Technical documentation
$\sqrt{3}$ Design \＆ development

Support \＆ training

具有差分遥感和 ${ }^{2} \mathrm{C}$ 的 TPS542A50 4V 至 18 V 输入， 15A 同步降压转换器

1 Features

－Integrated 9．1－m 2 and $2.6-\mathrm{m} \Omega$ MOSFETs support up to $15-\mathrm{A}$ output current
－ $0.5-\mathrm{V}$ to $5.5-\mathrm{V}$ output voltage range
－Fixed－frequency voltage control mode with selectable internal compensation
－Seven selectable frequency settings from 400 kHz to 2.2 MHz
－Synchronizes to an external clock
－Fully differential remote sense
－Device configurable by analog pinstrap resistors or through $\mathrm{I}^{2} \mathrm{C}$ interface
－$V_{\text {OUt }}$ adjustment with controlled slew rate through $I^{2} \mathrm{C}$ from -20% to $+10 \%$ in 0.028% steps
－Six selectable overcurrent limits，four soft－start slew rates，and two $\mathrm{I}^{2} \mathrm{C}$ addresses
－Monotonic start－up into pre－biased outputs
－EN pin allowing for adjustable input UVLO
－Power good indicator
－ $17-\mu \mathrm{A}$ typical shutdown quiescent current draw
－Selectable FCCM or PFM for light load efficiency
－-40 to $+150^{\circ} \mathrm{C}$ operating junction temperature
－ $4-\mathrm{mm} \times 4.5-\mathrm{mm}$ VQFN package
－Create a custom design using the TPS542A50 with the WEBENCH ${ }^{\circledR}$ Power Designer

2 应用

- 企业级存储，SSD
- ASIC，SoC，FPGA，DSP 内核和 I／O 电源轨
- 有线网络交换机和路由器
- 工业机械和机床

3 说明

TPS542A50 是一款具有差分遥感和 $I^{2} \mathrm{C}$ 的高效同步降压转换器。该器件提供具有引脚搭接，可选内部补偿的固定频率电压控制模式，可降低系统成本和复杂性。 PWM 可通过 SYNC 引脚与外部时钟保持同步。其他关键特性包括 PFM（可提高轻负载效率），低关断静态电流消耗，可调 UVLO（通过 EN 引脚实现）以及单调启动至预偏置状态。该器件还具有用于器件配置和输出电压调节的 $I^{2} \mathrm{C}$ 接口。TPS542A50 是一款无铅器件，完全符合 RoHS 标准，无需豁免。

器件信息

器件型号	封装 $^{(1)}$	封装尺寸（标称值 ）
TPS542A50	VQFN（33）	$4.50 \mathrm{~mm} \times 4.00 \mathrm{~mm}$

（1）如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

$1 V_{\text {OUT }}$ 条件下的典型效率

Table of Contents

1 Features． 1
2 应用 1
3 说明 1
4 Revision History 2
5 Pin Configuration and Functions． ． 3
6 Specifications 4
6．1 Absolute Maximum Ratings． 4
6．2 ESD Ratings 4
6．3 Recommended Operating Conditions． 4
6．4 Thermal Information 5
6．5 Electrical Characteristics ．． 5
6．6 Typical Characteristics 9
7 Detailed Description 14
7．1 Overview 14
7．2 Functional Block Diagram． 14
7．3 Feature Description． 15
7．4 Device Functional Modes 21
7．5 Programming． 21
7．6 Pin－Strap Programming 22
7．7 Register Maps 23
8 Application and Implementation． 26
8．1 Application Information 26
8．2 Typical Application． 26
9 Power Supply Recommendations． 31
10 Layout 32
10．1 Layout Guidelines 32
10．2 Layout Example． 33
11 Device and Documentation Support 34
11．1 Device Support． 34
11.2 接收文档更新通知 34
11.3 支持资源 34
11．4 Trademarks 34
11．5 Electrostatic Discharge Caution． 35
11.6 术语表． 35
12 Mechanical，Packaging，and Orderable Information 36

