DLPC6540

Programmer's Guide

Literature Number: DLPU110B APRIL 2021 – REVISED AUGUST 2022

Chapter Programmer's Guide **Programmer's Guide**

This guide provides details of the software interface requirements for a DLPC6540 controller based system. This descriptions includes the communication protocol, initialization, default settings, common use cases and command descriptions.

Table of Contents

1 Scope	11
2 References	13
3 Acronyms	15
4 System Boot	17
4.1 Data In flash	
4.2 Bootloader Application	17
4.3 Main Application	18
4.4 Commands supported by Bootloader and Main Applications	18
4.5 Debug Terminal	19
4.6 HOST_IRQ/SYSTEM_BUSY	19
4.7 Heartbeat	
4.8 Low-level Fault	19
5 System Status	21
6 Version	23
7 Power Modes	25
8 Display Modes	27
9 Source Detection and Configuration	
10 Internal sources	
10.1 Test Patterns (TPG)	
10.2 Solid Field (SFG) Color	31
10.3 Curtain	
11 Display Formatting	33
12 Image Processing	
13 Illumination Control	
14 Peripherals	39
14.1 GPIO	
15 Interface Protocol	
15.1 Supported Interfaces	
15.2 I ² C Target	
15.3 USB	
16 Command Protocol	
16.1 Command Packet	
16.2 Response Packet	
16.3 Destination Details	
16.4 Error Handling and Recovery	
16.5 System Busy - I ² C scenarios	46
16.6 Support for Variable Data Size	
17 Auto-Initilization Batch File	
18 Command Descriptions	
19 System Commands	
19.1 3D	
19.2 Administrative	55
19.3 Autolock	
19.4 Blending	
19.5 Bootloader	
19.6 Calibration	
19.7 Debug Internal	
19.8 Debug	
19.9 General Operation	
19.10 Illumination	146

www.ti.com Table of Contents

19.11 Image Processing	
19.12 Peripherals	
19.14 Manual WPC	
20 Revision History	
•	
List of Figures	
Figure 1-1. Typical Projector System Block Diagram	11
Figure 4-1. Flash Update Flow Diagram	
Figure 15-1. USB Core	41
List of Tables	
Table 4-1. Supported Flash Update Commands	
Table 16-1. Command Packet format	
Table 16-2. Command Header Byte	
Table 16-4. Response Header Byte	
Table 16-5. Error code definitions	
Table 16-6. Destination Numbers.	
Table 19-1. Enable Three D [Opcode: B1h Destination: 4]	
Table 19-2. Three D Source Configuration [Opcode: B2h Destination: 4]	<u>52</u>
Table 19-3. Left Right Signal Polarity [Opcode: B3h Destination: 4]	54
Table 19-4. Mode [Opcode: 00h Destination: 1]	
Table 19-5. Controller Info [Opcode: 00h Destination: 4]	
Table 19-6. Version [Opcode: 01h Destination: 1]	
Table 19-7. DMD Info [Opcode: 01h Destination: 4]	
Table 19-8. Switch Mode [Opcode: 02h Destination: 1]	
Table 19-9. DMD Resolution [Opcode: 02h Destination: 4]	
Table 19-10. Flash Layout Version [Opcode: 03h Destination: 4]	
Table 19-12. Product Configuration Failure Cause [Opcode: 05h Destination: 4]	63
Table 19-13. System Status [Opcode: 06h Destination: 4]	
Table 19-14. EEPROM Data Present [Opcode: 07h Destination: 4]	
Table 19-15. General Delay Command [Opcode: 08h Destination: 4]	
Table 19-16. EEPROM Invalidate [Opcode: 0Ah Destination: 4]	
Table 19-17. Splash Capture [Opcode: 0Bh Destination: 4]	
Table 19-18. Splash Capture Status [Opcode: 0Ch Destination: 4]	69
Table 19-19. Terminate Splash Capture [Opcode: 0Dh Destination: 4]	70
Table 19-20. Autolock Control [Opcode: 24h Destination: 4]	
Table 19-21. Blend Map Gain Values [Opcode: 2Bh Destination: 4]	
Table 19-23. Blend Map Offset Values [Opcode: 2Dh Destination: 4]	
Table 19-24. Blend Map Control Points [Opcode: 2Eh Destination: 4]	
Table 19-25. Enable Edge Blending [Opcode: 2Fh Destination: 4]	
Table 19-26. Edge Blending System Params [Opcode: 3Dh Destination: 4]	
Table 19-27. Edge Blending Configuration [Opcode: 3Eh Destination: 4]	
Table 19-28. Boot Hold Reason [Opcode: 12h Destination: 1]	
Table 19-29. Flash Info [Opcode: 20h Destination: 1]	
Table 19-30. Programmable Flash Sector Information [Opcode: 21h Destination: 1]	
Table 19-31. Unlock Flash For Update [Opcode: 22h Destination: 1]	
Table 19-32. Erase Sector [Opcode: 23h Destination: 1]	83
Table 19-33. Initialize Flash Read Write Settings [Opcode: 24n Destination: 1]	
Table 19-35. Checksum [Opcode: 26h Destination: 1]	
Table 19-36. Reset Flash [Opcode: 2011 Destination: 1]	
Table 19-37. XPR Calibration Pattern Display [Opcode: ABh Destination: 4]	
Table 19-38. XPR 4Way Orientation [Opcode: B4h Destination: 4]	
Table 19-39. XPR Actuator Waveform Control Parameter [Opcode: B5h Destination: 4]	
Table 19-40. DB Border Configuration [Opcode: BBh Destination: 4]	93
Table 19-41. DB Border Weight [Opcode: BCh Destination: 4]	94

Table of Contents www.ti.com

		DB Clip Pixels [Opcode: BDh Destination: 4]	
		DB Gain [Opcode: BEh Destination: 4]	
		DB Histogram [Opcode: C2h Destination: 4]	
		Current Led Color Point [Opcode: C4h Destination: 4]	
		WPC Optimal Duty Cycle [Opcode: C5h Destination: 4]	
		WPC Calibration Data [Opcode: C6h Destination: 4]	
		WPC Sensor Output [Opcode: CDh Destination: 4]	
		Enable XPR Calibration Mode [Opcode: D1h Destination: 4]	
		WPC Calibration Structure Override [Opcode: D2h Destination: 4]	
		Vx1 Hw Status [Opcode: 3Fh Destination: 4]	
		Memory [Opcode: 10h Destination: 1]	
		Memory Array [Opcode: 11h Destination: 1]	
		Debug Message Mask [Opcode: E0h Destination: 4]	
		Enable USB Debug Log [Opcode: E1h Destination: 4]	
Table	19-56.	DLPA3005 Register [Opcode: E3h Destination: 4]	09
		TI Actuator Interface Debug [Opcode: E4h Destination: 4]	
		DMD Power [Opcode: E8h Destination: 4]	
		DMD Park [Opcode: E9h Destination: 4]	
		DMD True Global Reset [Opcode: EBh Destination: 4]	
		Int Stack [Opcode: F0h Destination: 4]	
		Print All Task Information [Opcode: F1h Destination: 4]	
		Resource [Opcode: F2h Destination: 4]	
		EEPROM Free Area Offset [Opcode: FFh Destination: 4]	
		Power [Opcode: 10h Destination: 4]	
		Display [Opcode: 11h Destination: 4]	
		System Look [Opcode: 13h Destination: 4]	
		TPG Predefined Pattern [Opcode: 14h Destination: 4]	
		TPG Border [Opcode: 15h Destination: 4]	
		TPG Resolution [Opcode: 16h Destination: 4]	
		TPG Frame Rate [Opcode: 17h Destination: 4]	
		SFG Color [Opcode: 18h Destination: 4]	
		SFG Resolution [Opcode: 19h Destination: 4]	
		Curtain Color [Opcode: 1Ah Destination: 4]	
		Splash Load Image [Opcode: 1Bh Destination: 4]	
		Enable Image Flip [Opcode: 1Ch Destination: 4]	
		Enable Freeze [Opcode: 1Dh Destination: 4]	
		Keystone Angles [Opcode: 1Eh Destination: 4]	
		Keystone Config Override [Opcode: 1Fh Destination: 4]	
		Enable Anamorphic Scaling [Opcode: 20h Destination: 4]	
		Display Image Size [Opcode: 21h Destination: 4]	
		Source Configuration [Opcode: 22h Destination: 4]	
		Datapath Scan Status [Opcode: 25h Destination: 4]	
		Frame Rate Parameters [Opcode: 26h Destination: 4]	
		VBO Configuration [Opcode: 30h Destination: 4]	
		Keystone Corners [Opcode: 3Ah Destination: 4]	
		Warp Timing Validation Enable Adjust Wrp [Opcode: 3Bh Destination: 4]1	
		Is Warp Geometry Modified [Opcode: 3Ch Destination: 4]	
		Illumination Enable [Opcode: 80h Destination: 4]	
		DLPA3005 Illumination Current [Opcode: 84h Destination: 4]	
		Image Algorithm Enable [Opcode: 40h Destination: 4]1	
		Image Brightness [Opcode: 41h Destination: 4]1	
		Image Contrast [Opcode: 42h Destination: 4]	
Table	19-95.	Image Hue And Color Control [Opcode: 43h Destination: 4]	52
		Image Sharpness [Opcode: 44h Destination: 4]	
		Image RGB Offset [Opcode: 45h Destination: 4]	
Table	19-98.	Image RGB Gain [Opcode: 46h Destination: 4]	55
		CSC Table [Opcode: 47h Destination: 4]	
). Image CCA Coordinates [Opcode: 48h Destination: 4]	
		. Image HSG [Opcode: 49h Destination: 4]1	
Table	19-102	2. Image Gamma LUT [Opcode: 4Ah Destination: 4]	63

www.ti.com Table of Contents

Table 19-103. Image Gamma Curve Shift [Opcode: 4Bh Destination: 4]	164
Table 19-104. Img White Peaking Factor [Opcode: 4Ch Destination: 4]	165
Table 19-105. XPR Filter Strength Command [Opcode: 4Dh Destination: 4]	166
Table 19-106. HDR Source Configuration [Opcode: 4Eh Destination: 4]	167
Table 19-107. HDR Strength Setting [Opcode: 4Fh Destination: 4]	168
Table 19-108. System Brightness Range Setting [Opcode: 50h Destination: 4]	169
Table 19-109. Image Color Profile [Opcode: 51h Destination: 4]	170
Table 19-110. Image Point HSG [Opcode: 52h Destination: 4]	171
Table 19-111. Spcc Control Points [Opcode: 53h Destination: 4]	175
Table 19-112. Pcc Coefficients Direct [Opcode: 54h Destination: 4]	176
Table 19-113. GPIO Pin Config [Opcode: 60h Destination: 4]	180
Table 19-114. GPIO Pin [Opcode: 61h Destination: 4]	181
Table 19-115. General Purpose Clock Enable [Opcode: 63h Destination: 4]	
Table 19-116. Gen Purpse Clock Frequency [Opcode: 64h Destination: 4]	183
Table 19-117. I2C Passthrough [Opcode: 67h Destination: 4]	
Table 19-118. DMD Temperature [Opcode: 69h Destination: 4]	
Table 19-119. EEPROM Lock State [Opcode: 6Ch Destination: 4]	
Table 19-120. UART Configuration [Opcode: 6Dh Destination: 4]	187
Table 19-121. Actuator EEPROM Free Memory Access [Opcode: 6Eh Destination: 4]	
Table 19-122. Actuator EEPROM Free Memory Info [Opcode: 6Fh Destination: 4]	
Table 19-123. Manual Warp Table [Opcode: 34h Destination: 4]	
Table 19-124. Manual Warp Control Points [Opcode: 35h Destination: 4]	
Table 19-125. Apply Manual Warping [Opcode: 36h Destination: 4]	
Table 19-126. Smooth Warp Table [Opcode: 38h Destination: 4]	
Table 19-127. Manual Warp Table Update Mode [Opcode: 39h Destination: 4]	
Table 19-128. WPC Target Manual Mode [Opcode: D4h Destination: 4]	196
Table 19-129. WPC Target Color Point [Opcode: D5h Destination: 4]	197

Table of Contents www.ti.com

www.ti.com Trademarks

Trademarks

Composer[™] is a trademark of Texas Instruments.
DLP[®] is a registered trademark of Texas Instruments.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

This guide provides details of the software interface requirements for a DLPC6540 controller based system. This descriptions includes the communication protocol, initialization, default settings, common use cases and command descriptions.

Figure 1-1 shows a typical projector system using DLPC6540 controller that includes the DLPA3005 power management IC and the .47 4K HSSI DMD.

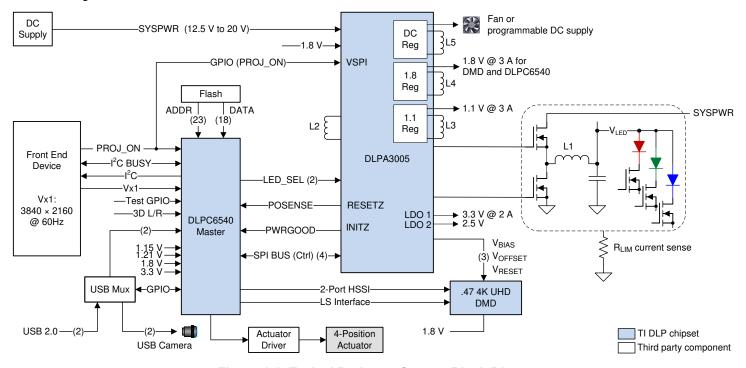


Figure 1-1. Typical Projector System Block Diagram

Scope www.ti.com

Chapter 2 **References**

- 1. DLPC6540 Datasheet.
- 2. I²C Bus Specification Philips Semiconductor 1994 Desktop Video Data Handbook.
- 3. DLP® Composer™ Tool User's Guide.

References www.ti.com

Chapter 3 Acronyms

CCA - Color Co-ordinate Adjustment

CFI - Common Flash Interface

CSC - Color Space Conversion

DB - Dynamic black

DLPC - DLP controller

HSG - Hue Saturation Gain

SFG – Solid field generator

GPIO - General purpose input/output

LUT - Lookup Table

PWM – Pulse width modulation

SSI - Solid State Illumination

TPG - Test Pattern Generator

Acronyms www.ti.com

The DLP controller boots from the parallel flash connected at the PM_CSZ_0 line. There is no ROM code built into the controller. It is mandatory to have parallel flash connected on the CS0 chip select line.

4.1 Data In flash

These are the major sections of data present in the flash memory.

- · Bootloader Application
- Main Application
- · Configuration data
- Display sequences
- Splash image(s)
- · Auto-init batch file

4.2 Bootloader Application

The bootloader is the first application that runs from the flash memory when the system is turned on or reset. The bootloader application copies itself from flash to internal RAM for execution. This application performs flash update (erase, program). It also identifies a valid main application in the flash and only then begins to run the main application. This application reads the GPIO_64 (HOLD_BOOTZ) signal at the startup and if the signal reads 0, the application remains in the boot application mode. This useful option forces the firmware to update in case the main application on the flash is corrupted. Use the DLP Control Program to update the flash firmware.

Table 4-1 lists all commands supported by the booloader application for flash update. Figure 4-1 depicts the example usage of bootloader commands for updating the flash contents.

Table 4-1. Supported Flash Update Commands

Command	Description
Boot Hold Reason	Reason for controller to be in Boot Application mode.
Get Flash ID	Returns the Flash ID
Get Flash Sector Info	Retrieve flash number of sectors and sector size information
Flash Lock/Unlock	User must send this command to unlock the flash for erase/program access. This is to prevent accidental erase/programming of flash data.
Erase Sector	Command to erase sector – user to provide sector address as input
Initialize Flash Read/Write	Command to specify start address on the flash along with # of bytes to be written or readback
Get Checksum	Command to compute checksum and return it. Command takes flash address and number of bytes to compute the checksum.

System Boot www.ti.com

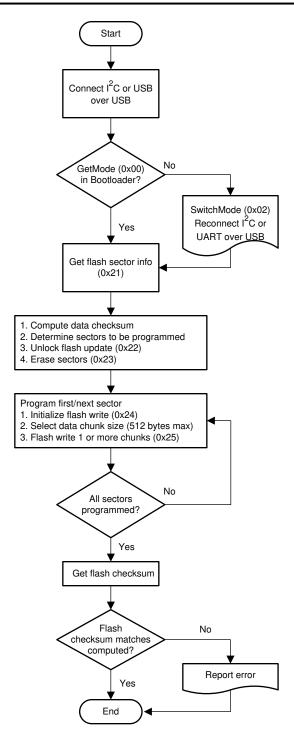


Figure 4-1. Flash Update Flow Diagram

4.3 Main Application

This application runs during the normal projector operation and performs full system initialization including DMD, illumination sub-system and peripherals. It responds to all the control commands from host controller and takes appropriate actions and sends responses.

4.4 Commands supported by Bootloader and Main Applications

The bootloader application and main application support these commands:

www.ti.com System Boot

Command Name	Description	
Get Mode	Returns the current mode – Bootloader or Main Application	
Get Version	Retuns software version information	
Switch Mode	Switch between bootloader mode and main application mode	

4.5 Debug Terminal

The application prints several status messages and debug information onto its UART Port0. User has the option to configure that to a different port using DLP Composer tool. The default settings for this UART port is set to 115200 baud rate, 8-bit data, no parity, 1-stop bit and no flow control. These parameters may be changed as per user preference using DLP Composer tool.

The level of messages on the debug terminal is configurable via Set Debug Message Mask command. User may choose to route the debug messages to USB port instead of UART port using Enable USB Debug Log command.

4.6 HOST_IRQ/SYSTEM_BUSY

GPIO_58 acts as HOST_IRQ/SYSTEM_BUSY signal, configured as open drain GPIO from the controller side. The GPIO indicates when the controller is free or busy. During power-on-reset, the front-end communication device must wait until the signal goes to LOW state when host processor is available to receive commands. When the signal remains continuously HIGH, this indicates problem with controller boot-sequence. In this case it is important that the issue resolved before proceeding. (Try reading Get Boot Hold Reason command to narrow down the issue.)

4.7 Heartbeat

After a successful boot-up, the controller begins toggling the GPIO_28. Typical operation reflects 1 Hz, 50% duty-cycle. If the device detects an error, the signal changes to 5 Hz, 50% duty-cycle. The front-end component can figure out the error via System Status command. In addition, the GPIO_28 signal can be send as an input to the front-end to detect any issues.

4.8 Low-level Fault

When the controller starup sequence encounters some error condition, it transitions to bootloader mode and sets GPIO_23 (connected to an LED) HIGH to indicate a low-level fault condition. See the debug message printed in the UART debug terminal or via the Get Boot Hold Reason command to get more details about the cause of error. When the ARM processor detects one of the data abort, pre-fetch abort or undefined instruction exceptions, it starts blinking GPIO_23 in specific hex code format. During this error condition, communication with the controller is not possible. The only way to communicate with the controller is to analyze the hex error code from the pattern and then debug the hardware to fix the issue.

System Boot www.ti.com

Chapter 5 **System Status**

The front-end controller can poll Get System Status command to get information related to system status and error conditions.

System Status www.ti.com

Chapter 6 **Version**

The front-end can query the version information of application sofware and the underlying API library using the Get Version command.

Version www.ti.com

Chapter 7 Power Modes

The DLP Controller can operate in Normal or Standby power modes. Use Set Power command to toggle between the two modes. In the standby state the controller will be consuming the minimal power. When the system is not in use, user can set system in Standby state. Note the state transition may take several hundred milliseconds to complete. User shall ensure power mode transition is complete using Get Power command.

Power Modes www.ti.com

Chapter 8 **Display Modes**

When the system is operating in normal power mode, the user can change the display mode of the system using Set Display command. Display of contents from different sources such as Test Pattern (internal preprogrammed), Solid Field, Splash (logo image), Curtain, and External Source are supported. Controller firmware is designed to hide mode transition artifacts. However, where the transition artifacts are not completely hidden, user has the option to freeze the display (using Enable Freeze command), display a blank curtain or turn off illuminator (using Set Illumiantion Enable command) to hide those artifacts.

Display Modes www.ti.com

Chapter 9

Source Detection and Configuration

Follow specific steps to configure the controller to display a source properly. When operating in External display mode, the controller automatically scans the connectors for activity and runs the automatic source detection and locking algorithm.

The front-end controller gets information about scan status using Get Datapath Scan Status command. After a source is detected, all information about the source can be queried using Get Source Configuration command. Anytime after source detection, the user may override any of the auto-detected parameters via Set Source Configuration command.

