







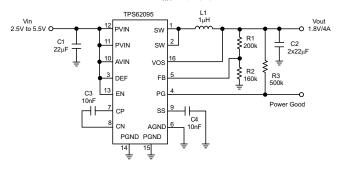




**TPS62095** 

ZHCSBQ2A - APRIL 2014-REVISED MAY 2014

# TPS62095 4A, 高效降压转换器, 具有 DCS-Control™ 功能和低截面解决 方案


#### 特性 1

- DCS-Control™ 拓扑技术
- 与 TPS62090 引脚到引脚兼容
- 支持高度为 1.2mm 的总体解决方案
- 转换器效率 95%
- 20µA 运行静态电流
- 2.5V 至 5.5V 输入电压范围
- 省电模式
- 两级短路保护
- 100% 占空比,以实现最低压降
- 输出放电功能
- 可调软启动
- 输出电压跟踪
- 0.8V 至 V<sub>IN</sub> 的可调输出电压
- 3mm x 3mm 16 引脚超薄四方扁平无引线 (VQFN) 封装

### 2 应用范围

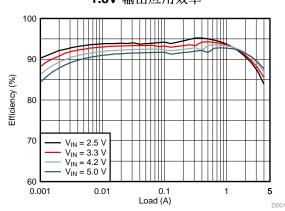
- 笔记本、计算机
- 固态硬盘
- 机械硬盘
- 处理器电源
- 电池供电类应用

### 1.8V 输出应用



### 3 说明

TPS62095 器件是一款高频同步降压转换器,此转换 器针对小解决方案尺寸、高效率进行了优化并适合于电 池供电类应用。 为了最大限度地提升效率, 此转换器 以 1.4MHz 的标称开关频率运行在脉宽调制 (PWM) 模 式下并在轻负载电流时自动进入省电运行模式。 当被 用于分布式电源和负载点稳压时,此器件允许到其它电 压轨的电压跟踪并可耐受高达 150µF 甚至更高的输出 电容器。 通过使用 DCS-Control™ 技术, 此器件可实 现出色的负载静态性能以及精确的输出电压调节。


输出电压启动斜坡由软启动引脚控制,从而允许作为独 立电源或者在跟踪配置下的运行。 通过配置 EN 和 PG 引脚还可实现电源排序。 在省电模式下, 此器件 运行时的静态电流典型值为 20µA。 在整个负载电流范 围内,自动进入省电模式并且无缝保持高效率。

### 器件信息(1)

| 产品型号     | 封装        | 封装尺寸 (标称值)      |
|----------|-----------|-----------------|
| TPS62095 | VQFN (16) | 3.00mm x 3.00mm |

(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

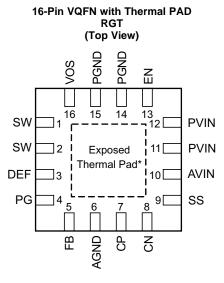
### 1.8V 输出应用效率



7



| 目录 |   |     |           |
|----|---|-----|-----------|
|    |   | 7.4 | Device F  |
|    | 8 | App | lication  |
|    |   | 8.1 | Applicati |
|    |   | 8.2 | Typical / |


|                                    | H >3.0              |                                      |    |
|------------------------------------|---------------------|--------------------------------------|----|
| 特性                                 | 1                   | 7.4 Device Functional Modes          | 8  |
| 应用范围                               | 1 8                 | Application and Implementation       | 11 |
| 说明                                 | 1                   | 8.1 Application Information          |    |
| 修订历史记录                             | 2                   | 8.2 Typical Applications             | 11 |
| Pin Configuration and Functions    | _                   | Power Supply Recommendations         | 17 |
| Specifications                     | 4.0                 | Layout                               | 17 |
| 6.1 Absolute Maximum Ratings       |                     | 10.1 Layout Guidelines               | 17 |
| 6.2 Handling Ratings               |                     | 10.2 Layout Example                  | 17 |
| 6.3 Recommend Operating Conditions |                     | 10.3 Thermal Consideration           |    |
| 6.4 Thermal Information            | <sub>. 4</sub> 11   | m                                    |    |
| 6.5 Electrical Characteristics     | . 5                 | 11.1 器件支持                            |    |
| 6.6 Typical Characteristics        | . 6                 | 11.2 Trademarks                      |    |
| Detailed Description               | 7                   | 11.3 Electrostatic Discharge Caution | 19 |
| 7.1 Overview                       |                     | 11.4 Glossary                        |    |
| 7.2 Functional Block Diagram       | . <mark>7</mark> 12 | ! 机械封装和可订购信息                         | 19 |
| 7.3 Feature Description            |                     |                                      |    |
|                                    |                     |                                      |    |

# 4 修订历史记录

| Cr | hanges from Original (April 2014) to Revision A | Page |
|----|-------------------------------------------------|------|
| •  | 已更改 状态从产品预览更改为生产数据 - 已删除产品预览大字标题                | 1    |



# 5 Pin Configuration and Functions



### **Pin Functions**

| P                                                                                                        | PIN   | PERCEIPTION                                                                                                                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NAME NO.                                                                                                 |       | DESCRIPTION                                                                                                                                            |  |  |  |
| SW                                                                                                       | 1, 2  | Switch pin of the power stage.                                                                                                                         |  |  |  |
| DEF                                                                                                      | 3     | This pin is used for internal logic and needs to be pulled high. This pin must be connected to the AVIN pin.                                           |  |  |  |
| Power good open drain output. A pull up resistor can not be connected to any voltage high input voltage. |       | Power good open drain output. A pull up resistor can not be connected to any voltage higher than the input voltage.                                    |  |  |  |
| FB 5 Feedback pin, for regulating the output voltage.                                                    |       | Feedback pin, for regulating the output voltage.                                                                                                       |  |  |  |
| AGND 6 Analog ground.                                                                                    |       |                                                                                                                                                        |  |  |  |
| СР                                                                                                       | 7     | Internal charge pump's flying capacitor. Connect a 10nF capacitor between CP and CN.                                                                   |  |  |  |
| CN                                                                                                       | 8     | Internal charge pump's flying capacitor. Connect a 10nF capacitor between CP and CN.                                                                   |  |  |  |
| SS                                                                                                       | 9     | Soft-start control pin. A capacitor is connected to this pin and sets the soft startup time. Leaving this pin floating sets the minimum start-up time. |  |  |  |
| AVIN                                                                                                     | 10    | Analog supply input voltage pin.                                                                                                                       |  |  |  |
| PVIN                                                                                                     | 11,12 | Power supply input voltage pin.                                                                                                                        |  |  |  |
| EN                                                                                                       | 13    | Enable pin. This pin has an active pull down resistor of typically 400kΩ.                                                                              |  |  |  |
| PGND                                                                                                     | 14,15 | Power ground.                                                                                                                                          |  |  |  |
| vos                                                                                                      | 16    | Output voltage sense pin. This pin must be directly connected to the output voltage.                                                                   |  |  |  |
| Thermal Pad                                                                                              |       | The exposed thermal pad must be connected to AGND.                                                                                                     |  |  |  |



