
1 Introduction

2 Connections

Application Report
SBAA153–April 2007

TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x
Processors

.. Data Acquisition Products

ABSTRACT
The TLV320AIC33 audio driver was developed with an I2C™ control interface and
I2S™ audio streaming. The code was tested on an SC32442A Samsung application
processor, running on the Microsoft Windows® CE 5.0 operating system. This
application report discusses the I2C and I2S drivers, including the hardware connection
between the TLV320AIC33EVM and the SC32442A Samsung application processor
platform, the Windows CE 5.0 driver code and structure, and the respective
installations.

Contents
1 Introduction .. 1
2 Connections ... 1
3 Device Driver .. 4
4 Installation.. 10
5 WinCE 5.0 Driver Code .. 11
6 References... 12

Texas Instruments' TLV320AIC33 (AIC33) audio device is a low-power, high-performance stereo input and
stereo output coder/decoder (codec). This device is ideal for portable audio and telephony applications, in
which an embedded operating system (OS), such as Windows CE (WinCE), often resides and operates.
This application report discusses the driver for the AIC33 codec that was developed to enable users to
quickly set up, run, and use the codec device with the WinCE 5.0 OS.

The AIC33 driver was coded on the standard device driver platform-dependent device (PDD) layer. The
PDD layer was further split to have an additional processor-dependent layer (PDL) to make the drivers
easy to port into different host processors. See Application Report TSC2301 WinCE Generic Drivers
(SLAA187, available for download at www.ti.com) for details on Windows CE PDD and TI PDL generic
drivers.

The WinCE 5.0 driver described in this document was run and tested on an TLV320AIC33EVM board and
a Samsung platform with the SC32442A application processor.

The AIC33 device must be wired and connected to a host processor, where the device driver code is
ported and executed. The two buses (or ports) for AIC33 operation are the control bus and the audio data
bus. The control bus on the AIC33 is an I2C bus. The audio data streams through the I2S bus on the
AIC33.

Windows is a registered trademark of Microsoft Corporation.
I2C, I2S are trademarks of NXP Semiconductors.
All other trademarks are the property of their respective owners.

SBAA153–April 2007 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors 1
Submit Documentation Feedback

http://focus.ti.com/docs/prod/folders/print/tlv320aic33.html
http://focus.ti.com/docs/toolsw/folders/print/tlv320aic33evm-pdk.html
http://www-s.ti.com/sc/techlit/SLAA187
http://www.ti.com
http://focus.ti.com/docs/toolsw/folders/print/tlv320aic32evm.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

I2CSCL/GPE14

I2CSDA/GPE15

I2SLRCK/GPE0

CDCLK/GPE2

I2SSDI/GPE3

I2SSCLK/GPE1

I2SSDO/GPE4

TOUT2/GPB2

nRSTOUT/GPA21

VDD 5V

GND

VDD 3.3V

VDD 1.8V

SCL

SDA

LRCK

+5VA

GPIORST

GND

MCLK

I2SDOUT

BCLK

+3.3VD

I2SDIN

RESET

+1.8VD

TLV320AIC33

S3C2440A Processor

I C Bus
2

I S Bus
2

Reset Logic

Power Section

Connections

In developing the AIC33 drivers for this application, the TI AIC33EVM board and the Samsung platform
with the SC32442A application processor (see Ref 4) were used.

On the I2C-controlled AIC33, the seven digital signals that are essential for running the audio driver are:

• the I2C bus, two wires: SCL and SDA (at J16 or J17 of the AIC33EVM board);
• the main audio codec clock, MCLK (at J17 of AIC33EVM board); and
• the I2S bus, four wires: BCLK, WCLK, SDIN and SDOUT (at J17 of AIC33EVM board).

Figure 1 shows the wires and connections between the AIC33 and SMDK2442 processor for the I2C
control interface.