If the source detection is incorrect or if any source parameters have changed, initiate a re-sync using Autolock Setup command.

This section discusses multiple internal source options to display by using Set Display command.

10.1 Test Patterns (TPG)

The controller has several pre-defined patterns that the user can select using TPG Pre-defined Pattern command. Use the DLP Composer tool to configure these pre-defined patterns The controller TPG block generates the pattern data. This option is useful for:

- · Testing the DLP hardware without an external source
- Isolating whether an issue is arising from front-end source or related to image processing by the controller

These are additional configuration commands specific to test patterns:

Command Name	Description	
Set TPG Border	Set border around selected TPG, border width can be 0 – 20; and border color programmable (R,G,B) value in the range of 0 - 1023.	
Set TPG Resolution	Set the TPG pattern resolution. In case the resolution of the pattern is smaller than the display resolution of the DMD, controller will fill the area with pleasing color.	
Set TPG FrameRate Configure TPG frame-rate between 30Hz – 120Hz. There is dependency of the TPG reserved respect to frame-rate; for example in case of 4K resolution max frame-rate will be limited case of 1080p resolution max frame-rate will be limited to 240Hz		

10.2 Solid Field (SFG) Color

When operating in SFG mode, the controller fills the entire display image area with a solid color. Use the Set SFG Color command to choose the color.

10.3 Curtain

Curtain color is similar to SFG color, but generated at the last block of the controller datapath processing unit. This is ideally suited for hiding any or all artifacts up the line. The command can generate fixed colors as defined in the Set Curtain Color command.

Internal sources www.ti.com

Chapter 11 **Display Formatting**

The controller provides several functions related to formatting the displayed image that are summarized in the table below.

Command Name	Description	
Image Flip	Flip image in Horizontal and/or Vertical direction.	
Keystone Angles	Controller adjust the display image automatically as per the 3D keystone settings where it takes three co-ordinates Pitch, Yaw, Roll; for 1D keystone user can set the Yaw and Roll to 0. This feature is useful when projecting on surfaces/screens non-orthogonal to projector.	
Keysone Corners	Configures the 2D Keystone correction when the corners of the corrected image are known.	
Display Image Size	Define a custom displayed image size.	
Manual Warp Table	Send warp points to be used for image warping.	
Manual Warp Control Points	Define the width and height of two dimensional point array sent using Manual Warp Table command. This command also enables/disables manual warping feature.	

Display Formatting www.ti.com

Chapter 12 Image Processing

The controller has multiple digital image processing optins summarized in the table below:

Command Name	Description
Image Brightness	Provides ability to add or subtract fixed bias from each of the input R,G, B channels.
Image Contrast	Provides option apply gain to the pixel data.
Image Hue And Color Control	Provides option to apply Hue adjustment in degrees and Gain in % for each input channels.
Image Sharpness	Provides option to apply both Horizontal and Vertical sharpness filters.
Image RGB Offset	Offset the levels of the RGB channels in the datapath after Brightness, Contrast, Hue&Color, Gain, CSC (Color Space Conversion)
Image RGB Gain	Adjusts individual R, G & B gains of the source image. This function adjusts R, G, and B gains by altering the Color Space Conversion Coefficients.
Image CCA Coordinates	Color co-ordinate adjustment (CCA) takes both desired and measured individual color xyY information for the color adjustment.
Image HSG	Same as CCA but the colors expressed in Hue Saturation Gain (HSG) color space.

Image Processing www.ti.com

Chapter 13 Illumination Control

The controller has built-in driver functions to control different types of Solid State Illumination (SSI) systems. Following signals go into the illumination system:

 Current control signals: Current control signals meant for driving specified illumination module with specific level of current. The current levels can be specified by the user using Set DLPA3005 Illumination Current command. In case algorithms like LED WPC (White Point Control) and/or Dynamic Black are enabled, then the illumination current values are determined by these algorithms.

Use the Set Illumination Enable command to turn the illuminators ON or OFF.

Illumination Control www.ti.com

This page intentionally left blank.

Chapter 14 Peripherals

Commands listed in this section are provided to control and configure peripherals such as GPIO, PWM and UART.

14.1 **GPIO**

There are 88 GPIO pins in the system. Some of these pins are dedicated for system specific operations. Refer to DLPC6540 controller datasheet for the freely available GPIOs. The functionslisted below can be used to setup the available GPIOs.

Command Name	Description
GPIO Pin Config	Configure GPIO as input or output; incase of output, configure as Standard or OpenDrain type, with default value as HIGH or LOW.
GPIO Pin	Change the state of the output GPIO to HIGH or LOW and to Read the state of input GPIO pin.

Users are advised to have proper (default) pullup resistance and and pulldown resistance on the GPIO pins to avoid problems especially when the controller is in reset or boot-up state. By default all the freely available GPIOs are configured as INPUT and tri-stated. The system reconfigures them only upon receiving these commands.

Peripherals www.ti.com

This page intentionally left blank.

15.1 Supported Interfaces

The communication interfaces supported for DLP controller include a serial data bus conforming to the Philips I²C specification up to 400 KHz, USB 2.0 and UART interfaces. In addition to control commands, parallel flash programming is also supported over these interfaces.

15.2 I²C Target

While writing to the DLPC operating in the I²C target configuration, the first byte following the start condition should be the DLPC device write address (34h). It is possible to change the device address to any other desired value using DLP Composer tool. The remaining bytes are sent as specified in the Chapter 16 below.

While reading from the DLPC in I^2C target configuration, the first byte following the start condition should be DLPC device write address +1 (35h default) followed by header and opcode bytes as explained later in the document. All reads from DLPC via I^2C interface starts with a write as explained above specifying the opcode for read. The host should then continue the I^2C transaction with a Restart-Read followed by the number of bytes associated with the command and finally the Stop.

15.3 USB

The DLPC6540 controller has USB OTG 2.0 compliant hardware. When connected to a USB host, the controller configures as USB device (target) mode operating at high speed (480 Mbit/s). The controller enumerates one of the interfaces as a generic WinUSB device with two bulk endpoints. A USB bulk transfer sends the command and response packets through these endpoints. The OUT endpoint is used for command packet and the IN endpoint is used for response packet. The USB transfer size can vary from 1 byte to 512 bytes. When the host sends the USB IN request, the controller responds with NAK until there is a response packet ready from the software.

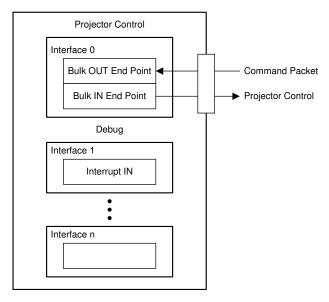


Figure 15-1. USB Core

Interface Protocol www.ti.com

This page intentionally left blank.

Command Protocol

This section describes the command protocol implemented in DLPC6540. This is the protocol to be used by any external controller to control the DLPC6540 controller using any of the supported commands. The same protocol is applicable across all supported peripheral interfaces (USB, I²C, UART) and application types (bootloader, reference application).

This protocol specifies a flexible length header. The minimum header length is one byte. The first header byte indicates how to interpret the remaining bytes such as opcode, data and checksum (for error detection). There is also a destination parameter in the header that directs the command to different entities within the projector application.

Use this flexible header length method for application that require a minimum of overhead bytes can opt for the one byte header. For a more robust application, configure a larger header that includes data length and/or checksum.

16.1 Command Packet

The command packet defines the packet format to follow when commands are sent to the DLP Controller. Fields that are always present are indicated in **bold**, and optional fields are indicated in normal font.

The definition of which fields are present is based on the 1-byte header field. The length field is mandatory if a command is defined as having variable data size.

Field Size (bytes) Description Header See Table 16-2 below. Command opcode. Command opcode number greater than 0xFF should be 1 or 2 based on opcode length field in Opcode sent using 2 bytes. Other opcodes can be sent with 1 byte or 2 bytes. In case the header of 2-byte opcode, first byte is the LSB. Length of the command data in bytes following this byte. Checksum is not 2 or 0 included in length. Length based on data length present field in For example length=10 means there are 10 bytes of data) after this length field. the header LSB of length shall be sent first followed by MSB. 0-511 (total of maximum 512 bytes in Data the whole message including header Parameters/data and checksum) Checksum of all bytes in the message including header bytes. Fletcher's checksum is implemented as below:uint32 SimpleChecksum = 0; uint32 SumofSumChecksum = 0; uint08 *Addr = (uint08 *) StartAddress; 1 or 0 Checksum (optional as checksum present field of while (NumBytes--) header byte) SimpleChecksum += *Addr++; SumofSumChecksum += SimpleChecksum;

Table 16-1. Command Packet format

Table 16-2. Command Header Byte

Bits	Field name	Values
0:2	Destination	See Section 16.3

Command Protocol www.ti.com

Table 16-2. Command Header Byte (continued)

Bits	Field name	Values
3	Opcode Length	1 = Two byte opcode 0 = One byte opcode
4	Datalength Present	1 = Length field present in the extended header 0 = No length field
5	Checksum Present	1 = Checksum present after data bytes 0 = Checksum not present
6	Reply Requested	Device will send a response packet to every write command. This field is applicable only for write commands Response packet not sent for write commands
7	Read Command	1 = Read Command 0 = Write Command

16.2 Response Packet

The Response packet is the format in which the DLP Controller replies to the host. The Response packet format is followed for both Write Response and Read Response. For write commands, the Response packet is sent only if the "reply requested" bit is set in the command header.

The DLP Controller matches the response header to the same format as the incoming command packet header. There is however an exception - if the Response packet is for a command that expects variable number of data bytes, the Response packet will always include the length field (irrespective of whether the command packet had length mentioned or not). See also Section 16.6 section related to variable sized commands.

Similar to the definition of command packet, fields in **bold** represents fields that are always present.

Table 16-3. Response packet format

Field	Size (bytes)	Description
Header	1	See Table 16-4 below
Length	2 or 0 (Optional as per DataLength Present field in the header)	Length of the command data in bytes following this byte. Checksum is not included in length. For example length=10 means there are 10 bytes of data) after this length field. LSB of length shall be sent first followed by MSB.
Data	0-511 (total of max 512 bytes in the whole message including header and checksum)	Response data bytes depends on the command code. If error bit in the header is set, there will only be a single data byte. This byte will indicate the error code that caused the command to nack. The error code definitions are listed Table 16-5.
Checksum	1 or 0 (optional as per Checksum Present field of header byte)	Checksum of all bytes in the message including header bytes. Fletcher's checksum.

Table 16-4. Response Header Byte

Bits	Field name	Values
0:2	Destination	See Section 16.3
3	Reserved	NA
4	Datalength Present	1 = Length field present in the extended header 0 = No length field
5	Checksum Present	1 = Checksum present after data bytes 0 = Checksum not present
6	Error	1 = Error. First data byte will have the error code that gives more information about the failure 0 = No error
7	Busy	1=system busy/response not ready; 0=response ready. Applicable only for I2C based communication

www.ti.com Command Protocol

Table 16-5. Error code definitions

Error Code	Meaning
1	Invalid Destination
2	Invalid/Unknown command
3	Invalid length
4	Allocated buffer is not enough to store a command
5	Length Information missing for a variable sized command
6	Checksum Mismatch
7	Controller not compatible to run the application
8	Read not supported
9	Write not supported
10	Execution Failed
11	Invalid Response Length
12	Buffer Full

Write responses are optional as described in the command header description above. If response is requested, it is imperative to read the response (both Write Response and Read Response) immediately following the respective Command Packet. The response of a command is lost as soon as the DLP Controller receives another set of bytes from the host.

16.3 Destination Details

The table below lists the mapping of destination number to application. Destination value 0 is reserved and shall not be used by any application. Both bootloader and application software implement Destination 1. This implementation allows for sharing common commands between applications. The first 32 command IDs (0 to 31) are reserved for this purpose. Bootloader can use the command IDs outside of the reserved command range to provide specific commands that it supports. See Command Descriptions for more details.

Table 16-6. Destination Numbers

Destination No	Destination	
0	Reserved	
1	Commands common to bootloader and reference application.	
2	Extended commands/projector control	
3	Reserved	
4	System commands	
5-7	Reserved	

16.4 Error Handling and Recovery

As all physical interfaces support the same protocol, it is difficult to support the start conditions that each interface supports. Also, depending on payload size, a command packet may be sent over multiple packets.

It is also important for the DLP Controller to know the start of a command to be able to parse and execute the command successfully. This means the host and DLP Controller should always be in sync. This will be the case if both host and DLP controller gets reset and powers on together. However, if an error occurs in either side, or if one of host/DLP Controller asynchronously resets then the sync is lost. Since the start conditions specific to physical interfaces are not monitored, we need another mechanism to recover when such an error occurs.

To support this use case, the DLP Controller monitors the time of arrival of each group of bytes. If any group of bytes come outside of a defined timeout (750 ms) compared to the last group, it is treated as the start of a new command.

The timeout is always measured from the last received group of byte and not from the group of byte where it encountered an error. This means, if the host keeps sending command one after the other without a timeout, all of it will be discarded.

Command Protocol www.ti.com

It is valid to include multiple commands in a single group, or send commands back to back without waiting for the defined timeout. Both of these cases are controlled by the command handler which execute all such chained commands in the order they are received.

16.5 System Busy - I²C scenarios

When using I²C protocol, the target component pulls the clock line low when it needs to indicate it is busy processing and cannot accept any more data from host. Be aware that when there are multiple target devices on the same bus, the entire communication on the bus gets halted until the busy slave component releases the bus. To prevent this undesirable effect, the controller supports following options for the host:

16.5.1 GPIO implementation

A separate GPIO line (GPIO 58 by default) reports to the host component that the controller is busy or not busy. Upon power-on-reset, the front-end communication device must wait until the signal goes to LOW state. A signal that remains HIGH continuously idicates a problem with controller boot-sequence. The source of the problem must be resolve before proceeding.

When a command is sent, the I²C Busy GPIO is pulled HIGH until the command completes execution. If the device attempts to send another command while execution of the first command is ongoing, system confirms whether the I²C Busy GPIO is HIGH or LOW and then takes the decision to send the command. This process ensures that there is no clock stretching, and other devices on the I²C bus are not affected, but it ensures that the command handler is occupied and no other command can be sent at this point. Use the DLP Composer tool to assign a GPIO for this purpose.

16.5.2 Short Status response

When the I²C host requests a data read, the Busy flag (7 the bit in the header byte) indicates the short status. If it is set, it means that the DLPC is busy and does not have a response to send back yet. The host can use the System busy pin as a check for the controller's availability to receive. When this bit is set, the rest of the bits of the response header shall be treated as don't care and no further bytes to be read. The expectation is that the host will keep reading from the Controller for response until this bit is cleared. When that occurs the response header is valid, and remaining data is as per the command.

If the host abandons a read command midway or sends another command immediately after sending read command, the response bytes in the controller buffer gets discarded and the new command gets processed.

For USB communication layer, the controller indicates the busy status by NAK response to the read request.

16.6 Support for Variable Data Size

For large data handling commands such as flash download and flash read, the user can allow some commands to support variable number of data bytes. To support this use case, the commands that require variable data size, is mandated to include length as part of the Command packet header. The Command Handler uses the given length to decode the received Command packet and execute correctly. Similar to the Command packet, the data in the Response packet may also be variable. The Command Handler includes length in the Response packet header for such commands.

The command protocol is designed to support commands up to a length of 65535 bytes (2-byte length field). However, due to memory limitations, the command handler implementation limits it to a maximum size of 512 bytes in a Command packet (this includes all bytes in the command like header, checksum etc.).

Chapter 17 **Auto-Initilization Batch File**

The DLPC6540 systems provide the option of an auto-initialization batch file that can be included in the flash image using the advanced mode of DLP Control Program. The auto-initialization batch file allows the user to specify a set of commands (as described in this document) to be executed at system startup (such as booting up in Splash display mode or fixed video input for fast boot up time etc). The firmware executes the command specified in this batch-file in the specified order after it completes its own initialization procedure.

This feature provides allows the user to pre-configure the system to consistent set of powerup conditions.

Auto-Initilization Batch File www.ti.com

This page intentionally left blank.

Command Descriptions

Please consider these guidelines applicable to all the command descriptions that follow in this document.

- Byte order. Wherever a parameter is specified as more than 1 byte in length, the order in which it must be sent/read is LSB first and MSB last.
- Parameter for read commands: All read commands where a read parameter is not explicitly mentioned in the comand description, means those commands don't accept a read parameter. A Read parameter is defined only for certain read commands to specify the details of what is being sought to be read.
- When the input parameter(s) to a command are in fixed point format, it is specified such as format = s8.2 or format = u12.4 etc. where s stands for signed and u stands for unsigned.

Fixed-Point Representation:

This representation has fixed number of bits for integer part and for fractional part. Negarive numbers are represented in two's complement format.

Fixed Point representation - [Integer][Fraction]

Example: Assuming the format is signed and using 32-bit format, with 16 bits for the integer part and 16 bits for the fractional part. This will be referred to as s15.16 format.

In this case, -43,625 and 43,625 are represented as follows:

[000000000101011][101000000000000] = 0x002BA000 = +43.625

Command Descriptions www.ti.com

This page intentionally left blank.

Chapter 19 **System Commands**

The commands described in this guide are compatible with Software version v4.5.0

19.1 3D

3D

Table 19-1. Enable Three D [Opcode: B1h | Destination: 4]

	inner in it makes the product a make a make in it
Set Enable Three D	
Write Parameter(s)	
Byte Description	
Byte 0	Enable
	bit 0: TRUE - Enable Processing, FALSE - Disable Processing.
Enables 3D functionality.	

Get E	Get Enable Three D	
Data	returned is in the same format as the Write Parameter(s).	
Retur	ns whether 3D is enabled or not.	

Table 19-2. Three D Source Configuration [Opcode: B2h | Destination: 4]

uration
Description
Format 0 = Reserved. 1 = VSync separated (frame sequential progressive) format. 2 = Reserved. 3 = Reserved. 4 = Reserved. 5 = Reserved. 6 = Undefined format.
LR Reference 0 = 3D LR from frame determines L/R (High=Left). 1 = GPIO determines L/R (High=Left). 2 = Vsync/Hsync alignment determines L/R. 3 = LR 1st Frame 4 = LR reference is embedded in video data. 5 = Undefined LR reference.
Frame Dominance 0 = VSync separated sources only Left Eye is 1st frame in 3D image pair. 1 = VSync separated sources only Right Eye is 1st frame in 3D image pair. 2 = Undefined Frame Dominance.
LR Encoding 0 = Single colored line(s) encoding. 1 = No Encoding 2 = L/R 75 25 Encoding 3 = Undefined L/R encoding.
TB Reference 0 = Top is Left Eye. 1 = Top is Right Eye. 2 = No Top/Bottom reference is available. 3 = Undefined Top/Bottom reference.
OE Reference 0 = Odd field is Left Eye. 1 = Odd field is Right Eye. 2 = No Odd/Even reference is available. 3 = Undefined Odd/Even reference.
Num Active Blank Lines
Number Of Encoded Lines
Left Encoded Line Location
Right Encoded Line Location

Table 19-2. Three D Source Configuration [Opcode: B2h | Destination: 4] (continued)

Set Three D Source	Set Three D Source Configuration		
Byte 12	Blanking Color		
	0 = ChannelA=0 ChannelB=1023 ChannelC=0 for RGB sources. YUV sources will be converted.		
	1 = ChannelA=1023 ChannelB=0 ChannelC=0 for RGB sources. YUV sources will be converted.		
	2 = ChannelA=0 ChannelB=0 ChannelC=1023 for RGB sources. YUV sources will be converted.		
	3 = ChannelA=1023 ChannelB=0 ChannelC=1023 for RGB sources. YUV sources will be converted.		
	4 = ChannelA=0 ChannelB=1023 ChannelC=1023 for RGB sources YUV sources will be converted.		
	5 = ChannelA=1023 ChannelB=1023 ChannelC=0 for RGB sources. YUV sources will be converted.		
	6 = ChannelA=1023 ChannelB=1023 ChannelC=1023 for RGB sources. YUV sources will be converted.		
	7 = ChannelA=0 ChannelB=0 ChannelC=0 for RGB sources. YUV sources will be converted.		
	8 = 75% of the line is Blue 25% is black		
	9 = 25% of the line is Blue 75% is black		
	10 = Undefined color.		

Get Three D Source Configuration

Data returned is in the same format as the Write Parameter(s).