### 6 Specifications

### 6.1 Absolute Maximum Ratings<sup>(1)</sup>

|                                |                                  | MIN  | MAX                  | UNIT |
|--------------------------------|----------------------------------|------|----------------------|------|
| Voltage at pins (2)            | PVIN, AVIN, FB, SS, EN, DEF, VOS | -0.3 | 7.0                  | V    |
|                                | SW, PG                           | -0.3 | V <sub>IN</sub> +0.3 |      |
| Sink current                   | PG                               |      | 1.0                  | mA   |
| Operating junction temperature |                                  | -40  | 150                  | °C   |

<sup>(1)</sup> Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

### 6.2 Handling Ratings

|                    |                          |                                                                               | MIN | MAX  | UNIT |
|--------------------|--------------------------|-------------------------------------------------------------------------------|-----|------|------|
| T <sub>stg</sub>   | Storage temperature rang | ge e                                                                          | -65 | 150  | °C   |
| V                  |                          | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins <sup>(1)</sup>   | 0   | 2000 | V    |
| V <sub>(ESD)</sub> | Electrostatic discharge  | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) | 0   | 500  | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

### 6.3 Recommend Operating Conditions

Over operating free-air temperature range, unless otherwise noted.

|                  |                                     | N | IIN | MAX             | UNIT |
|------------------|-------------------------------------|---|-----|-----------------|------|
| V <sub>IN</sub>  | Input voltage range                 | 2 | 2.5 | 5.5             | V    |
| V <sub>PG</sub>  | Power good pull-up resistor voltage |   |     | V <sub>IN</sub> | V    |
| V <sub>OUT</sub> | Output voltage range                | ( | 0.8 | V <sub>IN</sub> | V    |
| I <sub>OUT</sub> | Output current range                |   | 0   | 4.0             | Α    |
| TJ               | Operating junction temperature      | - | 40  | 125             | °C   |

#### 6.4 Thermal Information

|                        | THERMAL METRIC <sup>(1)</sup>                | RGT (16 PINS) | UNIT |
|------------------------|----------------------------------------------|---------------|------|
| $R_{\theta JA}$        | Junction-to-ambient thermal resistance       | 47            |      |
| $R_{\theta JC(top)}$   | Junction-to-case (top) thermal resistance    | 60            |      |
| $R_{\theta JB}$        | Junction-to-board thermal resistance         | 20            | 0000 |
| ΨЈТ                    | Junction-to-top characterization parameter   | 1.5           | °C/W |
| ΨЈВ                    | Junction-to-board characterization parameter | 20            |      |
| R <sub>0</sub> JC(bot) | Junction-to-case (bottom) thermal resistance | 5.3           |      |

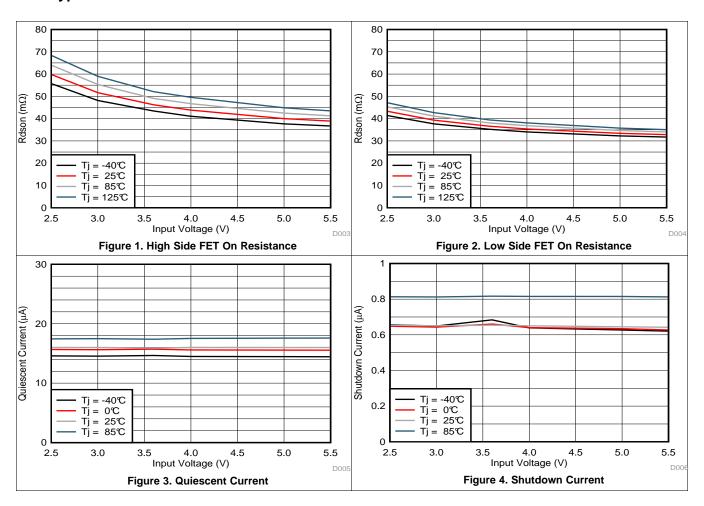
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953

<sup>(2)</sup> All voltage values are with respect to network ground pin.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



### 6.5 Electrical Characteristics


 $V_{IN} = 3.6V$ ,  $T_A = -40$ °C to 85°C, typical values are at  $T_A = 25$ °C (unless otherwise noted)

