SAM9261EK and TSC2005 digital hardware interface.

Table 1. AT91SAM9261EK and TSC2005 Digital Hardware Interface

Signal/Input Host Processor Pin TSC2005 Pin on EVM
SPI clock PA2 / Pin 39 SPICLK
SPI MISO (Master In, Slave Out) PA0 / Pin 37 MISO
SPI MOSI (Master Out, Slave In) PA1 / Pin 38 MOSI
SPI /SS (Slave Select) PA28 / Pin 65

SS

PINTDAV PB0 /

PINTDAV

RESET PC7 /

RST

2.3 Interface Details: Serial Peripheral Interface

The SPI bus on the TSC2005 is the primary hardware interface to the host processor. The host processor
issues commands to the TSC2005 controller through the SPI.

2.3.1 SPI Driver
The TSC2005 SPI driver establishes the software interface between the processor and the TSC2005
device. It contains three files:
• tsc2005_core.c
• tsc2005.h
• tsc2005_platform.c
The third file, tsc2005_platform.c, is processor-dependent.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/
http://focus.ti.com/docs/prod/folders/print/ads7843.html

4 TSC2005/6 Linux® Drivers SBAA165 – March 2009
Submit Documentation Feedback

TSC2005 Touch Driver www.ti.com

TSC2005 Touch Driver

tsc2005_platform.c

Platform-Dependent TSC2005
Driver Code

tsc2005_core.c

Platform-Independent TSC2005
Driver Code

The fundamental routines for the SPI driver and platform routines are summarized in Table 2 and Table 3,
respectively.

Table 2. SPI Driver Routines

Routine Name Function
tsc2005_handle_penirq The Interrupt handler function which is invoked

when the PINTDAV line goes low. This routine is
the Linux top half; therefore, a bottom-half handler
must also be called.

tsc2005_probe The probe function probes for the device, initializes
the SPI slave device structures, registers the touch
screen as an input device, and requests for the
IRQ.

tsc2005_timer The bottom-half handler for the Linux Interrupt
handler, which performs SPI transactions to read
X, Y, Z1, and Z2 coordinates from the controller
and report to the input subsystem.

Table 3. Platform Routines

Routine Name Function
tsc2005_detect_irq To set up the IRQ line that is connected to the

TSC2005. This function expects the IRQ
number/ID to be returned. If connected on a GPIO,
this function performs the GPIO initialization, such
as setting the GPIO into input mode and enabling
glitch filters on availability.

get_pendown_state This function returns the current line status of the
PINTDAV line. This action is required in order to
determine the current state of the pen-touch, so as
to continue reporting the coordinates to the Input
subsystem.

3 TSC2005 Touch Driver

3.1 Driver Code Organization

Figure 3 illustrates the TSC2005 touch driver code structure.

Figure 3. TSC2005 Touch Driver Code Organization

The TSC2005 touch driver is an SPI slave driver that is a kernel module in Linux. The entry point of this
driver is tsc2005_module_init. This routine is called upon the insertion of the module. The TSC2005 touch
driver architecture adheres to the SPI protocol and the input subsystem of the Linux kernel.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/

SBAA165 – March 2009
Submit Documentation Feedback

TSC2005/6 Linux® Drivers 5

TSC2005 Touch Driver www.ti.com

input_dev->name = "TI TSC2005 TouchScreen Controller";
err = input_register_device(input_dev);
if (err) {
goto err_free_mem;
}

/*
* Setup SPI transfers here
*/
if (tsc2005_spi_setup(ts) != 0) {
/*
* Setup SPI transfers here
*/
if (tsc2005_spi_setup(ts) != 0) {
}

/*
* Request IRQ here,
* ts->penirq should hold the IRQ upon which the TSC shall
* Interrupt
*/
ts->penirq = tsc2005_detect_irq();
if (request_irq(ts->penirq, tsc2005_irq, IRQF_TRIGGER_FALLING,
spi->dev.driver->name, ts)) {
dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
err = -EBUSY;
goto err_free_irq;
}
return 0;

TSC2005 Module initialization

Register the driver to SPI subsystem

Register the driver to Input subsystem

Initialization complete

On insertion of the module tsc2005_init function is invoked, which registers the tsc2005_driver as an SPI
slave device. If a matching entry is found in the list of SPI slave devices found, the tsc2005_probe function
is called, which is the probe function invoked by the SPI subsystem. This function registers the
tsc2005_driver as an input driver and performs the relevant initialization.

The probe function also sets up the SPI transfers by invoking the function tsc2005_spi_setup.

The probe function also requests for the IRQ, which is a GPIO pin connected to the PINTDAV line from
the TSC controller.