Figure 1. TLV320AIC33 Connections to Samsung SC32440A Processor

To implement the connection shown in Figure 1, ensure that these jumpers are correctly connected on the
AIC33EVM board:

• Connect JMP10 between 2 and 3
• Connect JMP3 and JMP4 between 1 and 2
• Connect JMP9 between 1 and 2
• Connect JMP1 between 1 and 2
• Ensure that JMP11, JMP13, JMP14, and JMP15 are open
• Connect JMP12

2 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors SBAA153–April 2007
Submit Documentation Feedback

http://focus.ti.com/docs/toolsw/folders/print/tlv320aic33evm-pdk.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

VDD 5V

GND

VDD 1.8V

VDD 3.3V

L3MODE/GPIORST
RESET

RSTOUT

JMP9

I2SLRCK WCLK

+5VA

CDCLK MCLK

AGND

XI2CSCL

SCL

XI2CSDA

SDA

I2SSDI DIN

+1.8VD

I2SSCLK BCLK

I2SSDO DOUT

+3.3VD

TLV320AIC33EVMS3C2442A43 Module

19

9

26

25

8

10

24

28

9

31

23

27

34

CON12

CON12

CON19

8

14

16

20

3

7

11

13

17

3

7

9

6

J3

J5

J4

TSM-105-01-L-DV-P

TSM-110-01-L-DV-P
SSW-110-22-F-D-VS-K

SSW-105-22-F-D-VS-K

Connections

This jumper configuration enables the internal MIC for recording and the HEADSET JACK for playing data
from the codec.

The wiring diagram in Figure 2 describes the wiring details between the SMDK2442 interface and the
AIC33.

Figure 2. TLV320AIC33EVM Connections to Samsung SMDK2440X Module

See the TLV320AIC33EVM User's Guide (SBAU114, available for download at www.ti.com) for the
schematic and other details of the EVM board. In Figure 2, the AIC33 is reset from two sources: RSTOUT
and via a General Purpose Input/Output (GPIO) pin. Resetting from RSTOUT resets the AIC33 when the
Samsung SMDK2442 processor powers on, putting the ACI33 into a known state. A reset via the GPIO
Port B 2 pin is a response to a host processor instruction. Software can issue an active low pulse longer
than 10ns in duration on this port pin to reset the AIC33. By setting JMP9 as directed, we are setting up
the board to use the GPIO reset.

SBAA153–April 2007 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors 3
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SBAU114
http://www-s.ti.com/sc/techlit/SBAU114
http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

3 Device Driver

AIC33WinCE5 Driver

AIC33WAVEDEV AIC33LIB INC

AIC33Audio.C

AIC33Audio.h

HostAudio.C

HostAudio.h

Sources

Makefile

AIC33I2C.C

HostI2CComm.C

Sources

Makefile

AIC33.cec

Platform.bib

Intro.c

s3c2440a_intr.h

AIC33I2C.h

HostI2CComm.h

AIC33Regs.h

3.1 I2C Interface

Device Driver

Figure 3 illustrates the locations of the AIC33 audio device driver files for both the SPI and I2C control
interfaces. The files starting with Host… are the processor-dependent code or PDL, such as HostAudio.C
or HostI2CComm.H.

Figure 3. AIC33 WinCE 5.0 Driver Files with I2C Control Interface

The two AIC33 I2C bus pins, SCL and SDA, are connected to the GPIO Port E 14 and GPIO Port E 15 of
the SMDK2442 processor, respectively. On the host side, the SMDK2442 GPIO, I2C, and clock
management control registers are used to set up the I2C interface to communicate with the AIC33 via the
I2C interface. The HWInitI2C () routine implements this set-up.
///////
// Function: void HWInitI2C(BOOL InPowerHandle)
// Purpose: This function must be called from the power handler
// of the respective drivers using this library. This
// function will configure the GPIO pins according to
// the functionality shown in the table below
// Signals Pin# Direction Alternate Function
// SCL GPE14 output 1
// SDA GPE15 output(at init) 1
///////
BOOL HWInitI2C(BOOL InPowerHandle)
{
UINT8 reg = 0x00;
RETAILMSG(1,(TEXT("Setup Host GPIO & I2C for an I2C Interface...\r\n")));
// init I2C control register (disabled I2C unit)
// enable I2C unit clock (the clock should be enabled first)
g_pClockRegs->CLKCON |= S3C_CLKEN_I2C;
// set up GPE
g_pGPIORegs->GPEDN |= GPE_DN; //0xc000, Pull-up
disable
g_pGPIORegs->GPECON |= (GPE14_IIC_SCL | GPE15_IIC_SDA); //Making GPE15=>IICSDA
, GPE14=>IICSCL
//Enable ACK, Prescaler IICCLK=PCLK/16, Enable interrupt, Transmit clock value Tx
clock=IICCLK/16
//e.g. If PCLK 50.7MHz, IICCLK = 3.17MHz, Tx Clock = 0.198MHz
reg = ICR_ACK | ICR_INTR;
reg &= ~(ICR_TXCLK);
reg |= ICR_TXCLKVAL;
g_pI2CRegs->IICCON = reg;
g_pI2CRegs->IICADD = 0x10; //2442 slave address
[7:1]