|                     | PARAMETER                          | TEST CONDITIONS                                             | MIN   | TYP   | MAX      | UNIT |
|---------------------|------------------------------------|-------------------------------------------------------------|-------|-------|----------|------|
| SUPPLY              | Υ                                  |                                                             |       |       |          |      |
| V <sub>IN</sub>     | Input voltage range                |                                                             | 2.5   |       | 5.5      | V    |
| $I_{QIN}$           | Quiescent current                  | Not switching, No Load, Into PVIN and AVIN                  |       | 20    |          | μΑ   |
| I <sub>sd</sub>     | Shutdown current                   | Into PVIN and AVIN                                          |       | 0.6   | 5        | μΑ   |
| UVLO                | Undervoltage lockout threshold     | V <sub>IN</sub> falling                                     | 2.1   | 2.2   | 2.3      | V    |
| UVLO                | Undervoltage lockout hysteresis    |                                                             |       | 200   |          | mV   |
|                     | Thermal shutdown                   | Temperature rising                                          |       | 150   |          | °C   |
|                     | Thermal shutdown hysteresis        |                                                             |       | 20    |          | ٥C   |
| CONTR               | OL SIGNAL EN                       |                                                             |       |       |          |      |
| $V_{H}$             | High level input voltage           | $V_{IN} = 2.5 \text{ V to } 5.5 \text{ V}$                  | 1     |       |          | V    |
| $V_L$               | Low level input voltage            | V <sub>IN</sub> = 2.5 V to 5.5 V                            |       |       | 0.4      | V    |
| I <sub>lkg</sub>    | Input leakage current              | EN = V <sub>IN</sub>                                        |       | 10    | 100      | nΑ   |
| R <sub>PD</sub>     | Pull down resistance               | EN = Low                                                    |       | 400   |          | kΩ   |
| SOFT S              | TARTUP                             |                                                             | ·     |       |          |      |
| I <sub>SS</sub>     | Softstart current                  |                                                             | 6.3   | 7.5   | 8.7      | μΑ   |
| POWER               | GOOD                               |                                                             |       |       |          |      |
| \/                  | Power good threshold               | Output voltage rising                                       | 93%   | 95%   | 97%      |      |
| $V_{th}$            |                                    | Output voltage falling                                      | 88%   | 90%   | 92%      |      |
| V <sub>L</sub>      | Low level voltage                  | I <sub>(sink)</sub> = 1 mA                                  |       |       | 0.4      | V    |
| I <sub>lkg</sub>    | Leakage current                    | V <sub>PG</sub> = 3.6 V                                     |       | 10    | 100      | nA   |
| POWER               | SWITCH                             |                                                             | ·     |       |          |      |
| D                   | High side FET on-resistance        | I <sub>SW</sub> = 500 mA                                    |       | 50    |          | mΩ   |
| R <sub>DS(on)</sub> | Low side FET on-resistance         | I <sub>SW</sub> = 500 mA                                    |       | 40    |          | mΩ   |
| I <sub>LIM</sub>    | High side FET switch current limit |                                                             | 4.7   | 5.5   | 6.7      | Α    |
| f <sub>SW</sub>     | Switching frequency                | I <sub>OUT</sub> = 3 A                                      |       | 1.4   |          | MHz  |
| OUTPU               | Т                                  |                                                             | -1    |       | '        |      |
| V <sub>OUT</sub>    | Output voltage range               |                                                             | 0.8   |       | $V_{IN}$ | V    |
| R <sub>DIS</sub>    | Output discharge resistor          | EN = GND, V <sub>OUT</sub> = 1.8 V                          |       | 200   |          | Ω    |
|                     | Feedback regulation voltage        |                                                             |       | 0.8   |          | V    |
| . ,                 |                                    | I <sub>OUT</sub> = 1 A, PWM mode                            | -1.4% |       | +1.4%    |      |
| $V_{FB}$            | Feedback voltage accuracy (1)      | I <sub>OUT</sub> = 1 mA, PFM mode, V <sub>OUT</sub> ≥ 1.8 V | -1.4% |       | +2.0%    |      |
|                     |                                    | I <sub>OUT</sub> = 1 mA, PFM mode, V <sub>OUT</sub> < 1.8 V | -1.4% |       | +2.5%    |      |
| I <sub>FB</sub>     | Feedback input bias current        | V <sub>FB</sub> = 0.8 V                                     |       | 10    | 100      | nA   |
|                     | Line regulation                    | V <sub>OUT</sub> = 1.8 V, PWM operation                     |       | 0.016 |          | %/V  |
|                     | Load regulation                    | V <sub>OUT</sub> = 1.8 V, PWM operation                     |       | 0.04  |          | %/A  |

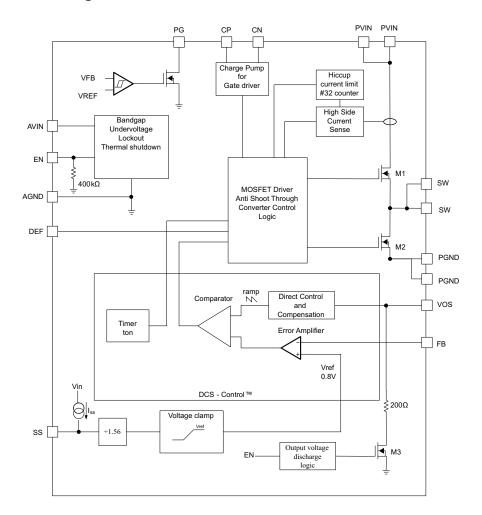
<sup>(1)</sup> Conditions: L = 1  $\mu$ H, C<sub>OUT</sub> = 2 x 22  $\mu$ F.



### 6.6 Typical Characteristics






### 7 Detailed Description

#### 7.1 Overview

The TPS62095 synchronous step down converter is based on DCS-Control™ (Direct Control with Seamless transition into Power Save Mode). This is an advanced regulation topology that combines the advantages of hysteretic and voltage mode control.

The DCS-Control™ topology operates in PWM (Pulse Width Modulation) mode for medium to heavy load conditions and in Power Save Mode at light load currents. In PWM, the converter operates with its nominal switching frequency of 1.4 MHz having a controlled frequency variation over the input voltage range. As the load current decreases, the converter enters Power Save Mode, reducing the switching frequency and minimizing the IC's quiescent current to achieve high efficiency over the entire load current range. DCS-Control™ supports both operation modes using a single building block and therefore has a seamless transition from PWM to Power Save Mode without effects on the output voltage. The TPS62095 offers excellent DC voltage regulation and load transient regulation, combined with low output voltage ripple, minimizing interference with RF circuits.

### 7.2 Functional Block Diagram





### 7.3 Feature Description

### 7.3.1 PWM Operation

In PWM mode, the device operates with a fixed ON-time switching pulse at medium to heavy load currents. A quasi fixed switching frequency of typical 1.4MHz over the input and output voltage range is achieved by using an input feed forward. The ON-time is calculated as shown in Equation 2. As the load current decreases, the converter enters Power Save Mode operation reducing its switching frequency. The device enters Power Save Mode at the boundary to discontinuous conduction mode (DCM).