3.2 Initialization and Code Routines

3.2.1 Touch Driver Initialization

Figure 4 shows the TSC2005 touch driver initialization process.

Figure 4. TSC2005 Touch Driver Initialization

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/

6 TSC2005/6 Linux® Drivers SBAA165 – March 2009
Submit Documentation Feedback

TSC2005 Touch Driver www.ti.com

static irqreturn_t tsc2005_irq(int irq, void *handle)
{
struct tsc2005 *tsc = handle;
struct input_dev *ip = tsc->input_dev;
unsigned long flags = 0;
spin_lock_irqsave(&tsc->lock, flags);
disable_irq(irq);
if (likely(!(tsc->get_pendown_state()))) {
mod_timer(&tsc->timer, jiffies + ON_IRQ /*HZ*1 */);
} else {
input_report_key(ip, BTN_TOUCH, 0);
input_report_abs(ip, ABS_PRESSURE, 0);
input_sync(ip);
enable_irq(irq);
}
spin_unlock_irqrestore(&tsc->lock, flags);
return IRQ_HANDLED;
}

static void tsc2005_timer(unsigned long handle)
{
struct tsc2005 *ts = (void *)handle;
int status = 0;
ts->msg_idx = 0;
#ifdef TSC_MODE_2
/* msg_idx=6 contains the converter function select */
ts->msg_idx = CONV_SEL_SPI_MSG_ID;
#endif
status = spi_async(ts->spi_dev, &ts->msg[ts->msg_idx]);
return;
}

3.2.2 Interrupt Routine
On an Interrupt, the tsc2005_irq function routine is called, which checks for line state, starts a timer if the
line is down, reads the data, and reports touch coordinates to the input subsystem.

3.2.3 Reading Touch Data

Upon an IRQ, the read command is sent to the TSC2005 controller. The following functions are then
called to read the touch data. Additionally, a timer is started in order to report drags and drawings. This
reporting is done by submitting the SPI transactions that were set up during the initialization.

Valid touch data are reported to the input subsystem upon receipt.
The routines responsible for the above activities are:
• tsc2005_complete: To report the received data
• tsc2005_in_complete: To receive the touch data and submit the next SPI transaction.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/

SBAA165 – March 2009
Submit Documentation Feedback

TSC2005/6 Linux® Drivers 7

TSC2005 Touch Driver www.ti.com

3.2.4 Reporting Coordinates
In the tsc2005_complete function, the data received are byte-swapped and modified according to the LCD
coordinates before being reported to the input subsystem.

3.2.5 Exit/Cleanup

The exit point of this driver is the tsc2005_exit function, which is invoked during the removal of the kernel
module from the system. This function removes the entry of the driver as the SPI slave driver, during
which the subsystem invokes the tsc2005_detach function, which frees the IRQ, deregisters the device as
an input driver, and frees up the memory that has been allocated.

3.3 Development System Connection

These items are required in order to connect the development system:
• 9-pin serial COM cable from J15 of AT91SAM board to an available PC COM port connector
• Ethernet cable from Ethernet plug under the LCD/touch screen to an available PC Ethernet connector

3.4 Setup and Download Sequence
For Microsoft® Windows®-based PC installations with a serial download:
1. Install WinSCP.
2. Unzip the files, then move the Kernel Image and TSC200x driver files to the proper directory.
3. Start HyperTerminal. Build and configure a connection with these settings:

• Baud rate: 115200
• Data bits: 8
• Parity: None
• Stop bits: 1
• Flow control: None

4. Power up the AT91SAM9261EK, and wait for the u-boot> prompt to appear.
5. At the hyperterminal window, key in this command sequence:

• loadb 0x22200000
6. Find the uImage kernel binary file to load using Kermit protocol.
7. After downloading the file, key in this command sequence:

• bootm 22200000
8. Login using root as the username.

/*
* Restart Timer if pendown, else enable_irq which was disabled in
* the IRQ handler
*/
if (!ts->get_pendown_state())
{
input_report_abs(ip, ABS_X, x);
input_report_abs(ip, ABS_Y, y);
#ifdef report_actual_pressure
input_report_abs(ip, ABS_PRESSURE, touch_pressure);
#else
input_report_abs(ip, ABS_PRESSURE, 7500);
#endif /* report_actual_pressure */
input_report_key(ip, BTN_TOUCH, 1);
input_sync(ip);
mod_timer(&ts->timer, jiffies + BETWEEN_READS);
} else {
input_report_abs(ip, ABS_PRESSURE, 0);
input_report_key(ip, BTN_TOUCH, 0);
input_sync(ip);
enable_irq(ts->penirq);
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/