4 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors SBAA153–April 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

Device Driver

g_pI2CRegs->IICSTAT |= ISR_ENOP; //IIC bus data output
enable(Rx/Tx)
g_pI2CRegs->IICLC = ILCR_FEN | ILCR_SDADLY; // Filter
enable, 15 clocks SDA output delay
DumpRegsI2C();
return(TRUE);
}

Two other important I2C interface routines are the HWI2CWriteRegs() and HWI2CReadRegs(). These
routines allow the SMDK2442 to write to or read from AIC33 control registers using the I2C bus. The I2C
write and read protocols have been defined (see Figure 5 and Figure 6 of the TLV320AIC33 data sheet).

HWI2CWriteRegs():
///////
// Function: HWI2CWriteRegs Routine
// Purpose: This routine allows the SMDK2442 to write to AIC33
// control register(s) using I2C bus.
// Note: The first byte in bytesBuf is the starting address
// for writing; and the 2nd and on are bytes/contents
// writing to AIC33
///////
BOOL HWI2CWriteRegs(UINT8 *bytesBuf, int bytesCount,
BOOL InPowerHandle)
{
if (!InPowerHandle)
{
UINT8 reg;
iicMod = WR_DATA;
iicPtr = 0;
iicDat[0] = *bytesBuf++; //Putting 1st byte i.e
register address
iicDat[1] = *bytesBuf; //Putting 2nd byte i.e.
actual data
iicDCount = bytesCount;
g_pI2CRegs->IICDS = I2C_WRITE; //Putting AIC33 slave
address (7bit address + 0 'write bit')
reg = g_pI2CRegs->IICSTAT;
reg = (ISR_MTX | ISR_START | ISR_ENOP); //Master transmit mode, START
signal genration, Enable output
g_pI2CRegs->IICSTAT = reg;
/*Clearing the pending bit isn't needed because the pending bit has been
cleared*/
while(iicDCount != -1)
Run_Iic_Poll();
iicMod = POLL_ACK;
while(1)
{
g_pI2CRegs->IICDS = I2C_WRITE;
iicStat = 0x100;
reg = g_pI2CRegs->IICSTAT;
reg = (ISR_MTX | ISR_START | ISR_ENOP);
//Master transmit mode, START signal genration, Enable output
g_pI2CRegs->IICSTAT = reg;
reg = g_pI2CRegs->IICCON;
reg = ICR_ACK | ICR_INTR | ICR_TXCLKVAL;reg &= ~(ICR_PENITR);
//Resumes IIC operation.
g_pI2CRegs->IICCON = reg;
while(iicStat==0x100)
Run_Iic_Poll();
if(!(iicStat & 0x1))
break;
//When ACK is received
}

SBAA153–April 2007 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors 5
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/slas480
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

Device Driver

g_pI2CRegs->IICSTAT = ~(ISR_STOP); //Stop
MasTx condition
reg = g_pI2CRegs->IICCON;
//Resumes IIC operation.
reg = ICR_ACK | ICR_INTR | ICR_TXCLKVAL;
reg &= ~(ICR_PENITR);
g_pI2CRegs->IICCON = reg;
Delay(3);
//Wait until stop condtion is in effect.
/*Write is completed.*/
return(TRUE);
}
else
{
RETAILMSG(1, (TEXT("HW Tx Error...\r\n")));
return(FALSE);
}
}

