

TPS61390

ZHCSJN0B - APRIL 2019 - REVISED OCTOBER 2019

TPS61390 85-V_{OUT} 升压转换器, 具有电流镜和采样/保持功能

特性

- 输入电压范围: 2.5V 至 5.5V
- 输出电压范围: 高达 85V
- 开关 FET 的 $R_{(DS)on}$: 0.9Ω
- 开关电流限制: 1000mA
- 最短响应时间为 400ns 的采样窗口
- 具有 0.5µs 响应时间的高光功率保护
- 开关频率: 700kHz
- 瞬态电流:来自 VIN 时为 110µA,来自 VOUT 时 为 340μA, 来自 AVCC 时为 140μA
- 软启动时间: 4.8ms
- 封装: 3mm x 3mm x 0.75mm QFN

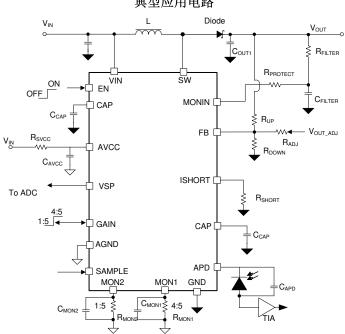
应用

- APD 偏置
- 光线路终端
- 高压传感器电源

3 说明

TPS61390 是一个 700kHz 脉宽调制 (PWM) 升压转换 器, 具有 85V 开关 FET, 输入范围为 2.5V 至 5.5V。 开关峰值电流高达 1000mA。TPS61390 包括具有两 个可选增益选项(1:5或4:5)的精确电流镜。

此外, TPS61390 还集成了一个适用于突发模式光学 接收器 应用 的采样/保持电路,可捕获流经 APD 的电 流并将此电流传递给外部 ADC。当在强弱光学密度之 间转换时,此器件可实现快速的响应时间。TPS61390 还提供了高光功率保护,并将一个额外的 FET 与 APD 电源路径串联在一起,典型响应时间为 0.5µs。当高光 功率下降时,它能够自动恢复。


TPS61390 可采用下面带有外露散热垫的 3mm x 3mm QFN 封装。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
TPS61390	WQFN (16)	3.00mm × 3.00mm

(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。

典型应用电路

	目录			
1	特性		7.4 Device Functional Mode	1
2	应用1	8	Application and Implementation	13
3	说明1		8.1 Application Information	1
4	修订历史记录 2		8.2 Typical Application	1
5	Pin Configuration and Functions	9	Power Supply Recommendations	1
6	Specifications4	10	Layout	
-	6.1 Recommended Operating Conditions		10.1 Layout Guidelines	
	6.2 Absolute Maximum Ratings 4		10.2 Layout Example	18
	6.3 ESD Ratings 4	11	器件和文档支持	
	6.4 Thermal Information		11.1 接收文档更新通知	
	6.5 Electrical Characteristics5		11.2 社区资源	
	6.6 Typical Characteristics		11.3 商标	19
7	Detailed Description 9		11.4 静电放电警告	19
	7.1 Overview		11.5 Glossary	19
	7.2 Functional Block Diagram 10	12	机械、封装和可订购信息	19
	7.3 Feature Description			

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Ch	anges from Revision A (June 2019) to Revision B	Page
	已更改 text string in Current Mirror section from "The voltage of MON1 is up to 400 mV" to "The maximum voltage of MON1 and MON2 is 2.5 V."	11
Ch	anges from Original (April 2019) to Revision A	Page
•	已更改 将状态更改为"生产数据"	1

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DEGODIDATION
NAME	NO.	1/0	DESCRIPTION
VSP	1	0	Sample/Hold voltage output with single-ended output.
			GAIN of the current mirror selection indicator of the sample/hold output:
			Output low: sample/hold for current mirror gain 4 : 5;
GAIN	2	ı	Output high: sample/hold for current mirror gain 1 : 5;
GAIN	2	ı	This pin can also be any input pin:
			Input low: sample/hold for current mirror gain 4 : 5;
			Input high: sample/hold for current mirror gain 1:5
MON2	3	0	Current mirror output pin of 1 : 5 ratio (Mirror current: APD current)
MON1	4	0	Current mirror output pin of 4 : 5 ratio (Mirror current: APD current)
APD	5	0	Power supply for the APD, connect this pin with the cathode of APD
MONIN	6	I	Current mirror input pin
GND	7	_	Power Ground
SW	8	PWR	The switching node pin of the converter. It is connected to the drain of the internal low-side power MOSFET and the source of the internal high-side power MOSFET
CAP	9	0	Connecting a capacitor externally to lower the noise for current mirror.
VIN	10	I	IC power supply input
ISHORT	11	0	Programming the current limit for high optical power protection by a resistor between this pin and GND.
FB	12	I	Feedback voltage
EN	13	I	Enable logic input. Logic high level enables the device. Logic low level disables the device and turns it into shutdown mode
SAMPLE	14	I	The sample trigger pin, the rising edge of this pin to trigger the sample and falling edge to hold the sampled voltage.
AVCC	15	I	Power supply for the sample/hold circuitry
AGND	16	_	Analog ground for the sample / hold and current mirror circuitry
Exposed Th	ermal Pad		Connect with GND, TI recommends connecting to Power GND on PCB