#### 7.3.2 Low Dropout Operation (100% Duty Cycle)

The device offers low input to output voltage difference by entering 100% duty cycle mode. In this mode the high side MOSFET switch is constantly turned on. This is particularly useful in battery powered applications to achieve longest operation time by taking full advantage of the whole battery voltage range. The minimum input voltage where the output voltage falls below set point is given by:

$$V_{IN(min)} = V_{OUT(min)} + I_{OUT} \times (R_{DS(on)} + R_L)$$

$$\tag{1}$$

Where

 $R_{DS(on)}$  = High side FET on-resistance

 $R_1$  = DC resistance of the inductor

V<sub>OUT(min)</sub> = Minimum output voltage the load can accept

#### 7.3.3 Power Save Mode Operation

As the load current decreases, the converter enters Power Save Mode operation. During Power Save Mode, the converter operates with reduced switching frequency and with a minimum quiescent current to maintain high efficiency. The Power Save Mode is based on a fixed on-time architecture following Equation 2.

$$ton = \frac{V_{OUT}}{V_{IN}} \times 360 \text{ns} \times 2$$

$$f = \frac{2 \times I_{OUT}}{ton^2 \left(1 + \frac{V_{IN} - V_{OUT}}{V_{OUT}}\right) \times \frac{V_{IN} - V_{OUT}}{L}}$$
(2)

In Power Save Mode, the output voltage rises slightly above the nominal output voltage in PWM mode. This effect is reduced by increasing the output capacitance or the inductor value. This effect is also reduced by programming the output voltage of the TPS62095 lower than the target value. As an example, if the target output voltage is 3.3V, then the TPS62095 can be programmed to 3.3V - 0.3%. As a result, the output voltage accuracy is now -1.7% to +1.7% instead of -1.4% to 2%. The output voltage accuracy in PFM operation is reflected in the electrical specification table and given for a  $2 \times 22\mu F$  output capacitance.

#### 7.4 Device Functional Modes

### 7.4.1 Soft Startup

To minimize inrush current during startup, the device has an adjustable startup time depending on the capacitor value connected to the SS pin. The device charges the SS capacitor with a constant current of typically 7.5µA. The feedback voltage follows this voltage divided by 1.56, until the internal reference voltage of 0.8V is reached. The soft startup operation is completed once the voltage at the SS capacitor has reached typically 1.25V. The soft startup time is calculated using Equation 3. The larger the SS capacitor, the longer the soft startup time. The relation between the SS pin voltage and the FB pin voltage is estimated using Equation 4. Leaving the SS pin floating sets the minimum startup time.

$$t_{SS} = C_{SS} \times \frac{1.25V}{7.5\mu A}$$
 (3)

$$V_{FB} = \frac{V_{SS}}{1.56} \tag{4}$$



### **Device Functional Modes (continued)**

During startup the switch current limit is reduced to 1/3 of its typical current limit of 5.5A when the output voltage is less than 0.6V. Once the output voltage exceeds typically 0.6V, the switch current limit is released to its nominal value. Thus, the device provides a reduced load current of 1.8A when the output voltage is below 0.6V. A small or no soft startup time may trigger this reduced switch current limit during startup, especially for larger output capacitor applications. This is avoided by using a larger soft start up capacitance which extends the soft startup time. See Short Circuit Protection (Hiccup-Mode) for details of the reduced current limit during startup.

#### 7.4.2 Voltage Tracking

The SS pin can also be used to implement output voltage tracking with other supply rails, as shown in Figure 5.

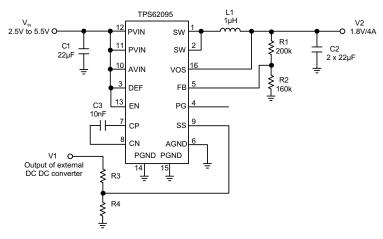



Figure 5. Output Voltage Tracking

In voltage tracking applications, the resistance R4 should be set properly to achieve accurate voltage tracking by taking 7.5 $\mu$ A soft startup current into account. 4.3 $\mu$ C is a sufficient value for R4. The relationship between V1 and V2 is shown in Equation 5. To achieve V1 startup leading V2, as shown in Figure 6, Equation 5 should be less than 1. To achieve simultaneous tracking, Equation 5 should equal to 1.

$$\frac{\sqrt{2}}{\sqrt{1}} = \frac{1}{1.56} \times \frac{R4}{R3 + R4} \times \frac{R1 + R2}{R2}$$

$$\sqrt{\sqrt{1}} = \frac{1}{1.56} \times \frac{R4}{R3 + R4} \times \frac{R1 + R2}{R2}$$

$$\sqrt{\sqrt{1}} = \frac{1}{1.56} \times \frac{R4}{R3 + R4} \times \frac{R1 + R2}{R2}$$

$$\sqrt{\sqrt{1}} = \frac{3.3V}{\sqrt{1}}$$

$$\sqrt{\sqrt{1}} = \frac{3.3V}{\sqrt{1}}$$

$$\sqrt{\sqrt{2}} = \frac{1.8V}{\sqrt{1}}$$

$$\sqrt{\sqrt{2}} = \frac{1.56}{R4} \times \frac{R3}{R4} \times \frac{R1 + R2}{R2}$$

$$\sqrt{\sqrt{2}} = \frac{1.8V}{\sqrt{1}}$$

$$\sqrt{\sqrt{2}} = \frac{1.56}{R4} \times \frac{R3}{R4} \times \frac{R3}{R4}$$

$$\sqrt{\sqrt{2}} = \frac{1.56}{R4} \times \frac{R3}{R4} \times \frac{R3}{R4}$$

$$\sqrt{\sqrt{2}} = \frac{1.8V}{\sqrt{1}}$$

$$\sqrt{2} = \frac{$$

Figure 6. Voltage Tracking Applications



### **Device Functional Modes (continued)**

### 7.4.3 Short Circuit Protection (Hiccup-Mode)

The device is protected against hard short circuits to GND and over-current events. This is implemented by a two level short circuit protection. During start-up and when the output is shorted to GND, the switch current limit is reduced to 1/3 of its typical current limit of 5.5A. Once the output voltage exceeds typically 0.6V the current limit is released to its nominal value. The full current limit is implemented as a hiccup current limit. Once the internal current limit is triggered 32 times, the device stops switching and starts a new start-up sequence after a typical delay time of  $66\mu S$  passed by. The device repeats these cycles until the high current condition is released.