HWI2CReadRegs():
///////
// Function: HWI2CReadRegs Routine
// Purpose: This routine allows the SMDK2442 to read from AIC33
// control register(s) using I2C bus.
// Note: The first byte in bytesBuf is the starting address for
// reading; and the 2nd and on are values reading from AIC33
///////
BOOL HWI2CReadRegs(UINT8 *bytesBuf, INT bytesCount,
BOOL InPowerHandle)
{
if (!InPowerHandle)
{
UINT8 reg;
iicMod = SETRD_ADDR;
iicPtr = 0;
iicDat[0] = *bytesBuf++; //Putting 1st
byte i.e. register address
iicDCount = 1;
g_pI2CRegs->IICDS = I2C_WRITE; //Putting
slave address of AIC33 for write mode [7:0]
Delay(1);
reg = g_pI2CRegs->IICSTAT;
reg = (ISR_MTX | ISR_START | ISR_ENOP); //Master transmit
mode, START signal genration, Enable output
g_pI2CRegs->IICSTAT = reg;
/*Clearing the pending bit isn't needed because the pending bit has been
cleared.*/
while(iicDCount!=-1)
Run_Iic_Poll();
iicMod = RD_DATA;
iicPtr = 0;
iicDCount = 1;
g_pI2CRegs->IICDS = I2C_READ; //Putting slave
address of AIC33 for read mode[7:1]
Delay(1);
reg = g_pI2CRegs->IICSTAT;
reg = (ISR_MRX | ISR_START | ISR_ENOP);
g_pI2CRegs->IICSTAT = reg; //Mater Rx, Start signal
reg = g_pI2CRegs->IICCON;
reg = ICR_ACK | ICR_INTR | ICR_TXCLKVAL ;
reg &= ~(ICR_PENITR);
g_pI2CRegs->IICCON = reg; //Resumes IIC operation.
while(iicDCount!=-1)
Run_Iic_Poll();
reg = g_pI2CRegs->IICCON;
reg = ICR_ACK | ICR_INTR | ICR_TXCLKVAL;

6 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors SBAA153–April 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

3.2 Audio Driver

Device Driver

reg &= ~(ICR_PENITR);
g_pI2CRegs->IICCON = reg;
*bytesBuf++ = (UINT8) iicDat[1];
return(TRUE);
}
else
{
RETAILMSG(1, (TEXT("HW Rx Error...\r\n")));
return(FALSE);
}
}

From a hardware standpoint, the AIC33 audio driver must have both I2C and I2S buses (for audio control
and audio data streaming, respectively). The I2C bus controls the audio codec operation by writing to the
AIC33 audio control registers; the I2S bus transfers audio data between the host and the AIC33.
Additionally, the AIC33 MCLK pin should receive an external clock that provides the necessary timing for
the AIC33 audio delta-sigma (∆Σ) ADC and DAC to operate. MCLK to the AIC33 should be generated
from the same source as the I2S clocks; that is, MCLK should also run from the host processor, which is
the I2S master as described in this application report. The AIC33 audio driver was built on the standard
audio driver, WaveDev, and is located in the directory AIC3xWaveDev.

On the host side, the SMDK2442 GPIO GPE0 to GPE4 pins were used as the I2S source, and connected
to the AIC33 WCLK, BCLK, MCLK, SDIN and SDOUT pins respectively (see Figure 1). The GPIO pin
GPE2 is programmed as the I2S SYSCLK and is connected to MCLK, which is programmed to generate a
16.9344MHz clock. The I2S setup was implemented at the routine, HWEnableI2S().