6 Specifications

6.1 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{IN}	Input voltage	2.5		5.5	V
V_{OUT}	Output voltage	20		85	V
T_{J}	Junction temperature	-40		125	°C
L	Effective Inductance		4.7		μH
C _{IN}	Effective Input Capacitance		1		μF
C _{OUT}	Effective Output Capacitance		0.1		μF

6.2 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Valtage	SW, APD, MONIN,CAP	-0.3	85	V
Voltage	Other pins	-0.3	6	V
T_J	Operating junction temperature	-40	125	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Rating* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Condition*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.3 ESD Ratings

			VALUE	UNIT
M	Electrostatio discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, allpins ⁽¹⁾	±1500	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specificationJESD22-C101, all pins (2)	±500	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

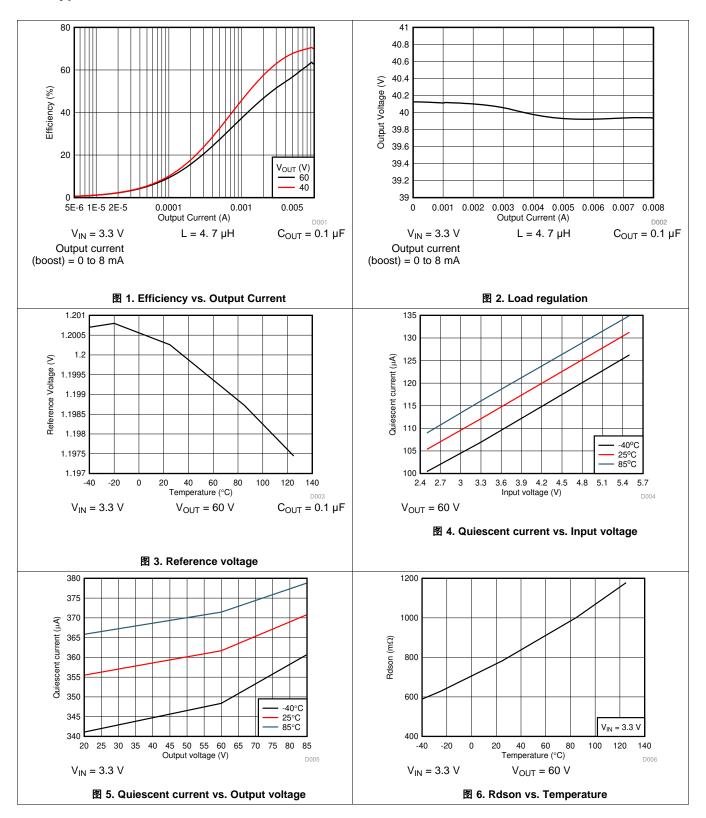
		TPS61390	
	THERMAL METRIC ⁽¹⁾	RTE (WQFN)	UNIT
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	52.9	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	54.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	27.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	2.0	°C/W
Y_{JB}	Junction-to-board characterization parameter	27.8	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	12.8	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