#### 7.4.4 Output Discharge Function

To make sure the device starts up under defined conditions, the output gets discharged via the VOS pin with a typical discharge resistor of  $200\Omega$  whenever the device shuts down. This happens when the device is disabled or if thermal shutdown, undervoltage lockout or short circuit hiccup-mode is triggered.

### 7.4.5 Power Good Output

The power good output is low when the output voltage is below its nominal value. The power good becomes high impedance once the output is within 5% of regulation. The PG pin is an open drain output and is specified to sink up to 1mA. This output requires a pull-up resistor to be monitored properly. The pull-up resistor cannot be connected to any voltage higher than the input voltage of the device.

### 7.4.6 Undervoltage Lockout

To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. UVLO shuts down the device at input voltages lower than typically 2.2V with a 200mV hysteresis.

#### 7.4.7 Thermal Shutdown

The device goes into thermal shutdown once the junction temperature exceeds typically 150°C with a 20°C hysteresis.



### 8 Application and Implementation

### 8.1 Application Information

The TPS62095 is a synchronous step down converter based on DCS-Control™ topology whose output voltage can be adjusted by component selection. The following section discusses the design of the external components to complete the power supply design for several input and output voltage options by using typical applications as a reference.

### 8.2 Typical Applications

### 8.2.1 2.5V to 5.5V Input, 1.8V Output Converter

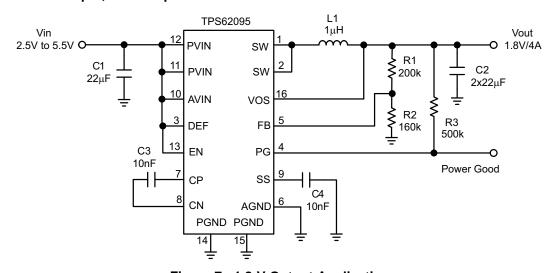



Figure 7. 1.8-V Output Application

### 8.2.1.1 Design Requirements

For this design example, use the following as the input parameters.

**Table 1. Design Parameters** 

| DESIGN PARAMETER      | EXAMPLE VALUE |
|-----------------------|---------------|
| Input voltage range   | 2.5V to 5.5V  |
| Output voltage        | 1.8V          |
| Output ripple voltage | <20mV         |
| Output current rating | 4A            |



#### 8.2.1.2 Detailed Design Procedure

#### 8.2.1.2.1 Output Filter

The first step is the selection of the output filter components. To simplify this process, Table 2 outlines possible inductor and capacitor value combinations.

**Table 2. Output Filter Selection** 

| INDUCTOR VALUE (HI(1)              | OUTPUT CAPACITOR VALUE [μF] <sup>(2)</sup> |    |        |     |          |  |
|------------------------------------|--------------------------------------------|----|--------|-----|----------|--|
| INDUCTOR VALUE [µH] <sup>(1)</sup> | 10                                         | 22 | 2 x 22 | 100 | 150      |  |
| 0.47                               |                                            |    | √      | √   | <b>√</b> |  |
| 1.0                                |                                            |    | √(3)   | √   | <b>√</b> |  |
| 2.2                                |                                            |    |        |     |          |  |

- (1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20% and -30%.
- (2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by +20% and -50%.
- (3) Typical application configuration. Other check mark indicates alternative filter combinations

#### 8.2.1.2.2 Inductor Selection

The inductor selection is affected by several parameters like inductor ripple current, output voltage ripple, transition point into Power Save Mode, and efficiency. See Table 3 for typical inductors.

Table 3. Inductor Selection (1)

| INDUCTOR VALUE | COMPONENT SUPPLIER    | SIZE (LxWxH mm) | Isat / DCR               |  |  |
|----------------|-----------------------|-----------------|--------------------------|--|--|
| 1 μΗ           | Coilcraft XAL4020-102 | 4.0 x 4.0 x 2.1 | $8.75A$ / $13.2~m\Omega$ |  |  |
| 0.47 μH        | TOKO DFE322512C       | 3.2 x 2.5 x 1.2 | 5.9A / 21 mΩ             |  |  |

#### (1) See Third-Party Products Disclaimer.

In addition, the inductor has to be rated for the appropriate saturation current and DC resistance (DCR). The inductor needs to be rated for a saturation current as high as the typical switch current limit of 5.5A or according to Equation 6 and Equation 7 calculate the maximum inductor current under static load conditions. The formula takes the converter efficiency into account. The converter efficiency can be taken from the data sheet graphs or 80% can be used as a conservative approach. The calculation must be done for the maximum input voltage where the peak switch current is highest.

$$I_{L} = I_{OUT} + \frac{\Delta I_{L}}{2} \tag{6}$$

$$I_{L} = I_{OUT} + \frac{\frac{V_{OUT}}{\eta} \times \left(1 - \frac{V_{OUT}}{V_{IN} \times \eta}\right)}{2 \times f \times L}$$
(7)

where

f = Converter switching frequency (typically 1.4MHz)

L = Inductor value

 $\eta$  = Estimated converter efficiency (use the number from the efficiency curves or 0.80 as a conservative assumption)

Note: The calculation must be done for the maximum input voltage of the application

Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation current. A margin of 20% should be added to cover for load transients during operation.