Table 19-3. Left Right Signal Polarity [Opcode: B3h | Destination: 4]

Set Left Right Signal Polarity	
Write Parameter(s)	
Byte Description	
Byte 0	Left Right Polarity Is Inverted bit 0: TRUE Left / Right Frame are swapped FALSE Left / Right Frame are normal
This command inverts the L/R signal polarity.	

Get Left Right Signal Polarity
Data returned is in the same format as the Write Parameter(s).
This command tells whether L/R signal polarity is inverted or not.

19.2 Administrative

Administrative

Table 19-4. Mode [Opcode: 00h | Destination: 1]

Get Mode Return Parameter(s)	
Byte 0	Mode Info
	bit 0: Application Mode
	0 = Bootloader
	1 = Main Application
	bit 1: Controller Configuration
	0 = Single
	1 = Multiple

Table 19-5. Controller Info [Opcode: 00h | Destination: 4]

Get Controller Info		
Return Parameter(s	Return Parameter(s)	
Byte	Description	
Bytes 0-3	Controller ID	
Bytes 4-12	Bytes 4-12 Controller Name	
Returns DLP Control	er Information.	

Table 19-6. Version [Opcode: 01h | Destination: 1]

Get Version		
Return Parameter(s	Return Parameter(s)	
Byte	Description	
Byte 0	App Major	
Byte 1	App Minor	
Bytes 2-3	App Patch	
Byte 4	0-Production; A-Alpha; B-Beta	
Byte 5	(0-Production; 1-255-Alpha/Beta)	
Byte 6	(0-Not a test build; 1-255-Test-build-number)	
Byte 7	API Major	
Byte 8	API Minor	
Bytes 9-10	API Patch	
Byte 11	0-Production; A-Alpha; B-Beta	
Byte 12	(0-Production; 1-255-Alpha/Beta)	
Byte 13	(0-Not a test build; 1-255-Test-build-number)	
Byte 13	The state of the s	

This command returns the version of the currently active Application and the version of the underlying API library. The currently active application can be queried using Get Mode command.

Table 19-7. DMD Info [Opcode: 01h | Destination: 4]

Get DMD Info Return Parameter(s)		
		Byte
Bytes 0-3	DMD device ID	
Bytes 4-7	DMD Fuse ID	
Bytes 8-25	Fuse Bit String	
Bytes 26-33	DMD Name	
Returns the DMD info	nation.	

Table 19-8. Switch Mode [Opcode: 02h | Destination: 1]

Set Switch Mode	Set Switch Mode	
Write Parameter(s)		
Byte	Description	
Byte 0	Application to switch to	
	0 = Switch to bootloader	
	1 = Via reset	
	2 = Switch to application regardless of the BOOT_HOLD GPIO State. This option is provided for debug	
	purposes only	
	3 = Switch to application with DMD True Global Enabled regardless of the BOOT_HOLD GPIO State.	
This command is u	ised to switch between bootloader and application mode.	

Table 19-9. DMD Resolution [Opcode: 02h | Destination: 4]

Get DMD Resolution			
Return Parameter(s)	Return Parameter(s)		
Byte	Description		
Bytes 0-1	Effective width of DMD in pixels.		
Bytes 2-3	Bytes 2-3 Effective height of DMD in lines.		
Returns the DMD width and height in number of pixels and lines respectively.			

Table 19-10. Flash Version [Opcode: 03h | Destination: 4]

Get Flash Version Return Parameter(s)		
		Byte
Byte 0	Flash Version Major	
Byte 1	Flash Version Minor	
Byte 2	Syte 2 Flash Version Subminor	
Returns version number that uniquely identifies the flash image.		

Table 19-11. Flash Layout Version [Opcode: 04h | Destination: 4]

Get Flash Layout Version Return Parameter(s)		
		Byte
Bytes 0-1	Flash Config Layout Version	
Bytes 2-33	Flash Config Layout Hash	
Bytes 34-35	Application Config Layout Version	
Bytes 36-67	Bytes 36-67 Application Config Layout Hash	
Returns supported La	yout revision numbers and hash for flash config and app config layout.	

Table 19-12. Product Configuration Failure Cause [Opcode: 05h | Destination: 4]

Get Product Configuration Failure Cause		
Return Paramete	Return Parameter(s)	
Byte	Description	
Byte 0	Cause of product configuration failure.	
	0 = Invalid Controller for the product configuration	
	1 = Invalid DMD for the product configuration	
	2 = DMD project data does not match the actual DMD	
	3 = PAD cannot be used to drive SSI or DMD in ECD system	
	4 = Invalid Pad Configuration	
Use this command	to get the cause of product configuration failure if Product Configuration Failed is set in system status command.	

Table 19-13. System Status [Opcode: 06h | Destination: 4]

veturn Parameter(s) yte ytes 0-3	Description System Status Word 0 bit 0: Reserved bit 1: Reserved
	System Status Word 0 bit 0: Reserved
ytes 0-3	bit 0: Reserved
	hit 1: Reserved
	Dit 1. Neserved
	bit 2: Reserved
	bit 3: Reserved
	bit 4: Memory test of internal DRAM passed
	bit 10: Frame Rate Conversion Enable
	bit 11: Sequence Phase Lock
	bit 12: Sequence Frequency Lock
	bit 13: Sequence search
	bit 29: System Color Point Calibration Enable
	bit 30: Variable Illumination Calibration Enable
	bit 31: Brilliant color Calibration Enable
ytes 4-7	System Status Word 1
	bit 0: Sequence Error
	bit 1: Pixel clock out of range
	bit 2: Vsync valid
	bit 6: UART port 0 communication error (If Port Enabled)
	bit 7: UART port 1 communication error (If Port Enabled)
	bit 8: UART port 2 communication error (If Port Enabled)
	bit 9: SSP port 0 communication error (If Port Enabled)
	bit 10: SSP port 1 communication error (If Port Enabled)
	bit 11: SSP port 1 communication error (If Port Enabled)
	bit 12: I2C port 0 communication error (If Port Enabled)
	bit 13: I2C port 1 communication error (If Port Enabled)
	bit 14: I2C port 2 communication error (If Port Enabled)
	bit 15: DLPC Initialization Error
	bit 16: Reserved
	bit 17: Reserved
	bit 19: No frequency bin found for the selected mode
	bit 20: DLPA3005 Communication error (If DLPA3005 present)
	bit 21: UMC refresh bandwidth underflow
	bit 22: DMD initialization error
	bit 23: DMD power down error
	bit 24: Source definition not present
	bit 25: Sequence binary not present
	bit 26: Product configuration failed bit 27: Dither mask not loaded
ytes 8-11	System Status Word 2
	bit 0: EEPROM initialization failure

Command to read status information from DLP Controller. If status interrupt is enabled (configurable via default UI tool in DLP Composer), reading back this command will acknowledge/deactivate the interrupt pin until the next change in status.

Table 19-14. EEPROM Data Present [Opcode: 07h | Destination: 4]

Get EEPROM Data	rresent	
Return Parameter(Return Parameter(s)	
Byte	Description	
Bytes 0-1	Calibration Data Blocks	
	bit 0: Reserved	
	bit 1: SSI Calibration Data Present	
	bit 2: ADC Calibration Data Present	
	bit 3: WPC Sensor Calibration Data Present	
	bit 4: WPC Brightness Table Data Present	
	bit 5: XPR Calibration Data Present	
	bit 6: XPR Waveform Calibration Data Present	
	bit 7: Edge Blend Data Present	
	bit 8: Surface Correction Data Present	
Reports which of the (0x0A).	e calibration data blocks are present in EEPROM. Use this command before sending EEPROM Invalidate command	

Table 19-15. General Delay Command [Opcode: 08h | Destination: 4]

Set General Delay Command	
Write Parameter(s)	
Byte	Description
Bytes 0-3	Delay In Milliseconds

On receipt of this command controller wait for specified period before executing the next command. This command to be used in Auto Initialization batchfile configuration. Use this command to insert delay between execution of two commands.

Table 19-16. EEPROM Invalidate [Opcode: 0Ah | Destination: 4]

Set EEPROM Invalidate	
Write Parameter(s)	
Byte	Description
Byte 0	Invalidate Settings Data
	bit 0: Invalidate Settings
Bytes 1-2	Invalidate Calibration Data
	bit 0: Reserved
	bit 1: Invalidate SSI Calibration Data
	bit 2: Invalidate ADC Calibration Data
	bit 3: Invalidate WPC Sensor Calibration Data
	bit 4: Invalidate WPC Brightness Table Data
	bit 5: Invalidate XPR Calibration Data
	bit 6: Invalidate XPR Waveform Calibration Data
	bit 7: Invalidate Edge Blend Data
	bit 8: Invalidate Surface Correction Data

Invalidates the user settings portion of EEPROM data or calibration portion of EEPROM data or both as per input arguments and restarts the system. If none of the settings or calibration data is selected, then the command does nothing. Note: Chose valid flags as returned in Get EEPROM Data Present command. command.

Table 19-17. Splash Capture [Opcode: 0Bh | Destination: 4]

Set Splash Capture
Write Parameter(s)
Captures the current external image displayed on the screen and stores it into the Flash memory as a Splash image.

Table 19-18. Splash Capture Status [Opcode: 0Ch | Destination: 4]

Get Splash Capture Status		
Return Parameter(s)		
Byte	Description	
Byte 0	Capture State	
	0 = Image Capture Terminated because of error or Timeout	
	1 = External Image is being written into the internal DRAM Splash buffer	
	2 = Image is successfully captured into internal DRAM Splash buffer	
	3 = Image is being programmed into the Flash memory	
	4 = Image is successfully programmed into Flash memory	
Byte 1	Completion Status	
	(percentage)	
Returns the curren	t status of splash capture.	

Table 19-19. Terminate Splash Capture [Opcode: 0Dh | Destination: 4]

	•	•	• •	•	•
Set Terminate Splash Capture					
Write Parameter(s)					
Terminates any ongoing Splash Capture					

19.3 Autolock

Autolock

Table 19-20. Autolock Control [Opcode: 24h | Destination: 4]

Set Autolock Control	
Write Parameter(s)	
Byte	Description
Byte 0	Autolock Control
	0 = Resync
	1 = Start
	2 = Stop
This command provides user control to relock to a source or to start/stop autolock algorithm.	

19.4 Blending

Blending

Table 19-21. Blend Map Gain Values [Opcode: 2Bh | Destination: 4]

Set Blend Map Gain Values		
Write Parameter(s)		
Byte	Description	
Byte 0	Compressed Values Passed bit0: 1 = Compressed data is passed below for Gain values.	
	0 = Uncompressed data is passed below for Gain values.	
Byte 1	Color Channel Select 0 = Broadcast 1 = Green 2 = Red 3 = Blue	
Bytes 2-3	Here the total number of compressed values needs to be passed only when CompressionEnable is Enabled otherwise pass 0 here	
Bytes 4-5	Starting Index for filling the Gain values in array of Gain	
Bytes 6 - *	Gain of control points .The format of input should be such that required gain which is a value between 0 to 1.99 be multiplied by 4096 before passing it in command.	

This command takes the user given gain values of control points as part of the Blend Map. Using this command user passes the Gain values for the 2016 (63x32) control points. The gain values needs to be specified for each of the color channel.

There are two features here for using the command. User can select the broadcast values option from the Color Channel Select. What broadcast does is that user needs to pass values only once and it will broadcasted to all the three color channels R,G,B. Otherwise user needs to pass value for R, G, B color channels separately. So the command will then be required to use 3 times one time for each color channel Another feature supported is passing compressed values. The compression used is RLE2 compression. For passing compressed values user needs to enable the Compression Enabled bit

Get Blend Map Gain Values		
Read Parameter(s)		
Byte	Description	
Byte 0	Color Channel Select	
	0 = Broadcast	
	1 = Green	
	2 = Red	
	3 = Blue	
Bytes 1-2	Start index in the Blend map channel gain values from which the data is to be read	
Bytes 3-4	Number of entries to be read	

Return Parameter(s)	
Byte	Description
Byte 0	This tells whether the gain values obtained are compressed data or not.
Bytes 1 - *	Selected Color Channel gain values

This command reads from the blend map table already loaded using Set Blend Map Gain Values command. N Blend map gain values (that does not exceed the command packet size) can be read at a time from anywhere within the table.

Table 19-22. Apply Blend Map [Opcode: 2Ch | Destination: 4]

Set Apply Blend Map Write Parameter(s)	
Byte 0	Blend Map Upload
	bit0: 1 = Blend Map values is enabled and applied.
	0 = Blend Map values is disabled.
This command is u	sed to apply the Blend map with the given configuration

Table 19-23. Blend Map Offset Values [Opcode: 2Dh | Destination: 4]

Set Blend Map Offset Values Write Parameter(s)	
Byte 0	Compressed Values Passed
	bit0: 1 = Compressed data is passed below for Offset values.
	0 = Uncompressed data is passed below for Offset values.
Byte 1	Color Channel Select
	0 = Broadcast
	1 = Green
	2 = Red
	3 = Blue
Bytes 2-3	Here the total number of compressed values needs to be passed only when the first parameter is 1
	otherwise pass 0 here
Bytes 4-5	Starting Index for filling the Offset values in array
Bytes 6 - *	Offset of control points. The format of input should be such that the offset values are in the internal floating
	point format of s1m8e4 .

Using this command user passes the Offset values for the 2016 (63x32) control points. The Offset values needs to be specified for each of the color channel R,G,B. The range of offset values in the standard floating point format is -255 to +255.

There are two features here for using the command. User can select the broadcast values option from the Color Channel Select. What broadcast does is that user needs to pass values only once and it will broadcasted to all the three color channels R,G,B. Otherwise user needs to pass value for R, G, B color channels separately. So the command will then be required to use 3 times one time for each color channel.

Another feature supported is passing compressed values. The compression used is RLE2 compression. For passing compressed values user needs to enable the Compression Enabled bit

Get Blend Map Offset Values Read Parameter(s)	
Byte 0	Color Channel Select
1	0 = Broadcast
	1 = Green
	2 = Red
	3 = Blue
Bytes 1-2	Start index in the Blend map channel Offset values from which the data is to be read
Bytes 3-4	Number of entries to be read

Return Parameter(s)	
Byte	Description
Byte 0	This tells whether the offset values obtained are compressed data or not.
Bytes 1 - *	Selected Color Channel Offset

This command reads from the blend map compressed offset values already loaded using Set Blend Map Offset Values command. N Blend map offset values (that does not exceed the command packet size) can be read at a time from anywhere within the table.

Table 19-24. Blend Map Control Points [Opcode: 2Eh | Destination: 4]

Set Blend Map Control Points Write Parameter(s)	
Bytes 0-1	Horizontal Display Resolution of Projector
Bytes 2-3	Vertical Display Resolution of Projector
Bytes 4 - *	Blend Map Horizontal control points position array Number of points in this array equal to 63.These control points are 0 based.
Bytes 4 - *	Blend Map Vertical control points position array Number of points in this array equal to 32.These control points are 0 based.
This command takes	s input of the user defined control points location in horizontal and vertical direction as part of the Blend Map

Get Blend Map Control Points Return Parameter(s) Byte Description			
		Bytes 0-125	Blend map Horizontal control points position array. Number of points in this array equal to IMG_BLENDMAP_CTL_POINTS_X
		Bytes 126-189	Blend map Vertical control points position array. Number of points in this array equal to IMG_BLENDMAP_CTL_POINTS_Y

Table 19-25. Enable Edge Blending [Opcode: 2Fh | Destination: 4]

Set Enable Edge Blending	
Write Parameter(s)
Byte	Description
Byte 0	EBF State
	bit0: 1 = Edge blending is enabled
	0 = Edge blending is disabled
This command en	ables or disables the Edge blending function

Get Enable Edge Blending	
Data returned is in the same format as the Write Parameter(s).	
Returns whether the Edge blending function is enabled or not.	

Table 19-26. Edge Blending System Params [Opcode: 3Dh | Destination: 4]

Set Edge Blending System Params Write Parameter(s)	
Bytes 0-1	Number of columns of projectors in blending system Range = 1 to 32 with step size 1
Bytes 2-3	Number of rows of projectors in blending system Range = 1 to 32 with step size 1
Bytes 4-5	Column index of self in blending system Range = 0 to 31 with step size 1
Bytes 6-7	Row index of self in blending system Range = 0 to 31 with step size 1
Bytes 8 - *	White and black luminance levels of projectors in blending system, raster scan order. Format is fixed point 16.16 (nits)

This command sets the blending system parameters for semi-manual edge blending. This command does not change the state of the warping map or the blending map

Get Edge Blending System Params

Data returned is in the same format as the Write Parameter(s).

This command gets the blending system parameters for semi-manual edge blending

Table 19-27. Edge Blending Configuration [Opcode: 3Eh | Destination: 4]

Set Edge Blending Configuration		
Write Parameter(s)	Write Parameter(s)	
Byte	Description	
Bytes 0-1	Horizontal Overlap with other projectors (pixels)	
Bytes 2-3	Vertical Overlap with other projectors (pixels)	
Byte 4	Geometric Adjustment Type 0 = No Geometric Correction 1 = Keystone Corners	
Byte 5	Storage Options 0 = Dont Store 1 = Write To Storage 2 = Write To Storage Apply At Startup	
Bytes 6 - *	Geometric adjustment parameters. Dependent on adjustment type used	

This command sets overlap and geometry parameters for semi-manual edge blending, creates and applies blending and warping maps for given blending inputs. It is necessary to call commands to enable manual warping and enable edge blending separately, for the results to take effect.

Geometry parameters are dependent on geometric adjustment type. For no geometric correction, no parameters are used. For correction by keystone corners, the 8 parameters are the (x,y) coordinates (zero based) of the keystone corners in raster scan order: top-left, top-right, bottom-left, bottom-right.

Get Edge Blending Configuration

Data returned is in the same format as the Write Parameter(s).

This command gets geometry and overlap parameters for semi-manual edge blending. Geometry parameters are dependent on geometric adjustment type. For no geometric correction, no parameters are used. For correction by keystone corners, the 8 parameters are the (x,y) coordinates (zero based) of the keystone corners in raster scan order: top-left, top-right, bottom-left, bottom-right.

19.5 Bootloader

Bootloader

Table 19-28. Boot Hold Reason [Opcode: 12h | Destination: 1]

Get Boot Hold Re	Get Boot Hold Reason	
Return Parameter(s)		
Byte	Description	
Byte 0	Reason code	
	0x00 BOOT_HOLD jumper in HOLD position	
	0x01 Switched to programming mode initated by main app	
	0x02 Reading flash info failed	
	0x03 Flash layout mismatch	
	0x04 Can't initialize ARM peripherals	
	0x05 Can't allocate memory pool	
	0x06 Failure in initialization task	
	0x07 Controller is invalid to run the application	
	0x08 Error in USB initialization	
	0x09 Error in i2c initialization	
	0x0A Error getting app configuration	
	0x0B App configuration layout mismatch	
Returns the code the	nat specifies the reason for being in bootloader mode.	

Table 19-29. Flash Info [Opcode: 20h | Destination: 1]

Get Flash Info	
Read Parameter(s)	
Byte	Description
Byte 0	Chip Select of Flash Device
	0 = Flash chip select 0 memory domain
	1 = Flash chip select 1 memory domain
	2 = Flash chip select 2 memory domain

Return Parameter(s)	
Byte	Description
Bytes 0-1	Manufacturer ID
Bytes 2-9	Device ID
Bytes 10-13	Device size in bytes
Bytes 14 - *	Sector Information bits 0-31: Sector Size bits 32-47: Num Sectors
Byte 14	Availability bit 0: 0 = Flash can be used for programming; 1 = Flash cannot be used for programming.

This command returns the flash device and manufacturer IDs. Only CFI compliant flash devices are supported. The system can have multiple flash devices. The command returns the info for the flash present at the given chip select.

Note: Chip Select 0 Flash is required for system operation. Other Flash Chip Selects are technically optional but required for Splash Capture and Warp Operations.

Table 19-30. Programmable Flash Sector Information [Opcode: 21h | Destination: 1]

Get Programmable Flash Sector Information		
Return Parameter(s	Return Parameter(s)	
Byte	Description	
Bytes 0 - *	Sector Information	
	bits 0-31: Sector Size	
	bits 32-47: Num Sectors	

This command returns the flash sector information read from CFI compliant flash devices. If the flash is non-CFI compliant, this command will fail

The sectors returned by this command are the only ones available for programming a flash image. The system is designed such that the flash image is in a contiguous memory space.

If a system has multiple flash parts, then the software checks the size of the flash at ChipSelect 0. If this is equal to the maximum supported size (32MB), then a flash device at ChipSelect 1 (if present) will also be supported for flash programming.