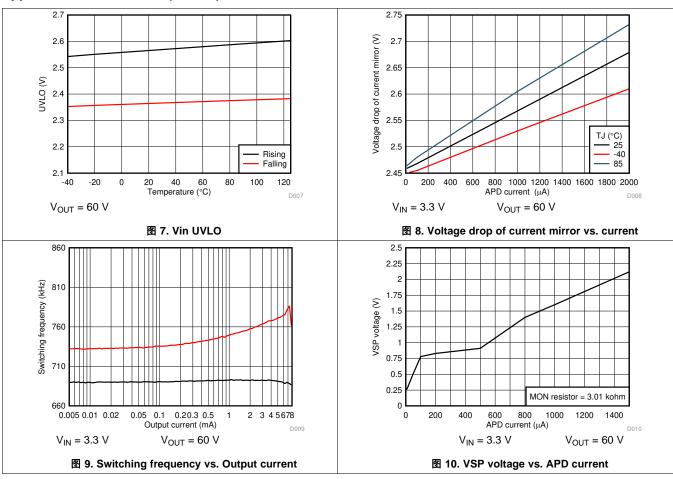
Over recommended free-air temperature range, $V_{IN} = 3.3 \text{ V}$, $AV_{CC} = 3.3 \text{ V}$, $V_{MONIN} = 20 \text{ V}$ to 85 V, $T_{J} = -40 ^{\circ}\text{C}$ to 125 °C, typical values are at $T_{A} = 25 ^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUI	PPLY					
V _{IN}	Input voltage range		2.5		5.5	V
	Under voltage lock out	V _{IN} falling		2.4	2.5	V
/ _{UVLO}	Under voltage lock out hysteresis	V _{UVLO} rising - V _{UVLO} falling		200		mV
I _{Q_IN}	Quiescent current into VIN pin	$V_{IN} = 3.3 \text{ V}, V_{FB} = V_{REF} + 0.1 \text{ V}, \text{ No}$ switching, -40 °C ≤ T _J ≤ 85 °C		110	140	uA
Q_OUT	Quiescent current into VOUT pin	$V_{IN} = 3.3 \text{ V}, V_{FB} = V_{REF} + 0.1 \text{ V,No}$ switching, -40 °C \leq T _J \leq 85 °C		340	430	uA
Q_VCC	Quiescent current into AVCC pin	AVCC = 3.3 V -40 °C ≤ T _J ≤ 85 °C		140	180	uA
	Shutdown current into VIN pin	$2.5 \text{ V} \le \text{VIN} \le 5.5 \text{ V}, \text{ EN} = 0, -40 \text{ °C} \le T_J \le 85 \text{ °C}$			1	uA
SD	Shutdown current into VOUT pin	EN = 0, -40 °C ≤ T _J ≤ 85 °C			1	uA
	Shutdown current into AVCC pin	AVCC = 3.3 V, EN = 0, -40 °C \leq T _J \leq 85 °C			1	uA
OUTPUT						
V _{OUT}	Output voltage range			<u></u>	85	V
-		V _{IN} = 2.5 V to 5.5 V, T _J = 25 °C	1.188	1.2	1.212	V
V_{REF}	Feedback regulation reference voltage	V_{IN} = 2.5 V to 5.5 V, -40 °C ≤ T_J ≤ 125 °C	1.182	1.2	1.218	V
I _{FB}	Feedback input leakage current			1	25	nA
POWER SW	ІТСН					
R _{DS(on)}	Low-side FET on resistance	3 V ≤ V _{IN} ≤ 5.5 V		900	1300	mΩ
SWITCHING	CHARACTERISTIC				<u> </u>	
f_{SW}	Switching frequency	V _{IN} = 3.3 V, V _{OUT} = 60 V	600	700	800	kHz
CURRENT N	MIRROR					
k _{MON1}	4:5 Current mirror gain	I _{APD} = 5 μA to 200 μA	0.76	0.8	0.84	
k _{MON2}	1:5 Current mirror gain	I _{APD} = 100 μA to 2 mA	0.19	0.2	0.21	
V _{MON}	MON1 / MON2 Threshold		380	400	420	mV
		I _{APD} = 1 mA	2.2	2.5	2.8	V
V_{APD_DRP}	Current mirror voltage drop	I _{APD} = 5 μA		2.45		V
I _{BIAS}	Current mirror bias current		15	20	25	μA
SAMPLE / H	IOLD				l	
V _{ERROR}	Sample/hold output error steady,+/-6 sigma	I_{APD} = 20 uA, GAIN = 0.8, R_{MON} = 3 $k\Omega$	-15		+15	%
V _{ERROR}	Sample/hold output error steady,+/-6 sigma	I_{APD} = 500 μA, GAIN = 0.2, R_{MON} = 3 kΩ	-5		+5	%
t _{SP_DEL}	Amplifier settling down time				10	μs
t _{GAIN_COMP}	Gain selection comparator time	+/-20% gap of threshold			8	μs
V _{DROP_SP}	Drop voltage during sample/hold	Sample voltage sensing value variation at 10-100 µs, (Max-Min)/Average			1	%
CURRENT L	IMIT					
I _{LIM_SW}	Peak switching current limit	V _{IN} = 3.3 V, V _{OUT} = 60 V	800	1000	1200	mA
	High optical power current limit	$R_{ISHORT} = 25 \text{ k}\Omega$	3.7	4	4.3	mA
I _{SHORT}	High optical power current limit	R _{ISHORT} = 50 kΩ	1.8	2	2.2	mA


Electrical Characteristics (continued)

Over recommended free-air temperature range, $V_{IN} = 3.3 \text{ V}$, $AV_{CC} = 3.3 \text{ V}$, $V_{MONIN} = 20 \text{ V}$ to 85 V, $T_{J} = -40 ^{\circ}\text{C}$ to 125 °C, typical values are at $T_{A} = 25 ^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CONTROL (EN, SAMPLE, GAIN)					
V _{EN_H}	EN Logic high threshold				1.2	V
V _{EN_L}	EN Logic low threshold		0.4			V
R _{EN}	EN pull down resistor			800		kΩ
V _{SAMPLE_H}	Sample Logic high threshold				0.7 x AVCC	V
V _{SAMPLE_L}	Sample Logic low threshold		0.3 x AVCC			V
V_{GAIN_H}	Gain Logic high threshold				0.7 x AVCC	V
V _{GAIN_L}	Gain Logic low threshold		0.3 x AVCC			V
R _{GAIN_OUT}	Output resistor			5.5		kΩ
TIMING						
t _{SS}	Soft start time	Ref voltage 0 to 1.2V		4.8		ms
t _{DELAY}	Delay time for high optical power protection	I _{APD} = 5 mA, I _{SHORT} = 3 mA		0.5		μs
THERMAL P	PROTECTION					
T _{SD}	Thermal shutdown threshold	T _J rising		150		°C
T _{SD_HYS}	Thermal shutdown hysteresis	T _J falling below T _{SD}		20		°C



6.6 Typical Characteristics

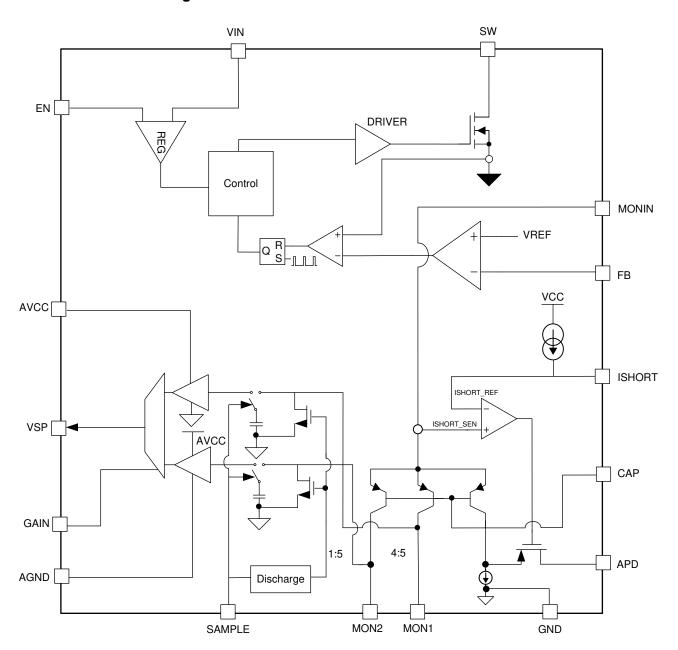
Typical Characteristics (接下页)