#### 8.2.1.2.3 Input and Output Capacitor Selection

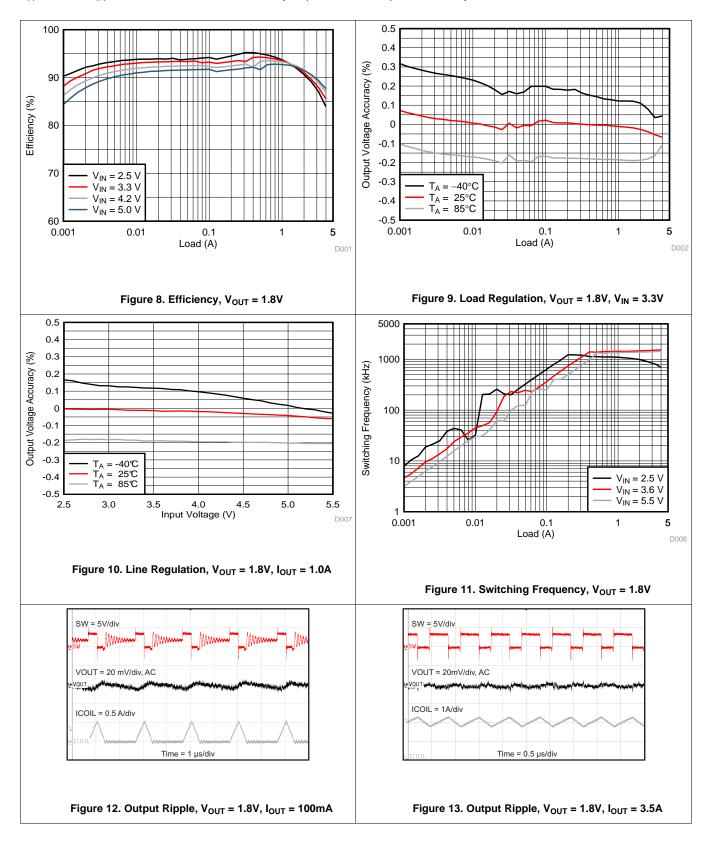
For best output and input voltage filtering, low ESR ceramic capacitors are recommended. The input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system rail for the device. A  $22\mu F$  or larger input capacitor is required. The output capacitor value can range from  $2x22\mu F$  up to  $150\mu F$ . The recommended typical output capacitor value is  $2x22\mu F$  and can vary over a wide range as outline in the output filter selection table.

### 8.2.1.2.4 Setting the Output Voltage

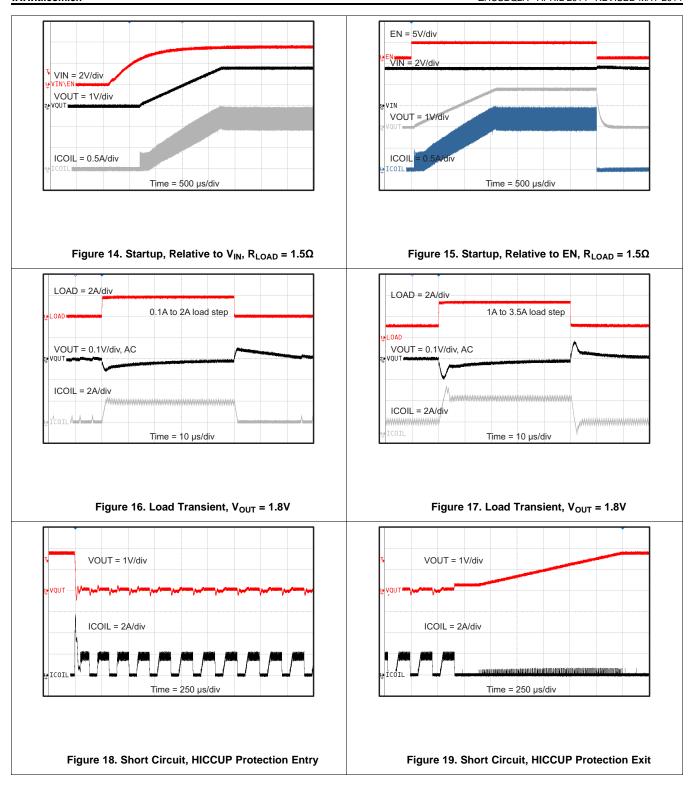
The output voltage is set by an external resistor divider according to the following equations:

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R1}{R2}\right) = 0.8 \text{ V} \times \left(1 + \frac{R1}{R2}\right)$$
 (8)

$$R2 = \frac{V_{FB}}{I_{FB}} = \frac{0.8 \text{ V}}{5 \,\mu\text{A}} \approx 160 \text{ k}\Omega \tag{9}$$

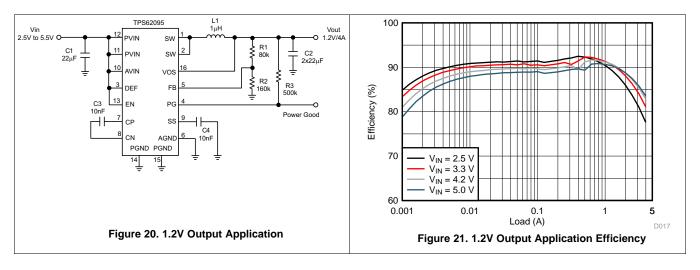

$$R1 = R2 \times \left(\frac{V_{OUT}}{V_{FB}} - 1\right) = R2 \times \left(\frac{V_{OUT}}{0.8V} - 1\right)$$
(10)

When sizing R2, in order to achieve low quiescent current and acceptable noise sensitivity, use a minimum of 5µA for the feedback current I<sub>FB</sub>. Larger currents through R2 improve noise sensitivity and output voltage accuracy.

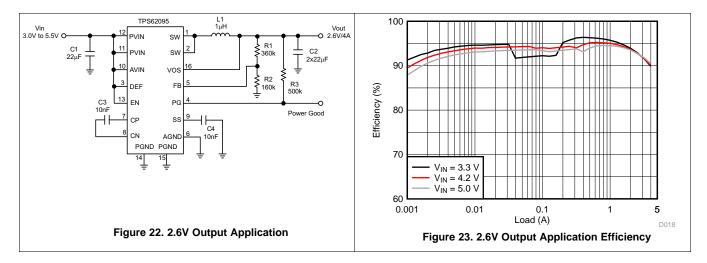

### TEXAS INSTRUMENTS

### 8.2.1.3 Application Performance Curves

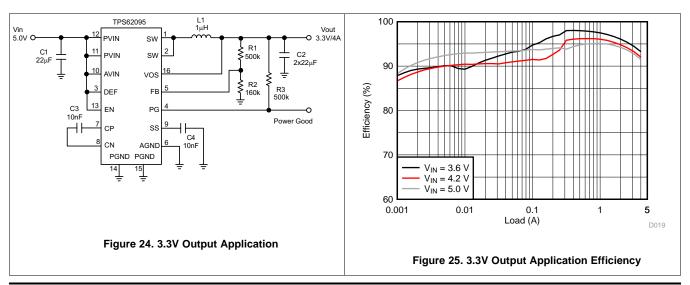
 $T_A = 25$ °C,  $V_{IN} = 3.6$ V, VOUT = 1.8V,  $L1 = 1\mu H$  (XAL4020-102),  $C2 = 2x22\mu F$ , unless otherwise noted.