HWEnableI2S():
//
//--
// Processor Related Routines Used at AudioPowerOn() and
// AudioPowerOff(),
// which include: PDD_AudioInitialize(),
// PDD_AudioDeinitialize()
// and PDD_AudioPowerHandler().
//--
//
///////
// Function: HWEnableI2S()
///////
void HWEnableI2S(void)
{
RETAILMSG(1,(TEXT("+++HWEnableI2S\n")));
RETAILMSG(1,(TEXT("Setup Host GPIO & I2S Interface... \r\n")));
/* Basic Outline: */
/* Configue the GPIO registers and set to I2S mode
// Set up I2S control registers at default condition
/* Enable the CPU clock to the IIS controller */
v_pClockRegs->CLKCON |= IIS_INTERNAL_CLOCK_ENABLE;
/* Set up GPIO to route I2S signals */
//GPE4 - I2SSDO
//GPE3 - I2SSDI
//GPE2 - CDCLK
//GPE1 - I2SSCLK
//GPE0 - I2SLRCK
v_pGPIORegs->GPEDN |= 0x1f; //Disable
v_pGPIORegs->GPECON |= 0x2aa; // Select I2S
/* configure IIS registers */
//IISCON : Tx DMA REQ Enbl
// Rx DMA REQ Enbl
// Enable IIS Prescaler
// Disable IIS interface (stop)
v_pI2SRegs->IISCON = RECEIVE_DMA_REQUEST_ENABLE
TRANSMIT_DMA_REQUEST_ENABLE

SBAA153–April 2007 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

Device Driver

IIS_PRESCALER_ENABLE;
//IISMOD : MPLLIN, IIS Master Mode, Tx and Rx Mode,Low for Left Ch, IIS Format,16
bit per channel,256fs, 32fs - IISCLK
// MASTER_CLOCL_PCLK |
//IIS_TRANSMIT_RECEIVE_MODE |
v_pI2SRegs->IISMOD = MASTER_CLOCL_MPLLIN |
IIS_MASTER_MODE |
ACTIVE_CHANNEL_LEFT |
SERIAL_INTERFACE_IIS_COMPAT |
DATA_16_BITS_PER_CHANNEL |
MASTER_CLOCK_FREQ_384fs |
SERIAL_BIT_CLOCK_FREQ_32fs;
//IISFCON: Tx FIFO:DMA, Rx FIFO: DMA, Enbl Tx FIFO, Enbl Rx FIFO
v_pI2SRegs->IISFCON = (TRANSMIT_FIFO_ACCESS_DMA |
TRANSMIT_FIFO_ENABLE |
RECEIVE_FIFO_ACCESS_DMA |
RECEIVE_FIFO_ENABLE);
// Clock configuration; Set Prescaler register
//IISPSR
SetI2SClockRate((DWORD)IS2LRCLK_44100); // Set fs = =44.1kHz; Only freq
supported by Hardware
// Enable the I2S clock
v_pI2SRegs->IISCON |= IIS_INTERFACE_ENABLE;
DumpRegsGPIO();
DumpRegsClock();
DumpRegsI2S();
RETAILMSG(1,(TEXT("---HWEnableI2S\n")));
}
///////
// Function: HWDisableI2S()
///////
void HWDisableI2S(void)
{
RETAILMSG(1,(TEXT("+++HWDisableI2S\n")));
// disable I2S
v_pI2SRegs->IISCON &= ~(IIS_INTERFACE_ENABLE);
RETAILMSG(1,(TEXT("---HWDisableI2S\n")));
}

The codec can be used according to given application environments. As an example, for this application
report, the AIC33 was initially configured in this manner:

• I2S interface:

1. The I2S interface is at 16 bits, standard I2S mode, with 44.1kHz ADC and DAC sample rates.
2. The AIC33 is the slave because the host is the I2S master (the AIC33 can be I2S slave or master,

but SMDK2442 can only be the master).
• Audio input circuitry:

1. The left and right ADC input are from the stereo, single-ended LINE3 (MICIN3).
2. ADC input gain is controlled by its PGA, with an initial gain setting of 0dB gain.

• Audio output circuitry:

1. The left and right DAC outputs are routed to the stereo, single-ended headphone, HPL/R with
HPLCOM and HPRCOM being shorted as the VCOM.

2. Headphone output is in the CAPLESS mode.
3. DAC gains and HPL/R output gains are all initialized to 0dB.

• Other functions:

1. The input high-pass filter has not been enabled.
2. The output digital boost, emphasis, and 3-D functions have not been enabled.
3. PLL is disabled.
4. The pop-reduction function is set to slowest rate and is enabled.