7 Detailed Description

7.1 Overview

The TPS61390 is a fully integrated boost converter with an 85-V FET to convert a low input voltage to a higher voltage for biasing the APD. The TPS61390 supports an input voltage ranging from 2.5 V to 5.5 V. The device operates at a 700 kHz pulse-width modulation (PWM) crossing the whole load range.

The device can accurately mirror the APD current ranging from 0.5 uA to 2 mA. There are two ratio options for the current proportional to APD current: the MON1 (4:5) and MON2 (1:5). By connecting a resistor from the mirror output (MON1 or MON2) to GND, the current flowing through the APD is converted into the voltage crossing the resistor from MON1 / MON2 to GND.


With the sample / hold circuitry built-in and triggered by an external sampling clock, the current mirror signal (voltage) is transferred and stored on the holdup capacitor, the voltage on the holdup capacitor is then passed over to the output of an operational amplifier. An external ADC can sense the voltage of the output of the operational amplifier to measure the optical intensity.

Additionally, a high power optical protection is integrated by clamping the pre-set current limit (program by the I_{SHORT} resistor). The response time of the high optical power is typically 0.5 μ s. The device could recovery automatically when the high optical power is removed.

The device comes in a 3-mm × 3-mm QFN package with the operating junction temperature covering from –40°C to 125°C.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Undervoltage Lockout

An undervoltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below the typical UVLO threshold of 2.5 V. A hysteresis of 200 mV is added so that the device cannot be enabled again until the input voltage goes up to 200 mV.

7.3.2 Enable and Disable

When the input voltage is above maximal UVLO rising threshold of 2.5 V and the EN pin is pulled above the high threshold (1.2 V min.), the TPS61390 is enabled. When the EN pin is pulled below the low threshold (0.4 maximum), the device goes into shutdown mode.

Feature Description (接下页)

7.3.3 Current Mirror

There are two current mirror options for TPS61390: the gain of 4: 5 (MON1) and 1: 5 (MON2). The maximum voltage of MON1 and MON2 is 2.5 V.

7.3.4 Sample and Hold

The TPS61390 has the sample-and-hold circuitry built in, including a holdup capacitor for storing the voltage capture, a FET switch, and one operational amplifier, illustrated in *Functional Block Diagram*.

To sample the current mirror signal, the switch connects the capacitor to the input of the common-mode operational amplifier. The amplifier converts the voltage of the capacitor to the output terminal with 4:1 ratio.

In hold mode the switch disconnects the hold-up capacitor from the operation amplifier, the voltage of the capacitor is discharged to 0 before connecting with current mirror output terminal (MON1 and MON2).

These are two ratios of the current mirror that can be selected automatically by comparing the MON1 voltage with the internal 400-mV reference. The voltage of MON1 is sampled if the MON1 voltage is below 400 mV, while the voltage of MON2 is sampled if MON1 being larger than 400 mV. The GAIN pin reports which ratio is selected for the sample and hold, the logic low (0) for MON1 while logic high (AVCC) for MON2 selected.

Also, the GAIN can be externally selected, pulling low to select the 1:5 while high for 4:5 ratio.

The voltage measured on VSP pin is calculated by 公式 1 and 公式 2:

$$VSP = 4 \times (0.8 \times I_{APD} \times RMON1) + 4 \times (I_{BIAS} \times RMON1)$$

where

- VSP is the voltage sampled on VSP pin
- I_{APD} is the current flowing through the APD pin.
- RMON1 is the resistor connecting with MON1 pin

$$VSP = 4 \times (0.2 \times I_{APD} \times RMON2) + 4 \times (I_{BIAS} \times RMON2)$$

where

The bias current is around 20 μ A (typical) when there is no APD current flowing through. The bias voltage of MON1 or MON2 is 60 mV given a 3-k Ω MON resistor connected with MON1 or MON2. Also, the VSP voltage is reset to 250 mV prior to every sample clock coming. The maximum voltage of the MON1 is clamped to 400 mV while maximum of MON2 is 2.5 V. The maximum voltage of VSP is close to the A_{VCC} (0.1 V lower typically), which is the supply voltage of the sample and hold circuitry.

As the timing diagram shown in 🛭 11, the sample and hold is enabled by the rising edge of an external clock connecting to the SAMPLE pin, the holdup capacitor captures the voltage of current mirror signal (the voltage of MON1 and MON2).

At the falling edge, the sampling is stopped, and the voltage stored on the holdup capacitor is transferred to the output of the operational amplifier. The minimum time of the sampling time the TPS61390 supports is 350 ns (typically). The voltage on the stored capacitor is switched to the amplifier's input voltage. There is approximately 10-µs delay time to make the output voltage of the amplifier ready.