Similarly, if the size of flash devices at both ChipSelect 0 and 1 are 32MB, then a flash device at ChipSelect 2 (if present) will be supported for flash programming as well. The command appends the sector information for each part, which is supported for flash programming, and provides them as output.

Table 19-31. Unlock Flash For Update [Opcode: 22h | Destination: 1]

Set Unlock Flash For Update	
Write Parameter(s)	
Byte	Description
Bytes 0-3	Flash Update lock/unlock
	0 = Lock
	4154802215 = Unlock

This command unlocks the flash update operation (Download, Erase). By default the flash update operations are locked. This is to prevent accidental modification of flash contents. To unlock, the pre-defined key shall be send as the unlock code. Calling this command with any other parameter will lock the flash update commands.

Get Unlock Flash For Update	
Return Parameter(s)	
Byte	Description
Byte 0	0 = Locked 1 = Unlocked
This command returns whether the flash is in unlocked state.	

Table 19-32. Erase Sector [Opcode: 23h | Destination: 1]

Set Erase Sector	
Write Parameter(s)	
Byte	Description
Bytes 0-3	Sector Address
Bytes 0-3	Sector Address

This command erases the sector of the flash where the given address falls in. This command is a flash update command, and requires flash operations to be unlocked using Unlock Flash for Update command. The sector address shall be specified as an offset from flash start address. For example in a flash device where all sectors are 64KB of size, sector addresses shall be specified as follows:

Sector 0 = 0

Sector 1 = 0x10000

Sector 2 = 0x20000

and so on...

Table 19-33. Initialize Flash Read Write Settings [Opcode: 24h | Destination: 1]

Set Initialize Flash Read Write Settings	
Write Parameter(s)	
Byte Description	
Bytes 0-3	Start Address offset to program data to where Offset 0 refers to first byte in the flash, 1 refers to second byte and so on. This offset must be an even number.
Bytes 4-7	This specifies the number of bytes Flash Write command should expect or the number of bytes Flash Read command should return. This must be an even number.
	alizes flash read/write operation. This command shall be called before Flash Write command is sent. te, the Address and download size set up shall both be even.

Table 19-34. Flash Write [Opcode: 25h | Destination: 1]

Set Flash Write	
Write Parameter(s)	
Byte	Description
Bytes 0 - *	Data to write to flash memory

This command is used to program data to flash. This command shall be called only after setting the start address and size using the Initialize Flash Read/Write Settings command. This command is a flash update command, and requires flash operations to be unlocked using Unlock Flash for Update command.

Flash write commands can be chained till the initialized number of bytes are programmed. The bootloader will auto-increment the address and size for each command. Only the initialized number of bytes will be programmed even if more data is provided.

It is important to send only even number of bytes per flash write command to ensure all bytes are written. This is done so that all flash writes are optimized as per the multi-word write supported by the flash device.

This command supports variable sized payload.

Get Flash Write	
Read Parameter(s)	
Byte	Description
Bytes 0-1	Num bytes to read in this command

Return Parameter(s)	
Byte	Description
Bytes 0 - *	The bytes read from the flash

This command is used to read data from flash. This command shall be called only after setting the start address and size using the Initialize Flash Read/Write Settings command.

Flash read commands can be chained until the initialized number of bytes are returned. The bootloader will auto-increment the address and size for each command. Only the initialized number of bytes will be returned. Calling the function after returning requested data will return in command failure. This command supports variable sized response.

Table 19-35. Checksum [Opcode: 26h | Destination: 1]

Get Checksum	
Read Parameter(s)	
Byte	Description
Bytes 0-3	Start Address offset for checksum computation where Offset 0 refers to first byte in the flash, 1 refers to second byte and so on.
Bytes 4-7	Number of bytes to compute checksum

Return Parameter(s)		
Byte	Description	
Bytes 0-3	Simple additive checksum	
Bytes 4-7	Sum of simple additive checksum calculated at each address	
This command comp	utes and returns the checksum starting at the given address for the specified number of bytes. Checksum is calculated	
as below:		
uint32 SimpleChecks	um = 0;	
uint32 SumofSumCh	ecksum = 0;	
uint08 *Addr = (uint08	3 *) StartAddress;	
while (NumBytes)		
{		
SimpleChecksum +=	SimpleChecksum += *Addr++;	
SumofSumChecksum += SimpleChecksum;		

Table 19-36. Reset Flash [Opcode: 27h | Destination: 1]

Set Reset Flash	
Write Parameter(s)	
Byte Description	
Byte 0	Chip Select
	0 = Flash chip select 0 memory domain
	1 = Flash chip select 1 memory domain
	2 = Flash chip select 2 memory domain
This command rese	ets the Flash device connected to the given chip select. Any partial commands given gets reset and the flash is put in
read mode.	

19.6 Calibration

Calibration

Table 19-37. XPR Calibration Pattern Display [Opcode: ABh | Destination: 4]

Set XPR Calibration Pattern Display

Write Parameter(s)

This command loads a pre-defined XPR Calibration pattern as a splash image and displays it on the screen. A 64x64 pattern is repeated over a 3840x2160 display area.

Table 19-38. XPR 4Way Orientation [Opcode: B4h | Destination: 4]

Set XPR 4Way Orientation Write Parameter(s)	
Byte 0	Orientation number. Range 0 - 23.

This command sets the orientation number of the actuator position (which gets stored in EEPROM) There are 24 possible options 0 - 23; use this command while performing XPR calibration using TI provided XPR calibration splash image.

Note: Use Display Image Size command to make sure the display area is 3840x2160 If the reported display resolution is less than or equal to 1080p this command will not have any influence on the displayed image.

Get XPR 4Way Orientation

Data returned is in the same format as the Write Parameter(s).

This command retrieves the last set orientation number or the subframe order

Table 19-39. XPR Actuator Waveform Control Parameter [Opcode: B5h | Destination: 4]

Set XPR Actuator Waveform Control Parameter	
Write Parameter(s)	
Byte	Description
Byte 0	XPR Command
	0 = Fixed Output Enable
	1 = DAC Gain
	2 = Subframe delay
	3 = Actuator Type (READ ONLY)
	4 = Output Enable/Disable
	5 = Clock Width
	6 = DAC Offset
	7 = Number of Segments
	8 = Segment Length
	9 = Invert PWM A
	10 = Invert PWM B
	11 = Subframe Filter Value
	12 = Subframe Watch Dog
	13 = Fixed Output Value
Byte 1	Channel number (0 or 1) of Actuator waveform control for which the command parameter has to be applied
Bytes 2-5	Data that needs to be passed to the command

Table 19-39. XPR Actuator Waveform Control Parameter [Opcode: B5h | Destination: 4] (continued)

Set XPR Actuator Waveform Control Parameter

This command configures/sets up the Actuator Waveform Control(AWC) block. Here, AWCx can be AWC 0 or 1. Bytes 2-5 contains the XPR command data as mentioned in Byte 0. Byte 1 contains AWC channel number, possible values are 0 or 1.

Fixed Output Enable: Configures Actuator in fixed output mode.

Byte 2: 0x00 - Disable 0x01 - Enable

Bytes 3-5: Reserved must be set to 0x000000 Gain: Set Waveform Generator DAC/PWM Gain. Byte 2: Range 0 - 255 format u1.7 (0 to 1.9921875)

Subframe delay: Subframe delay Bytes 2-5; Range 0 - 262143 and lsb = 133.333ns

Actuator Type (READ ONLY): Actuator type

Bytes 3-5: Reserved must be set to 0x000000

Byte 2:

0x00 - NONE

0x01 - Optotune (XPR-25 Model)

0x80 - TI Actuator Interface (EEPROM)

0x81 - TI Actuator Interface (MCU)

Bytes 3-5: Reserved must be set to 0x000000

Output Enable/Disable: Actuator output enable/disable

Byte 2: 0x00 - Disable 0x01 - Enable

Bytes 3-5: Reserved must be set to 0x000000

Note: Both AWC0 and AWC1 disabled/enabled together

Clock Width: Defines the high and low width for the output clock (the clock period will be 2*(ClkWidth+1))

0 = 1 (Clock period is two clocks); lsb = 8.33ns

Bytes 2-5 : ClkWidth

Example: ClkWidth = 0; will generate clock of 2*(0+1)*8.33 = 16.66ns

Offset: DAC/PWM Output Offset

Byte 2 : Range -128 - +127 format S7 (-128 to +127) Bytes 3-5: Reserved must be set to 0x000000

Number of Segments : Defines number of segments

Byte 2 : Range 2 - 255

Bytes 3-5: Reserved must be set to 0x000000 Segments Length: Defines size of the segments

Bytes 2-3 : Range 19 - 4095

Bytes 4-5: Reserved must be set to 0x0000

Invert PWM A: Applicable when AWC is configured to PWM type instead of DAC

Byte 2: 0x00 - No inversion

0x01 - Inverted

Bytes 3-5: Reserved must be set to 0x000000

Invert PWM B: Applicable when AWC is configured to PWM type instead of DAC

Byte 2: 0x00 - No inversion 0x01 - Inverted Bytes 3-5: Reserved must be set to 0x000000

Subframe Filter Value: Sets Subframe Filter Value - defines the minimum time between Subframe edges. Edges closer than the set value will be filtered out

Byte 2:0 = Filter disabled, 0 = Filter time will be Val x 60us, Range:0 - 255

Bytes 3-5: Reserved must be set to 0x000000

Subframe Watch Dog: Defines the maximum time between Subframe edges; if timer expires, then the WG will automatically output the Fixed Output value, and the normal output will resume on the next subframe edge.

Bytes 2-3 : 0 = Subframe watchdog disabled, 0 = Watchdog time will be Time x 60us, Range : Range : 0 - 1023

Bytes 4-5: Reserved must be set to 0x0000

Fixed Output Value: Defines the value to be output on DAC/PWM when fixed output mode is selected.

Byte 2: Value to be output on DAC/PWM, Range -128 to 127 Bytes 3-5: Reserved must be set to 0x000000

Note: To use Subframe Filter Value and Subframe Watch Dog care must be taken to set a value which aproximately 10% more than 2x of the operating frequency.

Table 19-39. XPR Actuator Waveform Control Parameter [Opcode: B5h | Destination: 4] (continued)

Set XPR Actuator Waveform Control Parameter

For example - 4K @ 60Hz, the value can be set as $(1/(60^*2))^*1.10^*10^6 = 9166us$.

Get XPR Actuator	Set XPR Actuator Waveform Control Parameter	
Read Parameter(s)		
Byte	Description	
Byte 0	XPR Command	
	0 = Fixed Output Enable	
	1 = DAC Gain	
	2 = Subframe delay	
	3 = Actuator Type (READ ONLY)	
	4 = Output Enable/Disable	
	5 = Clock Width	
	6 = DAC Offset	
	7 = Number of Segments	
	8 = Segment Length	
	9 = Invert PWM A	
	10 = Invert PWM B	
	11 = Subframe Filter Value	
	12 = Subframe Watch Dog	
	13 = Fixed Output Value	
Byte 1	Channel number of Actuator waveform control block for which the command parameter to be readback	

Return Parameter(s)	
Byte	Description
Bytes 0-3	Parameter value obtained for the command passed

This command gets the parameter set to the AWC waveform generator.

Note: This command is supposed to be used only during the normal operating mode and not during the standby state.

Table 19-40. DB Border Configuration [Opcode: BBh | Destination: 4]

iable to tel 22 Belast Comigatation [epocadi 2211 200th attention 1]	
et DB Border Configuration	
Description	
number of lines top of border. Range 0 - 4095	
number of lines bottom of border. Range 0 - 4095	
number of pixels of left border. Range 0 - 4095	
number of pixels of right border. Range 0 - 4095	

This command configures area of the DynamicBlack border region for the border exclusion function. The border exclusion function allows the user to reduce the letterbox (black border) effect on a primarily bright image where letterbox area reduces the overall scene brightness for the algorithm. It also helps the algorithm better handle images with bright subtitles where the subtitles increase the overall scene brightness. This command will also be used in a multi-controller configuration to exclude any image overlap required for other image processing algorithms.

Get DB Border Configuration

Data returned is in the same format as the Write Parameter(s).

This Command returns the border region area for the DynamicBlack border exclusion function.

Table 19-41. DB Border Weight [Opcode: BCh | Destination: 4]

Set DB Border We	Set DB Border Weight	
Write Parameter(s)		
Byte	Description	
Byte 0	Weight value of border pixels 0 = 0% weighted; 1 = 25% weighted; 2 = 50% weighted; 3 = 75% weighted 0 = Weighted 0% 1 = Weighted 25% 2 = Weighted 50% 3 = Weighted 75%	

Get DB Border Weight
Data returned is in the same format as the Write Parameter(s).
Sets weight value of the DynamicBlack border region for the border exclusion function

Table 19-42. DB Clip Pixels [Opcode: BDh | Destination: 4]

Set DB Clip Pixels	
Write Parameter(s)	
Byte	Description
Bytes 0-1	Number of pixels that can be clipped. Range = 0 to 65535.
This command returns current	ly configured number of steps to allow the DynamicBlack aperture to move.

Get DB Clip Pixels
Data returned is in the same format as the Write Parameter(s).
This command returns the currently selected number of pixels that can be clipped.

Table 19-43. DB Gain [Opcode: BEh | Destination: 4]

Set DB Gain Write Parameter(s)	
Bytes 0-1	Gain value. Typical value range is 1.0 to 8.0. Format = u4.12
This command controls the DynamicBlack gain value. Typical value range is 1.0 to 8.0. Manual Mode needs to be enabled to as it will override the gain value that is calculated every frame.	

Get DB Gain
Data returned is in the same format as the Write Parameter(s).
This command gets the DynamicBlack gain value. Typical value range is 1.0 to 8.0

Table 19-44. DB Histogram [Opcode: C2h | Destination: 4]

Get DB Histogram	Set DB Histogram	
Return Parameter(s)		
Byte	Description	
Bytes 0-135	Start address of the DB histogram array. Array size is 34. The LSB of each bin represents 32 pixels. Each bin saturates at 0x0003FFFF.	

This command returns the start address of the DynamicBlack(DB) histogram data. The histogram contains scene brightness data from the previous frame. The DB histogram contains 34 bins measuring non-overlapping intensity ranges in the displayed image. The value of each bin equals the number of pixels within the bin's intensity range. Each pixel's intensity is calculated as the maximum of its red, green, and blue values. In other words, pixel intensity = MAX(R, G, B). Each pixel has a format of unsigned 8.8, making 16 bit values. Bins 32 and 33 are special bins that represent pixels that have values of exactly zero and only fractional values respectively. This function can be used independently of aperture control for image improvement in dark scenes.

Table 19-45. Current Led Color Point [Opcode: C4h | Destination: 4]

Get Current Led Color Point Return Parameter(s)	
Bytes 0-1	Chromatic x coordinate in (Transmitted in u1.15 format) Format = u1.15
Bytes 2-3	Chromatic y coordinate in (Transmitted in u1.15 format) Format = u1.15
Bytes 4-7	Luminance Y coordinate
Gets x,y coordinate command.	s of system's current white point. WPC should be initialized and calibration data should be set before calling this

Table 19-46. WPC Optimal Duty Cycle [Opcode: C5h | Destination: 4]

Set WPC Optimal Duty Cycle

Write Parameter(s)

Searches available duty cycles and sets the optimal one for corerct LED white point. Sensor calibration Data should be set before using this command.

Get WPC Optimal Duty Cycle Return Parameter(s)	
Red Ideal Duty Cycle (Transmitted in u8.8 format) Format = u8.8	
Green Ideal Duty Cycle (Transmitted in u8.8 format) Format = u8.8	
Blue Ideal Duty Cycle in (Transmitted in u8.8 format) Format = u8.8	
Red Optimal Duty Cycle (Transmitted in u8.8 format) Format = u8.8	
Green Optimal Duty Cyclee (Transmitted in u8.8 format) Format = u8.8	
Blue Optimal Duty Cycle in (Transmitted in u8.8 format) Format = u8.8	

Gets Ideal Duty Cycle for Current Target Color Point and the closest Duty Cycle Avaialable. Sensor calibration Data should be set before using this command.

Table 19-47. WPC Calibration Data [Opcode: C6h | Destination: 4]

Set WPC Calibration Data		
Write Parameter(s)	Nrite Parameter(s)	
Byte	Description	
Byte 0	LED Color	
	0 = Red	
	1 = Green	
	2 = Blue	
Bytes 1-2	Chromatic x coordinate in u1.15 format	
Bytes 3-4	Chromatic y coordinate in u1.15 format	
Bytes 5-8	Luminance Y coordinate	
Set WPC sensor ca	libration data through this command. WPC_Init() should complete succesfully before invoking this command.	

Get WPC Calibration Data Read Parameter(s)		
Byte	Description	
Byte 0	LED Color	
	0 = Red	
	1 = Green	
	2 = Blue	

Return Parameter(s)	
Byte	Description
Bytes 0-1	Chromatic x coordinate in u1.15 format
Bytes 2-3	Chromatic y coordinate in u1.15 format
Bytes 4-7	Luminance Y coordinate
Bytes 8-11	Red Sensor Output
Bytes 12-15	Green Sensor Output
Bytes 16-19	Blue Sensor Output
Bytes 20-21	Duty Cycle
	Format = u8.8
Gets WPC sensor calibration data through this command	

Table 19-48. WPC Sensor Output [Opcode: CDh | Destination: 4]

Get WPC Sensor Output		
Return Parameter(s)		
Byte	Description	
Bytes 0-3	Red	
Bytes 4-7	Green	
Bytes 8-11	Blue	
Returns Output of Integrating Sensor for Red, Blue and Green		

Table 19-49. Enable XPR Calibration Mode [Opcode: D1h | Destination: 4]

Set Enable XPR Calibration Mode		
Write Parameter(s)	Write Parameter(s)	
Byte	Description	
Byte 0	1 - Calibration mode enabled	

This command sets the system in bypass mode. Setting the system in bypass mode disables any image processing to establish one to one correspondence between pixels on input source image and display image. Desirable for seeing clear splits of XPR subframes. There is no exit from calibration mode. Please restart the system.

Get Enable XPR Calibration Mode

Data returned is in the same format as the Write Parameter(s).

This command gets the state of XPR calibration mode. Whether enabled or not.

Table 19-50. WPC Calibration Structure Override [Opcode: D2h | Destination: 4]

Set WPC Calibration Structure Override		
Write Parameter(s)	Write Parameter(s)	
Byte	Description	
Byte 0	LED Color	
	0 = Red	
	1 = Green	
	2 = Blue	
Bytes 1-2	Chromatic x coordinate in u1.15 format	
Bytes 3-4	Chromatic y coordinate in u1.15 format	
Bytes 5-8	Luminance Y coordinate	
Bytes 9-12	Red Sensor Output	
Bytes 13-16	Green Sensor Output	
Bytes 17-20	Blue Sensor Output	
Bytes 21-22	Duty Cycle	
	Format = u8.8	
Set the entire WPC s	ensor calibration data structure through this command WPC. Init() should complete successfully before invoking this	

Set the entire WPC sensor calibration data structure through this command. WPC_Init() should complete successfully before invoking this command.

19.7 Debug Internal

Debug Internal

Table 19-51. Vx1 Hw Status [Opcode: 3Fh | Destination: 4]

Get Vx1 Hw Status Get Vx1 Hw Status		
Return Parameter(s)		
Byte	Description	
Byte 0	Is Source Locked bit 0: Source Locked	
Byte 1	Is Bit Locked bit 0: Bit Locked	
Byte 2	Is Byte Locked bit 0: Byte Locked	
Byte 3	Is Data Locked bit 0: Data Locked	
Byte 4	Is V Sync Stable bit 0: V Sync Stable	
Byte 5	Is H Sync Stable bit 0: H Sync Stable	
Bytes 6-7	Acitve Pixels Per Line (APPL) (Pixels)	
Bytes 8-9	Active Lines Per Frame (ALPF) (Lines)	
Bytes 10-11	Total Pixels Per Line (TPPL) Largest (Pixels)	
Bytes 12-13	Total Lines Per Frame (TLPF) (Lines)	
Bytes 14-15	TPPL Smallest (Pixels)	
Bytes 16-17	Vertical Front Porch (VFP) (Lines)	
Bytes 18-19	Vertical Back Porch (VBP) (Lines)	
Bytes 20-21	Vsync Pulse Width (VSW) (Lines)	
Bytes 22-23	Horizontal Front Porch (HFP) (Pixels)	
Bytes 24-25	Horizontal Back Porch (HBP) (Pixels)	
Bytes 26-27	Hsync Pulse Width (HSW) (Pixels)	
Bytes 28-29	HSync To VSync Pixel clock count (Hs2Vs)	
Bytes 30-31	VSync To HSync Pixel clock count (Vs2Hs)	
Byte 32	H Sync Polarity bit 0: H Sync Polarity Is Positive	
Byte 33	V Sync Polarity bit 0: V Sync Polarity Is Positive	
Bytes 34-37	Freq Captured (kHz)	
Reports Vx1 source H	Reports Vx1 source HW interface status.	