8 TSC2005/6 Linux® Drivers SBAA165 – March 2009
Submit Documentation Feedback

Environment Details www.ti.com

9. Configure the Ethernet connection using the following command:
• #ifconfig eth0 <Some IP> up

10. Send the tsc200x.ko the AT91SAM board through the winSCP protocol. An ssh server is already
running on the board.

11. Yey in this command sequence:
• insmod tsc200x.ko
• pkill x

For Linux system installations with an Ethernet download:
1. Install a terminal emulator such as Kermit.
2. Open Kermit with the same settings as shown for Windows installations.
3. Set up tftp server on the Linux host using this sequence:

• vi /etc/xinetd.d/tftp
• Delete the line that contains disable = yes
• /etc/init.d/xinetd restart

4. Copy the uImage binary in /tftpboot.
5. On the terminal emulator window, at the u_boot> prompt, key in the following commands:

• setenv ipaddr <SAM IP>
• setenv serverip <Host IP>
• saveenv
• tftp 22200000 uImage
• bootm 22200000

6. At the login prompt, login as root.
7. On the Atmel board, issue this command:

• ifconfig eth0 <SAM IP> up
8. From the Linux host, key in the following command:

• scp tsc200x.ko root@<SAM IP>:~
9. On the Atmel board, key in the following commands:

• insmod tsc200x.ko
• pkill X

4 Environment Details

4.1 Setting Up the Development Environment

The development environment consists of a host (the development system) and a target (the board). The
host system should have all the software discussed in this section and the correct tools for a proper setup
of the environment.

Note: Some of these requirements may be optional, depending on the selection of the specific
development environment.

• A Linux-based machine, with a kernel of 2.6 or higher installed. (Any Linux flavor such as CentOS-el5
is suitable.)

• The cross-compiler tool arm-linux-none-gnueabi installed. (Review the code source repository for
details of the same tool to be installed on a Windows-based machine, or locate these details at
http://www.linux4sam.org/twiki/bin/view/Linux4SAM/SoftwareTools.)

• TFTP server, NFS server, and Secure shell utilities. (These utilities should be available with a normal
Linux distribution.)

• For a Windows-based machine (with the Windows XP operating system), the SAM boot assistant
(SAM-BA) should be installed. The PC should also have serial port and USB interfaces available.
Locate the SAM-BA through the following link:
http://www.linux4sam.org/twiki/bin/view/Linux4SAM/SoftwareTools#SAM_BA.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/
http://www.linux4sam.org/twiki/bin/view/Linux4SAM/SoftwareTools
http://www.linux4sam.org/twiki/bin/view/Linux4SAM/SoftwareTools#SAM_BA

SBAA165 – March 2009
Submit Documentation Feedback

TSC2005/6 Linux® Drivers 9

www.ti.com Board Power-Up

• A serial terminal program such as hyperterminal or TeraTerm, running on a Windows/Linux PC that is
connected to the board via a serial cable.

The target system here is an Atmel AT91SAM9261EK evaluation board, which comes equipped with a
USB cable, serial cable, Ethernet cable, and an LCD + touch screen interface (an ADS7846 device).

5 Board Power-Up

In order to flashing images on the AT91SAM board a tool called SAM-BA is required. (This tool is
available from the Atmel website at www.atmel.com.) The tool is driven by a USB connection from the PC
to the board.
The following sequence of steps is required to download the bootstrap loader and the other images onto
the SAM9261 evaluation board (a detailed explanation of this procedure is also available on the
linux4sam.org web site,
http://www.linux4sam.org/twiki/bin/view/Linux4SAM/GettingStarted#Flashing_a_demo_on_AT91_boards).
Follow these steps to flash the images into the AT91SAM board.

Step 1. Connect a USB cable to the board.
Step 2. Jumper J4 on the AT91SAM board must be opened (BMS = 1) to boot from the on-chip Boot

ROM.
Step 3. Remove the data flash jumper (J21).
Step 4. Power up the board.
Step 5. Verify that the USB connection is established. (If Atmel AT91xxxxx Test Board appears in the

taskbar notification area, this message indicates that the tool must be installed.)
Step 6. Plug the Data Flash Jumper (J21) back into position 1-2.
Step 7. Now the user can proceed with downloading a demo routine, which has the set of images

available from the linux4sam site.
Step 8. The demo directory also has a .bat file that can be executed, which self-installs all the images

on the board.
Step 9. A logfile.log is created upon completion of the steps outlines above; the USB cable then can

be removed from the board.
Step 10. On power-cycling the board, the LCD should display the Angstrom desktop and other

applications.