8 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors SBAA153–April 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

Device Driver

All AIC33 audio control registers (in Page0 of the AIC33 memory space) were set up or initialized, as
previously stated, with the routine InitAIC33Audio() and called by the audio PDD routine,
PDD_AudioInitialize(). The audio initialization routine is given below.

Audio Initialization Routine:
//
//--
// Audio Initialization
//--
//
// Initalize AIC33 Audio Register at Default
void InitAIC33Audio(BOOL bInPowerHandler)
{
/*The register which are not used in AIC33 are commentet out*/
RETAILMSG(1, (TEXT("InitAIC33Audio.\r\n")));
// init for digital functions
AIC33WriteReg(AIC33_RATE, RATE_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PLLa, PLLa_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PLLb, PLLb_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PLLc, PLLc_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PLLd, PLLd_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DATAPATH, DATAPATH_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_INTERFa, INTERFa_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_INTERFb, INTERFb_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_INTERFc, INTERFc_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DIGFILT, DIGFILT_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_HEDETb, HEDETb_INIT_VALUE, bInPowerHandler);
// init for analog input functions
AIC33WriteReg(AIC33_ADCPGAL, ADCPGAL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_ADCPGAR, ADCPGAR_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_MIC3_ADCL, MIC3_ADCL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_MIC3_ADCR, MIC3_ADCR_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_MICBIAS, MICBIAS_INIT_VALUE, bInPowerHandler);
// init for analog output functions
AIC33WriteReg(AIC33_OUTPWR, OUTPWR_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_OUTDRIVE, OUTDRIVE_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_OUTSTAGE, OUTSTAGE_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_OUTPOP, OUTPOP_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DACLGAIN, DACLGAIN_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DACRGAIN, DACRGAIN_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DACL_HPL, DACL_HPL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_HPLLEVEL, HPLLEVEL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_DACR_HPR, DACR_HPR_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_HPRLEVEL, HPRLEVEL_INIT_VALUE, bInPowerHandler);
AIC33WriteReg(AIC33_PWRSTATUS, PWRSTATUS_HPRO_PWUP, bInPowerHandler);
AIC33WriteReg(AIC33_CLKGEN, CLKGEN_INIT_VALUE, bInPowerHandler);
RETAILMSG(1, (TEXT("Done InitAIC33Audio.\r\n")));
}

SBAA153–April 2007 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

4 Installation

Installation

This section presents the installation steps for running the AIC33 WinCE 5.0 drivers on an SMDK2442
platform. The SC32442 Application Processor board support package (BSP) can be obtained from
Samsung and installed on a PC. It is recommended to load the BSP after installing the Platform Builder
5.0 at (for example) C:\WinCE500\PLATFORM\.To install the AIC33 Windows CE 5.0 audio driver into
one of the SMDK2442 workspaces, perform the following steps.

Step 1. Copy:

a. Copy the file \AIC33WinCE5Driver\AIC33.cec to this location:
C:\WINCE500\PUBLIC\COMMON\OAK\CATALOG\CEC\

b. Copy all files inside \AIC33WinCE5Drivers\INC\ into:
C:\WINCE500\PLATFORM\SMDK2442\SRC\INC\

c. Copy the file \AIC33WinCE5Driver\intr.c into:
C:\WINCE500\PLATFORM\SMDK2442\Src\Common\Intr

d. Copy the file \AIC33WinCE5Driver\s3c2440a_intr.h into:
C:\WINCE500\PLATFORM\SMDK2442\Src\Inc

e. Copy the directories AIC33LIB and AIC33WaveDev into:
C:\WINCE500\PLATFORM\SMDK2442\SRC\DRIVERS\

Step 2. Set Up:

a. Run Platform Builder 5.0, and the Platform Builder IDE appears.
b. At the Platform Builder 5.0 IDE, open Manage Catalog Items from the menu File\Manage

CatalogItems …\. When the Manage Catalog Items window appears, click the Import button
on the right side of the window; navigate, find, and select AIC33.cec in the directory
C:\WINCE500\PUBLIC\COMMON\OAK\CATALOG\CEC\. Then click on Open so that the
item is ported in.

c. Click and drag to select all *.cec files in the Manage Catalog Items window. Then click on the
Refresh button to make sure the new item is loaded.

d. Close the Manage Catalog Items window by clicking OK.
This step sets up the catalog to include the AIC33 device drivers.