19.8 Debug

Debug

Table 19-52. Memory [Opcode: 10h | Destination: 1]

Set Memory Write Parameter(s)	
Bytes 0-3	Memory Address, must be a multiple of 4.
Bytes 4-7	Value to write
This command atter	mpts a direct write of the given 32-bit value to the given 32-bit memory address. The memory address is not verified

whether it is a valid location.

Get Memory	
Read Parameter(s)	
Byte	Description
Bytes 0-3	Memory Address, must be a multiple of 4.

Return Parameter(s)	
Byte	Description
Bytes 0-3	Value read from address
This command returns the 32-bit value stored at the given 32-bit memory address.	

Table 19-53. Memory Array [Opcode: 11h | Destination: 1]

Set Memory Array		
Write Parameter(s)		
Byte	Description	
Bytes 0-3	Start Address from which data is to be written	
Byte 4	Access Info bits 0-5: Address increment steps. 0 - No increment bits 6-7: Write access width 0 = Uint32 1 = Uint16	
Bytes 5-6	2 = Uint08 Number of words to be written	
Byte 7	The number of bytes per word Range = 1 to 2 with step size 4	
Bytes 8 - *	Data to be written	

Writes a stream of words into the RAM memory (DRAM or IRAM) starting from the address specified. Performs no checks whether the specified memory address given is valid.

Get Memory Array		
Read Parameter(s)		
Byte	Description	
Bytes 0-3	Start Address from which data is to be read	
Byte 4	Access Info bits 0-5: Address increment steps. 0 - No increment bits 6-7: Read access width 0 = Uint32 1 = Uint16 2 = Uint08	
Bytes 5-6	Number of words to be read	
Byte 7	The number of bytes per word Range = 1 to 4 with step size 1	

Return Parameter(s)		
Byte	Description	
Bytes 0 - *	Data	
Reads a stream of words from memory starting from the address specified. Performs no checks whether the specified memory address		

Reads a stream of words from memory starting from the address specified. Performs no checks whether the specified memory address given is valid.

Table 19-54. Debug Message Mask [Opcode: E0h | Destination: 4]

Set Debug Message Mask Write Parameter(s)		
Bytes 0-3	Debug Mask	
	bits 0-10: Reserved	
	bit 11: Communication related	
	bit 13: 3D	
	bit 14: RFC messaging	
	bit 15: I2C Handler	
	bit 17: Reserved	
	bit 18: Reserved	
	bit 19: GUI	
	bit 20: Environment	
	bit 21: Illumination	
	bit 22: System functions	
	bit 23: EEPROM	
	bit 24: Datapath	
	bit 25: Autolock	
	bit 26: Projector Control	
	bit 27: Peripheral	
	bit 28: IR	
	bit 29: USB	
	bit 30: Mailbox	

Set enable mask for debug messages. The mask identifies the sources of debug messages which are to be enabled for printing at the UART debug port. The mask bit corresponding to the source has to be set to enable it.

Get Debug Message Mask		
Return Parameter(s)		
Byte	Description	
Bytes 0-3	Debug Mask	
	bit 11: Communication related	
	bit 13: 3D	
	bit 14: RFC messaging	
	bit 15: I2C Handler	
	bit 17: Closed Captioning	
	bit 18: DDC CI	
	bit 19: GUI	
	bit 20: Environment	
	bit 21: Illumination	
	bit 22: System functions	
	bit 23: EEPROM	
	bit 24: Datapath	
	bit 25: Autolock	
	bit 26: Projector Control	
	bit 27: Peripheral	
	bit 28: IR	
	bit 29: USB	
	bit 30: Mailbox	

Retrieves the current debug message mask. The mask decides which sources of debug messages are enabled. A value of 1 in the mask bit corresponding to a source means that the source is enabled.

Table 19-55. Enable USB Debug Log [Opcode: E1h | Destination: 4]

Set Enable USB Debug Log		
Write Parameter(s)		
Byte	Description	
Byte 0	1 = Enable debug log on USB port	
	0 = Disable debug log on USB port	
Enables or disable	s the USB logging of messages. When USB logging is enabled, UART logging is stopped.	

Table 19-56. DLPA3005 Register [Opcode: E3h | Destination: 4]

Set DLPA3005 Re	gister	
Write Parameter(s	;)	
Byte	Description	
Byte 0	Register Address	
Byte 1	Register Value	
Command that writ	tes specified value to the specified register address. Refer to DLPA30005 datasheet for more information.	
(https://www.ti.com/product/DLPA3005)		

Get DLPA3005 Register					
Read Parameter(s)					
Byte Description					
Byte 0	Register Address				

Return Parameter(s)				
Byte Description				
Byte 0 Register Value				
Returns specified register value from DLPA3005. Refer to DLPA30005 datasheet for more information. (https://www.ti.com/product/DLPA3005)				

Table 19-57. TI Actuator Interface Debug [Opcode: E4h | Destination: 4]

Set TI Actuator Interface Debug					
Write Parameter(s)					
Byte	Description				
Byte 0	Query type				
	0 = Query N number of bytes from offset address provided in next two bytes i.e., Bytes 1-2				
	1 = Query Actuator information also print on UART debug port				
	2 = Query AWG Data Set for index number provided in next two bytes i.e., Bytes 1-2				
	3 = Query AWG Edge table header for index number in next two bytes i.e., Bytes 1-2				
Bytes 1-2 Query type provided in Byte 0; not applicable when Query type = 1					
Bytes 3-4 Number of bytes to be read when Query type = 0. Note maximum 32 bytes can be read at a time.					
Command used to a	way actuator related information for debugging purpose. Here this command to retrieve information when actuator not				

Command used to query actuator related information for debugging purpose. Use this command to retrieve information when actuator not running or system is in standby state.

Get TI Actuator Interface Debug Return Parameter(s)					
			Byte Description		
Bytes 0-31	Actuator Data				
Command returns queried data as per the settings made in the set command					

Table 19-58. DMD Power [Opcode: E8h | Destination: 4]

Get DMD Power				
Return Parameter(s)				
Byte Description				
Byte 0 Enable State				
	bit 0: 0 = Disable;1 = Enable			
Returns DMD power enable state				

Table 19-59. DMD Park [Opcode: E9h | Destination: 4]

Set DMD Park	
Write Parameter(is)
Byte	Description
Byte 0	Park State
	bit 0: 0 = Unpark; 1 = Park
Parks/Unparks DM	MD

Get DMD Park
Data returned is in the same format as the Write Parameter(s).
Returns 1 if DMD is Parked, else returns 0

Table 19-60. DMD True Global Reset [Opcode: EBh | Destination: 4]

Set DMD True Global Reset					
Write Parameter(s)					
Byte Description					
Byte 0 True Global Mode bit 0: 0 = True Global Reset Mode Disabled; 1 = True Global Reset Mode Enabled.					
The TrueGlobalMode should be set to TRUE only during factory/assembly operation.					

Get DMD True Global Reset
Data returned is in the same format as the Write Parameter(s).

Table 19-61. Int Stack [Opcode: F0h | Destination: 4]

Get Int Stack			
Return Parameter(s)			
Byte	Description		
Bytes 0-3	Stack Size		
Bytes 4-7	Stack Used		
Bytes 8-11	Stack Free		
Gives the current st	ack usage information		

Table 19-62. Print All Task Information [Opcode: F1h | Destination: 4]

Cat	Drint	ΛII	Took	Inf	formation

Write Parameter(s)

Prints(on UART) information of all tasks defined/created with RTOS.

Table 19-63. Resource [Opcode: F2h | Destination: 4]

Get Resource		
Return Parameter(s)		
Byte	Description	
Byte 0	Tasks High Count	
Byte 1	Events High Count	
Byte 2	Group Events High Count	
Byte 3	Mailbox High Count	
Byte 4	Memory Pools High Count	
Byte 5	Semaphore High Count	
Byte 6	Tasks Current Count	
Byte 7	Events Current Count	
Byte 8	Group Events Current Count	
Byte 9	Mailbox Current Count	
Byte 10	Memory Pools Current Count	
Byte 11	Semaphore Current Count	
Gives the maximum RTOS resource usage by the application.		

Table 19-64. EEPROM Free Area Offset [Opcode: FFh | Destination: 4]

Get EEPROM Free Area Offset		
Return Parameter(s)		
Byte	Description	
Bytes 0-1	Free Area Offset	
This function idicates the EEPROM address offset which corresponds to the start of free area.		

19.9 General Operation

General Operation

Table 19-65. Power [Opcode: 10h | Destination: 4]

Set Power
Write Parameter(s)
This commands toggles current power mode from standby to active or from active to power down. The Standby state corresponds to Low
Power Mode.

Get Power Return Parameter(s)		
Byte	Description	
Byte 0	Power State	
	0 = Reset	
	1 = Standby	
	2 = Active	
Returns current system power state.		

Table 19-66. Display [Opcode: 11h | Destination: 4]

Set Display		
Write Parameter(s)		
Byte	Description	
Byte 0	Source	
	0 = Display External	
	1 = Test Pattern	
	2 = Solid Field	
	3 = Splash	
	3 = Splash 4 = Curtain	

Displays the specified source.

Note: If Display External projection mode is selected and if there is no source present it will show Splash or Solid Field depending on the default settings in the system.

Get Display

Data returned is in the same format as the Write Parameter(s).

Returns the source which is currently being displayed.

Table 19-67. Enable Low Latency Mode [Opcode: 12h | Destination: 4]

Set Enable Low Latency Mode Write Parameter(s)		
Byte 0	Enable State	
	bit 0: 1 = Low latency mode is enabled, 0 = Low latency mode is disabled	
Enables or disable	es the Low latency mode of operation in which processing delay (from the input source to the frame sent to DMD) by the	
Controller is limited to a maximum of one and a half frame delays.		

Get Enable Low Latency Mode		
Data returned is in the same format as the Write Parameter(s).		
Returns	Returns whether low latency mode is enabled or not.	

Table 19-68. System Look [Opcode: 13h | Destination: 4]

Set System Look		
Write Parameter(s)		
Byte	Description	
Bytes 0-1	Look Index	

This command sets the current system look. System looks shall be designed and configured via DLP Composer tool. System look determines the current group of sequences and color points to be loaded. This command also initiates the source definition change that corresponds to new look index.

Get System Look

Data returned is in the same format as the Write Parameter(s).

This command gets the current system look.

Table 19-69. TPG Predefined Pattern [Opcode: 14h | Destination: 4]

Set TPG Predefined Pattern	
Write Parameter(s)	
Byte	Description
Byte 0	Predefined test pattern number to be displayed

This command will set one of the pre-defined test patterns. The function selects the pattern settings to load from flash into the test pattern generator hardware. The information retrieved from the flash includes pattern definition, color definition, and the resolution. The pre-defined patterns are included in the flash configuration data. Set Display command must be called to switch the display mode from other modes to TPG prior to or after this command.

Get TPG Predefined Pattern

Data returned is in the same format as the Write Parameter(s).

Returns the current selection for pre-defined test patterns.

Table 19-70. TPG Border [Opcode: 15h | Destination: 4]

Set TPG Border		
Write Parameter(s)		
Byte	Description	
Byte 0	Width of the Border Range = 0 to 20 with step size 1	
Bytes 1-2	Border Color Red Value Range = 0 to 1023 with step size 1	
Bytes 3-4	Border Color Green Value Range = 0 to 1023 with step size 1	
Bytes 5-6	Border Color Blue Value Range = 0 to 1023 with step size 1	
Draws a border around the test pattern of given width and color. This supports debug of optics for clipping of image.		

Note: To be used only when the Display is set as Test Pattern.

Get TPG Border

Data returned is in the same format as the Write Parameter(s).

Returns Width in number of pixels and Color of Border for a test Pattern.

Table 19-71. TPG Resolution [Opcode: 16h | Destination: 4]

Set TPG Resolution		
Write Parameter(s)		
Byte	Description	
Bytes 0-1	Horizontal resolution of test pattern(Pixels) Range = 640 to 4096 with step size 1	
Bytes 2-3	Vertical resolution of test pattern(Lines) Range = 480 to 2400 with step size 1	
Sets horizontal and	vertical resolution in number of pixels for current test pattern.	

Get TPG Resolution		
Data returned is in the same format as the Write Parameter(s).		
Returns horizontal and vertical resolution in number of pixels for current test pattern.		

Table 19-72. TPG Frame Rate [Opcode: 17h | Destination: 4]

Set TPG Frame R	ate
Write Parameter(s)
Byte	Description
Byte 0	Frame rate of test pattern(Hz)
	Range = 30 to 240 with step size 1
Sets frame rate in	Hz for current test pattern.

Get TPG Frame Rate	
Data returned is in the same format as the Write Parameter(s).	
Returns frame rate in Hz for current test pattern.	

Table 19-73. SFG Color [Opcode: 18h | Destination: 4]

Set SFG Color Write Parameter(s)	
Bytes 0-1	Red color level. Range = 0 to 1023 with step size 1
Bytes 2-3	Green color level. Range = 0 to 1023 with step size 1
Bytes 4-5	Blue color level. Range = 0 to 1023 with step size 1

Configures the solid color to be displayed when display is set to solid field generator (SFG). This command only sets the SFG color and does NOT display it. In order to display the SFG, Display needs to be set with SFG as source(Use Set Display command).

Get		

Data returned is in the same format as the Write Parameter(s).

Returns the solid color which is programmed to be displayed when display is set to SFG.

Table 19-74. SFG Resolution [Opcode: 19h | Destination: 4]

Get SFG Resolution Return Parameter(s)	
Bytes 0-1	Horizontal resolution of SFG(Pixels) Range = 0 to 4096 with step size 1
Bytes 2-3	Vertical resolution of SFG(Lines) Range = 0 to 2160 with step size 1
Gets the resolution	of the displayed SFG image.

Table 19-75. Curtain Color [Opcode: 1Ah | Destination: 4]

Set Curtain Color		
Write Parameter(s	Write Parameter(s)	
Byte	Description	
Byte 0	The background color to be set as curtain.	
	0 = Black color	
	1 = Reserved	
	2 = White color	
	3 = Green color	
	4 = Red color	
	5 = Blue color	
	6 = Yellow color	
	7 = Cyan color	
	8 = Magenta color	
	9 = Reserved	
	10 = Reserved	

Command to set the color to be used in curtain mode. Use Set Display command to switch to curtain mode.

Note: Curtain processing happens at the backend in the controller datapath and overides freeze video data to hide artifacts.

Get Curtain Color

Data returned is in the same format as the Write Parameter(s).

Command that returns the color used in curtain mode.

Table 19-76. Splash Load Image [Opcode: 1Bh | Destination: 4]

Set Splash Load	Image
Write Parameter(s)
Byte	Description
Byte 0	The 0-based index of Splash Image (0xff for captured splash).
	Range = 0 to 255 with step size 1
Sets the index of t	he splash image to be loaded and displayed. If already in Splash mode the requested splash image is displayed.

Get Splash Load Image	
Data returned is in the same format as the Write Parameter(s).	
Gets the index of the splash image to be loaded and displayed.	

Note: Splash image should be set before transition to display as changing while already displaying will cause transitional image artifcats.

Table 19-77. Enable Image Flip [Opcode: 1Ch | Destination: 4]

Set Enable Image Flip	
Write Parameter(s)	
Byte	Description
Byte 0	Flip bit 0: 0 = Vertical Flip of the image is disabled; 1 = Vertical Flip of the image is enabled. bit 1: 0 = Horizontal Flip of the image is disabled; 1 = Horizontal Flip of the image is enabled.
Flips the data outp	ut to the display vertically or horizontally. This feature is provided to support use cases like ceiling mount, rear projection

Get Enable Image Flip	
Data returned is in the same format as the Write Parameter(s).	
Returns whether image flipping is enabled.	

Table 19-78. Enable Freeze [Opcode: 1Dh | Destination: 4]

Set Enable Freeze	
Write Parameter(s)	
Byte	Description
Byte 0	Freeze State
	bit 0: 0 = Display freeze is disabled; 1 = Display freeze is enabled.

It enables or disables display freeze which freezes the current frame being displayed on the screen.

Caution: Set Curtain or any operation that requires curtain will override Freeze and frozen image on the wall will be lost.

The following operations require curtain (and will override Freeze):

Source Type Switch (Standard - XPR - 3D)

Source Type Switch (interlaced - non-interlaced)

Switch to Splash Display

Splash Capture

Low Latency Mode Switch

Source Relocking

Switch to Stand-By/Low-Power mode

Get Enable Freeze

Data returned is in the same format as the Write Parameter(s).

Returns whether the current display is frozen.

Table 19-79. Keystone Angles [Opcode: 1Eh | Destination: 4]

Set Keystone Angles		
Write Parameter(s)	Write Parameter(s)	
Byte	Description	
Bytes 0-1	Pitch angle in degrees	
	Range = -128 to 127.9960375 with step size 0.00390625	
	Format = s8.8	
Bytes 2-3	Yaw angle in degrees	
	Set to 0 for 1D correction	
	Range = -128 to 127.9960375 with step size 0.00390625	
	Format = s8.8	
Bytes 4-5	Roll angle in degrees	
	Set to 0 for 1D/2D correction	
	Range = -128 to 127.9960375 with step size 0.00390625	
	Format = s8.8	

Configures the Keystone correction when the pitch, yaw, roll, throw ratio and vertical offset of corrected image are known.

Keystone correction is used to remove the distortion caused when the projector is not orthogonal to the projection surface (screen). Keystone feature will be automatically enabled when this command is executed.

Note: The actual range of these parameters depends on the light engine (projection optics); the range of Pitch, Yaw and Roll is derived from optical engine Vertical offset and Throw Ratio.(Maximum range: -40 to +40 degrees)

Note

Not all keystone angles are supported. Refer to the below tables to find out the range that is supported.

Automated 3D Ke	ystone Test	Criteria								
	TR: 0.15	TR: 0.153 to < 0.2		TR: 0.2 to < 0.4		TR: 0.4 to < 0.75		TR: 0.75 < 1.5		<= 2.0
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Throw Ratio	0.153	0.19	0.2	0.39	0.4	0.74	0.75	1.49	1.5	2
Vertical Offset	0	1.5	-1.5	1.5	-1.5	1.5	-1.5	1.5	-1.5	1.5
Pitch Angle	-40	5	-40	10	-40	15	-40	25	-40	40
Yaw Angle	-5	5	-10	10	-20	20	-30	30	-40	40
Roll Angle	-3	3	-5	5	-10	10	-20	20	-25	25

Automated 1D Key	stone Test	Criteria [Ro	ll Only]							
	TR: 0.15	3 to < 0.2	TR: 0.2 to < 0.4		TR: 0.4 to < 0.75		TR: 0.75 < 1.5		TR: 1.5 <= 2.0	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Throw Ratio	0.153	0.19	0.2	0.39	0.4	0.74	0.75	1.49	1.5	2
Vertical Offset	0	1	0	1	0	1	0	1	0	1
Roll Angle	-60	60	-60	60	-60	60	-60	60	-60	60

Get Keystone Angles

Data returned is in the same format as the Write Parameter(s).

Returns the keystone configuration parameters currently set.

Table 19-80. Keystone Config Override [Opcode: 1Fh | Destination: 4]

Set Keystone Conf	Set Keystone Config Override				
Write Parameter(s)					
Byte	Description				
Bytes 0-1	Throw Ratio Format = u8.8				
Bytes 2-3	Vertical Offset Format = s8.8				

Get Keystone Config Override	
Data returned is in the same format as the Write Parameter(s).	

Table 19-81. Enable Anamorphic Scaling [Opcode: 20h | Destination: 4]

Set Enable Anamorphic Scaling				
Write Parameter(s)			
Byte Description				
Byte 0	Enable State			
	bit 0: 0 = Anamorphic Scaling is disabled; 1 = Anamorphic Scaling is enabled.			
Enables or disable	s the anamorphic scaling			

Get Enable Anamorphic Scaling
Data returned is in the same format as the Write Parameter(s).
Returns whether anamorphic scaling is enabled.