The GAIN selector is always active and the GAIN value is captured by the falling edge of the sample signal.

(1)

(2)

Feature Description (接下页)

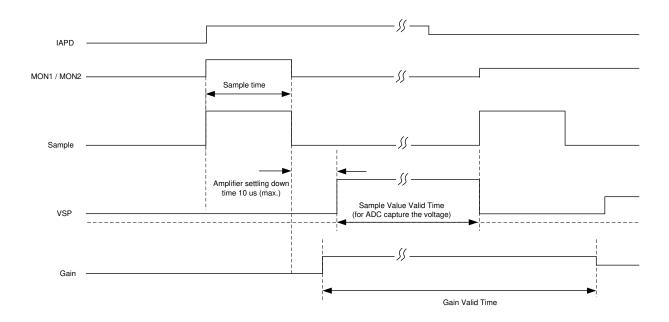


图 11. TPS61390 Sample / Hold Circuit Timing

The output settling time of the operational amplifier is 10 µs while the maximum duration time is 100 µs with 1% derating (with the nominal voltage).

7.3.5 High Optical Power Protection

There is an additional FET in series of power path connecting with the APD. When the current flowing through the APD exceeds the short protection threshold (set by connecting the resistor from I_{SHORT} to GND), the on resistance of the FET becomes larger to clamp the current within the protection threshold by lowering the APD bias voltage. It takes typically 0.5 µs for the FET to respond in case of high optical power occurring.

When the high optical power condition releases, the TPS61390 recovers automatically back to the normal operation mode.

7.4 Device Functional Mode

7.4.1 PFM Operation

The TPS61390 integrates a power save mode with pulse frequency modulation (PFM) at the light load. When a light load condition occurs, the COMP pin voltage naturally decreases and reduces the peak current. When the COMP pin voltage further goes down with the load lowered and reaches the pre-set low threshold, the output of the error amplifier is clamped at this threshold and does not go down any more. If the load is further lowered, the device skips the switching cycles and reduces the switching losses and improves efficiency at the light load condition by reducing the average switching frequency.

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS61390 is a step-up DC/DC converter with current monitor and sample / hold circuitry integrated. The following design procedure can be used to select component values for the TPS61390. This section presents a simplified discussion of the design process.

8.2 Typical Application

This application is designed for 2.5-V to 5.5-V input, and 60-V output user case

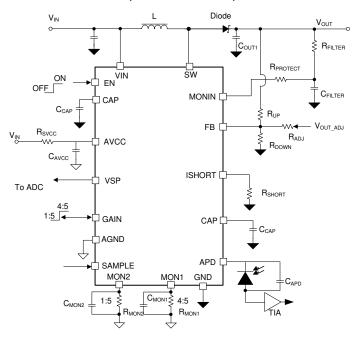


图 12. TPS61390 Typical Application

8.2.1 Design Requirement

For this design example, use 表 1 as the design parameters.

表 1. Design Parameters

PARAMETER	VALUE
Input voltage range	2.5 V to 5.5 V
Output voltage	60 V
Operating frequency	700 kHz
APD Current	0 to 2 mA

8.2.2 Detailed Design Procedure

8.2.2.1 Selecting the Rectifier Diode

A Schottky diode is the preferred type for the rectifier diode due to its low forward voltage drop and small reverse recovery charge. Low reverse leakage current is important parameter when selecting the Schottky diode. The diode must be rated to handle the maximum output voltage plus the switching node ringing. Also, it must be able to handle the average output current.

8.2.2.2 Selecting the Inductor

It is suggested that the TPS61390 device works in the DCM operation; otherwise the output voltage would not be delivered for low input voltage to high output voltage.

With the device working in DCM operation, the maximum inductor could be calculated by equation 公式 3 and 公式 4:

$$L_{MAX} = \frac{V_{IN} \times D}{f_{SW} \times I_{LIM}}$$

where

- V_{IN} is input voltage
- · D is duty cycle
- f_{SW} is switching frequency

For instance, if $V_{IN} = 3.3 \text{ V}$, $V_{OUT} = 60 \text{ V}$, $f_{SW} = 600 \text{ kHz}$, $I_{LIM} = 0.8 \text{ A}$, the $L_{MAX} = 6.5 \mu\text{H}$

However, there is minimum inductance is determined by the power delivered to the output side at given input condition.

$$L_{MIN} = 2 \times \frac{V_{\text{OUT}} \times I_{\text{OUT}}}{\text{eff} \times f_{\text{SW}} \times I_{\text{LIM}}^2}$$

where

- V_{OUT} is output voltage
- I_{OUT} is output current
- eff is the efficiency
- f_{SW} is switching frequency

For instance, if $I_{OUT} = 8$ mA, $V_{OUT} = 60$ V, $f_{SW} = 600$ kHz, $I_{LIM} = 0.8$ A, eff = 0.6, the $L_{MIN} = 4.2$ μ H

With the calculation aforementioned, the operating inductor is recommended between the L_{MIN} and L_{MAX} .

The 4.7 μH inductance is optimum value for using the TPS61390 in application.

8.2.2.3 Selecting Output Capacitor

Use low ESR capacitors at the output to minimize output voltage ripple. Use only X5R and X7R types, which retain their capacitance over wider voltage and temperature ranges than other types. Typically use a 0.1- μ F to 1- μ F capacitor for output voltage. Take care when evaluating the derating of a ceramic capacitor under the DC bias. Ceramic capacitors can derate its capacitance at its rated voltage. Therefore, consider enough margins on the voltage rating to ensure adequate capacitance at the required output voltage.