4 Revision History

注：以前版本的页码可能与当前版本的页码不同
Changes from Revision B（October 2021）to Revision C（December 2021） Page
－Updated $\mathrm{V}_{\text {OUt }}$ adjustment controlled slew rate percentage value 1
－Added the pulse－width limitations on the enable pin 15
－Added the resistance－tolerance value recommended to be placed on the $\mathrm{V}_{\text {SET }}$ resistor divider network． 15
－Added the maximum voltage ringing level value recommended 16
－Added clarification on when Power Good is forced low． 19
－Added methods on how to prevent an over－current fault trigger at start－up 19
Changes from Revision A（October 2020）to Revision B（October 2021） Page
－Changed＂$V_{V R S F}$＂to＂$V_{R S P}$＂for I_{Q}－PFM Mode current test condition in the Electrical Characteristics table．．． 5
－Changed $R_{\text {FSEL }}$ test condition values under Switching Frequency in the Electrical Characteristics 5
－Changed $\mathrm{R}_{\text {ILIM }}$ test condition values under Current Sense and Protection in the Electrical Characteristics 5
－Changed title from＂Line Regulation＂to＂Load Regulation＂in 图 6－8 and 图 6－9 ．． 9
－Removed＂Chroma＂from title of 图 6－23 and 图 6－24 ．． 9
－Updated $R_{\text {FSEL }}, R_{\text {COMP }}, R_{\text {SS／PFM }}$ and $R_{\text {ILIM }}$ with correct values across document． 14
－Changed $R_{\text {FSEL }}$ values in 表 7－1 16
－Changed $R_{\text {COMP }}$ values in 表 7－2 16
－Changed $\mathrm{R}_{\text {SS／PFM }}$ values in 表 7－5 18
－Changed $\mathrm{R}_{\text {IIIM }}$ values in 表 7－7 19
－Changed $R_{\text {COMP }}$ values in 表 7－8 21
－Updated the output voltage increments percentage value and removed the tables which included the binary codes for adjusting the output voltage 22
－Updated the RESERVED field to a R／W type 24
－Updated all figures in 节 8．2．1．4 to demonstrate new $R_{\text {FSEL }}, R_{\text {COMP，}}, R_{S S / P F M}$ and $R_{I L I M}$ values 30
－Added information on Fusion Digital Power ${ }^{\text {TM }}$ designer software tool． 34

TPS542A50

5 Pin Configuration and Functions

图 5-1. 33-Pin VQFN RJM Package (Top View)
表 5-1. Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
AGND	8, 25	G	Ground of the internal analog and digital circuitry
AVIN	21	P	Power input to the controller. Tie this pin to PVIN. It is best to use an RC filter from PVIN such as 10Ω and 100 nF to $1 \mu \mathrm{~F}$.
BOOT	17	P	Gate drive voltage for high-side FET. Connect a bootstrap capacitor between this pin and SW.
COMP	24	1	A resistor to ground sets the $\mathrm{I}^{2} \mathrm{C}$ address and compensation network. This pin can be grounded to select the default compensation and reduce BOM count.
EN	22	1	Enable pin. Float to enable, enable/disable with an external signal, or adjust the input undervoltage lockout with a resistor divider.
FSEL	23	1	A resistor to ground sets the switching frequency of the converter. This pin can be grounded to select the default switching frequency to reduce BOM count.
ILIM	1	1	A resistor to ground sets the overcurrent protection limit. This pin can be grounded to select default settings and reduce BOM count.
PGD	11	0	Open-drain power good status
PGND	13-16, 29-33	G	Power ground. These pins are internally connected to the return of the internal low-side FET.
PVIN	18-20	P	Power inputs to the power stage. Low impedance bypassing of these pins to PGND is critical. At least 10 nF to 100 nF capacitor from PVIN to PGND is required.
RSN	6	I	Remote sense ground return
RSP	7	1	Remote sense connection to $\mathrm{V}_{\text {OUT }}$
SCL	3	1	Clock input for $\mathrm{I}^{2} \mathrm{C}$ programming
SDA	4	1/0	Data input for ${ }^{2} \mathrm{C}$ programming
SREF	10	0	1.2-V nominal system reference
SS/PFM	2	1	A resistor to ground sets the soft-start slew rate and PFM mode. To reduce BOM count this pin can be grounded to use the default soft-start rate and enable PFM mode.
SYNC	5	1	In shutdown mode, an active high puts the IC into programming mode. In operation, this pin is a clock input for synchronizing the oscillator.
SW	26-28	0	Switch node output of the converter. Connect this pin to the output inductor.
VREG	12	I/O	Bypass pin for the internal power stage LDO. It is recommended to use $4.7-\mu \mathrm{F}$ ceramic capacitor to ground.
VSET	9	1	Output voltage reference for the control loop. This must be the mid-point of a resistive divider from SREF to AGND. Set this voltage to be $1 / 5$ of the desired $\mathrm{V}_{\text {OUT }}$.