Table 19-82. Display Image Size [Opcode: 21h | Destination: 4]

Set Display Image Size Write Parameter(s)					
					Byte
Byte 0	Image Size Type				
	0 = Fill (uses DMD image size)				
	1 = Native (same as source size)				
	2 = Manual				
	3 = Image size maintains the aspect ratio of source and fills the DMD in at least one direction				
	4 = Image size maintains the aspect ratio of				
	5 = Image size maintains the aspect ratio of				
Bytes 1-2	Cropped Area First Pixel				
Bytes 3-4	Cropped Area First Line				
Bytes 5-6	Cropped Area Pixels Per Line				
Bytes 7-8	Cropped Area Lines Per Frame				
Bytes 9-10	Display Area First Pixel				
Bytes 11-12	Display Area First Line				
Bytes 13-14	Display Area Pixels Per Line				
Bytes 15-16	Display Area Lines Per Frame				

Configures the cropping of input image and resizing of image that is displayed. Cropped area can be equal to or less than the input image size. The display area has has to be within DMD effective number of pixels and lines.

Note: 1. Cropped Area and Display Area parameters are valid only when image size type is set to Manual. 2. For TPG, SFG and Splash, Cropped Area parameter is ignored. For those sources, cropped area is automatically set as explained below:

- a. For TPG, cropped area is set to TPG resolution.
- b. For Splash, cropped area is set to Splash image size.
- c. For SFG, cropped area is set to SFG resolution which is equal to source area of last stable external source or TPG.

Get Display Image Size

Data returned is in the same format as the Write Parameter(s).

Returns current image size, cropping and display settings.

Table 19-83. Source Configuration [Opcode: 22h | Destination: 4]

Set Source Configuration Write Parameter(s)				
Byte 0	 0 = Input port sync is not modified(passed through). 1 = Input port sync is inverted. 2 = ALF Sync is selected as the Port sync source. Use when Autolock is used for source detection. 3 = Applicable for Topfield only. The TopField is decoded from HSync and VSync. 			
Byte 1	H Sync Configuration 0 = Input port sync is not modified(passed through). 1 = Input port sync is inverted. 2 = ALF Sync is selected as the Port sync source. Use when Autolock is used for source detection. 3 = Applicable for Topfield only. The TopField is decoded from HSync and VSync.			
Byte 2	Top Field Configuration 0 = Input port sync is not modified(passed through). 1 = Input port sync is inverted. 2 = ALF Sync is selected as the Port sync source. Use when Autolock is used for source detection. 3 = Applicable for Topfield only. The TopField is decoded from HSync and VSync.			
Byte 3	Down Sample Configuration - When downsampling is enabled, the Pixel Clock Freq (kHz) is halved by the Controller. This affects other parameters in the source structure such as Total Area Pixels Per Line, Active Area Pixels Per Line and Active Area First Pixel. 0 = Down Sample Operation disabled (data pass through unmodified). 1 = Down Sample Operation enabled. Select First Data Sample Positions from Sample Position Reference. 2 = Down Sample Operation enabled. Select Second Data Sample Positions from Sample Position Reference.			
Byte 4	3D Enable bit 0: 0 = 3D Disabled 1 = 3D Enabled			
Byte 5	Clock Polarity bit 0: 0 = Data is clocked in on falling edge of the port clock 1 = Data is clocked in on rising edge of the port clock			
Byte 6	Pixel Format 0 = RGB 1 = YUV444 2 = YUV422 3 = YUV420			
Byte 7	External Data Enable bit 0: 0 = External Data Enable is not used 1 = External Data Enable is used (typical for digital sources)			
Byte 8	Interlaced bit 0: 0 = Non Interlaced 1 = Interlaced			
Byte 9	Offset Binary bit 0: 0 = Incoming data is signed 2s complement; typical for RGB sources 1 = offset binary; typical for YUV sources			
Byte 10	Top Field Inverted - Applicable only for interlaced sources that use field dependent scaling. Set to 0 for analog interlaced Graphics. Set to 1 for DVI Sources. bit 0: 0 = Top field not inverted at scaler 1 = Top field inverted at scaler			
Bytes 11-12	Total Area Pixels Per Line			

Table 19-83. Source Configuration [Opcode: 22h | Destination: 4] (continued)

Set Source Configur	ration
Bytes 13-14	Total Area Lines Per Frame
Bytes 15-16	Active Area First Pixel
Bytes 17-18	Active Area First Line
Bytes 19-20	Active Area Pixels Per Line
Bytes 21-22	Active Area Lines Per Frame
Bytes 23-24	Bottom Field First Line - Applicable for Interlaced Sources only. This term specifies the first(starting) active line in the Bottom Field. Valid range is Top Field First Line to Active Number of Lines per Frame. For Field dependent framing, Bottom Field First Line >= Top Field First Line (= Active Area First Line)
Bytes 25-28	Pixel Clock Freq (kHz)
Bytes 29-30	Color Space Conversion coefficient 0 - Coefficients used for converting YUV sources to RGB. For RGB Sources, this should be an Identity Matrix. All coefficients are defined to be signed, 2's complement values with 2 significant bits and 10 fractional bits (s2.10). For example, 1.0 = 0x0400.
Bytes 31-32	Color Space Conversion Coefficients 1
Bytes 33-34	Color Space Conversion Coefficients 2
Bytes 35-36	Color Space Conversion Coefficients 3
Bytes 37-38	Color Space Conversion Coefficients 4
Bytes 39-40	Color Space Conversion Coefficients 5
Bytes 41-42	Color Space Conversion Coefficients 6
Bytes 43-44	Color Space Conversion Coefficients 7
Bytes 45-46	Color Space Conversion Coefficients 8
Bytes 47-48	Offset Red - Also referred to as Black Level Adjustment. Range : -256 to 255.75 in signed 8.2 format(sign + 8 integer and 2 fractional bits). Adjusts the black level for the removal of controller induced bias and/or a pedestal embedded in the Source. For changing only the offset, call the Set Image Offset command.
Bytes 49-50	Offset Green
Bytes 51-52	Offset Blue
Byte 53	Is Video
Byte 54	Is High Definition Video
Bytes 55-58	Frame Rate Range = 0 to 65536 with step size 0.00390625 Format = u16.16

Configures the characteristics of the source on the Current active port.

Notes: 1. After sending Set Source Configuration command, Set Display Image Size command must be sent for the changes to take effect.

2. CSC (color space conversion) will take effect only after sending the Set Display Image Size command.

3. Set Source Configuration command should not be used when the Display is set as TPG.

Get Source Configuration				
Return Parameter(s)				
Byte	Description			
Byte 0	0 = Input port sync is not modified(passed through).			
	1 = Input port sync is inverted.			
	2 = ALF Sync is selected as the Port sync source. Use when Autolock is used for source detection.			
	3 = Applicable for Topfield only. The TopField is decoded from HSync and VSync.			

Get Source Configu	ration
Byte 1	H Sync Configuration 0 = Input port sync is not modified(passed through). 1 = Input port sync is inverted. 2 = ALF Sync is selected as the Port sync source. Use when Autolock is used for source detection. 3 = Applicable for Topfield only. The TopField is decoded from HSync and VSync.
Byte 2	Top Field Configuration 0 = Input port sync is not modified(passed through). 1 = Input port sync is inverted. 2 = ALF Sync is selected as the Port sync source. Use when Autolock is used for source detection. 3 = Applicable for Topfield only. The TopField is decoded from HSync and VSync.
Byte 3	Down Sample Configuration 0 = Down Sample Operation disabled (data pass through unmodified). 1 = Down Sample Operation enabled. Select First Data Sample Positions from Sample Position Reference. 2 = Down Sample Operation enabled. Select Second Data Sample Positions from Sample Position Reference.
Byte 4	3D Enable bit 0: 0 = 3D Disabled 1 = 3D Enabled
Byte 5	Clock Polarity bit 0: 0 = Clock Polarity Negative 1 = Clock Polarity Positive
Byte 6	Pixel Format 0 = RGB 1 = YUV444 2 = YUV422 3 = YUV420
Byte 7	External Data Enable bit 0: 0 = External Data Disabled 1 = External Data Enabled
Byte 8	Interlaced bit 0: 0 = Non Interlaced 1 = Interlaced
Byte 9	Offset Binary bit 0: 0 = Incoming data is signed 2s complement; typical for RGB sources 1 = offset binary; typical for YUV sources
Byte 10	Top Field Inverted - Applicable only for interlaced sources that use field dependent scaling. Set to 0 for analog interlaced Graphics. Set to 1 for DVI Sources. bit 0: 0 = Top field not inverted at scaler 1 = Top field inverted at scaler
Bytes 11-12	Total Area Pixels Per Line
Bytes 13-14	Total Area Lines Per Frame
Bytes 15-16	Active Area First Pixel
Bytes 17-18	Active Area First Line
Bytes 19-20	Active Area Pixels Per Line
Bytes 21-22	Active Area Lines Per Frame

Get Source Configura	ation
Bytes 23-24	Bottom Field First Line - Applicable for Interlaced Sources only. This term specifies the first(starting) active line in the Bottom Field. Valid range is Top Field First Line to Active Number of Lines per Frame. For Field dependent framing, Bottom Field First Line >= Top Field First Line (= Active Area First Line)
Bytes 25-28	Pixel Clock Freq (kHz)
Bytes 29-30	Color Space Conversion Coefficients 0
Bytes 31-32	Color Space Conversion Coefficients 1
Bytes 33-34	Color Space Conversion Coefficients 2
Bytes 35-36	Color Space Conversion Coefficients 3
Bytes 37-38	Color Space Conversion Coefficients 4
Bytes 39-40	Color Space Conversion Coefficients 5
Bytes 41-42	Color Space Conversion Coefficients 6
Bytes 43-44	Color Space Conversion Coefficients 7
Bytes 45-46	Color Space Conversion Coefficients 8
Bytes 47-48	Offset Red - Also referred to as Black Level Adjustment. Range : -256 to 255.75 in signed 8.2 format(sign + 8 integer and 2 fractional bits). Adjusts the black level for the removal of controller induced bias and/or a pedestal embedded in the Source. For changing only the offset, call the SetImageOffset command.
Bytes 49-50	Offset Green
Bytes 51-52	Offset Blue
Byte 53	Is Video
Byte 54	Is High Definition Video
Bytes 55-58	Frame Rate Range = 0 to 65536 with step size 0.00390625 Format = u16.16

Table 19-84. Datapath Scan Status [Opcode: 25h | Destination: 4]

Description Scan Status 0 = Detect Stable Video 1 = Searching 2 = Sync detected 3 = Locked
Scan Status 0 = Detect Stable Video 1 = Searching 2 = Sync detected
0 = Detect Stable Video 1 = Searching 2 = Sync detected
1 = Searching 2 = Sync detected
2 = Sync detected
3 = Locked
4 = Suspended
Datapath State
0 = Standby
1 = Initalizing
2 = Splash At Startup
3 = Idling
4 = Scanning
5 = Autolock
6 = Monitoring
o 1

Table 19-85. Frame Rate Parameters [Opcode: 26h | Destination: 4]

Get Frame Rate Parameters			
Return Parameter(s)			
Byte	Description		
Bytes 0-3	Input Frame Rate		
	Format = u16.16		
Bytes 4-7	Output Frame Rate		
	Format = u16.16		
Byte 8	Frame Rate Conversion (FRC) Mode		
	0 = Fixed output frame rate range of 47-63Hz.		
	1 = FRC in sync with the incoming frame rate.		
	2 = FRC doubles the incoming frame rate.		
	3 = FRC triples the incoming frame rate.		
	4 = FRC 4 X incoming frame rate.		
	5 = FRC 6 X incoming frame rate.		
	6 = FRC 8 X incoming frame rate.		
	7 = FRC 10 X incoming frame rate.		

Table 19-86. VBO Configuration [Opcode: 30h | Destination: 4]

Set VBO Configur	ration		
Write Parameter(s	Vrite Parameter(s)		
Byte	Description		
Byte 0	Data Map Mode		
	0 = 36bpp/30bpp RGB/YCbCr444		
	1 = 27bpp RGB/YCbCr444		
	2 = 24bpp RGB/YCbCr444		
	3 = 32bpp/24bpp/20bpp YCbCr422		
	4 = 18bpp YCbCr422		
	5 = 16bpp YCbCr422		
	6 = 12bpp/10bpp YCbCr420 Config 1		
	7 = 8bpp YCbCr420 Config 1		
	8 = 10bpp YCbCr420 Config 2		
	9 = 8bpp YCbCr420 Config 2		
	10 = Not a valid V-by-one data mode or mode is not used		
Byte 1	Byte Mode		
	1 = 8bit mode (=3Byte mode)		
	2 = 10bit mode (=4Byte mode)		
	3 = 12bit mode (=5Byte mode)(12bit mode is reduced internally for 10bit processing)		
Byte 2	Number of lanes can be 1 or 2 or 4 or 8		
Byte 3	Enable Pixel Repeat		
	bit 0: Enable Pixel Repeat		
Configures the cha	aracteristics of the Vx1 source.		

Got	VRO	Configuration
Get	VDU	Communication

Data returned is in the same format as the Write Parameter(s).

Retruns the characteristics of the Vx1 source.

Table 19-87. Keystone Corners [Opcode: 3Ah | Destination: 4]

Set Keystone Corners Write Parameter(s)		
Bytes 0-1	X position of the top left corner	
Bytes 2-3	Y position of the top left corner	
Bytes 4-5	X position of the top right corner	
Bytes 6-7	Y position of the top right corner	
Bytes 8-9	X position of the bottom left corner	
Bytes 10-11	Y position of the bottom left corner	
Bytes 12-13	X position of the bottom right corner	
Bytes 14-15	Y position of the bottom right corner	

Configures the 2D Keystone correction when the corners of the corrected image are known. Keystone correction is used to remove the distortion caused when the projector is not orthogonal to the projection surface (screen). For the effects to take place, the Keystone feature has to be enabled.

Get Keystone Corners

Data returned is in the same format as the Write Parameter(s).

Returns the keystone configuration parameters currently set. This command should be used when the keystone correction has been configured using the four corners of the corrected image. The keystone correction is observed only if the keystone feature is enabled, even if the parameters are configured correctly.

Table 19-88. Warp Timing Validation Enable Adjust Wrp [Opcode: 3Bh | Destination: 4]

Set Warp Timing Validation Enable Adjust Wrp				
Write Parameter(s)			
Byte	Description			
Byte 0	Enable state			
	bit 0: 1 = Automatic warp geometry adjustment is enabled			
	0 = Automatic warp geometry adjustment is disabled			
This commands se	ets whether automatic warp geometry adjustment should be allowed or not.			

Get Warp Timing Validation Enable Adjust Wrp	
Data returned is in the same format as the Write Parameter(s).	
Returns whether Automatic Warp Adjustment is enabled or not.	

Table 19-89. Is Warp Geometry Modified [Opcode: 3Ch | Destination: 4]

Get Is Warp Geometry Modified Return Parameter(s)	
Byte 0	Anonymous 1
	bit 0: 1 = True
	0 = False
Returns whether the	he Warp geomtery got modified or not.

19.10 Illumination

Illumination

Table 19-90. Illumination Enable [Opcode: 80h | Destination: 4]

Description 0 - Disabled
0 - Disabled
O Diodolog
1 - Only Red LED Enabled
2 - Only Green LED Enabled
3 - Red and Green LEDs Enabled
4 - Only Blue LED Enabled
5 - Red and Blue LEDs Enabled
6 - Green and Blue LEDs Enabled
7 - All LEDs Enabled

Get Illumination Enable	
Data returned is in the same format as the Write Parameter(s).	
Gets the enable state of illumination.	

Table 19-91. DLPA3005 Illumination Current [Opcode: 84h | Destination: 4]

Set DLPA3005 Illumination Current	
Write Parameter(s)	
Byte	Description
Bytes 0-1	Drive Level Red
Bytes 2-3	Drive Level Green
Bytes 4-5	Drive Level Blue

Sets DLPA3005 Drive Current Levels input as 10-bit Drive Level per LED in the range 0 - 874 (actual range is 0-1023 but the value is limited to reduce the changes of damaging reference LEDs). Command should not be used if Dynamic Black or White Point Correction is enabled.

Current output in Amps is calculated as described below.

OutputCurrent = ((DriveLevel + 1)/1024)*((0.15/0.004)) Amps

Example: For DriveLevel = 874; OutputCurrent = 32.04345703Amps

Note: Calculation is based on a max drive of 32A using 4mOhm RLIM resistor, refer to DLPA3005 datasheet to optimize for the LED being driven.

Get DLPA3005 Illumination Current

Data returned is in the same format as the Write Parameter(s).

Gets DLPA3005 Drive Current Levels.

19.11 Image Processing

Image Processing

Table 19-92. Image Algorithm Enable [Opcode: 40h | Destination: 4]

Set Image Algorithm Enable Write Parameter(s)	
Byte 0	Chroma Transient Improvement Enable bit 0: Chroma Transient Improvement Enable Bit
Byte 1	Gamma Correction Enable bit 0: Gamma Correction Enable Bit
Byte 2	Color Coordinate Adjustment Enable bit 0: Color Coordinate Adjustment Enable Bit
Byte 3	Brilliant Color Enable bit 0: Brilliant Color Enable Bit
Byte 4	White Point Correction Enable bit 0: White Point Correction Enable Bit
Byte 5	Dynamic Black Enable bit 0: Dynamic Black Enable Bit
Byte 6	HDR Enable bit 0: HDR Enable Bit

Table 19-92. Image Algorithm Enable [Opcode: 40h | Destination: 4] (continued)

Set Image Algorithm Enable

Sets enable flag for all Image Algorithms.

0 = Disable

1 = Enable

Chroma Transient Improvement:

This function enables/disables the Chroma Transient Improvement (CTI) function which filters the 4 : 4 : 4 sampled, chrominance (Cr and Cb) data on the B and C data channels. The chroma transient functions performs band pass filtering (supports two center frequencies) and median filtering for ringing minimization. It performs limiting and coring functions for the filtered output.

Gamma Correction:

This function enables/disables the Gamma Correction function which implements the removal of gamma transfer function applied at the source, via table lookup process called de-gamma. When enabled, perform de-gamma translation of the 10-bit RGB input to the common 12-bit floating point (S0M8E4) RGB output. When disabled, the full 10 bits of each data input to the Gamma Correction function are zero padded and MSB-aligned to 12-bits and passed through unmodified.

Color Coordinate Adjustment:

This function enables/disables the Spatially Adaptive Seven Primaries Color Correction Function Enable. When Disable forces 3x3 CSC (Color Space Conversion) with identity.

Brilliant Color:

This function enables/disables the BrilliantColor technology, Brilliant Color uses up to five colors, instead of just the three primary colors, red, green and blue, to improve color accuracy and brightens of secondary colors. This results in a new level of color performance that increases the brightness of the colors.

White Point Correction :

This function enables/disables the White Point Correction, typically used on LED type illumination systems. Sometimes due to increase in LED operating temperature or LED aging the LEDs output wavelentgh drifts, therefore white point of the system shifts. This algorithm using active light sensor feedback and factory calibrated values help maintaing white point of the system.

Dynamic Black:

Dynamic Black (DB) is an algorithm that reduces the amount of light reaching the projection path by means of LED output power through current control and compensates for reduced light by gaining up the RGB signals.

HDR

High Dynamic Range (HDR) is an algorithm that maps wider brightness and color range of HDR source to the projector display range. HDR is affected by several factors such as illimuniation characteristics, duty cycle distribution and current running sequence. A valid HDR source should be set by HDR_SetHdrSourceConfiguration() before enabling HDR processing.

Note: **Chroma Transient Improvement** is applicable to Analog SDTV sources only. DLPC6540 controller doesn't support Analog sources. Even if enabled on DLPC6540 controller, there is no changes in the displayed image when enabled.

Get Image Algorithm Enable

Data returned is in the same format as the Write Parameter(s).

Returns enable flag for all Image Algorithms

- '0' Disabled or algorithm feature not available.
- '1' Enabled

Table 19-93. Image Brightness [Opcode: 41h | Destination: 4]

Set Image Brightness	
Write Parameter(s)	
Byte	Description
Bytes 0-1	Brightness Adjustment
	Range = -256.00 to 255.75 with step size .25
	Format = s14.2

The brightness control provides the ability to add or subtract a fixed bias from each of the input channels. This may be used to remove any inherent offsets and/or adjust the brightness level. The brightness coefficients are signed, 11-bit (s8.2), 2's complement values between -256 and 255.75, inclusive. Brightness Control is used after Color Space Conversion.