### 8.2.2 2.5V to 5.5V Input, 1.2V Output Converter



### 8.2.3 3.0V to 5.5V Input, 2.6V Output Converter



### 8.2.4 5V Input, 3.3V Output Converter





### 9 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 2.5V and 5.5V. If the input supply is located more than a few inches from the device, an additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of 47µF is a typical choice.

The average input current of the TPS62095 is calculated as:

$$I_{IN} = \frac{1}{\eta} \times \frac{V_{OUT} \times I_{OUT}}{V_{IN}} \tag{11}$$

### 10 Layout

### 10.1 Layout Guidelines

- It is recommended to place all components as close as possible to the IC. Specially, the input capacitor placement is closest to the PVIN and PGND pins of the device.
- Use wide and short traces for the main current paths to reduce the parasitic inductance and resistance, like the SW node.
- The VOS pin is noise sensitive and needs to be routed as short and directly to the output pin of the inductor and the output capacitor. This minimizes switch node jitter.
- The exposed thermal pad of the package, the AGND and the PGND should have a single joint connection at the exposed thermal pad of the package. To enhance heat dissipation of the device, the exposed thermal pad should be connected to bottom or internal layer ground planes using vias.
- The charge pump capacitor connected to CP and CN should be placed close to the IC to minimize coupling of switching waveforms into other traces and circuits.
- The capacitor on the SS pin and the FB resistors divider network should be placed close to the IC and connected directly to those pins and the AGND pin.
- Refer to Figure 26 for an example of component placement, routing and thermal design.

#### 10.2 Layout Example

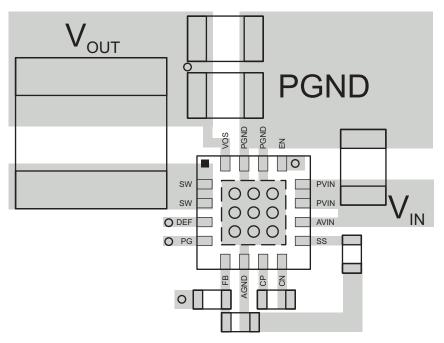



Figure 26. TPS62095 PCB Layout



#### 10.3 Thermal Consideration

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-dissipation limits of a given component. The Thermal Information table provides the thermal metric of the device and its package based on JEDEC standard. For more details on how to use the thermal parameters in real applications, see the application notes: SZZA017 and SPRA953.



### 11 器件和文档支持

### 11.1 器件支持

### 11.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

#### 11.2 Trademarks

DCS-Control is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

### 11.3 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### 11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

### 12 机械封装和可订购信息

以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 15-Aug-2022

#### PACKAGING INFORMATION

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp       | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------|
| TPS62095RGTR     | ACTIVE     | VQFN         | RGT                | 16   | 3000           | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | SMC                     | Samples |
| TPS62095RGTT     | ACTIVE     | VQFN         | RGT                | 16   | 250            | RoHS & Green | NIPDAU                        | Level-2-260C-1 YEAR | -40 to 85    | SMC                     | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

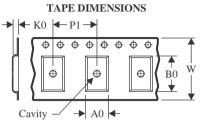
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



## **PACKAGE OPTION ADDENDUM**


www.ti.com 15-Aug-2022

## **PACKAGE MATERIALS INFORMATION**

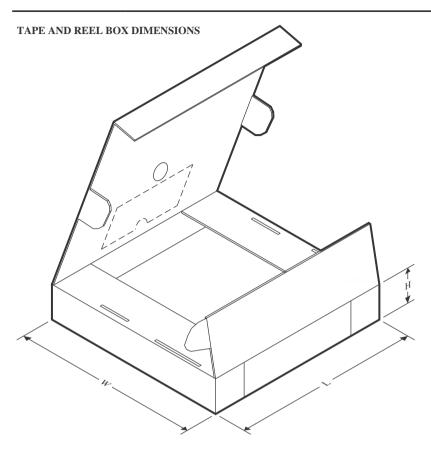
www.ti.com 20-Apr-2023

### TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

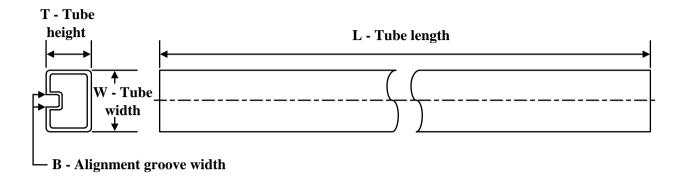


#### \*All dimensions are nominal

| Device       | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPS62095RGTR | VQFN            | RGT                | 16 | 3000 | 330.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |
| TPS62095RGTT | VQFN            | RGT                | 16 | 250  | 180.0                    | 12.4                     | 3.3        | 3.3        | 1.1        | 8.0        | 12.0      | Q2               |

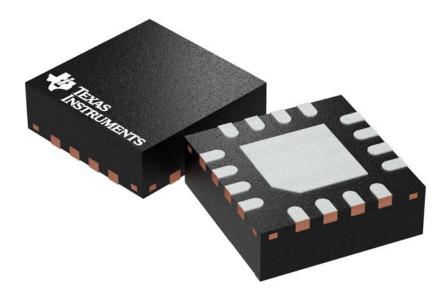
www.ti.com 20-Apr-2023




### \*All dimensions are nominal

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS62095RGTR | VQFN         | RGT             | 16   | 3000 | 552.0       | 346.0      | 36.0        |
| TPS62095RGTT | VQFN         | RGT             | 16   | 250  | 552.0       | 185.0      | 36.0        |