Step 3. Open:
This step, in the Platform Builder 5.0 IDE, opens a new or existing SMDK2442 workspace according to
the application instructions. This procedure is ignored here.

Step 4. Add:

a. In the Catalog window of the Platform Builder 5.0 IDE, find the TI AIC33 Audio CODEC
Driver, right-click on it, and select Add to OS Design to add the audio driver to the OS.

b. The audio device driver should appear under the Device Drivers section at the
OSDesignView window of the WorkSpace.

This step ports the AIC33 device drivers from the Catalog into the existing OS design.

10 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors SBAA153–April 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

5 WinCE 5.0 Driver Code

WinCE 5.0 Driver Code

5. Modify:

a. Open the dirs file in the directory:
C:\WINCE500\PLATFORM\SMDK2442\SRC\DRIVERS\

b. Add on the AIC3xLIB and AIC3xWAVEDEV.
For example, the dirs file could be:

DIRS=\
ceddk\
keybd\
PowerButton\
pccard\
serial\
usb\
nleddrvr\
Battdrvr\
Backlight\
cs8900\
Display\
SDHC\
touch\
wavedev\
AIC33LIB\
AIC33WAVEDEV

This step modifies the building device drivers in order to include TI AIC33 drivers.
Step 5. Update:

a. Open the existing platform.reg file from Hardware Specific section of the ParameterView
window of the workspace.

b. Edit the platform.reg file; delete the old audio .dll and add in the AIC33 audio dll file:

IF BSP_NOAUDIO !
; @CESYSGEN IF CE_MODULES_WAVEAPI
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]
"Prefix"="WAV"
"Dll"="wavedev.dll"
"Index"=dword:1
"Order"=dword:0
"Priority256"=dword:d2
; @CESYSGEN ENDIF CE_MODULES_WAVEAPI
ENDIF BSP_NOAUDIO !

c. Save and close the updated platform.reg file.
d. Edit the platform.bib file in the same manner:

; ---
; @CESYSGEN IF CE_MODULES_WAVEAPI
IF BSP_NOAUDIO !
wavedev.dll $(_FLATRELEASEDIR)\wavedev.dll NK SH
ENDIF BSP_NOAUDIO !
; @CESYSGEN ENDIF CE_MODULES_WAVEAPI
; ---

e. Save and close the updated platform.bib file.
This step updates the Hardware Specific Files, so that the operating system will use AIC33 device
drivers.

To obtain the driver code discussed in this application report, contact the TI Applications Support Group
at: support@ti.com.

SBAA153–April 2007 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

www.ti.com

6 References

References

The following documents are available for download through the Texas Instruments web site
(www.ti.com), except where noted.

1. Chammings, Y. and Fang, W.X. (2003.). TSC2301 WinCE Generic Drivers. Application report
SLAA187.

2. TLV320AIC33: Low Power Stereo Audio Codec for Portable Audio/Telephony. Product data sheet
SLAS480.

3. TLV320AIC33EVM User's Guide. User guide SBAU113.
4. Samsung SC32442A Processor Developer’s Kit. User guide.

12 TLV320AIC33 WinCE 5.0 Driver for Samsung S3C244x Processors SBAA153–April 2007
Submit Documentation Feedback

http://www.ti.com
http://www-s.ti.com/sc/techlit/SLAA187
http://www-s.ti.com/sc/techlit/SLAS480
http://www-s.ti.com/sc/techlit/SBAU114
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAA153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power www.ti.com/lpw Telephony www.ti.com/telephony
Wireless

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti.com/lpw
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Connections
	3 Device Driver
	3.1 I2C Interface
	3.2 Audio Driver

	4 Installation
	5 WinCE 5.0 Driver Code
	6 References