Get Image Brightness	
Data returned is in the same format as the Write Parameter(s).	
Returns Image Brightness Level.	

Table 19-94. Image Contrast [Opcode: 42h | Destination: 4]

Set Image Contrast	
Write Parameter(s)	
Byte	Description
Bytes 0-1	Contrast (%)
	Range = 0 to 200 with step size 1
Sets Image Contras	t in percentage. Each contrast byte controls the gain applied to the input image data for a given data channel. The

Sets Image Contrast in percentage. Each contrast byte controls the gain applied to the input image data for a given data channel. The contrast gain has a range from 0 to 200 (0% to 200%) with 100 (100%) being nominal (default).

Get Image Contrast	
Data returned is in the same format as the Write	Parameter(s).
Returns Image Contrast in percentage.	

Table 19-95. Image Hue And Color Control [Opcode: 43h | Destination: 4]

Write Parameter(s)	
Description	
Hue Adjustment Angle (degrees) Range = -45 to 45 with step size 1	
Color Control Gain (%) Range = 0 to 200 with step size 1	

Get Image Hue And Color Control	
Data returned is in the same format as the Write Parameter(s).	
Returns Image Hue Adjustment angle in degrees and Color Control Gain in percentage.	

Table 19-96. Image Sharpness [Opcode: 44h | Destination: 4]

Set Image Sharpne	ess
Write Parameter(s)	
Byte	Description
Byte 0	Sharpness value to apply.
Range = 0 to 31 with step size 1	

Configures the sharpness filter. A value of 0 is the least sharp (smoothest), while a value of 31 is the sharpnest. This filter is in the back end of the data path, so both video and graphics are affected. TI recommends that the sharpness filters be disabled (sharpness=16) for graphics sources.

Get Image Sharpness	
Data returned is in the same format as the Write Parameter(s).	
Returns the current sharpness value	

Table 19-97. Image RGB Offset [Opcode: 45h | Destination: 4]

Set Image RGB Offset	
Write Parameter(s)	
Byte	Description
Bytes 0-1	Red channel offset setting. Range = -256.00 to 255.75 with step size .25 Format = s14.2
Bytes 2-3	Green channel offset setting. Range = -256.00 to 255.75 with step size .25 Format = s14.2
Bytes 4-5	Blue channel offset setting. Range = -256.00 to 255.75 with step size .25 Format = s14.2

Offsets the levels of the RGB channels at a point in the data path after the following image processing functions have been applied - source offset, contrast, RGB Gain, Brightness and Color Space Conversion (including Hue and Color Adjustment).

Get Image RGB Offset

Data returned is in the same format as the Write Parameter(s).

Returns Red, Green and Blue channel offset settings.

Table 19-98. Image RGB Gain [Opcode: 46h | Destination: 4]

Set Image RGB Gain Write Parameter(s)	
Bytes 0-1	Red channel gain setting. Range = 0 to 200 with step size 1
Bytes 2-3	Green channel gain setting. Range = 0 to 200 with step size 1
Bytes 4-5	Blue channel gain setting. Range = 0 to 200 with step size 1

Adjusts individual R, G and B gains of the source image. Gain is specified as a percentage from 0% - 200%, with 100% being nominal (no gain change). 0% will zero out the channel. This function adjusts R, G and B gains by altering the Color Space Conversion (CSC) coefficients. This function is only applicable to RGB sources.

Get Image RGB Gain

Data returned is in the same format as the Write Parameter(s).

Returns gain setting for Red, Green and Blue color channels in percentage.

Table 19-99. CSC Table [Opcode: 47h | Destination: 4]

Set CSC Table	
Write Parameter(s	s)
Byte	Description
Byte 0	Index of the pre-defined CSC table in flash.
	Range = 0 to 7 with step size 1
	0 = Table Fullrange Rgb
	1 = Table Bt601 Yuv Videodecoder
	2 = Table Fullrange Yuv1
	3 = Table Offset Rgb
	4 = Table Bt601 Offset Yuv
	5 = Table Fullrange Yuv
	6 = Table Bt709 Offset Yuv
	7 = Table Smpte 240m
	8 = Table Bt2020
	9 = Maxtable

Get CSC Table

Data returned is in the same format as the Write Parameter(s).

Gets the index of the Color Space Conversion Matrix that is currently cofigured for use.

Table 19-100. Image CCA Coordinates [Opcode: 48h | Destination: 4]

Set Image CCA Coordinates [Opcode: 48n Destination: 4]	
Write Parameter(s)	
Byte	Description
Bytes 0-1	Original Coordinate Red x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 2-3	Original Coordinate Red y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 4-5	Original Coordinate Red Lum Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 6-7	Original Coordinate Green x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 8-9	Original Coordinate Green y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 10-11	Original Coordinate Green Luminance Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 12-13	Original Coordinate Blue x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 14-15	Original Coordinate Blue y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 16-17	Original Coordinate Blue Luminance Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 18-19	Original Coordinate White x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 20-21	Original Coordinate White y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 22-23	Original Coordinate White Luminance Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 24-25	Original Coordinate C1 x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 26-27	Original Coordinate C1 y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 28-29	Original Coordinate C1 Luminance Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15

Table 19-100. Image CCA Coordinates [Opcode: 48h | Destination: 4] (continued)

Set Image CCA Coordinates [Opcode: 4611 Destination: 4] (continued)		
Bytes 30-31	Original Coordinate C2 x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 32-33	Original Coordinate C2 y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 34-35	Original Coordinate C2 Luminance Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 36-37	Original Coordinate DRA A x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 38-39	Original Coordinate DRA A y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 40-41	Original Coordinate DRA A Luminance Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 42-43	Original Coordinate DRA B x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 44-45	Original Coordinate DRA B y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 46-47	Original Coordinate DRA B Luminance Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 48-49	Original Coordinate DRA C x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 50-51	Original Coordinate DRA C y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 52-53	Original Coordinate DRA C Luminance Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 54-55	Target Coordinate Red x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 56-57	Target Coordinate Red y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 58-59	Target Coordinate Red Gain Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	

Table 19-100. Image CCA Coordinates [Opcode: 48h | Destination: 4] (continued)

Set Image CCA Coordinates [Opcode: 4611 Destination: 4] (Continued)		
Bytes 60-61	Target Coordinate Green x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 62-63	Target Coordinate Green y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 64-65	Target Coordinate Green Gain Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 66-67	Target Coordinate Blue x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 68-69	Target Coordinate Blue y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 70-71	Target Coordinate Blue Gain Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 72-73	Target Coordinate Cyan x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 74-75	Target Coordinate Cyan y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 76-77	Target Coordinate Cyan Gain Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 78-79	Target Coordinate Magenta x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 80-81	Target Coordinate Magenta y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 82-83	Target Coordinate Magenta Gain Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 84-85	Target Coordinate Yellow x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 86-87	Target Coordinate Yellow y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	
Bytes 88-89	Target Coordinate Yellow Gain Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15	

Table 19-100. Image CCA Coordinates [Opcode: 48h | Destination: 4] (continued)

Set Image CCA Coordinates	
Bytes 90-91	Target Coordinate White x Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 92-93	Target Coordinate White y Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15
Bytes 94-95	Target Coordinate White Gain Range = 0.0 to 1.99996948242 with step size 0.00003051757 Format = u1.15

Get Image CCA Coordinates	
---------------------------	--

Data returned is in the same format as the Write Parameter(s).

Returns the current color coordinate configuration.

Table 19-101. Image HSG [Opcode: 49h | Destination: 4]

Set Image HSG [Opcode: 49h Destination: 4]		
Write Parameter(s)		
Byte	Description	
Bytes 0-1	HSG Red Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 2-3	HSG Red Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 4-5	HSG Red Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 6-7	HSG Green Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 8-9	HSG Green Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 10-11	HSG Green Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 12-13	HSG Blue Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 14-15	HSG Blue Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 16-17	HSG Blue Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 18-19	HSG Cyan Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 20-21	HSG Cyan Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 22-23	HSG Cyan Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 24-25	HSG Magenta Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 26-27	HSG Magenta Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 28-29	HSG Magenta Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	

Table 19-101. Image HSG [Opcode: 49h | Destination: 4] (continued)

Set Image HSG	Set Image HSG	
Bytes 30-31	HSG Yellow Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 32-33	HSG Yellow Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 34-35	HSG Yellow Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 36-37	HSG White Red Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 38-39	HSG White Green Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 40-41	HSG White Blue Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	

This command applies the given Hue, Saturation and Gain values for all colors. It does not affect colors having a gain of zero. Note: This call will override any CCA settings performed by prior calls.

Get Image HSG

Data returned is in the same format as the Write Parameter(s).

This command returns the currently applied Hue, Saturation and Gain values for all the colors. If Gain for a color is zero then the HSG is not applied on the color.

Table 19-102. Image Gamma LUT [Opcode: 4Ah | Destination: 4]

Set Image Gamma LUT	
Write Parameter(s)
Byte	Description
Byte 0	Gamma look-up table to load.
	ds the specified Gamma look-up table into memory from flash. A single load is accomplished by loading data for red,
green and blue look-up tables	

Get Image Gamma LUT	
Data returned is in the same format as the Write Parameter(s).	
Returns the table number of the Gamma look-up table currently loaded in memory.	

Table 19-103. Image Gamma Curve Shift [Opcode: 4Bh | Destination: 4]

Set Image Gamm	Set Image Gamma Curve Shift Write Parameter(s)	
Write Parameter(s		
Byte	Description	
Byte 0	Red Gamma curve shift. Range = -128 to 127 with step size 1	
Byte 1	Green Gamma curve shift. Range = -128 to 127 with step size 1	
Byte 2	Blue Gamma curve shift. Range = -128 to 127 with step size 1	
Byte 3	Broadcasted shift to Gamma curves of all color. Range = -128 to 127 with step size 1	

Used to specify the shifts in the Gamma curve of Red, Green and Blue. A left shift is a positive offset and a right shift is a negative offset. The effective brightness is increased with a left shift and decreased with a right shift.

Get Image Gamma Curve Shift

Data returned is in the same format as the Write Parameter(s).

Returns Image Gamma Shift for red, green and blue as well as shift to be broadcasted to all colors

Table 19-104. Img White Peaking Factor [Opcode: 4Ch | Destination: 4]

Set Img White Peaking Factor		
Write Parameter(s)	Write Parameter(s)	
Byte	Description	
Byte 0	Amount of white processing. Range 0 to 10).	

Get Img White Peaking Factor	
Data returned is in the same format as the Write Parameter(s).	

Table 19-105. XPR Filter Strength Command [Opcode: 4Dh | Destination: 4]

Set XPR Filter Strength Command	
Write Parameter(s)	
Byte	Description
Byte 0	Filter Strength setting determines how much of high frequency content is filtered out. Valid range 0-7Setting of 0 means least filtering of high frequency content (sharpest image; more flicker) Setting of 7 means most filtering of high frequency content (smoothest image; least flicker)

Get XPR Filter Strength Command
Data returned is in the same format as the Write Parameter(s).

Table 19-106. HDR Source Configuration [Opcode: 4Eh | Destination: 4]

Set HDR Source Configuration		
Write Parameter(s)	Vrite Parameter(s)	
Byte	Description	
Byte 0	Transfer Function 0 = Reserved 1 = Reserved 2 = PQ 3 = HLG	
Bytes 1-4	Master Display Black Level (nits) Range = 0.0000 to 10000.0 Format = u16.16	
Bytes 5-8	Master Display White Level (nits) Range = 0.0000 to 10000.0 Format = u16.16	
Bytes 9-10	Master Display Color Gamut Red x Range = 0.0000 to 1.0000 Format = u1.15	
Bytes 11-12	Master Display Color Gamut Red y Range = 0.0000 to 1.0000 Format = u1.15	
Bytes 13-14	Master Display Color Gamut Green x Range = 0.0000 to 1.0000 Format = u1.15	
Bytes 15-16	Master Display Color Gamut Green y Range = 0.0000 to 1.0000 Format = u1.15	
Bytes 17-18	Master Display Color Gamut Blue x Range = 0.0000 to 1.0000 Format = u1.15	
Bytes 19-20	Master Display Color Gamut Blue y Range = 0.0000 to 1.0000 Format = u1.15	
Bytes 21-22	Master Display Color Gamut White x Range = 0.0000 to 1.0000 Format = u1.15	
Bytes 23-24	Master Display Color Gamut White y Range = 0.0000 to 1.0000 Format = u1.15	

HDR maps wider brightness and color range of HDR sources to projector brightness and color range. The mapping requires multiple source groups and system groups to define the HDR source and projection device properties respectively. This command sets the source properties and based on this information selects nearest source group for mapping.

Get HDR Source Configuration

Data returned is in the same format as the Write Parameter(s).

Includes the metadata information.

Table 19-107. HDR Strength Setting [Opcode: 4Fh | Destination: 4]

Set HDR Strength Setting	
Write Parameter(s)
Byte	Description
Byte 0	HDR Strength
	Range = 0 to 10

Sets HDR strength which adjusts the electro-optical transfer function that is applied on the input HDR video signal. HDR strength can vary with the ambient brightness level. HDR strength is not applicable for HLG transfer function set by HDR source configuration.

Get HDR Strength Setting
Data returned is in the same format as the Write Parameter(s)

Table 19-108. System Brightness Range Setting [Opcode: 50h | Destination: 4]

Set System Brightness Range Setting Write Parameter(s)	
Bytes 0-3	Min Brightness (nits)
1	Range = 0.0000 to 10000.0
	Format = u16.16
Bytes 4-7	Max Brightness (nits)
	Range = 0.0000 to 10000.0
	Format = u16.16
Sets the system brig	phtness range in nits. These are used in determining the appropriate EOTF and OOTF function to be applied on the
HDR source. This need to set only for HDR functionality.	

Get System Brightness Range Setting	
Data returned is in the same format as the Write Parameter(s).	

Table 19-109. Image Color Profile [Opcode: 51h | Destination: 4]

Set Image Color Profile		
Write Parameter(s)	Write Parameter(s)	
Byte	Description	
Byte 0	Color Profile	
Sets pre-configured Gamma table index and HSG settings as stored in the flash image.		

Table 19-110. Image Point HSG [Opcode: 52h | Destination: 4]

Set Image Point HSG [Opcode: 52n Destination: 4]		
Write Parameter(s)		
	Description	
Byte Byte 0	Description	
	14 = Row2 Col4	
Bytes 1-2	HSG Red Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 3-4	HSG Red Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 5-6	HSG Red Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 7-8	HSG Green Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 9-10	HSG Green Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 11-12	HSG Green Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 13-14 HSG Blue Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		
Bytes 15-16	HSG Blue Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 17-18	HSG Blue Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 19-20	HSG Cyan Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	

Table 19-110. Image Point HSG [Opcode: 52h | Destination: 4] (continued)

Set Image Point HSG	Set Image Point HSG			
Bytes 21-22	HSG Cyan Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14			
Bytes 23-24	HSG Cyan Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14			
Bytes 25-26	HSG Magenta Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14			
Bytes 27-28 HSG Magenta Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14				
Bytes 29-30 HSG Magenta Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14				
Bytes 31-32	HSG Yellow Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14			
Bytes 33-34	HSG Yellow Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14			
Bytes 35-36 HSG Yellow Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14				
Bytes 37-38 HSG White Red Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14				
Bytes 39-40	HSG White Green Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14			
Bytes 41-42	HSG White Blue Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14			

This command applies the given hue, saturation and gain values for all colors, for a specified sample point. Point is a number 0-15 corresponding to one of the the 5 x 3 PCC sample points in raster scan order. It does not affect colors having a gain of zero. Note: This call will override any CCA settings performed by prior calls.

Get Image Point HSG	
Read Parameter(s)	
Byte Description	

Get Image Point HSG		
Byte 0	Point	
	0 = Row0 Col0	
	1 = Row0 Col1	
	2 = Row0 Col2	
	3 = Row0 Col3	
	4 = Row0 Col4	
	5 = Row1 Col0	
	6 = Row1 Col1	
	7 = Row1 Col2	
	8 = Row1 Col3	
	9 = Row1 Col4	
	10 = Row2 Col0	
	11 = Row2 Col1	
	12 = Row2 Col2	
	13 = Row2 Col3	
	14 = Row2 Col4	

Return Parameter(s)		
Byte	Description	
Bytes 0-1	HSG Red Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 2-3	HSG Red Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 4-5	HSG Red Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 6-7	HSG Green Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 8-9	HSG Green Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 10-11 HSG Green Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14		
Bytes 12-13	HSG Blue Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 14-15	HSG Blue Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	
Bytes 16-17	HSG Blue Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14	
Bytes 18-19	HSG Cyan Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14	

Bytes 20-21	HSG Cyan Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		
Bytes 22-23	HSG Cyan Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14		
Bytes 24-25	HSG Magenta Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		
Bytes 26-27	HSG Magenta Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		
Bytes 28-29	HSG Magenta Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14		
Bytes 30-31	HSG Yellow Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		
Bytes 32-33	HSG Yellow Saturation Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		
Bytes 34-35	HSG Yellow Hue Range = -1.0 to 1.0 with step size 0.00006103515 Format = s2.14		
Bytes 36-37	HSG White Red Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		
Bytes 38-39	HSG White Green Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		
Bytes 40-41	HSG White Blue Gain Range = 0.0 to 1.99993896485 with step size 0.00006103515 Format = s2.14		

This command returns the currently applied hue, saturation and gain values for all the colors, for a specified sample point. Point is a number 0-15 corresponding to one of the the 5 x 3 PCC sample points in raster scan order. If gain for a color is zero then the HSG is not applied on the color.

Table 19-111. Spcc Control Points [Opcode: 53h | Destination: 4]

Set Spcc Control Points Write Parameter(s)		
Bytes 0-1	Sets vertical position for (row, col) sample points (1,0), (1,1), (1,2), (1,3), (1,4) (pixels)	
Bytes 2-3 Sets horizontal position for (row, col) sample points (0,1), (1,1), (2,1) (pixels)		
Bytes 4-5 Sets horizontal position for (row, col) sample points (0,3), (1,3), (2,3) (pixels)		
Sets positions of control points for Multipoint sPCC.		

Get Spcc Control Points	
Data returned is in the same format as the Write Parameter(s).	
Returns positions of control points for Multipoint sPCC	

Table 19-112. Pcc Coefficients Direct [Opcode: 54h | Destination: 4]

Table 19-112. Pcc Coefficients Direct [Opcode: 54h Destination: 4] Set Pcc Coefficients Direct			
Write Parameter(s)			
Byte	Description		
Byte 0	Point		
	0 = Row0 Col0		
	1 = Row0 Col1		
	2 = Row0 Col2 3 = Row0 Col3		
	3 = Row0 Col3 4 = Row0 Col4		
	4 = Rowu Col4 5 = Row1 Col0		
	6 = Row1 Col1		
	7 = Row1 Col2		
	8 = Row1 Col3		
	9 = Row1 Col3		
	10 = Row2 Col0		
	11 = Row2 Col1		
	12 = Row2 Col2		
	13 = Row2 Col3		
	14 = Row2 Col4		
District 4 0			
Bytes 1-2	Pcc Red R		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = s2.14		
Bytes 3-4	Pcc Red G		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = s2.14		
Bytes 5-6	Pcc Red B		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = s2.14		
Bytes 7-8	Pcc Green R		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = s2.14		
Bytes 9-10	Pcc Green G		
Dytes 5-10	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = \$2.14		
D. 4 44 40			
Bytes 11-12	Pcc Green B		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = s2.14		
Bytes 13-14	Pcc Blue R		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = s2.14		
Bytes 15-16	Pcc Blue G		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = s2.14		
Bytes 17-18	Pcc Blue B		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = \$2.14		
Putos 10 20			
Bytes 19-20	Pcc Cyan R		
	Range = 0.0 to 1.99951171875 with step size 0.00006103515		
	Format = s2.14		

Table 19-112. Pcc Coefficients Direct [Opcode: 54h | Destination: 4] (continued)

Pcc Cyan G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14 Pcc Cyan B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14 Pcc Magenta R
Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pro Magenta R
Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pcc Magenta G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pcc Magenta B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pcc Yellow R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pcc Yellow G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pcc Yellow B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pcc White R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pcc White G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Pcc White B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14

This command applies raw PCC Coefficients for all colors through direct access, for a specified sample point. Point is a number 0-15 corresponding to one of the the 5 x 3 PCC sample points in raster scan order.

Note: This call will override any CCA settings performed by prior calls.

