

TPSM84A22 8V 至 14V 输入、1.2V 至 2.05V 输出、10A SWIFT™ 电源模块

1 特性

- 全集成电源解决方案，包括输入和输出电容
- 只需一个电阻即可设置电压
- 9mm x 15mm 小型封装
 - 最大高度 2.3mm
 - 与 [TPSM84A21](#) 引脚兼容
- 超快速负载阶跃响应
- 效率高达 90%
- 输出电压精度为 1%
- 4MHz 开关频率
- 与外部时钟同步
- 电源正常输出
- 预偏置输出启动
- 可编程欠压闭锁 (UVLO)
- 工作 IC 结温范围: -40°C 至 +125°C
- 工作环境温度范围: -40°C 至 +85°C
- 符合 EN55022 B 类辐射标准

2 应用

- 电信和无线基础设施
- 测试和测量
- Compact PCI/PCI Express/PXI Express

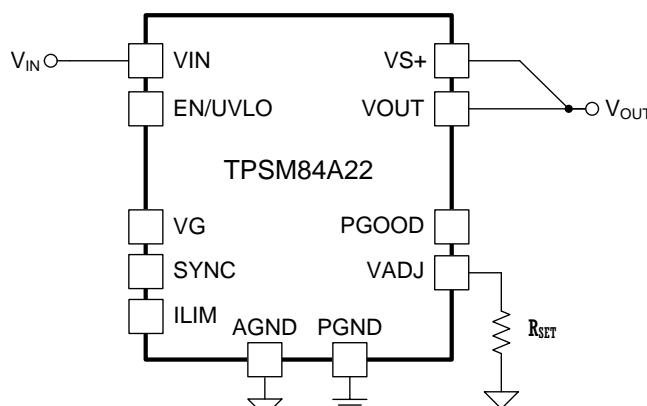
3 说明

TPSM84A22 是一套易于使用的集成电源解决方案，它将 [TPS54A20](#) 10A、DC/DC 同步降压转换器与功率 MOSFET、隔离电感、输入和输出电容以及无源器件完美融合于薄型封装中。这套完备的电源解决方案只需一个电阻即可设置电压，设计过程中无需考虑回路补偿和磁件选型。

对于标准应用而言，凭借这套全集成电源解决方案，无需使用额外的输入或输出电容即可正常运行，而且只需通过一个外部电阻即可设置输出电压。此外，TPSM84A22 还支持高频运行，同时兼具超快瞬态响应和精准的稳压能力，轻松满足严格的稳压规范。

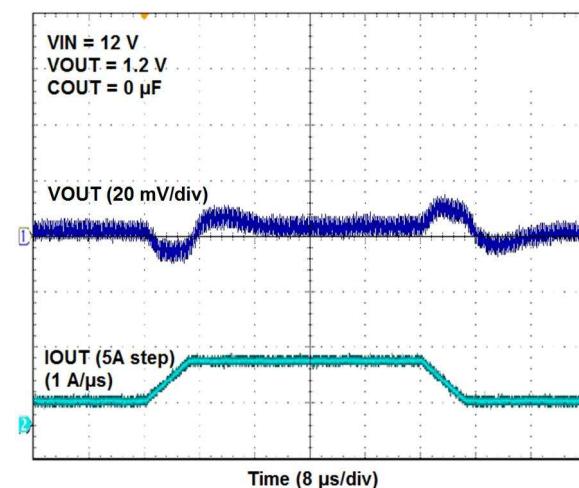
该器件采用 9mm x 15mm 的小巧尺寸，方便焊接在印刷电路板上，从而打造一种紧凑的薄型负载点设计。

器件信息⁽¹⁾


器件型号	封装	封装尺寸 (标称值)
TPSM84A22	QFM	9.00mm x 15.00mm

(1) 要了解所有可用封装，请参见数据表末尾的可订购产品附录。

器件比较


器件编号	V _{OUT} 调节范围
TPSM84A21	0.55V - 1.35V
TPSM84A22	1.2V - 2.05V

简化电路原理图

Copyright © 2016, Texas Instruments Incorporated

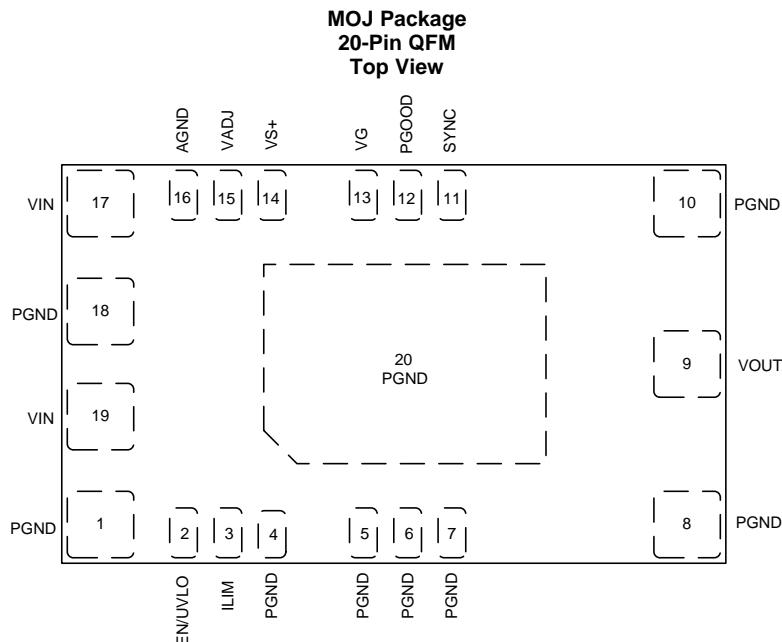
瞬态响应

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

English Data Sheet: [SLVSDF8](#)

目录

1	特性	1	7.4	Device Functional Modes.....	16
2	应用	1	8	Application and Implementation	17
3	说明	1	8.1	Application Information.....	17
4	修订历史记录	2	8.2	Typical Application	17
5	Pin Configuration and Functions	3	9	Power Supply Recommendations	19
6	Specifications.....	4	10	Layout.....	20
6.1	Absolute Maximum Ratings	4	10.1	Layout Guidelines	20
6.2	ESD Ratings.....	4	10.2	Layout Examples.....	20
6.3	Recommended Operating Conditions	4	10.3	EMI.....	22
6.4	Thermal Information	5	11	器件和文档支持	23
6.5	Electrical Characteristics.....	5	11.1	文档支持	23
6.6	Switching Characteristics	7	11.2	接收文档更新通知	23
6.7	Package Specifications	7	11.3	社区资源.....	23
6.8	Typical Characteristics	8	11.4	商标	23
7	Detailed Description	11	11.5	静电放电警告.....	23
7.1	Overview	11	11.6	Glossary	23
7.2	Functional Block Diagram	11	12	机械、封装和可订购信息	23
7.3	Feature Description.....	12			


4 修订历史记录

Changes from Revision A (April 2017) to Revision B	Page
• 删除特性 MSL 3/260°C 峰值回流（请参阅封装选项附录）	1
• Added the <i>EMI</i> section	22

Changes from Original (December 2016) to Revision A	Page
• 将最大回流温度从 245C 更改为 260C	1

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
AGND	16	—	Zero voltage reference for analog control circuitry. Connect RSET between this pin and VADJ close to the device. Do not connect this pin to PGND; the connection is made internal to the device.
EN/UVLO	2	I	Enable and UVLO adjust pin. When this pin voltage is low, the device is disabled. Use an open drain, open collector, or a suitable logic gate device to control the enable function. A resistor divider between this pin, PGND, and VIN adjusts the UVLO voltage.
ILIM	3	I	Current limit setting pin. Leave this open for the full current limit threshold of 15 A. Connect a 47 kΩ resistor between this pin and PGND to reduce the current limit threshold to 11.25 A.
PGND	1, 4, 5, 6, 7, 8, 10, 18, 20	—	Power ground of the device. Connect these pins to the power ground plane of the PCB. Thermal vias to internal ground planes should be added beneath pin 20.
PGOOD	12	O	Power good indicator. This pin is an open-drain output and will assert low if the output voltage is greater than ±5% from the programmed value or due to thermal shutdown, under-voltage, or EN shutdown. A pull-up resistor is required. VG can be used as a PGOOD pull-up source.
VS+	14	I	Remote sense connection. This pin must be connected to VOUT at the load or at the device pins. Connect the pin to VOUT at the load for improved regulation.
SYNC	11	I	External clock synchronization pin. An external clock signal can be applied to this pin to synchronize the switching frequency within ±10% of the nominal switching frequency (4 MHz).
VADJ	15	I	Output voltage adjust pin. Connecting a resistor between this pin and AGND sets the output voltage.
VG	13	I	Gate driver supply pin. If this pin is left open, an internal LDO will generate the gate driver supply voltage from the VIN pin. To reduce power consumption and improve efficiency, power this pin with an external 5-V supply. This pin can be used as a PGOOD pull-up source.
VIN	17, 19	I	Input Voltage. These pins supply all of the power to the converter. Connect VIN to a supply voltage between 8 V and 14 V.
VOUT	9	O	Output voltage. Connect any external output capacitors between these pins and PGND.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Input voltage	VIN	–0.3	15	V
	EN/UVLO	–0.3	7	V
	PGOOD, SYNC, VG	–0.3	6	V
	ILIM, VADJ, VS+	–0.3	3	V
	PGND	–0.3	0.3	V
Output voltage	VOUT	–0.3	3	V
Source current	EN/UVLO		100	µA
Sink current	VG		100	mA
	PGOOD		4	mA
Mechanical shock	Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted		500	G
Mechanical vibration	Mil-STD-883D, Method 2007.2, 20-2000Hz		20	G
Operating IC junction temperature, T_J ⁽²⁾		–40	125	°C
Operating ambient temperature, T_A ⁽²⁾		–40	85	°C
Storage temperature, T_{stg}		–55	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area (SOA) curves, ensures that the maximum junction temperature of any component inside the module is never exceeded.

6.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{IN}	Input voltage	8		14	V
V_{OUT}	Output voltage	1.2		2.05	V
V_{VG}	Gate drive voltage	5.0		5.5	V
V_{EN}	EN voltage	0		5.5	V
V_{PGOOD}	PGOOD pull-up voltage	0		5.5	V
V_{SYNC}	SYNC voltage	0		5.5	V
I_{OUT}	Output current	0		10	A
T_J	Operating IC junction temperature ⁽¹⁾	–40		125	°C
T_A	Operating ambient temperature ⁽¹⁾	–40		85	°C

(1) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating area (SOA) curves, ensures that the maximum junction temperature of any component inside the module is never exceeded.

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TPSM84A22	UNIT
		MOJ (QFM)	
		20 PINS	
R _{θJA}	Junction-to-ambient thermal resistance ⁽²⁾	14.9	°C/W
Ψ _{JT}	Junction-to-top characterization parameter ⁽³⁾	2.2	°C/W
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁴⁾	5.7	°C/W

- (1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.
- (2) The junction-to-ambient thermal resistance, Θ_{JA} , applies to devices soldered directly to a 50 mm x 100 mm double-sided PCB with 2 oz. copper and natural convection cooling. Additional airflow reduces Θ_{JA} .
- (3) The junction-to-top board characterization parameter, Θ_{JT} , estimates the junction temperature, T_J , of a device in a real system, using a procedure described in JESD51-2A (section 6 and 7). $T_J = \psi_{JT} * P_{dis} + T_T$; where P_{dis} is the power dissipated in the device and T_T is the temperature of the top of the device.
- (4) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature, T_J , of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). $T_J = \psi_{JB} * P_{dis} + T_B$; where P_{dis} is the power dissipated in the device and T_B is the temperature of the board 1mm from the device.

6.5 Electrical Characteristics

Over -40°C to $+85^{\circ}\text{C}$ free-air temperature range, $V_{IN} = 12\text{ V}$, $V_{OUT} = 1.5\text{ V}$, $I_{OUT} = I_{OUT\ max}$, $F_{SW} = 4\text{ MHz}$,
External $C_{IN} = 2 \times 22\text{ }\mu\text{F}$ 25 V 1210 ceramic plus $1 \times 100\text{ }\mu\text{F}$ electrolytic (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT VOLTAGE (VIN)					
V _{IN}	VIN input voltage range	Over V _{OUT} range	8 ⁽¹⁾	14	V
V _{IN_UVLO}	VIN under voltage lock out	V _{IN} increasing	7.65	7.95	V
		V _{IN} decreasing	7.4		V
V _{IN_HYS}	VIN UVLO hysteresis		250		mV
I _{VIN_EN}	VIN standby current	EN = 0 V	47		μA
OUTPUT VOLTAGE (VOUT)					
V _{OUT(ADJ)}	Output voltage adjust range	Over I _{OUT} range	1.2	2.05	V
V _{OUT}	Set-point voltage tolerance	V _{OUT} = 1.5 V, $T_A = 25^{\circ}\text{C}$, I _{OUT} = 0 A	-1.0%	+1.0% ⁽²⁾	
	Temperature variation	V _{OUT} = 1.5 V, $-40^{\circ}\text{C} \leq T_A \leq 85^{\circ}\text{C}$, I _{OUT} = 0 A	±0.2% ⁽³⁾		
	Line regulation	V _{OUT} = 1.5 V, over V _{IN} range, I _{OUT} = 0 A, $T_A = 25^{\circ}\text{C}$	±0.03%		
	Load regulation	V _{OUT} = 1.5 V, over I _{OUT} range, $T_A = 25^{\circ}\text{C}$	±0.1%		
V _{OUT} Ripple	Output voltage ripple	20 MHz bandwidth, peak-to-peak	9		mV
OUTPUT CURRENT					
I _{OUT}	Output current	See SOA graph for derating over temperature.	0	10	A
	Overcurrent threshold	ILIM = open	15		A
		ILIM = 47 kΩ	11.25		A

- (1) The minimum VIN is 8V or (VOUT x 5.3), whichever is greater.
- (2) The stated limit of the set-point tolerance includes the tolerance of both the internal voltage reference and the internal adjustment resistor. The overall output voltage tolerance will be affected by the tolerance of the external R_{SET} resistor.
- (3) Specified by design. Not production tested.

Electrical Characteristics (continued)

Over -40°C to $+85^{\circ}\text{C}$ free-air temperature range, $V_{\text{IN}} = 12 \text{ V}$, $V_{\text{OUT}} = 1.5 \text{ V}$, $I_{\text{OUT}} = I_{\text{OUT}} \text{ max}$, $F_{\text{SW}} = 4 \text{ MHz}$, External $C_{\text{IN}} = 2 \times 22 \mu\text{F}$ 25 V 1210 ceramic plus $1 \times 100 \mu\text{F}$ electrolytic (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
PERFORMANCE						
η Efficiency ⁽³⁾	$V_{\text{IN}} = 12 \text{ V}$, $I_{\text{OUT}} = 5 \text{ A}$	$V_{\text{OUT}} = 1.2 \text{ V}$, $VG = \text{open}$	84.2%			
		$V_{\text{OUT}} = 1.2 \text{ V}$, $VG = 5 \text{ V}$	86.2%			
		$V_{\text{OUT}} = 1.5 \text{ V}$, $VG = \text{open}$	85.7%			
		$V_{\text{OUT}} = 1.5 \text{ V}$, $VG = 5 \text{ V}$	87.5%			
		$V_{\text{OUT}} = 1.8 \text{ V}$, $VG = \text{open}$	87.4%			
		$V_{\text{OUT}} = 1.8 \text{ V}$, $VG = 5 \text{ V}$	89.0%			
Transient response ⁽³⁾	1 A/ μs load step, 25% to 75% I_{OUT} (max), $C_{\text{OUT}} = 0 \mu\text{F}$	V_{OUT} over/undershoot	15		mV	
		Recovery time	10		μs	
	5 A/ μs load step, 25% to 75% I_{OUT} (max), $C_{\text{OUT}} = 0 \mu\text{F}$	V_{OUT} over/undershoot	30		mV	
		Recovery time	10		μs	
SOFT START						
T_{SS}	Internal soft start time ⁽³⁾		4.1		ms	
INTERNAL REGULATOR (VG)						
V_{VG}	VG pin output voltage		4.4	4.8	5.0	V
ENABLE AND UNDER-VOLTAGE LOCK-OUT (EN/UVLO)						
V_{EN}	EN threshold range		1.17	1.23	1.27	V
I_{EN}	Input current	EN threshold + 50 mV		-4		μA
	Hysteresis current	EN threshold - 50 mV		-1		μA
POWER GOOD (PGOOD)						
V_{PGOOD}	PGOOD thresholds ⁽³⁾	V_{VOUT} falling (Fault)	89%			
		V_{VOUT} rising (Good)	95%			
		V_{VOUT} rising (Fault)	109%			
		V_{VOUT} falling (Good)	104%			
Minimum V_{IN} for valid PGOOD ⁽³⁾	$V_{\text{PGOOD}} \leq 0.5 \text{ V}$ at 100 μA		1.2	2.75		V
PGOOD low voltage	$I_{\text{PGOOD}} = 1.7 \text{ mA}$		0.25	0.3		V
THERMAL SHUTDOWN						
Thermal shutdown threshold			135			$^{\circ}\text{C}$
Thermal shutdown hysteresis			20			$^{\circ}\text{C}$
CAPACITANCE						
C_{IN}	External input capacitance	Ceramic type	0 ⁽⁴⁾	44		μF
		Non-ceramic type	0 ⁽⁴⁾	100		μF
C_{OUT}	External output capacitance	Ceramic type	0 ⁽⁵⁾	1000 ⁽⁶⁾		μF
		Non-ceramic type	0 ⁽⁵⁾	2200 ⁽⁶⁾		μF
		Equivalent series resistance (ESR)		35		$\text{m}\Omega$

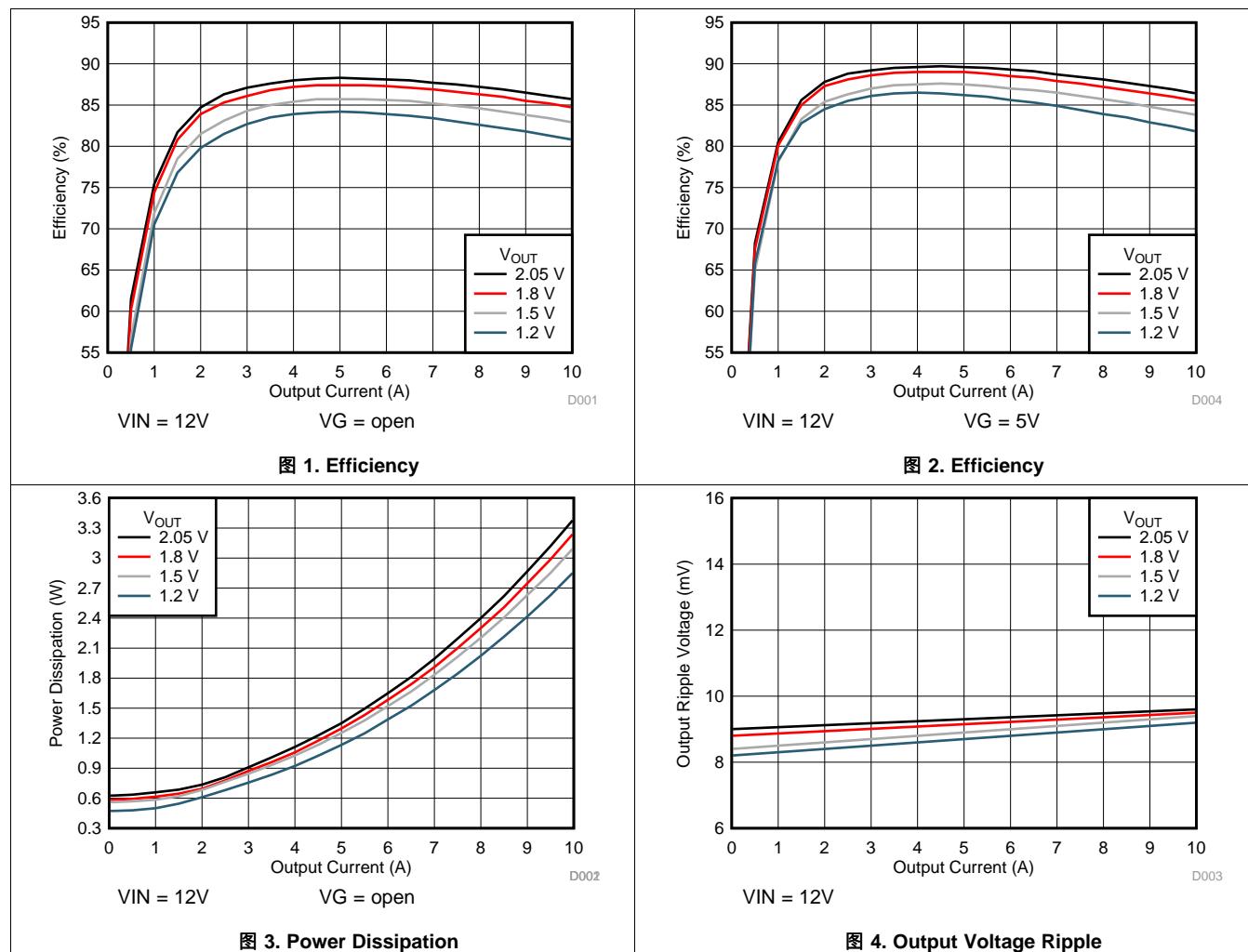
- (4) Internal to the device, 14.2 μF (nominal) ceramic input capacitance is present. This device does not require additional input capacitance. If adding additional input capacitance, locate the capacitors close to the device.
- (5) Internal to the device, 135 μF (nominal) ceramic output capacitance is present. This device does not require additional output capacitance to operate. Adding additional output capacitance near the load improves the response of the device to load transients.
- (6) The maximum output capacitance listed in the table is the maximum amount that has been tested and validated for proper start-up, stability, and transient response. It may be possible to operate with additional output capacitance, however, additional validation is required.

6.6 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
FREQUENCY AND SYNCHRONIZATION (SYNC) ⁽¹⁾					
F_{SW}	Switching frequency	SYNC = open	3.7	4	4.3 MHz
F_{SYNC}	Synchronization frequency range		3.6	4.4	MHz
V_{SYNC-H}	SYNC high threshold	SYNC control	2.0		V
V_{SYNC-L}	SYNC low threshold			0.8	V
D_{SYNC}	SYNC duty cycle		20%	80%	

(1) Specified by design. Not production tested.


6.7 Package Specifications

TPSM84A22		VALUE	UNIT
Weight		0.91	grams
Flammability	Meets UL 94 V-O		
MTBF Calculated Reliability	Per Bellcore TR-332, 50% stress, $T_A = 40^\circ\text{C}$, ground benign	30.6	MHrs

6.8 Typical Characteristics

The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for the converter. Applies to [图 1](#), [图 2](#), [图 3](#), [图 4](#) and [图 11](#).

The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to devices soldered directly to a 50 mm × 100 mm double-sided PCB with 2 oz. copper. Applies to [图 5](#) and [图 6](#).

Typical Characteristics (接下页)

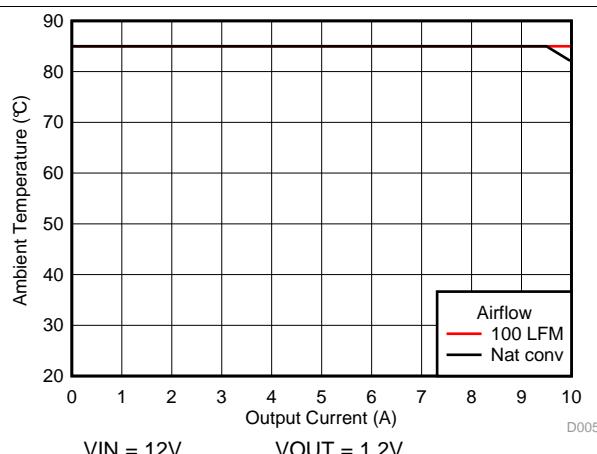


图 5. Safe Operating Area

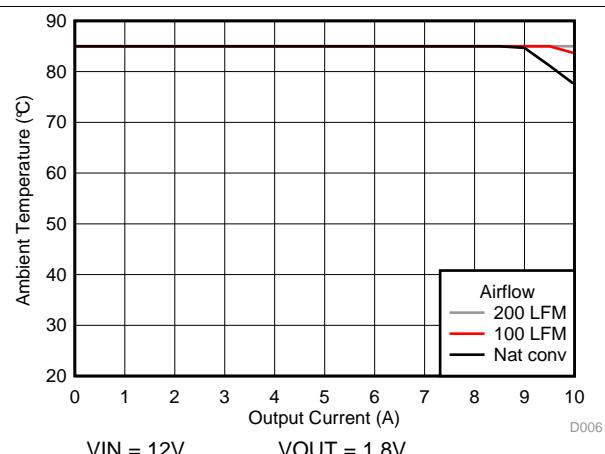


图 6. Safe Operating Area

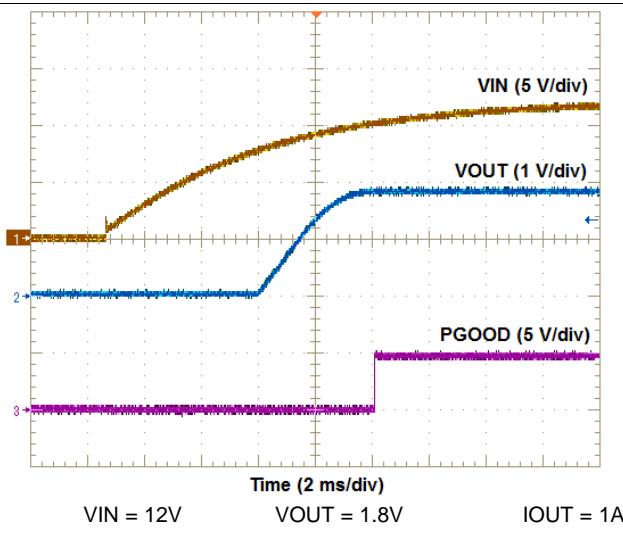


图 7. VIN Start-up Waveforms

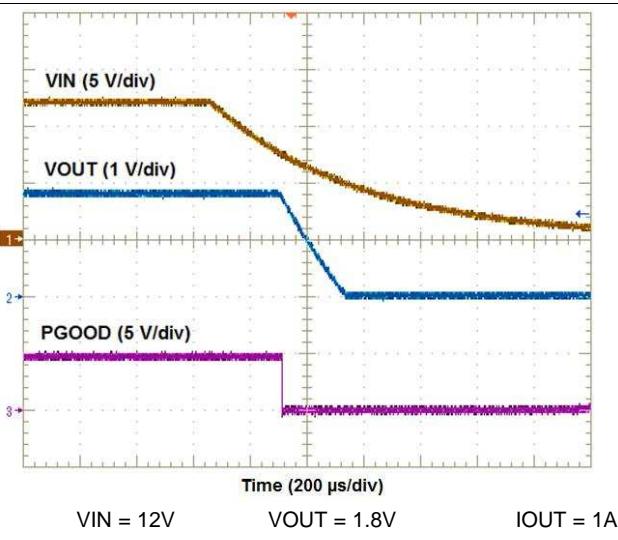


图 8. VIN Shut-down Waveforms

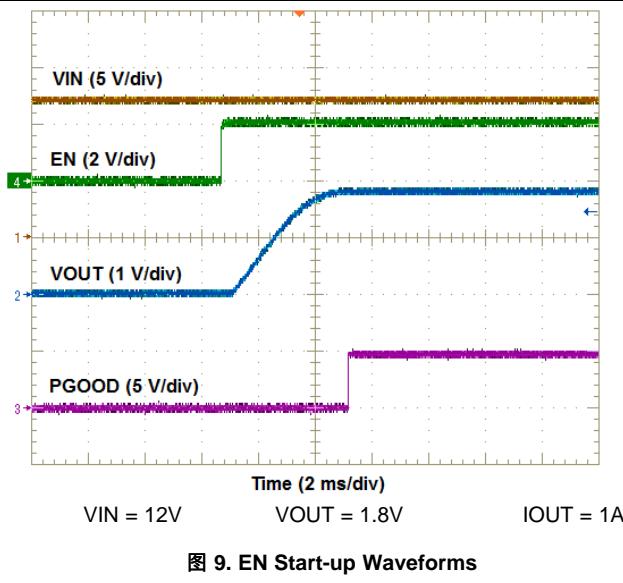


图 9. EN Start-up Waveforms

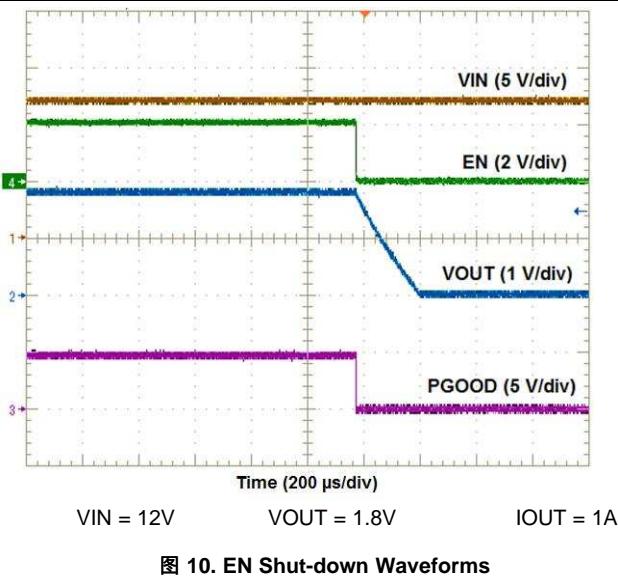


图 10. EN Shut-down Waveforms

Typical Characteristics (接下页)

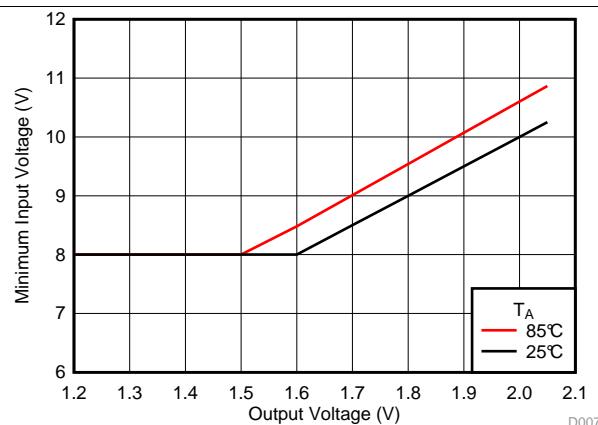
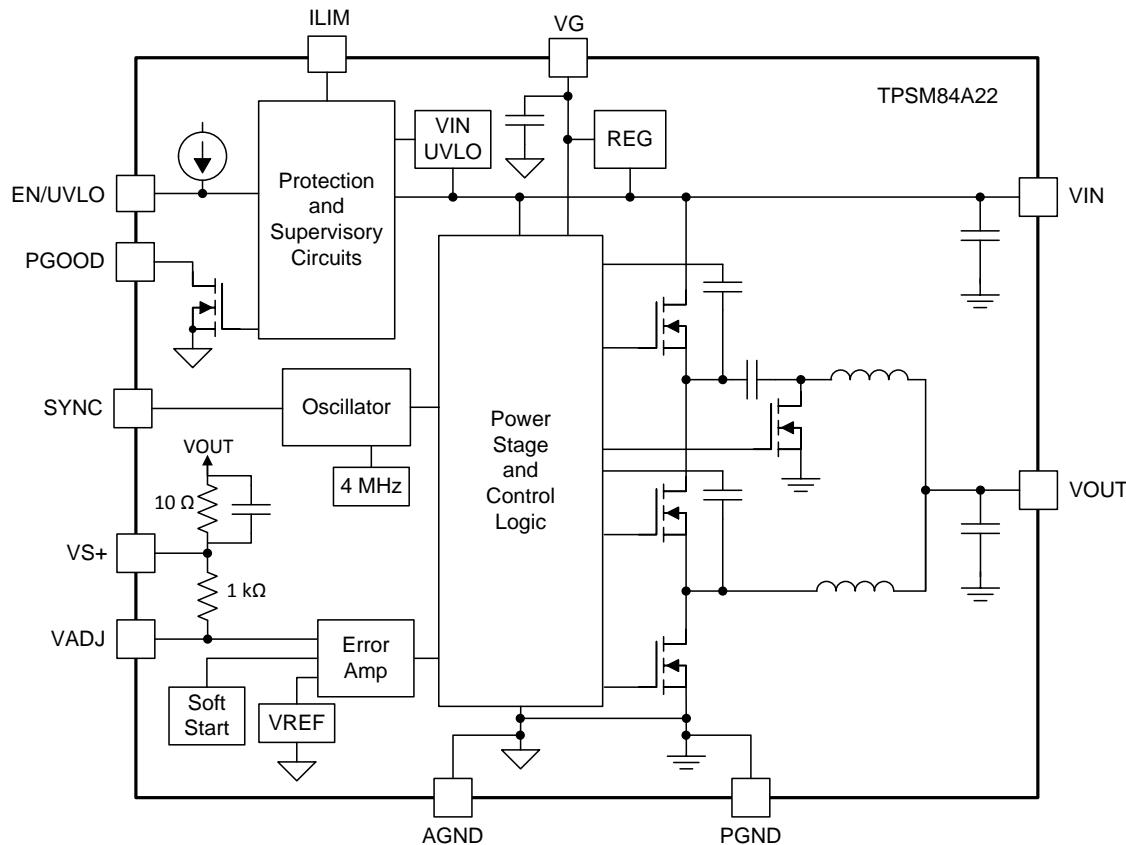


图 11. Minimum Input Voltage

7 Detailed Description

7.1 Overview

The TPSM84A22 is a 14-V, 10-A, synchronous series capacitor step-down (buck) power module. The TPSM84A22 combines a 10-A DC/DC converter with power MOSFETs, shielded inductors, series capacitor, input and output capacitors, and passives into a low profile, overmolded package. The integrated input and output capacitors allows standard applications to operate with no additional input or output capacitors and only a single resistor to set the output voltage.


The integrated components allow for high-efficiency, high-density, complete power supply designs with continuous output currents up to 10 A. The TPSM84A22 reduces the external component count by integrating both the input and output capacitors. The TPSM84A22 input voltage range is 8 V to 14 V with an output voltage range of 1.2 V to 2.05 V.

The TPSM84A22 is a two-phase power supply with each phase switching at a fixed 2 MHz frequency, resulting in the internal oscillator frequency of 4 MHz. An external synchronization clock can also be provided via the SYNC pin.

The TPSM84A22 starts up safely into loads with pre-biased outputs (non-zero volts at startup). The device implements an internal input voltage under voltage lockout (UVLO) feature which can be adjusted higher by adding an external resistor divider on the EN/UVLO pin. Electrical ON/OFF control is provided using the enable (EN) feature. The TPSM84A22 is disabled by pulling the EN pin low. When the device is disabled, the supply current is typically less than 50 μ A.

The TPSM84A22 has a power good comparator (PGOOD) which monitors the output voltage through the VS+ pin. The PGOOD pin is an open-drain MOSFET which is held low until the output voltage is within $\pm 5\%$ of the set voltage. The PGOOD pin is held low during startup or when a fault occurs.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Adjusting the Output Voltage (VADJ)

The VADJ pin programs the output voltage of the TPSM84A22. The output voltage adjustment range is from 1.2 V to 2.05 V. The adjustment method requires the addition of R_{SET} connected between VADJ and AGND. If an R_{SET} resistor is not populated, the module will default to 0.508 V, which is outside of the operation range of this device. The VS+ pin (pin 14) must be connected to VOUT. TI recommends to make the VS+ connection at the load for the best load regulation performance. The R_{SET} resistor must be connected directly between the VADJ pin (pin 15) and AGND (pin 16).

公式 1 可以用来计算给定输出电压 V_{OUT} 时理想的 R_{SET} 电阻值。公式 2 可以用来计算给定 R_{SET} 电阻值时的输出电压 V_{OUT} 。表 1 列出了常见电压下的理想 R_{SET} 电阻值，同时也列出了最接近的 E96 标准电阻值、实际输出电压和设置点误差。

$$R_{SET} = \frac{1}{\frac{V_{OUT}}{0.508} - 1} \text{ (k}\Omega\text{)} \quad (1)$$

$$V_{OUT} = 0.508 * \left(\frac{1}{R_{SET} \text{ (k}\Omega\text{)}} + 1 \right) \text{ (V)} \quad (2)$$

表 1. R_{SET} 电阻值

V_{OUT} (V)	Ideal R_{SET} (kΩ)	Closest E96 Resistor Value		
		R_{SET} (kΩ)	Actual V_{OUT} (V)	%
1.20	0.734	0.732	1.202	0.166
1.25	0.685	0.681	1.254	0.317
1.30	0.641	0.649	1.291	-0.712
1.35	0.603	0.604	1.349	-0.070
1.40	0.570	0.576	1.390	-0.718
1.45	0.539	0.536	1.456	0.397
1.50	0.512	0.511	1.502	0.142
1.55	0.488	0.487	1.551	0.072
1.60	0.465	0.464	1.603	0.177
1.65	0.445	0.442	1.657	0.444
1.70	0.426	0.422	1.712	0.694
1.75	0.409	0.412	1.741	-0.514
1.80	0.393	0.392	1.804	0.218
1.85	0.379	0.383	1.834	-0.845
1.90	0.365	0.365	1.899	-0.012
1.95	0.352	0.348	1.968	0.911
2.00	0.341	0.340	2.002	0.106
2.05	0.329	0.332	2.038	-0.579

7.3.2 Input and Output Capacitance

The TPSM84A22 requires no external input or output capacitance to operate. Internal to the TPSM84A22 there is 14.2 μF (nominal) of ceramic input capacitance. Additionally, internal to the TPSM84A22 there is 135 μF (nominal) of ceramic output capacitance.

Applications requiring additional ripple voltage reduction should add ceramic input and output capacitors directly at the VIN and VOUT pins of the device. Applications requiring improved transient response can also benefit by adding additional ceramic or low-ESR bulk output capacitance. See the Capacitance section of the [Electrical Characteristics](#) table for more information when adding external input and output capacitors.

7.3.3 Transient Response

The exceptional transient response of the TPSM84A22 allows many applications to operate with little or no additional output capacitance. [图 12](#) through [图 15](#) show typical transient waveforms for the TPSM84A22 with no output capacitance added.

7.3.3.1 Transient Response Waveforms

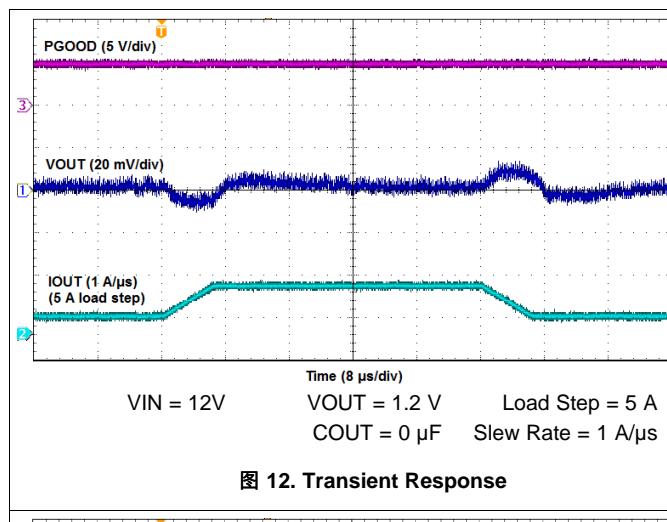


图 12. Transient Response

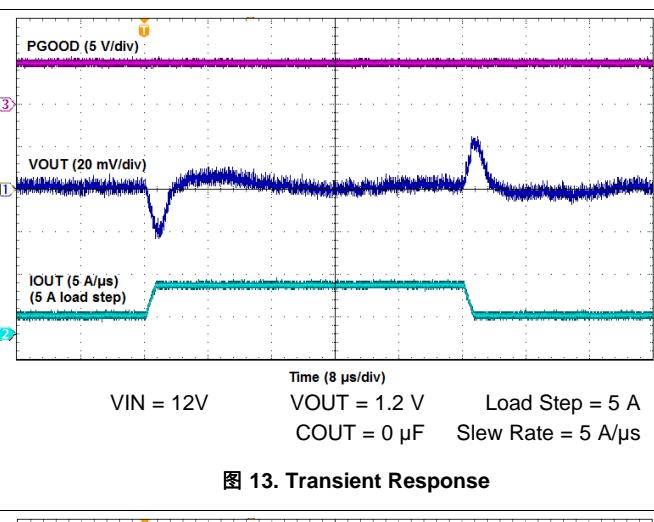


图 13. Transient Response

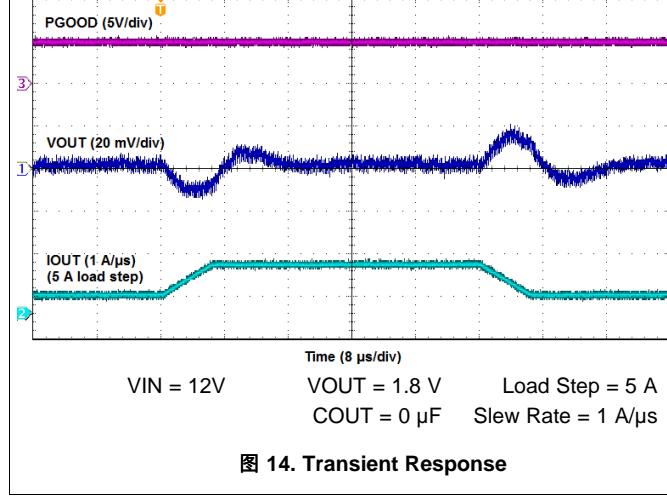


图 14. Transient Response

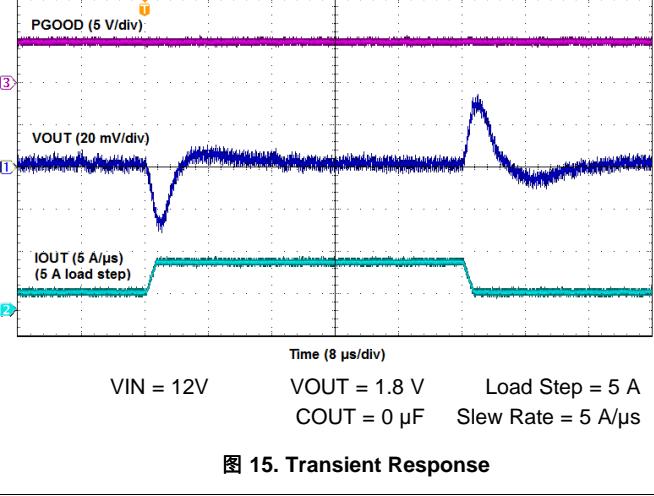


图 15. Transient Response

7.3.4 Oscillator Frequency

The oscillator frequency of this converter is set at 4 MHz. The per phase switching frequency of the converter is half the oscillator frequency, or 2 MHz per phase. The oscillator frequency is fixed internally.

During load transients, the internal control loop will momentarily change the switching frequency in order to meet the output voltage recovery.

7.3.5 External Clock Syncronization

An external clock can be connected to the SYNC pin. The external clock signal overrides the internal oscillator and is used as the system clock. This feature enables the user to synchronize the switching events to a master clock on their board. The internal phase locked loop (PLL) has been implemented to allow synchronization at frequencies between $\pm 10\%$ of the nominal oscillator frequency. This allows the user to easily switch between the internal oscillator mode and the external clock mode while converting power. Before the external clock is present or after it is removed, the device with default to the internal oscillator setting.

To implement the synchronization feature, connect a square wave clock signal to the SYNC pin with a duty cycle between 20% and 80%. The clock signal amplitude must transition lower than 0.8 V and higher than 2 V. The start of the switching cycle is synchronized to the rising edge of the SYNC pin. The device can be configured for operation in applications where both an internal oscillator mode and an external synchronization clock mode are needed. Before the external clock is present, the switching frequency of the device is set by the internal oscillator. When the external clock is present, the SYNC mode overrides the internal oscillator. The first time the SYNC pin is pulled above the SYNC high threshold (2 V), the device switches from the internal oscillator mode to the SYNC mode and the PLL starts to lock onto the frequency of the external clock. When the external SYNC clock is removed, the converter will transition back to the internal oscillator after 4 internal clock cycles.

7.3.6 Soft Start

The TPSM84A22 has a pre-programmed soft start time of 4.1 ms (typ). The soft start time is the time it takes for the output voltage to rise from zero volts to the voltage set by the R_{SET} resistor. Soft start is an important feature that limits inrush current and reduces the load on the input supply to this device. During soft start, the internal reference voltage is slowly ramped up to the internal reference voltage. This slowly increases the commanded output voltage of the converter and reduces the initial surge in current. During soft start PGOOD remains low, the PLL is not active, and output UVP/OVP faults are disabled.

7.3.7 Power Good (PGOOD)

The Power Good (PGOOD) pin is an open drain output. After startup, when the VADJ pin is typically between 95% and 105% of the internal voltage reference, the PGOOD pin pull-down is released and the pin floats. The recommended pull-up resistor value is between 10 k Ω and 100 k Ω to a voltage source of 5.5 V or less. For convenience, VG can be used as the pull-up voltage. The PGOOD is in a defined state once the VIN input voltage is greater than approximately 1.2 V, but with reduced current sinking capability. The PGOOD achieves full current sinking capability once the VIN input voltage is above the input UVLO. The PGOOD pin is pulled low when the VADJ pin voltage is typically lower than 95% or greater than 105% of the nominal internal reference voltage. The PGOOD pin is also pulled low if a fault is detected, the EN pin is pulled low, or the converter is performing its soft-start power up sequence.

7.3.8 Gate Driver (VG)

A linear regulator internal to the TPSM84A22 generates a 4.8 V internal supply rail on the VG pin. The input of the linear regulator comes from the VIN pin. The VG supply rail is used to power the internal gate drivers and is the input to another regulator that generates the internal supply rails used by the controller. To improve converter efficiency, an external 5 V supply is recommended to be connected to the VG pin, thereby overriding the internal 4.8 V regulator. This external supply must be between 5.0 V and 5.5 V and must be present before applying input voltage to the VIN pin. If not supplying an external voltage to this pin, leave this pin open.

7.3.9 Startup into Pre-biased Outputs

The TPSM84A22 prevents the low-side MOSFETs from discharging a pre-biased output. During pre-biased startup, the low-side MOSFETs do not turn on until after the high-side MOSFETs have started switching. The high-side MOSFETs do not start switching until the internal soft-start reference voltage exceeds the voltage at the VADJ pin.

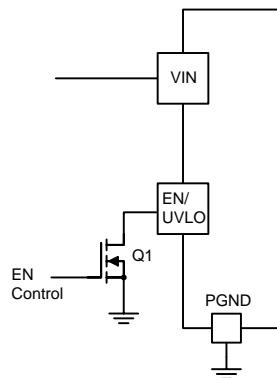
7.3.10 Thermal Shutdown

The internal thermal shutdown fault is triggered if the junction temperature exceeds 135°C (typ). This interrupts regulation by making the output high impedance. The device reinitiates the power up sequence when the junction temperature drops below 115°C (typ).

7.3.11 Overcurrent Protection

For protection against load faults, the TPSM84A22 incorporates output overcurrent protection. Applying a load that exceeds the module's overcurrent threshold causes the output to shut down and PGOOD is pulled low. Following shut down, the module attempts to restart after a 32.8-ms hiccup interval counter has expired. This provides a hiccup response to an overcurrent condition. During this period, the average current flowing into the fault is significantly reduced which reduces power dissipation. Once the fault is removed, the module automatically recovers and returns to normal operation.

The TPSM84A22 overcurrent trip point is 15 A (typ) when the ILIM pin is left open. This provides enough margin for brief overshoots in inductor currents during a load transient while at the same time protecting against short circuits or other potentially catastrophic faults on the output. The overcurrent trip point can be reduced to 11.25 A (typ) by placing a 47 kΩ between the ILIM pin and PGND. Programming resistors with up to $\pm 5\%$ variation can be used. The current limit selection is latched in at power up and cannot be changed without cycling input power or the EN pin voltage.


7.3.12 Output Undervoltage/Overvoltage Protection

The device incorporates an output undervoltage/overvoltage protection (UVP/OVP) circuit to prevent damage to the load. This fault can be triggered during large, fast load transients if insufficient output capacitance is used. The UVP/OVP feature compares the VADJ pin voltage to internal thresholds. If the VADJ pin voltage is lower than 90% or greater than 110% of the nominal internal reference voltage, the module is turned off, a fault is triggered, and the PGOOD pin is pulled low. When the fault hiccup interval is complete, the module will attempt to restart.

7.3.13 Enable (EN)

The EN pin provides electrical on and off control of the TPSM84A22. Once the EN pin voltage exceeds the threshold voltage, the device starts operation. If the EN pin voltage is pulled below the threshold voltage, the module stops switching and enters a low power state. There is no voltage hysteresis in the EN threshold. The rising and falling voltage thresholds occur at the same level. The EN pin has an internal pull-up current source, allowing the user to float the EN pin for enabling the device.

If an application requires controlling the EN pin, use an open drain/collector device or a suitable logic gate to interface with the pin. [图 16](#) shows controlling the EN/UVLO pin using a MOSFET, Q1. Turning Q1 on, disables the device. Using a voltage supervisor to control the EN pin allows control of the turn-on and turn-off of the device as opposed to relying on the ramp up or down of the input voltage source.

图 16. Enable Control


7.3.14 Undervoltage Lockout (UVLO)

The TPSM84A22 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin voltage is below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 7.65 V(max) with a typical hysteresis of 250 mV.

If an application requires a higher UVLO threshold, the UVLO pin can be configured as shown in [图 17](#). The value of R_{UVLO1} and R_{UVLO2} can be calculated using [公式 3](#) and [公式 4](#) or selected from [表 2](#). It is recommended to set the UVLO hysteresis of approximately 500 mV in order to avoid repeated chatter during start up or shut down. [表 2](#) shows recommended R_{UVLO1} and R_{UVLO2} values for various VIN UVLO rising thresholds, with 500 mV of hysteresis.

$$R_{UVLO1} = \frac{V_{IN(RISE)} - V_{IN(FALL)}}{3 \mu A} \quad (3)$$

$$R_{UVLO2} = \frac{R_{UVLO1} \times 1.23}{V_{IN(FALL)} - 1.23 + (R_{UVLO1} \times 4 \mu A)} \quad (4)$$

图 17. Adjustable UVLO

表 2. Standard Resistor Values For Adjusting VIN UVLO

VIN UVLO RISING THRESHOLD (V)	8.0	8.5	9.0	9.5	10.0
VIN UVLO FALLING THRESHOLD (V)	7.5	8.0	8.5	9.0	9.5
R_{UVLO1} (kΩ)	169	169	169	169	169
R_{UVLO2} (kΩ)	29.4	27.4	25.5	24.3	22.6

7.4 Device Functional Modes

7.4.1 Active Mode

The TPSM84A22 is in Active Mode when VIN is above the UVLO threshold and the EN/UVLO pin voltage is above the EN high threshold. The simplest way to enable the TPSM84A22 is to leave the EN/UVLO pin floating. This allows self start-up of the TPSM84A22 when the input voltage is above the UVLO threshold.

7.4.2 Light Load Operation

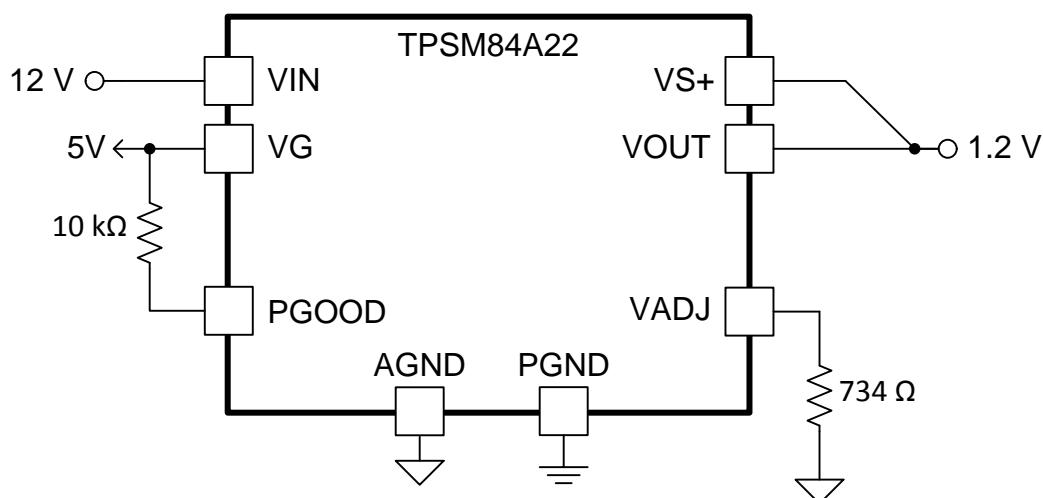
The TPSM84A22 operates in forced continuous conduction mode (FCCM) under light load conditions. When operating in FCCM, the switching frequency remains constant and the high side and low side MOSFETs are turned on and off in a complementary fashion allowing negative inductor current for part of the switching cycle.

7.4.3 Shutdown Mode

The EN/UVLO pin provides electrical ON and OFF control for the TPSM84A22. When the EN/UVLO pin voltage is below the EN threshold, the device is in shutdown mode. In shutdown mode the stand-by current is typically less than 50 μA . The TPSM84A22 also employs under voltage lock out protection. If VIN is below the UVLO level, the output of the regulator turns off.

8 Application and Implementation

注


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPSM84A22 is a synchronous series capacitor step down DC-DC power module. It is used to convert a higher DC voltage to a lower DC voltage with a maximum output current of 10 A. The following design procedure can be used to select components for the TPSM84A22. Alternately, the WEBENCH® software may be used to generate complete designs. When generating a design, the WEBENCH software utilizes an iterative design procedure and accesses comprehensive databases of components. Please visit www.ti.com/webench for more details.

8.2 Typical Application

The TPSM84A22 includes both input and output capacitors internal to the device, therefore it only requires a voltage setting resistor and possibly a pull-up resistor on the PGOOD pin in most applications. 图 18 shows a typical TPSM84A22 schematic with only the minimum required components.

Copyright © 2016, Texas Instruments Incorporated

图 18. Typical Application Schematic

8.2.1 Design Requirements

For this design example, use the parameters listed in 表 3 and follow the design procedures below.

表 3. Design Parameters

DESIGN PARAMETER	VALUE
Input Voltage V_{IN}	12 V typical
Output Voltage V_{OUT}	1.2 V
Output Current Rating	10 A
Key care-abouts	Transient response, small footprint, high efficiency, PGOOD signal
Transient Response Requirements	±2% voltage deviation, 5 A load step, 5 A/μs slew rate

8.2.2 Detailed Design Procedure

8.2.2.1 Setting the Output Voltage

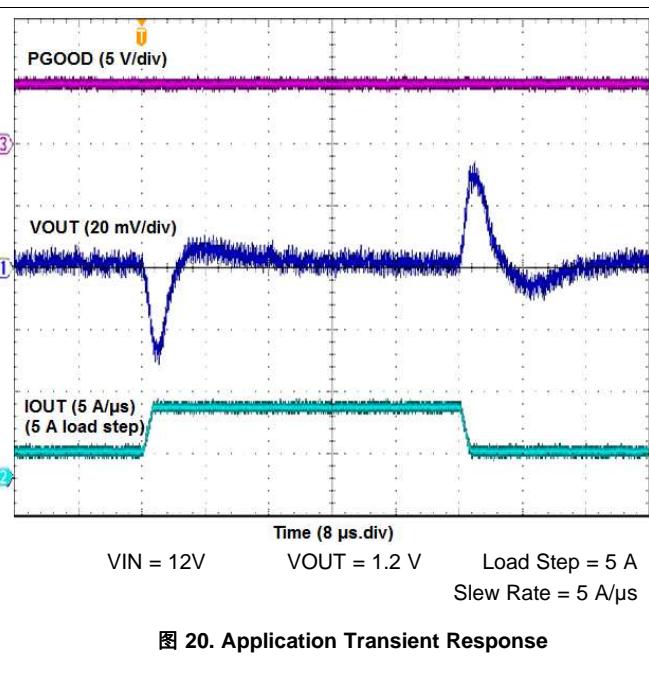
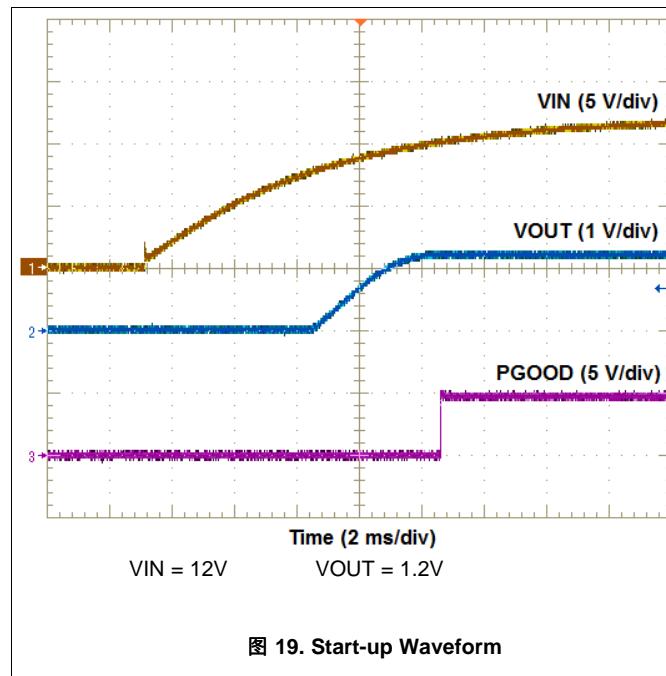
The output voltage of the TPSM84A22 is externally adjustable using a single resistor (R_{SET}). Select the value of R_{SET} from 表 1 or calculate using 公式 5:

$$R_{set} = \frac{1}{\frac{V_{out}}{0.508} - 1} \text{ (k}\Omega\text{)} \quad (5)$$

To set the output voltage to 1.2 V, the calculated value for R_{SET} is 734 Ω . The closest E96 value is 732 Ω .

8.2.2.2 Input and Output Capacitance

The TPSM84A22 requires no external input or output capacitance to operate. Input and output capacitors can be added to improve ripple or transient response. However, in this design example as in many applications, no additional input or output capacitors are required.



8.2.2.3 Power Good (PGOOD)

Applications requiring voltage rail sequencing can benefit from the PGOOD signal present with the TPSM84A22. The PGOOD pin is an open drain output. When the output voltage is typically between 95% and 105% of the set point, the PGOOD pin pull-down is released and the pin floats, requiring an external pull-up resistor for a high signal. A 10-k Ω pull-up resistor is placed between the PGOOD pin and an external 5V rail.

8.2.2.4 External VG Voltage

The VG supply rail is used to power the internal gate drivers and other internal supply rails used by the controller. For best efficiency, supply an external 5 V to the VG pin, thereby overriding the internal 4.8 V regulator. Expect a 2-3% efficiency improvement by driving the VG pin with an external 5 V.

8.2.3 Application Curves

9 Power Supply Recommendations

The TPSM84A22 is designed to operate from an input voltage supply range between 8 V and 14 V. This input supply should be well regulated and able to withstand maximum input current and maintain a stable voltage. The resistance of the input supply rail should be low enough that an input current transient does not cause a high enough drop at the supply voltage that can cause a false UVLO fault triggering and system reset.

If the input supply is located more than a few inches from the TPSM84A22, additional bulk capacitance may be required at the input pins. A typical recommended amount of bulk input capacitance is 47 μ F - 100 μ F.

10 Layout

10.1 Layout Guidelines

To achieve optimal electrical and thermal performance, an optimized PCB layout is required. [图 21](#) and [图 23](#) show typical, top-side PCB layouts. Some considerations for an optimized layout are:

- Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal stress.
- When adding input and output ceramic capacitors, place them close to the device pins to minimize high frequency noise.
- Locate any additional output capacitors between the ceramic capacitors and the load.
- Keep AGND and PGND separate from one another. The connection is made internal to the device.
- Place R_{SET} as close as possible to the VADJ pin.
- Use multiple vias to connect the power planes to internal layers.

10.2 Layout Examples

The layout shown in [图 21](#) shows the minimum solution size with only a single voltage setting resistor (R1) as the only additional required component. [图 22](#) shows a typical internal PCB layer with a trace connecting the VS+ pin to VOUT near the load.

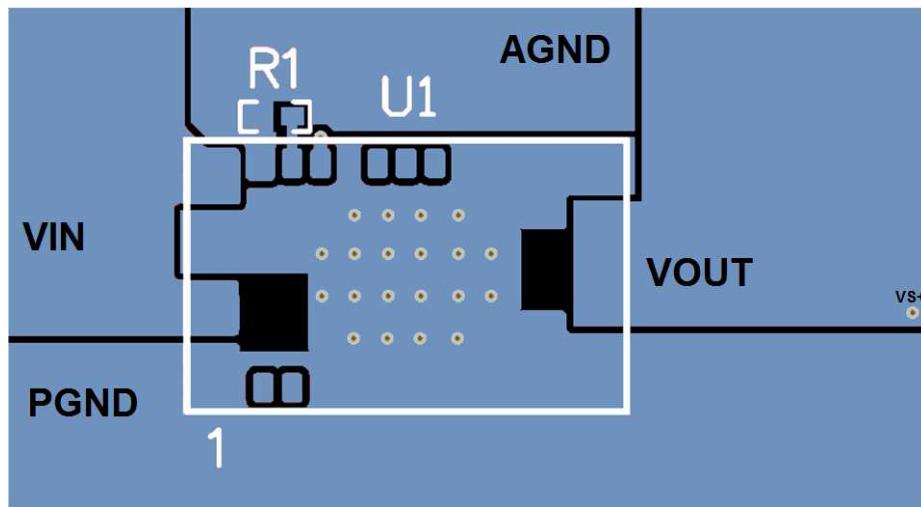


图 21. Minimum Component Layout

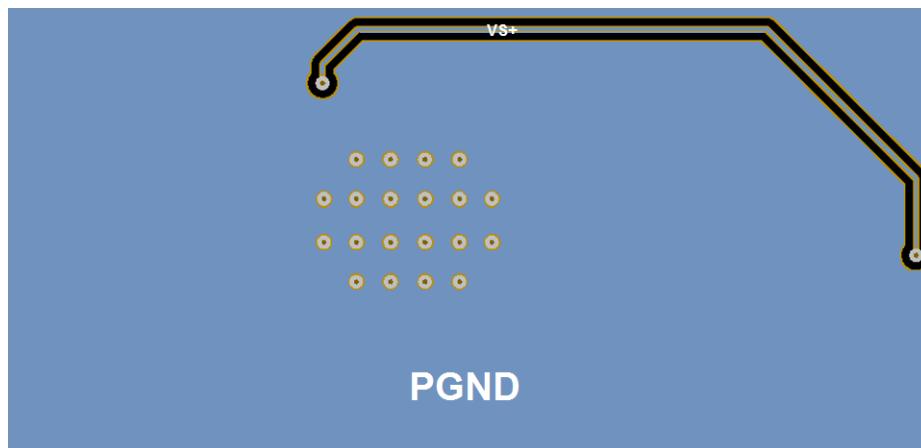


图 22. VS+ Trace on Internal Layer

Layout Examples (接下页)

图 23 显示了布局示例，其中包含额外的陶瓷输入电容 (C1, C3) 和陶瓷输出电容 (C2, C4)。这些元件适用于需要额外纹波抑制或改善瞬态响应的设计。图 24 显示了连接 VS+ 引脚到 VOUT 的典型内部 PCB 层迹线。

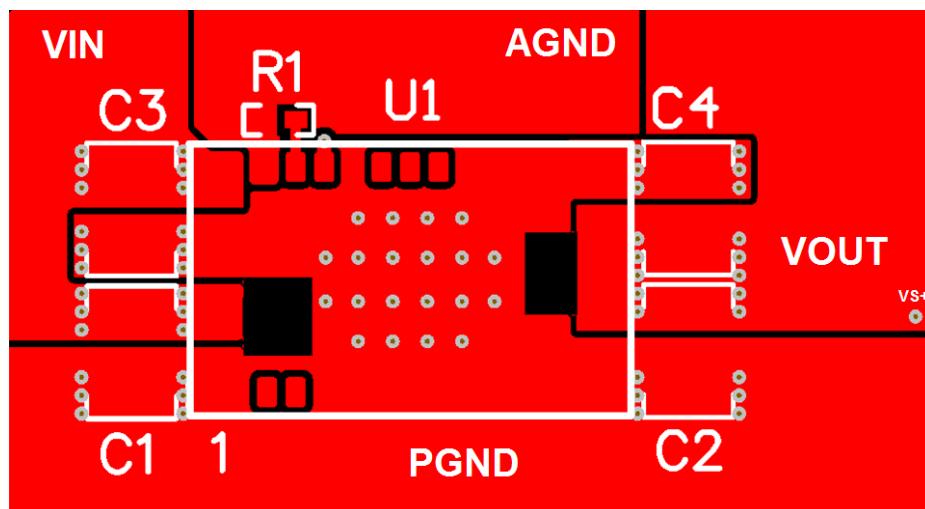


图 23. Layout with Optional CIN and COUT

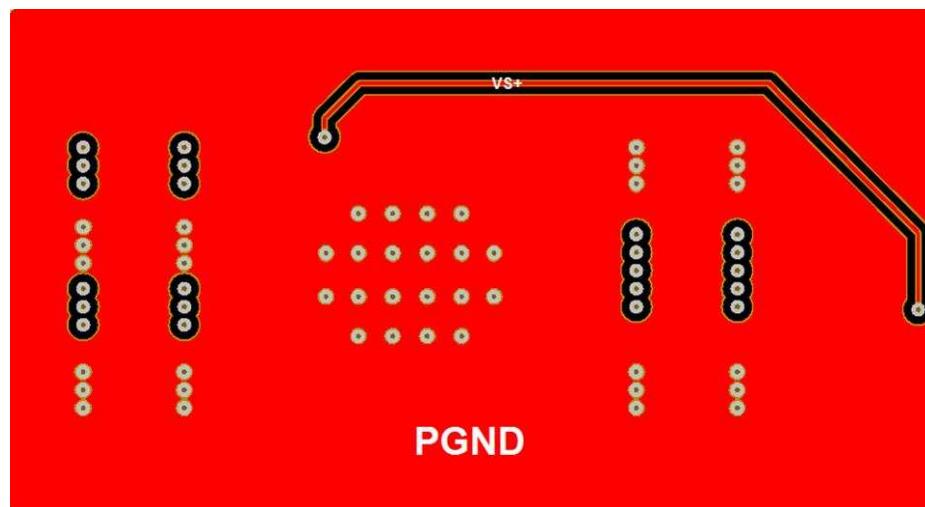


图 24. VS+ Trace on Internal Layer

10.3 EMI

The TPSM84A22 is compliant with EN55022 Class B radiated emissions. 图 25 to 图 28 show typical examples of radiated emissions plots for the TPSM84A22. Graphs included show plots of the antenna in the horizontal and vertical positions.

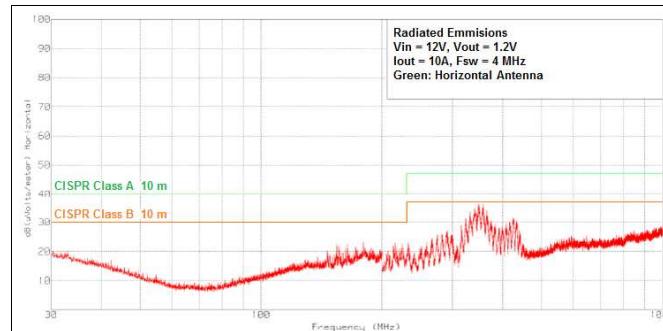


图 25. Radiated Emissions 12-V Input, 1.2-V Output,
10-A Load, Horizontal Antenna

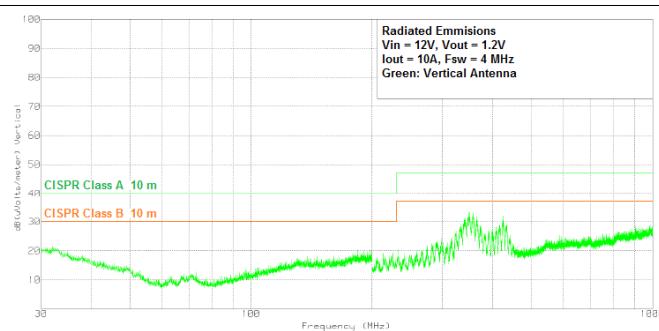


图 26. Radiated Emissions 12-V Input, 1.2-V Output,
10-A Load, Vertical Antenna

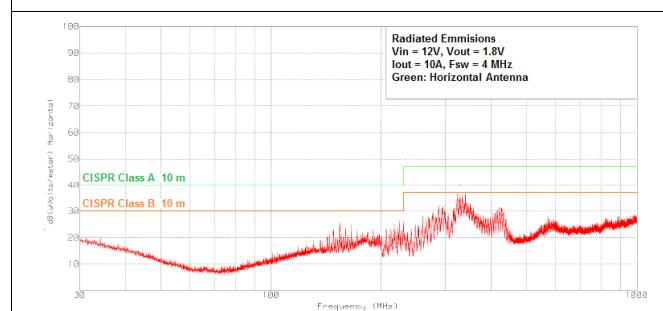


图 27. Radiated Emissions 12-V Input, 1.8-V Output,
10-A Load, Horizontal Antenna

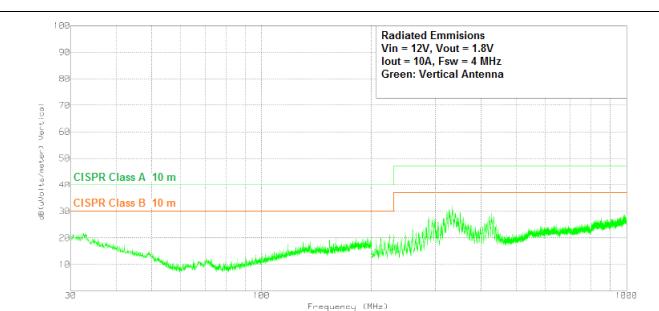


图 28. Radiated Emissions 12-V Input, 1.8-V Output,
10-A Load, Vertical Antenna

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

请参阅如下相关文档：

《TPSM84A21 数据表》，[SLVSDF7](#)

《TPS54A20 数据表》，[SLVSCQ8](#)

11.2 接收文档更新通知

要接收文档更新通知，请导航至德州仪器 [TI.com.cn](#) 上的器件产品文件夹。请单击右上角的通知我 进行注册，即可收到任意产品信息更改每周摘要。有关更改的详细信息，请查看任意已修订文档中包含的修订历史记录。

11.3 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的 [《使用条款》](#)。

TI E2E™ 在线社区 **TI 的工程师对工程师 (E2E) 社区**。此社区的创建目的在于促进工程师之间的协作。在 [e2e.ti.com](#) 中，您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 **TI 参考设计支持** 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.4 商标

SWIFT, E2E are trademarks of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 静电放电警告

 这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

11.6 Glossary

[SLYZ022](#) — **TI Glossary**.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时，我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本，请参阅左侧的导航栏。

PACKAGING INFORMATION

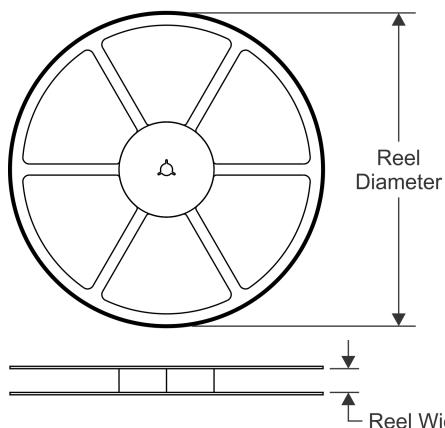
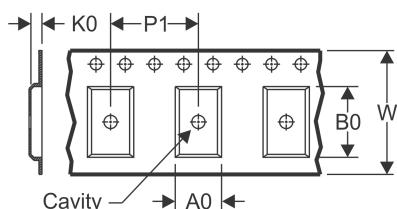
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPSM84A22MOJR	Active	Production	QFM (MOJ) 20	500 LARGE T&R	In-Work	NIAU	Level-3-260C-168 HR	-40 to 85	TPSM84A22
TPSM84A22MOJR.A	Active	Production	QFM (MOJ) 20	500 LARGE T&R	In-Work	NIAU	Level-3-260C-168 HR	-40 to 85	TPSM84A22
TPSM84A22MOJT	Active	Production	QFM (MOJ) 20	250 SMALL T&R	In-Work	NIAU	Level-3-260C-168 HR	-40 to 85	TPSM84A22
TPSM84A22MOJT.A	Active	Production	QFM (MOJ) 20	250 SMALL T&R	In-Work	NIAU	Level-3-260C-168 HR	-40 to 85	TPSM84A22

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

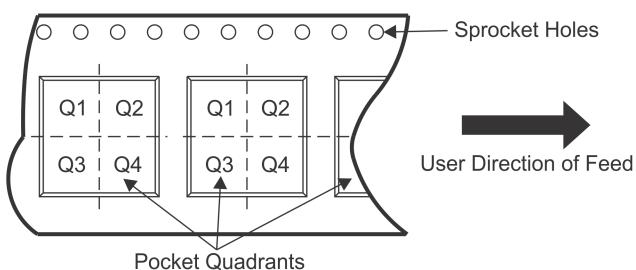
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

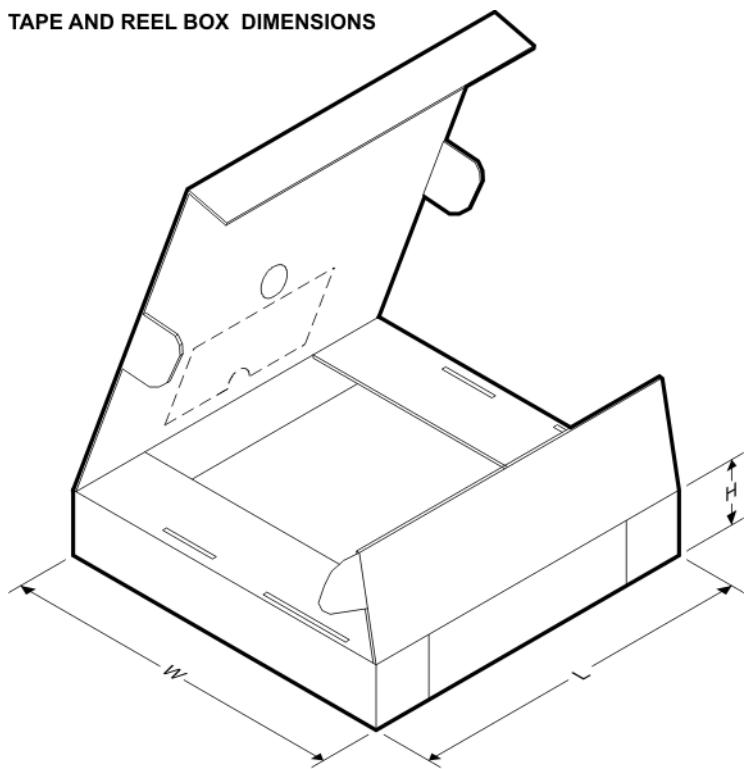


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

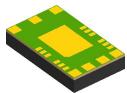
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

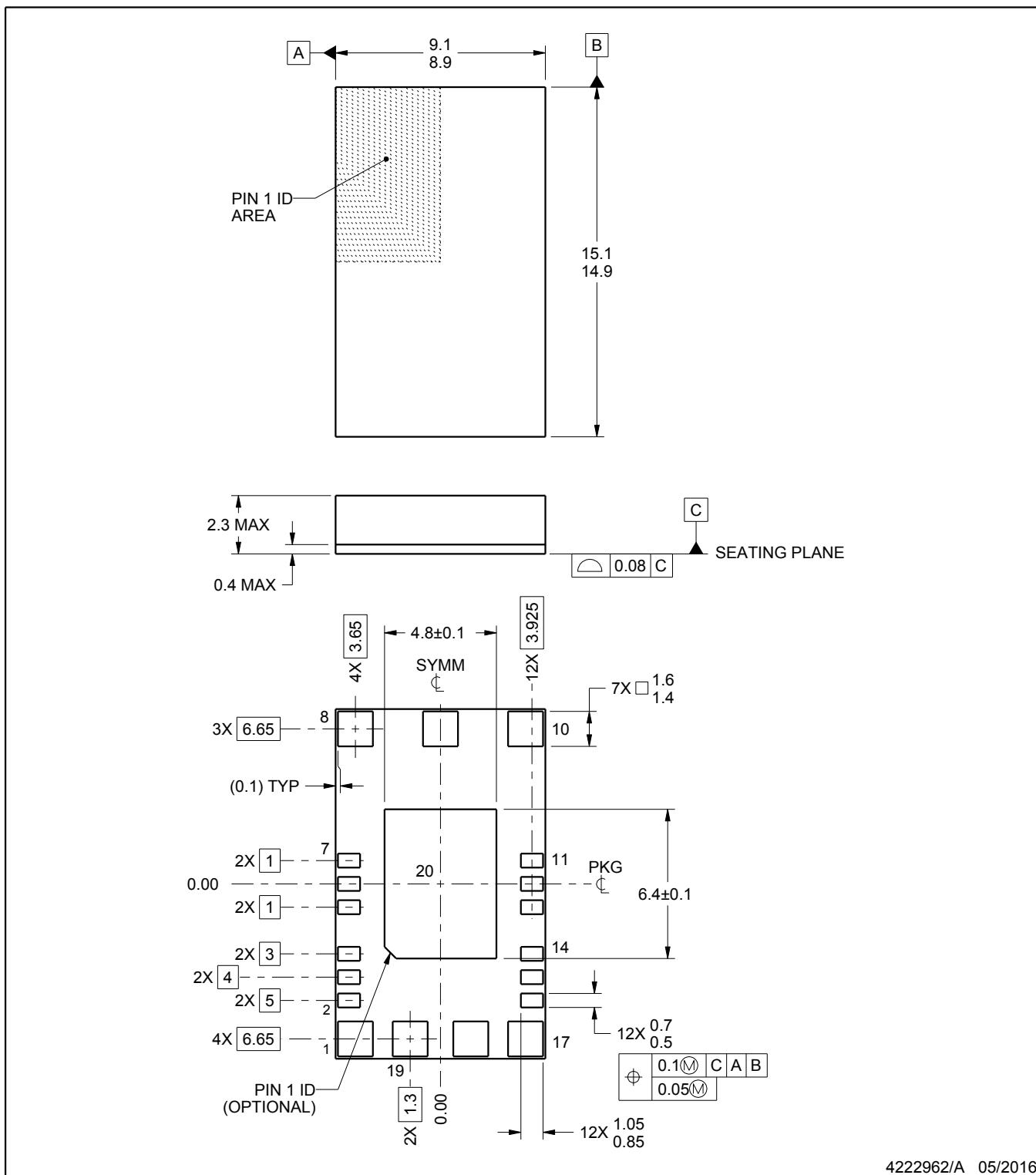
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPSM84A22MOJR	QFM	MOJ	20	500	330.0	24.4	9.35	15.35	3.1	16.0	24.0	Q1
TPSM84A22MOJT	QFM	MOJ	20	250	330.0	24.4	9.35	15.35	3.1	16.0	24.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPSM84A22MOJR	QFM	MOJ	20	500	383.0	353.0	58.0
TPSM84A22MOJT	QFM	MOJ	20	250	383.0	353.0	58.0

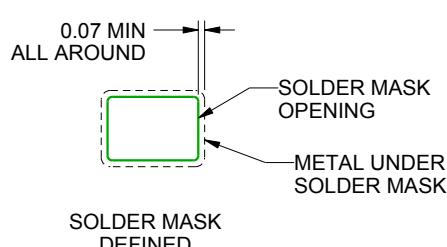
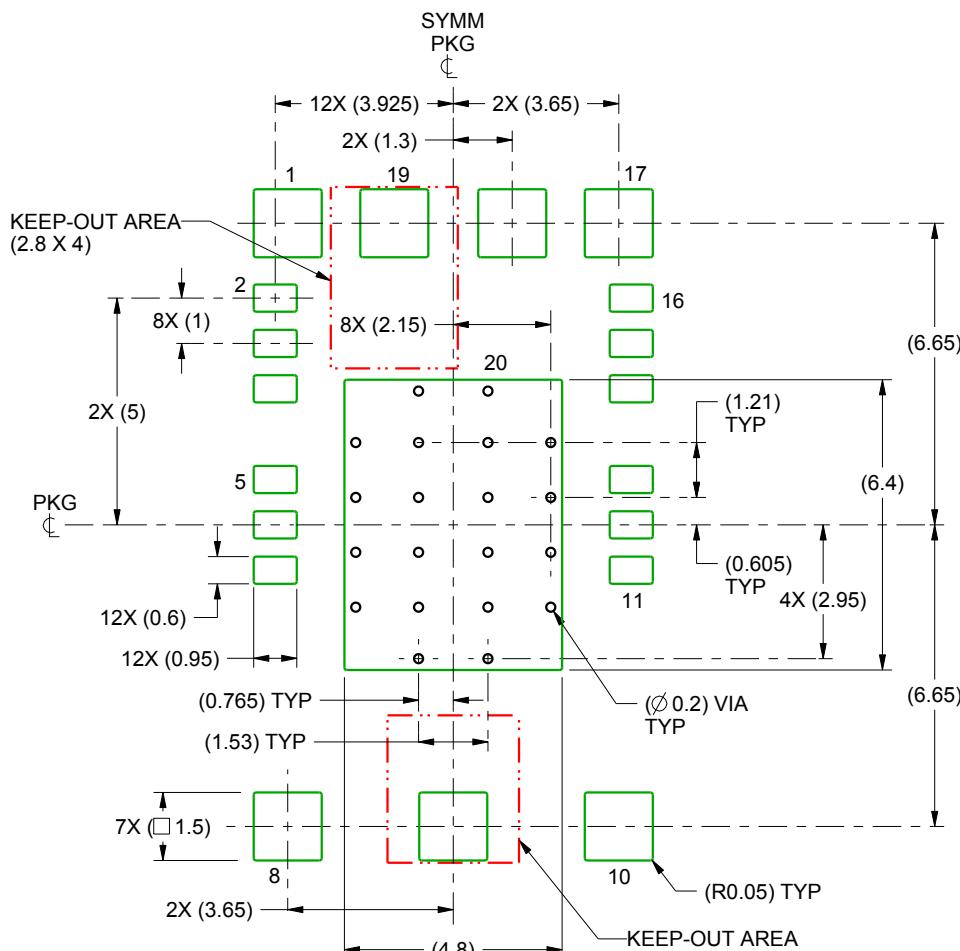
PACKAGE OUTLINE

QFM - 2.3 mm max height

QUAD FLAT MODULE

4222962/A 05/2016

NOTES:



1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

EXAMPLE BOARD LAYOUT

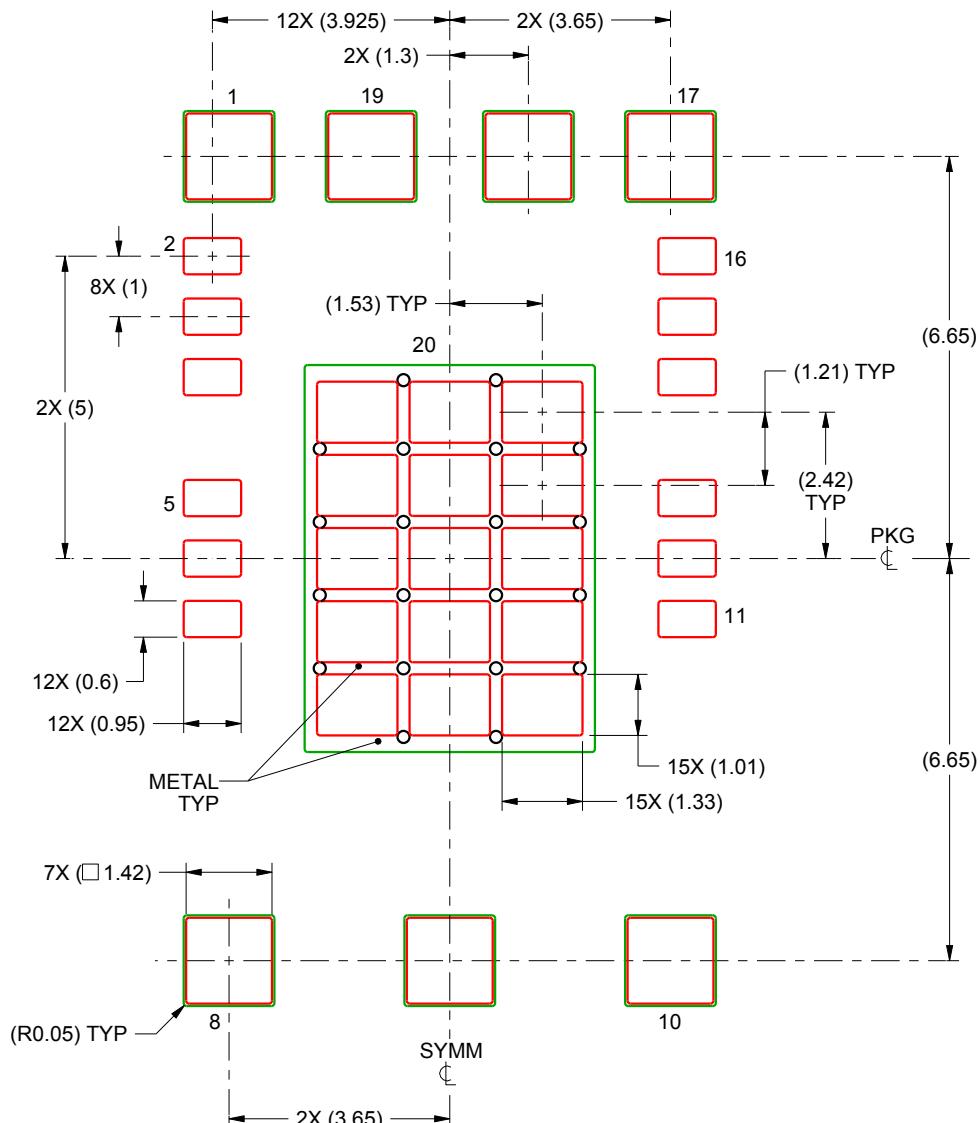
MOJ0020A

QFM - 2.3 mm max height

QUAD FLAT MODULE

4222962/A 05/2016

NOTES: (continued)


3. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view.

EXAMPLE STENCIL DESIGN

MOJ0020A

QFM - 2.3 mm max height

QUAD FLAT MODULE

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL

PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE

PADS 1, 8-10 & 17-19: 90%

PAD 20: 65.6 %

SCALE:8X

4222962/A 05/2016

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2026，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月