## **PACKAGE MATERIALS INFORMATION**


www.ti.com 20-Apr-2023

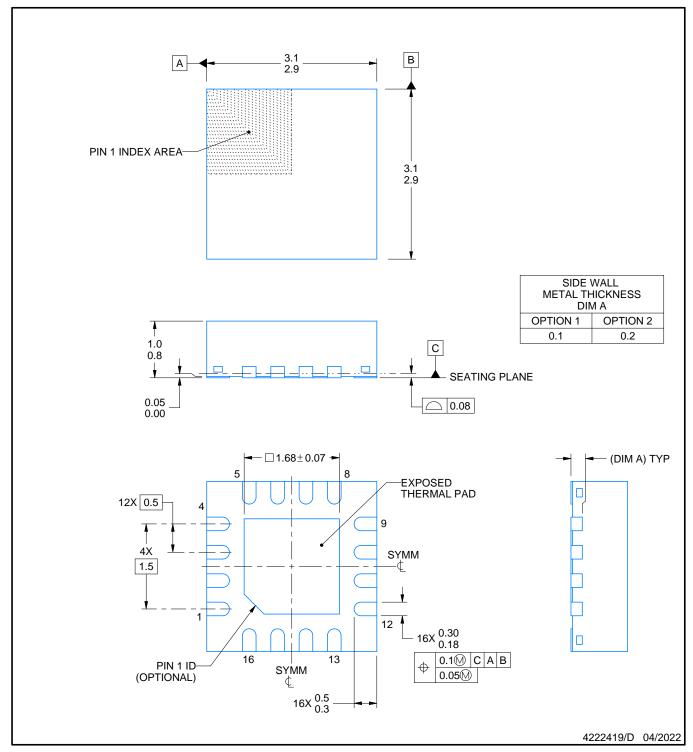
### **TUBE**



### \*All dimensions are nominal

| Device       | Package Name | Package Type | Pins | SPQ  | L (mm) | W (mm) | T (µm) | B (mm) |
|--------------|--------------|--------------|------|------|--------|--------|--------|--------|
| TPS62095RGTR | RGT          | VQFN         | 16   | 3000 | 381    | 4.83   | 2286   | 0      |
| TPS62095RGTT | RGT          | VQFN         | 16   | 250  | 381    | 4.83   | 2286   | 0      |



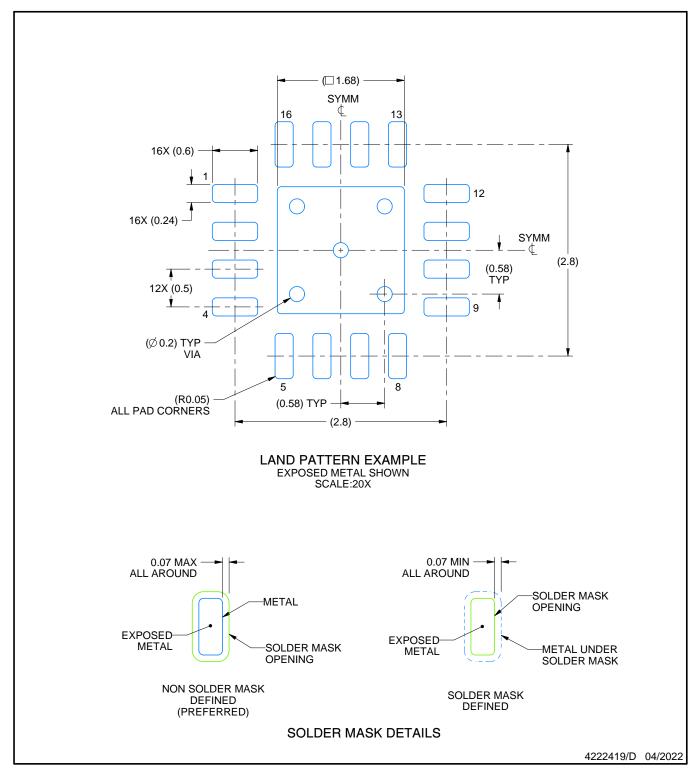

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.







PLASTIC QUAD FLATPACK - NO LEAD

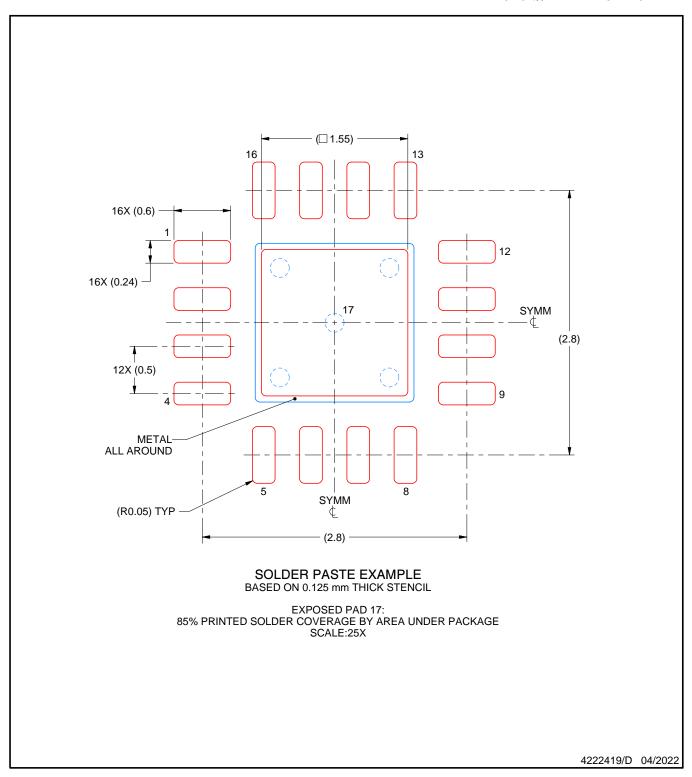



#### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
  2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



PLASTIC QUAD FLATPACK - NO LEAD




NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



### 重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司