	,	0 1	· ·
Got Dec Coefficients Direct			

Get PCC Coemicients Direct	
Read Parameter(s)	
Byte	Description

Get Pcc Coefficients Direct		
Byte 0	Point	
	0 = Row0 Col0	
	1 = Row0 Col1	
	2 = Row0 Col2	
	3 = Row0 Col3	
	4 = Row0 Col4	
	5 = Row1 Col0	
	6 = Row1 Col1	
	7 = Row1 Col2	
	8 = Row1 Col3	
	9 = Row1 Col4	
	10 = Row2 Col0	
	11 = Row2 Col1	
	12 = Row2 Col2	
	13 = Row2 Col3	
	14 = Row2 Col4	

Return Parameter(s)		
Byte	Description	
Bytes 0-1	Pcc Red R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 2-3	Pcc Red G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 4-5	Pcc Red B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 6-7	Pcc Green R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 8-9	Pcc Green G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 10-11	Pcc Green B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 12-13	Pcc Blue R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 14-15	Pcc Blue G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 16-17	Pcc Blue B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	
Bytes 18-19	Pcc Cyan R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14	

Bytes 20-21	Pcc Cyan G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 22-23	Pcc Cyan B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 24-25	Pcc Magenta R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 26-27	Pcc Magenta G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 28-29	Pcc Magenta B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 30-31	Pcc Yellow R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 32-33	Pcc Yellow G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 34-35	Pcc Yellow B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 36-37	Pcc White R Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 38-39	Pcc White G Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14
Bytes 40-41	Pcc White B Range = 0.0 to 1.99951171875 with step size 0.00006103515 Format = s2.14

This command gets raw PCC Coefficients for all colors through direct access, for a specified sample point. Point is a number 0-15 corresponding to one of the the 5 x 3 PCC sample points in raster scan order.

Note: This call will override any CCA settings performed by prior calls.

19.12 Peripherals

Peripherals

Table 19-113. GPIO Pin Config [Opcode: 60h | Destination: 4]

Set GPIO Pin Config		
Write Parameter(s)		
Byte	Description	
Byte 0	GPIO to select. Range = 0 to 87.	
Byte 1	Input Output bit 0: 1 = Output (Output buffer enabled) 0 = Input (Output buffer High Z)	
Byte 2	Logic Value bit 0: 1 = LogicVal 1 0 = LogicVal 0	
Byte 3	Open Drain Configuration bit 0: 1 = Open Drain output 0 = Standard output	
Programs the direct	ction, logic value and open drain characteristics of a single general purpose I/O pin.	

Get GPIO Pin Config		
Read Parameter(s)		
Byte	Description	
Byte 0	GPIO to select.	
	Range = 0 to 87.	

Return Parameter(s)	
Byte	Description
Byte 0	Input Output bit 0: 1 = Output (Output buffer enabled) 0 = Input (Output buffer High Z)
Byte 1	Logic Value bit 0: 1 = LogicVal 1 0 = LogicVal 0
Byte 2	Open Drain Configuration bit 0: 1 = Open Drain output 0 = Standard output
Returns the directi	on, logic value and open drain configuration for a single general purpose I/O pin.

Table 19-114. GPIO Pin [Opcode: 61h | Destination: 4]

Set GPIO Pin		
Write Parameter(Write Parameter(s)	
Byte	Description	
Byte 0	GPIO to select. Range = 0 to 87.	
Byte 1	Logic Value bit 0: 1 = LogicVal 1 0 = LogicVal 0	
Sets the output log	gic value for the specified GPIO Pin.	

Get GPIO Pin		
Read Parameter(s)	Read Parameter(s)	
Byte	Description	
Byte 0	GPIO to select.	
	Range = 0 to 87.	

Return Parameter(s)	
Byte	Description
Byte 0	Logic Value
	bit 0: 1 = LogicVal 1
	0 = LogicVal 0
Returns the logic value for the specified GPIO pin.	

Table 19-115. General Purpose Clock Enable [Opcode: 63h | Destination: 4]

Set General Purpose Clock Enable	
Write Parameter(s	;)
Byte	Description
Byte 0	Clock to Configure
Byte 1	TRUE = Enable clock FALSE = Disable clock.
Bytes 2-5	Amount to divide the selected clock. This parameter is ignored if the clock is to be disabled. Range 2-127.

Get General Purpose Clock Enable		
Read Parameter(s)	Read Parameter(s)	
Byte	Description	
Byte 0	DLPC Clock Output.	

Return Parameter(s)	
Byte	Description
Byte 0	Is Enabled

Table 19-116. Gen Purpse Clock Frequency [Opcode: 64h | Destination: 4]

Get General Purpose Clock Frequency	
Read Parameter(s)	
Byte	Description
Byte 0	Clock for which the frequency configuration needs to be returned.

Return Parameter(s)	
Byte	Description
Bytes 0-3	Clock frequency in kHz. Range = 787 to 50,000 kHz.

Table 19-117. I2C Passthrough [Opcode: 67h | Destination: 4]

Set I2C Passthrough		
Write Parameter(s)	Write Parameter(s)	
Byte	Description	
Byte 0	Port	
	0 = I2C Port 0	
	1 = I2C Port 1	
	2 = I2C Port 2	
	3 = Only three Ports are supported	
Byte 1	7-bit Address - 0 = 10-bit Address; 1 = 7-bit Address	
Byte 2	Sub-address Present	
	0 = No sub-address present; 1 = sub-address present	
Bytes 3-6	Clock Rate - 100Khz or 400Khz supported	
Bytes 7-8	Device Address	
Bytes 9- Number of bytes passed	Sub-address (if present)	
Bytes 9 - *	Data Bytes	
Writes data to specified I2C device address.		

Get I2C Passthrough		
Read Parameter(s)	Read Parameter(s)	
Byte	Description	
Byte 0	Port 0 = I2C Port 0	
	1 = I2C Port 1	
	2 = I2C Port 2 3 = Only three Ports are supported	
Byte 1	7-bit Address 0 = 10-bit Address 1 = 7-bit Address	
Byte 2	Sub-address Present 0 = No sub-address present; 1 = sub-address present	
Bytes 3-6	Clock Rate	
Bytes 7-8	Device Address	
Bytes 9-10	Byte Count	
Bytes 11- Number of bytes passed	Sub-address (if present)	

Return Parameter(s)	
Byte	Description
Bytes 0- Number of bytes passed	Data Bytes
Reads data from specified I2C device address.	

Table 19-118. DMD Temperature [Opcode: 69h | Destination: 4]

Get DMD Temperature	
Return Parameter(s)	
Byte Description	
Bytes 0-1	Value in degree Celcius
	Note: As a default condition, the firmware is configured to read TMP411A outputs using I2C port 2.
	Range = -256 to 255 with step size 1
This command applicable only if TMP411A temperature sensor is installed in the system.	

Table 19-119. EEPROM Lock State [Opcode: 6Ch | Destination: 4]

Set EEPROM Lock State	
Write Parameter(s)	
Byte	Description
Byte 0	0 - Unlocked
	1 - Locked

Sets the lock state of EEPROM. When lock is set, all writes to EEPROM settings and/or calibration data from application software will not be saved to the EEPROM. The locked mode is to be used only in factory where user wants to test with various settings without actually recording them in the EEPROM. In normal use mode, the lock state parameters should not be modified.

Get EEPROM Lock State	
Data returned is in the same format as the Write Parameter(s).	
Gets the lock state of EEPROM.	

Table 19-120. UART Configuration [Opcode: 6Dh | Destination: 4]

Table 19-120. UART Configuration [Opcode: 6Dn Destination: 4] Set UART Configuration		
	Write Parameter(s)	
Byte	Description	
Byte 0	UART Port 0 = Port 0 1 = Port 1 2 = Port 2	
Byte 1	Enable State bit 0: 0 = Disable 1 = Enable	
Byte 2	Baud Rate 0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 14400 5 = 19200 6 = 38400 7 = 57600 8 = 115200 9 = 230400 10 = 460800 11 = 921600	
Byte 3	Data Bits 0 = 5 1 = 6 2 = 7 3 = 8	
Byte 4	Stop Bits 0 = 1 1 = 2	
Byte 5	Parity 0 = Parity bit is neither transmitted or checked 1 = Even parity is transmitted and checked 2 = Odd parity is transmitted and checked	
Byte 6	Flow Control 0 = Off 1 = Hardware flow control	
Byte 7	Rx Trig Level 0 = One Eighth Full 1 = One Fourth Full 2 = One Half Full 3 = Three Fourths Full 4 = Seven Eighths Full	
Byte 8	Tx Trig Level 0 = One Eighth Full 1 = One Fourth Full 2 = One Half Full 3 = Three Fourths Full 4 = Seven Eighths Full	

Table 19-120. UART Configuration [Opcode: 6Dh | Destination: 4] (continued)

Set UART Configuration	
Byte 9	Rx Data Polarity 0 = Supply non-inverted version of UART RXD input
	1 = Supply inverted version of UART_RXD input
Byte 10	Rx Data Source 0 = UART_x.RXD is sourced by UART_x_RXD pin 1 = UART_x.RXD is sourced by LAMPSTAT pin
Initializes all progra	mmable parameters for the specified UART port.

Get UART Configuration		
Read Parameter(s)		
Byte	Description	
Byte 0	UART Port	
	0 = Port 0	
	1 = Port 1	
	2 = Port 2	

Return Parameter(s)	
Byte	Description
Byte 0	Enable State bit 0: 0 = Disable 1 = Enable
Byte 1	Baud Rate 0 = 1200 1 = 2400 2 = 4800 3 = 9600 4 = 14400 5 = 19200 6 = 38400 7 = 57600 8 = 115200 9 = 230400 10 = 460800 11 = 921600
Byte 2	Data Bits 0 = 5 1 = 6 2 = 7 3 = 8
Byte 3	Stop Bits 0 = 1 1 = 2
Byte 4	Parity 0 = Parity bit is neither transmitted or checked 1 = Even parity is transmitted and checked 2 = Odd parity is transmitted and checked
Byte 5	Flow Control 0 = Off 1 = Hardware flow control

Byte 6	Rx Trig Level
	0 = One Eighth Full
	1 = One Fourth Full
	2 = One Half Full
	3 = Three Fourths Full
	4 = Seven Eighths Full
Byte 7	Tx Trig Level
	0 = One Eighth Full
	1 = One Fourth Full
	2 = One Half Full
	3 = Three Fourths Full
	4 = Seven Eighths Full
Byte 8	Rx Data Polarity
	0 = Supply non-inverted version of UART_RXD input
	1 = Supply inverted version of UART_RXD input
Byte 9	Rx Data Source
	0 = UART_x.RXD is sourced by UART_x_RXD pin
	1 = Reserved
Gets current config	juration for the specified UART port.

Table 19-121. Actuator EEPROM Free Memory Access [Opcode: 6Eh | Destination: 4]

Write to Actuator EEPROM Free Memory	
Write Parameter(s)	
Byte	Description
Byte 0 -1	Offset
Byte 2 - 3	Size

Sets the lock state of EEPROM. When lock is set, all writes to EEPROM settings and/or calibration data from application software will not be saved to the EEPROM. The locked mode is to be used only in factory where user wants to test with various settings without actually recording them in the EEPROM. In normal use mode, the lock state parameters should not be modified.

Get EEPROM Lock State

Data returned is in the same format as the Write Parameter(s).

Gets the lock state of EEPROM.

Table 19-122. Actuator EEPROM Free Memory Info [Opcode: 6Fh | Destination: 4]

Get Actuator EEPROM Free Memory Info	
Return Parameter(s)	
Byte	Description
Bytes 0-1	Offset
Bytes 2-3	Size
This command returns the XPR EEPROM address offset which corresponds to the start of free memory area and size available	

19.13 Warping

Warping

Table 19-123. Manual Warp Table [Opcode: 34h | Destination: 4]

Set Manual Warp Table	
Write Parameter(s)	
Byte	Description
Bytes 0-1	Start index in the table for the data to be written
Bytes 2 - *	Warp map points in X, Y pairs where X, Y are are in 13.3 fixed point format

This command writes to the warp map table that can be enabled using warping can be loaded at a time to anywhere within the table.

Maximum number of points that can be set using this command is 62 in the horizontal direction and 32 in the vertical direction. Overall max 1984 points. The number of points set by this command should match the number of control points specified using the warping command. Each point is passed as two 13.3 fixed point numbers that represents X and Y coordinates. Since the total command packet size cannot exceed 512 bytes, the table shall be loaded by invoking the command multiple times with different start index.

Get Manual Warp Table	
Read Parameter(s)	
Byte	Description
Bytes 0-1	Start index in the table from which the data is to be read
Bytes 2-3	Number of entries to be read

Return Parameter(s)	
Byte	Description
Bytes 0 - *	Warp map points in X, Y pairs where X, Y are in 13.3 fixed point format

This command reads from the warp map table already loaded using Set Manual Warp table. N warp map points (that does not exceed the command packet size) can be read at a time from anywhere within the table. Maximum table size is 1952.

Table 19-124. Manual Warp Control Points [Opcode: 35h | Destination: 4]

Set Manual Warp Control Points		
Write Parameter(s)	Vrite Parameter(s)	
Byte	Description	
Byte 0	Indicates if the warp control points are explicitly defined by array of horizontal and vertical control points. 0 = Input image is uniformly divided to create equally spaced warp control points of dimension ((Number of Horizontal Control Points) x (Number of Vertical Control Points)). Warping map table loaded by the Set Manual Warp Table command is used as a two dimensional array with dimension (Warp Columns x Warp Rows). 1 = Warp control points are defined by Horizontal Control Points and Vertical Control Points parameters of this command. Warping map table loaded by the Set Manual Warp Table command is used as a two dimensional array with dimension (62 x 32).	
Bytes 1 - *	if Control Points Defined By Array = 0, Send Number of Horizontal Control Points here. if Control Points Defined By Array = 1, Send 62 horizontal control points here in uint16 format	
Bytes 1 - *	if Control Points Defined By Array = 0, Send Number of Vertical Control Points here. if Control Points Defined By Array = 1, Send 32 vertical control points here in uint16 format.	

This command sets up the user defined control points of the warp map that shall be applied on top of the keystone correction, anamorphic scaling and other warp dependent feature settings if they are enabled. The warping map table loaded by the manual warp table write command is used as a two dimensional array with dimension which is defined based on the first argument of this command:

TRUE = (Number of Horizontal Control Points) x (Number of Vertical Control Points)

FALSE = (62×32) The points in the map should lie within the display area defined by display image size command. Any points lying outside the display area shall get cropped.

Get Manual Warp Control Points Return Parameter(s)	
Byte 0	Indicates if the warp control points are explicitly defined by array of horizontal and vertical control points.
Bytes 1 - *	if Control Points Defined By Array = 0, Number of Horizontal control points followed by Number of Vertical control points are returned here if Control Points Defined By Array = 1, Actual(62) Horizontal control points followed by Actual(32) Vertical
	control points are returned here

Table 19-125. Apply Manual Warping [Opcode: 36h | Destination: 4]

Set Apply Manual Warping		
Write Parameter(s)		
Byte	Description	
Byte 0	Enable	
	bit 0: Warp Enabled	
This command applies the manual warping control points and map table to the Warp HW defined by Set Manual Warp Control Poset Manual Warp Table respectively.		

Get Apply Manual Warping	
Return Paramete	r(s)
Byte	Description
Byte 0	Enable
	bit0: Manual Warp Enabled
	bit1: Surface Correction Warp Enabled
	bit2: Lens Correction Warp Enabled
This command ret	urns whether warping feature is enabled or disabled for various use cases.

Table 19-126. Smooth Warp Table [Opcode: 38h | Destination: 4]

idalo io izoi omodui italip idalo [opoduoi oon zoomadom i]		
Set Smooth Warp Table Write Parameter(s)		
		Byte
Byte 0	Number of columns in the smooth warp matrix specified below (Range 3-5)	
Byte 1	Number of rows in the smooth warp matrix specified below (Range 3-5)	
Bytes 2 - *	Warp map points in X, Y pairs where X, Y are are in 13.3 fixed point format	

This command sets up the user defined MxN warping map that creates a parametric smooth curve. The edges connecting two warp points in this case are not straight lines but are 'smoother' ie, At the Warp Point, edge is continuous and does not form a vertex (except for corners). This is done by fitting a 2nd degree polynomial curve to warp points, contrary to Write Manual Warp Table command which fits straight line to warp points.

Get Smooth Warp Table

Data returned is in the same format as Write Parameter(s) above.

This command returns the user defined MxN warping map points

Table 19-127. Manual Warp Table Update Mode [Opcode: 39h | Destination: 4]

Set Manual Warp Table Update Mode Write Parameter(s)	
Byte 0	0 = Overwrite Existing
	1 = Merge with Existing

This command configures the warping engine warp points update mode. Only one manual warp can be applied to the warping engine. Hence, if multiple manual warp maps are required, they should be merged before applying.

This Command enables or disables 'Manual Warp Merge Mode' In Merge mode, any new map written will be merged with existing manual warp map. Maps can be merged one after the other. For each map, control points need to be set-up using Set Manual warp control points command and warp poins should be written using Write Manual Warp Command.

	Get Manual Warp Table Update Mode
Data returned is in the same format as Write Parameter(s) above.	
	This command returns the set warp table write mode.

19.14 Manual WPC

Manual WPC

Table 19-128. WPC Target Manual Mode [Opcode: D4h | Destination: 4]

Set WPC Target Manual Mode	
Write Parameter(s)	
Byte	Description
Byte 0	0 = Manual Mode Disable 1 = Manual Mode Enable

Sets/Resets the manual mode for speciying WPC target color point at run-time. When manual mode is set, all target color points specified in the project will be ignored. Software will set only the user specified target color point until the manual mode is reset using this same command.

Get WPC Target Manual Mode

Data returned is in the same format as the Write Parameter(s).

Gets whether the manual mode for speciying WPC target color point at run-time is active. When manual mode is set, all target color points specified in the project will be ignored. Software will set only the user specified target color point until the manual mode is reset.

Table 19-129. WPC Target Color Point [Opcode: D5h | Destination: 4]

Set WPC Target Color Point	
Write Parameter(s)
Byte	Description
Bytes 0-1	CIE X Range = 0.0000 to 1.0000 Format = u0.16
Bytes 2-3	CIE Y Range = 0.0000 to 1.0000 Format = u0.16
Sets the target colo	r point while in WPC Target Manual Mode.

Get WPC Target Color Point	
Data returned is in the same format as the Write Parameter(s).	
Gets the currently active target color point for WPC.	

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

С	hanges from Revision A (February 2022) to Revision B (August 2022)	Page
•	Added description of software version compatibility	51
•	Blending commands added Blending	<mark>72</mark>
•	Modified Get Programmable flash sector information(21h) description	79
•	Added description for Table 19-61	
•	Added Actuator EEPROM Free Memory Access(6E) and Actuator EEPROM Free Memory Info(6F)	
	commands	180
•	Updated the return parameters of Get apply manual warping command(36h)	
•	Added detailed description of Smooth Warp commands, Set Manual Warp update mode(39h) and Set	Manual
	Warp Table commands(34h)	191
С	hanges from Revision * (April 2021) to Revision A (February 2022)	Page
•	Three D Source Configuration (B2h)added	
•	New parameters added in Version(01h) command	
•	Changes made in EEPROM Data Present(07h) command	
•	Changes made in EEPROM Invalidate(0Ah) command	
•	XPR Calibration Pattern Display(ABh) command added	88
•	WPC Calibration Data(C6h) command added	88
•	Maximum SSI Drive Level(CEh) command added	8 <mark>8</mark>
•	WPC Calibration Structure Overide(D2h) command added	8 <mark>8</mark>
•	Changes made in DB Border Configuration(BBh) command.	8 <mark>8</mark>
•	All the DB Aperture related commands removed	8 <mark>8</mark>
•	Opcode of Vx1 Hw Status command changed	104
•	EEPROM Free Area Offset(FFh) command added	105
•	Enable Low Latency Mode(12h) command added	118
•	Warp Timing Validation Enable Adjust Wrp(3Bh) command added	118
•	Is Warp Geometry Modified (3Ch) command added	118
•	Img White Peaking Factor(4Ch) command added	148
•	XPR Filter Strength(4Dh) command added	148
•	Image Color Profile(51h) command added	148
•	Image Point HSG(52h) command added	148
•	Spcc Control Points(53h) command added	148
•	PCC Coefficients Direct(54h) command added	148
•	EEPROM Lock State(6Ch) command added	
•	PWM Output Configuration(65H) command removed	
•	PWM Input Configuration(66h) command removed	
•	CW PWM Configuration(68h) command removed	
•	All the commands in this category have been newly added	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated