
Application Report
SPRA929A − August 2003

1

Using External References in Algorithms Compliant with
the TMS320 DSP Algorithm Standard

Abhinaba Basu XDAIS Engineering Team

ABSTRACT

The TMS320 DSP Algorithm Standard (referred to as XDAIS) allows algorithms to make
external references to functions implemented either in standard libraries or in other
eXpressDSP-compliant libraries. However, in some cases, algorithms may be required to
access specific functionalities that can be accomplished only in frameworks or in other
externally linked modules.

This document discusses how eXpressDSP-complaint algorithms can access functions
implemented in externally linked modules using registered function pointers. This
mechanism of function calls is known as callbacks. This document also contains code
snippets to show how algorithms and frameworks can use callback functions that are
registered, by using the instance creation parameter.

Contents

1 Introduction 2.

2 Callback − Making References to Externally Implemented Functions Through Pointers 2 . . .

3 Registering Function Pointers Through An Instance Creation Parameter 2.
3.1 Default Instance Creation Parameters 5.
3.2 NULL Callback Function Pointer 6.
3.3 Characterizing Algorithm Methods That Use Callbacks 6.
3.4 Changing Callback Functions 6.

4 References 6.

List of Tables

Table 1 Callback Requirement Characterization 2.
Table 2 Example of Callback Requirement Characterization 3.
Table 3 Execution Time Characterization for COPY_TI Algorithm Using Callback 6.

Trademarks are the property of their respective owners.

SPRA929A

2 Using External References in Algorithms Compliant with the TMS320 DSP Algorithm Standard

1 Introduction
TMS320 DSP Algorithm Standard specification currently allows algorithms to call functions
defined either in standard libraries like rts, dsplib, imglib, acpy, etc. or in other
eXpressDSP-compliant libraries. In some cases, the algorithms are required to access specific
functionalities that can be accomplished only by frameworks (e.g., to actively acquire data) or
may be too specific to get included in any standard library.

These functions may either be implemented in the framework itself or may come as a part of
another library that is linked to create the final application. The algorithms must access these
functions in such a way that name-space pollution is avoided, and such that the same functions
can be shared across multiple algorithms or multiple instances of the same algorithm.

2 Callback − Making References to Externally Implemented Functions
Through Pointers
Algorithms may access externally defined functions using the following steps:

1. The algorithm documents the functionality it requires

2. The algorithm’s client implements the function or links in a library, which implements it

3. The client passes the function’s pointer to the algorithm

4. The algorithm stores the pointer internally and makes calls to the function using the
pointer

This mechanism of function calls is known as callbacks. Callbacks provide a solution for an
algorithm to make references to externally linked modules without causing name-space
pollution, and at the same time allows sharing of functions across multiple algorithms.

The client of an eXpressDSP-complaint algorithm can register function pointers with the
algorithm in several ways. In the following sections, we discuss how the instance creation
parameter may be used to register callback functions.

3 Registering Function Pointers Through an Instance Creation
Parameter
The algorithm may define members of the instance creation parameter structure
I<MOD>_Params that are actually functions pointers. The algorithm must document its callback
functionality requirements using the following table.

Table 1. Callback Requirement Characterization

Structure
Member

Prototype of the
Function Pre-condition Post-condition Mandatory Description

The framework implements the callback functions based on the algorithm’s documentation and
then sets the relevant members of the instance creation parameter to the function pointers
before calling algAlloc(). The framework passes the same parameters to algInit(). The algorithm
in algInit copies these function pointers from the instance creation parameter to corresponding
members in the algorithm instance object. After the algInit() phase, it makes calls to the
functions through these pointers.

SPRA929A

3 Using External References in Algorithms Compliant with the TMS320 DSP Algorithm Standard

Table 2. Example of Callback Requirement Characterization

Structure
Member

Prototype of
the Function Pre-condition Post-condition Mandatory Description

pStatusFunc XDAS_Bool
pStatusFunc
(XDAS_UInt16
currSize)

The parameter currSize
contains the number of
bytes of data already
copied by the copy method.
This function will be called
after every 256 bytes of
data copy.

If the function
returns TRUE,
copy will continue
else copying will
be aborted.

No This callback is
used as an
event
notification to
indicate data
copy progress.

pMemcpyFunc XDAS_Void
pMemcpyFunc
(XDAS_Void
*s1, const
XDAS_Void
*s2,
XDAS_UInt32
n);

s1 and s2 are valid pointers
to non−overlapping memory
locations

n bytes have been
copied from s1 to
s2

Yes This function is
used for
copying data
from one
memory
location to
another.

Example COPY_TI Algorithm Code

/*

 * ===

 * Instance creation parameters in icopy.h

*/

typedef struct ICOPY_Params {

 Int size;

 XDAS_Void *(*pMemcpyFunc)(XDAS_Void *s1, const XDAS_Void *s2, XDAS_UInt32 n);

 XDAS_Bool (*pStatusFunc) (XDAS_UInt16 currSize); /* Callback pointer */

} ICOPY_Params;

/*

 * ===

 * Instance object defined in copy_ti_ialg.c

*/

typedef struct COPY_TI_Obj {

 IALG_Obj alg;

 XDAS_Void *(*pMemcpyFunc)(XDAS_Void *s1, const XDAS_Void *s2, XDAS_UInt32 n);

 XDAS_Bool (*pStatusFunc) (XDAS_UInt16 currSize);

} COPY_TI_Obj;

/*

 * ===

 * algInit implementation in copy_ti_ialg.c

*/

Int COPY_TI_initObj(IALG_Handle handle,

SPRA929A

4 Using External References in Algorithms Compliant with the TMS320 DSP Algorithm Standard

 const IALG_MemRec memTab[], IALG_Handle p, const

 IALG_Params *COPYParams)

{

 COPY_TI_Obj *COPY = (Void *)handle;

 const ICOPY_Params *params = (Void *)COPYParams;

 /* Set default parameters if none is given */

 if(params == NULL){

 params = &ICOPY_PARAMS;

 }

 /* If mandatory callback function pointer is not given the fail init */

 if (params−>pMemcpyFunc == NULL)

 return (IALG_EFAIL);

 /* Store callback function pointer in instance object */

 COPY−>pMemcpyFunc = params−>pMemcpyFunc;

 COPY−>pStatusFunc = params−>pStatusFunc;

 return (IALG_EOK);

}

/*

 * ===

 * Make callback thru pointer stored in instance object in an IMOD method

*/

XDAS_UInt16 COPY_TI_copy(ICOPY_Handle handle, XDAS_Void * inBuf, XDAS_Void * outBuf,
XDAS_UInt16 bufLen)

{

 COPY_TI_Obj *COPY = (Void *)handle;

 /* Call mandatory callback function pointer pMemcpyFunc without verifying */

 COPY−>pMemcpyFunc(...);

 /* Call non−mandatory pStatusFunc after verifying that it is not NULL */

 if (COPY−>pStatusFunc != NULL){

 COPY−>pStatusFunc (...);

 }

 /* do other processing ... */

}

Example Framework Code For the COPY_TI Algorithm

/*

 * ==

 * Implement callback function

SPRA929A

5 Using External References in Algorithms Compliant with the TMS320 DSP Algorithm Standard

*/

XDAS_Bool StatusFunc (XDAS_UInt16 currSize)

{

 /* StatusFunc processing code ... */

 return TRUE;

}

Void main()

{

 COPY_Params copyParams;

 COPY_Handle copyHandle;

 /* Do other variable declarations and initializations ... */

 COPY_init();

 /* Initialize instance creation params with function ptr */

 copyParams = ICOPY_PARAMS;

 copyParams.pMemcpyFunc = memcpy; /* callback function from external library */

 copyParams.pStatusFunc = StatusFunc; /* client implemented callback function */

 /* Create algorithm instance */

 if((copyHandle = COPY_create (©_TI_ICOPY, ©Params)) != NULL) {

 COPY_copy(copyHandle, inBuff, outBuff, BUFFLEN); /* run IMOD methods */

 COPY_delete(copyHandle);

 }

 COPY_exit();

}

3.1 Default Instance Creation Parameters

If the framework does not pass an instance creation parameter pointer as an argument to
algAlloc or algInit, then the algorithm uses the default instance creation parameter
I<MOD>_PARAMS. The algorithm vendor provides I<MOD>_PARAMS either in a separate C file
or in the algorithm archive. The algorithm can provide a default implementation of the callback
function and initialize the callback-function pointer member in I<MOD>_PARAMS to it, or it can
choose to initialize it to NULL.

COPY_TI Algorithm’s Default Instance Creation Parameter

/*

 * ===

 * Default implementation of callback function *

*/

XDAS_Bool StatusFunc (XDAS_UInt16 currSize)

{

 /* StatusFunc default implementation code ... */

}

SPRA929A

6 Using External References in Algorithms Compliant with the TMS320 DSP Algorithm Standard

/*

* ===

 * Default instance creation parameter

*/

ICOPY_Params ICOPY_PARAMS = {

 sizeof(ICOPY_Params),

 StatusFunc,

 /* Initialize other members ... */

};

3.2 NULL Callback Function Pointer

It is not mandatory for application frameworks to implement and give valid callback function
pointers to algorithms. The framework may initialize callback-function pointer member of an
instance creation parameter to NULL.

If the callback function is essential for the algorithm to work, then it must fail in algInit by
returning IALG_EFAIL. If the algorithm uses the callback functions for non-essential functionality
such as event notification for real-time analysis/debugging, and can work without it, then it may
choose to proceed by returning IALG_OK. The algorithm informs the framework whether a
callback function is essential or not through the “Mandatory” field in the “Callback Requirements
Characterization” (see Table 1).

Note: The algorithm should not make calls to callback function pointers set to NULL.

3.3 Characterizing Algorithm Methods That Use Callbacks

If an algorithm uses callbacks in a method, then its characterization data (execution time,
interrupt latency) becomes dependent of the callback function. In such cases, the algorithm
should provide characterization data for the method in such a way that the relationship between
the method and the callback functions become evident.

COPY_TI Algorithm Code

XDAS_UInt16 COPY_TI_copy(ICOPY_Handle handle, XDAS_Void * inBuf, XDAS_Void * outBuf,
XDAS_UInt16 bufLen)
{

 COPY_TI_Obj *COPY = (Void *) handle;

 if(COPY−>pStatusFunc)

 COPY−>pStatusFunc (...);

 COPY−>pMemcpyFunc (...);

 /* Other processing code ... */

}

Table 3. Execution Time Characterization for COPY_TI Algorithm Using Callback

Operation Period Worst-Case Interrupt Lat. (Instr. Cycle) Worst-Case Cycles/Period

copy 2250ms 0 + pStatusFunc + pMemcpyFunc 26700 + pStatusFunc + pMemcpyFunc

SPRA929A

7 Using External References in Algorithms Compliant with the TMS320 DSP Algorithm Standard

3.4 Changing Callback Functions

In this method,once an algorithm instance has been initialized, the callback function cannot be
changed. This is a limitation of using an instance creation parameter to register callback
functions.

4 References
1. TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

2. TMS320 DSP Algorithm Standard API Reference (SPRU360)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2003, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