8.2.2.4 Selecting Filter Resistor and Capacitor

TI recommends an additional R-C filter be added for low ripple applications. The filter parameters is characterized based on the ripple requirement. Typically, use a $100-\Omega$ and $0.1-\mu F$ filter to reduce the switching output ripple.

8.2.2.5 Setting the Output Voltage

The output voltage of the TPS61390 is externally adjustable using a resistor divider network. The relationship between the output voltage and the resistor divider is given by Δ 式 5.

$$V_{OUT} = V_{FB} \times (1 + \frac{R_{UP}}{R_{DOWN}})$$

where

- V_{OUT} is the output voltage
- R_{UP} the top divider resistor
- R_{DOWN} is the bottom divider resistor

(5)

Choose R_{DOWN} to be approximately 10 $k\Omega$. Slightly increasing or decreasing R_{DOWN} can result in closer output voltage matching when using standard value resistors. In this design, R_{DOWN} = 10 $k\Omega$ and R_{UP} = 487 $k\Omega$, resulting in an output voltage of 60 V.

8.2.2.6 Selecting Sample Window

A pulse signal is connected with SAMPLE pin; the minimum window is 350 ns while the frequency of the pulse is lower than 100 kHz.

8.2.2.7 Selecting Capacitor for CAP pin

TI recommends placing a ceramic capacitor from CAP pin to GND to lower the noise for the APD current mirror. A ceramic capacitor between 10 nF and 100 nF is recommended from CAP pin to GND.

8.2.2.8 Selecting Capacitor for AVCC pin

The control circuitry is powered by AVCC. A ceramic capacitor must be placed close to AVCC, with a typical capacitor value of $2.2 \, \mu F$.

8.2.2.9 Selecting Capacitor for APD pin

A ceramic capacitor is required to make the APD current mirror more accurately against the noise coupling. The recommended values are from 100 pF to 470 pF.

8.2.2.10 Selecting the Resistors of MON1 or MON2

The TPS61390 provides two currents proportional to APD current on the MON pins, 4:5 and 1:5. The voltage of the resistors connecting to the MON pins convert the APD current to voltage. The relation between APD current and the voltage on MON 1 or MON 2 pins is shown in 公式 1 and 公式 2.

The resistor value depends on the VSP pin voltage. While RC time constant of MON 1 and MON 2 is recommended to be 1/10 of the sample window time.

8.2.2.11 Selecting the Capacitors of MON1 or MON2

The capacitors are added to the MON1 or MON2 pins to decouple the noise of APD transient current. Suggested RC time (formed by the MON1 or MON2 is 1/10 with that of the sample window. With 3-k Ω R_{MON} resistance, TI recommends a 10-pF capacitor connecting MON1 or MON2 pins to make sure the voltage on MON1 or MON2 is stable before sample signal coming.

It is recommended that RC time constant of MON 1 and MON 2 is around 1/10 of the sample window time.

8.2.2.12 Selecting the Resistor of Gain pin

The GAIN pin can be configured as both input and output. If the GAIN pin is configured as output pin, TI recommends that it be directly connected with the external I/O.

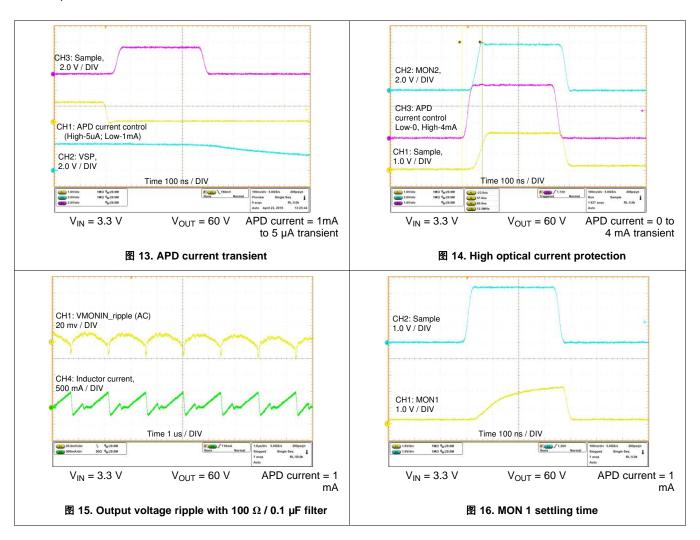
If the pin is configured as the input pin to select the current mirror ratio, the pull up or pull down resistor must be lower than 1-k Ω as there is an internal 5-k Ω resistor on the GAIN pin.

8.2.2.13 Selecting the Short Current Limit

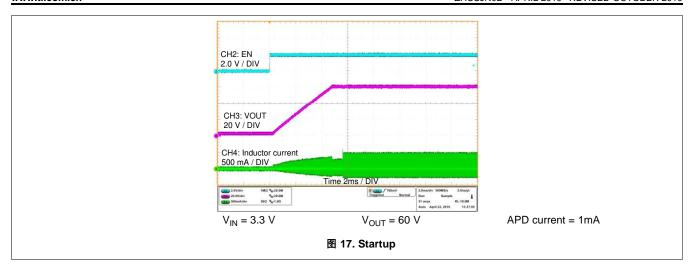
The output current short-protection threshold of the TPS61390 can be programmed by an external resistor with 公式 6. The short protection threshold is calculated by 公式 1 and 公式 2:

$$I_{SHORT} = \frac{100}{R_{SHORT}}$$

(6)


where

- I_{SHORT} (mA) is the short protection threshold
- $R_{SHORT}(k\Omega)$ is the resistor connecting from ISHORT pin to GND


For instance, if $R_{SHORT} = 25 \text{ k}\Omega$, the $I_{SHORT} = 4 \text{ mA}$.