5.1 Downloading and Customizing a Kernel for the Board
The demo images do not provide all the necessary modules to develop the TSC200x drivers, so a new
Linux-2.6.24 image is built and loaded instead of the demo image provided. Download the copy of the
Linux-2.6.24 image provided by the website shown here (linux4sam.org), which also provides the latest
copy of the patch file for the AT91SAM9261EK, 2.6.24-at91.patch.gz. (The procedure to extract the Image
and apply the patch is also given at the linux4sam.org website at:
http://www.linux4sam.org/twiki/bin/view/Linux4SAM/LinuxKernel#Build.)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/
http://www.atmel.com/
http://www.linux4sam.org/twiki/bin/view/Linux4SAM/GettingStarted#Flashing_a_demo_on_AT91_boards
http://www.linux4sam.org/
http://www.linux4sam.org/twiki/bin/view/Linux4SAM/LinuxKernel#Build

10 TSC2005/6 Linux® Drivers SBAA165 – March 2009
Submit Documentation Feedback

Configuration Parameters www.ti.com

5.2 Installation of the Linux Kernel Image
Loading an image onto the board can be carried out in two ways:
1. Load an image by replacing the Linux kernel image file provided in the demo.

This method requires the newly created image to have the same name as that of the older one, and
follows the same procedures discussed earlier in loading the demo applications.

2. Loading an image through u-boot.
The Linux kernel uImage can also be loaded through u-boot, by first setting the following environment
variables in u-boot, running a tftp server on one of the Linux/Windows machines, and providing
network access to the board in order to connect to the machine that is running the TFTP server.

#setenv serverip 172.22.1.119
#setenv ipaddr 172.22.1.118
#setenv bootcmd=’tftp 22200000 uImage; bootm 22200000’
#savenv

On rebooting the board, the uImage created and transferred onto the tftp server should be loaded onto
the board at address 22200000, and should have started to execute.

6 Configuration Parameters

Table 4 summarizes the required configuration parameters.

Table 4. Configuration Parameters

Macro Name Feature
BIT_MODE_12 / BIT_MODE_10 Enables 12- or 10-bit resolution (that is, the

number of valid bits read for each coordinate)
TSC_MODE_1 / TSC_MODE_2 Configures the TSC2005 for either TSC-controlled

or Host-controlled mode
REPORT_ACTUAL_PRESSURE Enables reporting of actual pressure using Z1, Z2

values
BATCH_DELAY_ON Enables the Batch Delay mode

7 References

The following documents are available for download through the Texas Instruments web site
(www.ti.com).
• TSC2005: Nano-power, four-wire touch screen controller with SPI interface. Product data sheet

SBAS397C.
• TSC2006: Nano-power, four-wire touch screen controller with SPI interface. Product data sheet

SBAS415C.
• TSC2005EVM and TSC2005EVM-PDK. User's guide SLAU191.
• TSC2006EVM and TSC2006EVM-PDK. User's guide SLAU200

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA165
http://www.ti.com/
http://www.ti.com/
http://focus.ti.com/docs/prod/folders/print/tsc2005.html
http://www-s.ti.com/sc/techlit/SBAS397
http://www-s.ti.com/sc/techlit/SBAS397
http://focus.ti.com/docs/prod/folders/print/tsc2006.html
http://www-s.ti.com/sc/techlit/SBAS415
http://www-s.ti.com/sc/techlit/SBAS415
http://www-s.ti.com/sc/techlit/slau191
http://www-s.ti.com/sc/techlit/slau200

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	1 Description
	Figure 1. TSC2005 Linux Driver Architecture

	2 System Details
	2.1 Architecture
	Figure 2. TSC2005 Connection Diagram

	2.2 Interface Details: Digital Interface
	Table 1. AT91SAM9261EK and TSC2005 Digital Hardware Interface
	2.3.1 SPI Driver
	Table 2. SPI Driver Routines
	Figure 3. TSC2005 Touch Driver Code Organization

	3.2 Initialization and Code Routines
	3.2.1 Touch Driver Initialization
	Figure 4. TSC2005 Touch Driver Initialization
	3.2.3 Reading Touch Data
	3.2.4 Reporting Coordinates
	3.2.5 Exit/Cleanup

	3.3 Development System Connection
	3.4 Setup and Download Sequence
	For Microsoft® Windows®-based PC installations with a serial download:
	For Linux system installations with an Ethernet download:

	4 Environment Details
	4.1 Setting Up the Development Environment

	5 Board Power-Up
	5.1 Downloading and Customizing a Kernel for the Board
	5.2 Installation of the Linux Kernel Image

	6 Configuration Parameters
	Table 4. Configuration Parameters
	IMPORTANT NOTICE