TPS542A50
www.ti.com.cn

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		MIN	MAX	UNIT
	PVIN, AVIN	-0.3	20	
	PVIN - SW	-0.3	24	
	BOOT	-0.3	27.5	
	BOOT-SW	-0.3	5.5	
Input	EN, SYNC, SDA, SCL	-0.3	6	
	FS, COMP, ILIM, SS/PFM, SREF, VSET	-0.3	1.98	
	RSP	-0.3	6	
	PGD	-0.3	6	
	SW	-0.3	22	
Output	SW transient (<10 ns)	-2	22	V
	VREG	-0.3	6	
	Operating junction temperature, T_{J}	-40	150	${ }^{\circ} \mathrm{C}$
	Storage temperature, $\mathrm{T}_{\text {stg }}$	-55	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
$\mathrm{V}_{\text {(ESD) }}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ${ }^{(1)}$	± 2500	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ${ }^{(2)}$	± 1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

$T_{J}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise noted)

		MIN	NOM	MAX
UNIT				
PVIN, AVIN	Input voltage	4	12	18
VOUT	Output voltage	0.5	V	
IOUT	Output current	0	5.5	V
EN,SDA, SCL		0	15	A
SYNC		0	5.5	V
FS, COMP, ILIM, SS/ PFM,SREF, VSET		0	3.3	V
T_{J}	Junction temperature	-40	1.8	V

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		TPS542A50	UNIT
		RJM (VQFN)	
		33 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	54.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance EVM PCB Layout	22.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	23.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	17.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	2.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	17.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(bot) }}$	Junction-to-case (bottom) thermal resistance	N/A	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

$T_{J}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER ${ }^{(1)}$		TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT SUPPLY (PVIN, AVIN PINS)						
$\mathrm{V}_{\text {IN }}$	PVIN and AVIN supply range		4	12	18	V
I_{Q}	Shutdown current	EN < 0.4 V		17		$\mu \mathrm{A}$
	PFM Mode current	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1 \mathrm{~V}, \mathrm{EN}>1.2 \mathrm{~V} \text {, no }$ $\text { switching, } \mathrm{V}_{\mathrm{RSP}}>5^{*} \mathrm{~V}_{\mathrm{VSET}}$		1800		
ENABLE and UVLO (EN PIN)						
V_{EN}	Enable threshold: ON/OFF	Rising and falling		1.2		V
$I_{E N}$	Enable input current	Enable threshold - 50 mV		-0.6		$\mu \mathrm{A}$
		Enable threshold + 50 mV		-5		
UVLO (AVIN, PVIN PINS)						
AVIN, PVIN	UVLO rising threshold		3.75	3.85	4	V
	UVLO falling threshold		3.50	3.6	3.7	
	Hysteresis			0.25		
INTERNAL REGULATOR, POWER STAGE (VREG PIN)						
$V_{\text {VREG }}$	LDO output voltage	LDO output current $=0 \mathrm{~A}$	4.3	4.7	4.96	V
$V_{\text {VREG }}$	LDO output voltage	LDO output current $=30 \mathrm{~mA}$		4.7		V
	Output current limit	$\mathrm{V}_{\text {VREG }}=4.7 \mathrm{~V}$	120	170	220	mA
	Nominal output current	$\mathrm{f}_{\mathrm{sw}}=2.2 \mathrm{MHz}$, output current $=15 \mathrm{~A}$, $\mathrm{V}_{\text {VREG }}=4.7 \mathrm{~V}$		30		mA
$\mathrm{V}_{\text {REG(UVLO) }}$	UVLO rising yhreshold			2.8		V
	UVLO falling threshold			2.6		
	UVLO hysteresis			0.2		
CONTROL REFERENCE VOLTAGE (SREF PIN)						
$V_{\text {SREF }}$	SREF output voltage	Tolerance included in RSP/RSN accuracy		1.2		V
ISREF	SREF current sourcing capability	Resistance > $6 \mathrm{k} \Omega$			200	$\mu \mathrm{A}$