8.2.3 Application Curves

Typical condition $V_{IN}=3.3~V,~V_{OUT}=60~V,~R_{SHORT}=5~k\Omega,~R_{MON1/2}=3.01~k\Omega$ and $C_{MON1/2}=10~pF.$ Application waveforms are measured with the inductor 4.7 μH and the output capacitance 0.1 μF at room temperature.

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply must be well regulated. If the input supply is located more than a few inches from the device, the bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of $47 \, \mu F$ is a typical choice.

10 Layout

10.1 Layout Guidelines

The basic PCB board layout requires a separation of sensitive signal and power paths. If the layout is not carefully done, the regulator could suffer from the instability or noise problems. Use the following checklist to get good performance for a well-designed board:

- Minimize the high current path including the switch FET, rectifier FET, and the output capacitor. This loop contains high di / dt switching currents (nano seconds per ampere) and easy to transduce the high frequency noise:
- Place the noise sensitive network like sample hold and current mirror output (MON1, MON2) being far away from the SW trace;
- Split the ground for the power GND, signal GND. Use a separate ground trace to connect the sample/hold and boost circuitry. Connect this ground trace to the main power ground at a single point to minimize circulating currents.

10.2 Layout Example

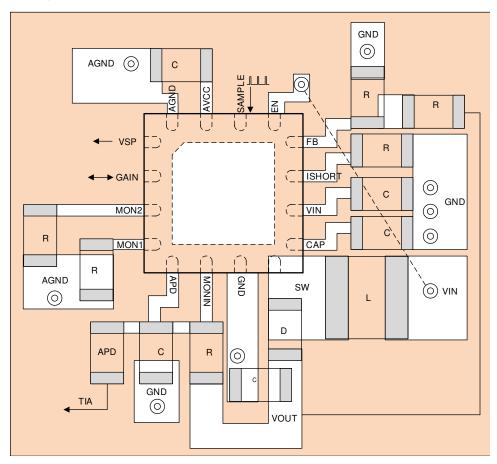


图 18. Layout Example

11 器件和文档支持

11.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.2 社区资源

TI E2ETM support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.3 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.4 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 www.ti.com 4-Dec-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS61390RTER	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	FULL NIPDAU	Level-1-260C-UNLIM	-40 to 125	1XQH
TPS61390RTER.A	Active	Production	WQFN (RTE) 16	3000 LARGE T&R	Yes	FULL NIPDAU	Level-1-260C-UNLIM	-40 to 125	1XQH
TPS61390RTET	Active	Production	WQFN (RTE) 16	250 SMALL T&R	Yes	FULL NIPDAU	Level-1-260C-UNLIM	-40 to 125	1XQH
TPS61390RTET.A	Active	Production	WQFN (RTE) 16	250 SMALL T&R	Yes	FULL NIPDAU	Level-1-260C-UNLIM	-40 to 125	1XQH

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

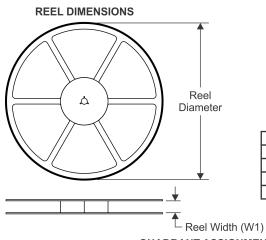
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

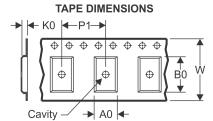
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

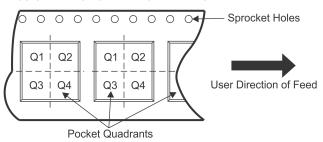
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

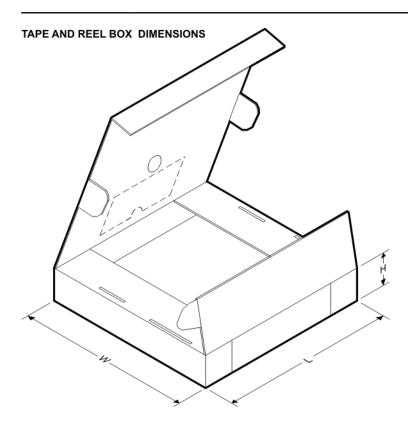

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Oct-2019


TAPE AND REEL INFORMATION

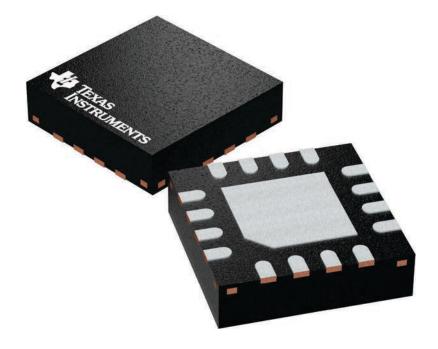
_		
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ſ	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