TPS542A50
www.ti.com.cn
$T_{J}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise noted)

	PARAMETER ${ }^{(1)}$	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT VOLTAGE REGULATION ACCURACY						
	Output Voltage Accuracy; Vout $=1 \mathrm{~V}$	Total internal accuracy, measured at the RSP and RSN pins $=5^{*}$ VSET, VSET $=$ $0.2 \mathrm{~V},-40$ to $150^{\circ} \mathrm{C}$	-15		15	mV
	Output Voltage Accuracy; Vout =1V	Total internal accuracy, measured at the RSP and RSN pins $=5^{*}$ VSET, VSET $=$ $0.2 \mathrm{~V},-40$ to $125^{\circ} \mathrm{C}$	-13		13	mV
	Output Voltage Accuracy; Vout $=1 \mathrm{~V}$	Total internal accuracy, measured at the RSP and RSN pins $=5^{*}$ VSET, VSET $=$ $0.2 \mathrm{~V}, 0$ to $105^{\circ} \mathrm{C}$	-11.0		9.0	mV
	Output Voltage Accuracy; Vout $=0.8 \mathrm{~V}$	Total internal accuracy, measured at the RSP and RSN pins $=5^{*}$ VSET, VSET $=$ $0.16 \mathrm{~V},-40$ to $150^{\circ} \mathrm{C}$	-15		15	mV
	Output Voltage Accuracy; Vout $=1.2 \mathrm{~V}$	Total internal accuracy, measured at the RSP and RSN pins $=5^{*}$ VSET, VSET $=$ $0.24 \mathrm{~V},-40$ to $150^{\circ} \mathrm{C}$	-15		15	mV
	Output Voltage Accuracy; Vout $=5.5 \mathrm{~V}{ }^{(1)}$	Total internal accuracy, measured at the RSP and RSN pins $=5^{*}$ VSET, VSET $=$ $1.1 \mathrm{~V},-40$ to $150^{\circ} \mathrm{C}$	-30		30	mV