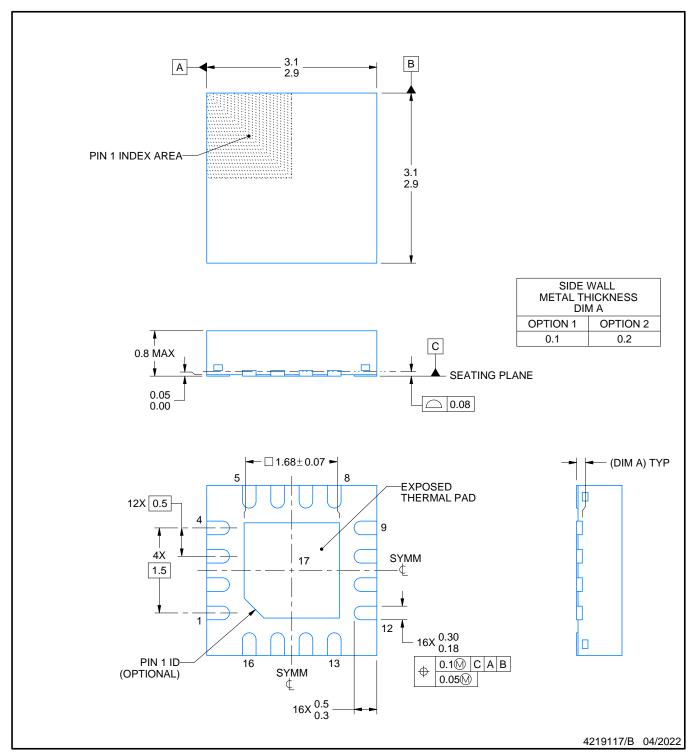
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS61390RTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS61390RTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 17-Oct-2019


*All dimensions are nominal

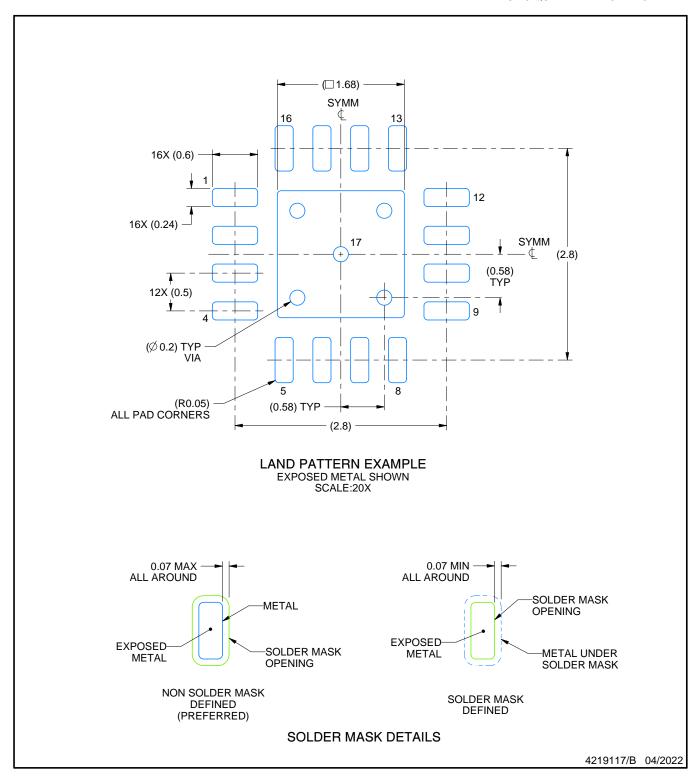
Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TPS61390RTER	WQFN	RTE	16	3000	367.0	367.0	35.0	
TPS61390RTET	WQFN	RTE	16	250	210.0	185.0	35.0	

3 x 3, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

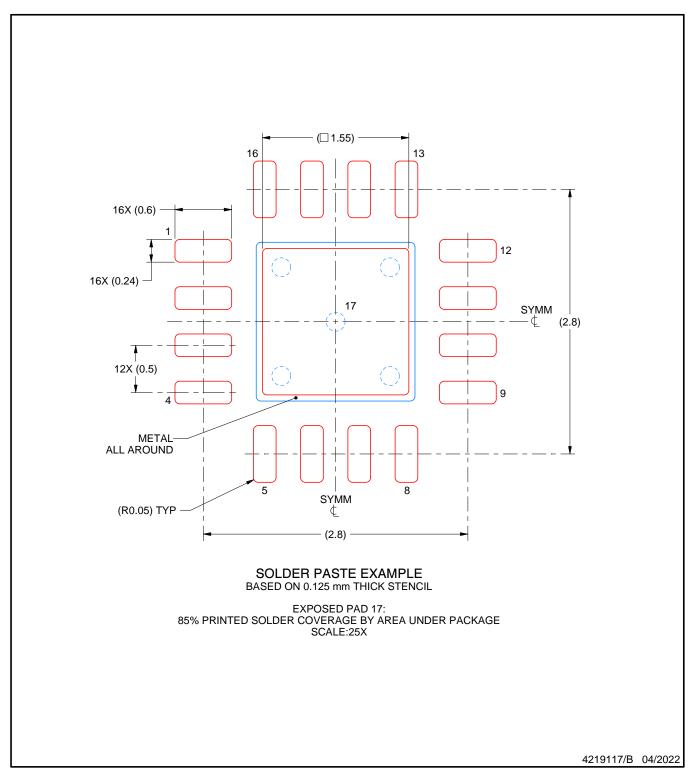
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月