REMOTE SENSE AMPLIFIER

	Unity gain bandwidth ${ }^{(1)}$			7		MHz
	Open loop gain ${ }^{(1)}$			83		dB
	Slew rate ${ }^{(1)}$			2.5		V/us
	Input common mode range ${ }^{(1)}$		-0.05		1.1	V
Vos	Input offset voltage (RSA and EA combined offset trim) ${ }^{(1)}$			0.25		mV
SWITCHING FREQUENCY						
FSW_1MHz	Switching frequency 1 MHz	$\mathrm{R}_{\text {FSEL }}=35.7 \mathrm{k} \Omega$ or Short	900	1000	1100	kHz
$\begin{aligned} & \text { FSW_400kH } \\ & z \end{aligned}$	Switching frequency 400 kHz	$\mathrm{R}_{\text {FSEL }}=7.5 \mathrm{k} \Omega$	-10		+15	\%
$\begin{aligned} & \text { FSW_600kH } \\ & z \end{aligned}$	Switching frequency 600 kHz	$\mathrm{R}_{\text {FSEL }}=18.2 \mathrm{k} \Omega$	-10		+15	\%
$\begin{aligned} & \text { FSW_800kH } \\ & z \end{aligned}$	Switching frequency 800kHz	$\mathrm{R}_{\text {FSEL }}=26.1 \mathrm{k} \Omega$	-10		+15	\%
$\begin{aligned} & \text { FSW_1.2MH } \\ & z \end{aligned}$	Switching frequency 1.2 MHz	$\mathrm{R}_{\text {FSEL }}=47.5 \mathrm{k} \Omega$	-9		+11	\%
FSW_2MHz	Switching frequency 2 MHz	$\mathrm{R}_{\text {FSEL }}=61.9 \mathrm{k} \Omega$	-10		+15	\%
FSW_2.2MH	Switching frequency 2.2 MHz	$\mathrm{R}_{\text {FSEL }}=78.7 \mathrm{k} \Omega$	-10		+15	\%
	Minimum On-Time			12		ns
	Minimum Off-Time			85		ns
SYNC						
$\mathrm{V}_{\mathrm{IH}(\mathrm{SYNC})}$	High-level input voltage	EN = High	1.35			V
$\mathrm{V}_{\mathrm{IL} \text { (SYNC) }}$	Low-level input voltage				0.8	V
	Sync input minimum pulse width				50	ns
$\Delta \mathrm{f}_{\text {SYNC }}$	SYNC pin frequency range from f_{SW}		-10\%		15\%	
$\mathrm{V}_{\mathrm{IH}(\mathrm{SYNC})-}$ PROG	High-level input voltage to enter programming mode when $\mathrm{EN}=0 \mathrm{~V}$	EN = Low	1.35			V
I2C COMMUNICATION (SDA, SCL)						
$\mathrm{V}_{\mathrm{IH}(12 \mathrm{C})}$	High-level input voltage		1.35			V
$\mathrm{V}_{\text {IL(I2C) }}$	Low-level input voltage				0.8	V

TPS542A50

$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise noted)					
	PARAMETER ${ }^{(1)}$	TEST CONDITIONS	MIN	TYP MAX	UNIT
$\mathrm{IIH}(12 \mathrm{C})$	High-level input leakage current		-5	5	$\mu \mathrm{A}$
$1 \mathrm{IL}(12 \mathrm{C})$	Low-level input leakage current		-5	5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL(I2C) }}$	Low-level output voltage	$\mathrm{I}_{\text {PULLUP }}=20 \mathrm{~mA}$		0.4	V
Ipullup	Current through pull-up resistor			20	mA
$\mathrm{f}_{\text {CLK(12C) }}$	I2C operating frequency		10	1000	kHz
$\mathrm{C}_{\text {Pin }}$	Typical pin capacitance for each line (SDA, SCL)			10	pF

POWER STAGE

$\mathrm{R}_{\mathrm{ds} \text { (on)1 }}$	Main high-side MOSFET on-resistance	$\mathrm{V}_{\text {VREG }}=4.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		9.1		$\mathrm{m} \Omega$
$\mathrm{R}_{\mathrm{ds}(\text { (on }) 2}$	Main Low-side MOSFET on-resistance	$\mathrm{V}_{\text {VREG }}=4.7 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		2.6		$\mathrm{m} \Omega$
Tdt(L-H)	Dead-time between low-side off and high-side on transition	VREG $=4.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		10		ns
Tdt(H-L)	Dead-time between high-side off and low-side on transition	$V R E G=4.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		10		ns
CURRENT SENSE AND PROTECTION						
IS1	OC limit HS FET			20		A
IS2	OC limit LS FET 6	$\mathrm{R}_{\text {ILIM }}=61.9 \mathrm{k} \Omega$	17.60	20	22	A
	OC limit LS FET 5	$\mathrm{R}_{\text {ILIM }}=47.5 \mathrm{k} \Omega$	14.78	16.5	18.48	
	OC limit LS FET 4	$\mathrm{R}_{\text {ILIM }}=35.7 \mathrm{k} \Omega$	11.56	13	15.62	
	OC limit LS FET 3	$\mathrm{R}_{\text {ILIM }}=26.1 \mathrm{k} \Omega$	9.26	10.5	13.56	
	OC limit LS FET 2	$\mathrm{R}_{\text {ILIM }}=18.2 \mathrm{k} \Omega$	6.96	8	11.60	
	OC limit LS FET 1	$\mathrm{R}_{\text {ILIM }}=7.5 \mathrm{k} \Omega$	4.66	5.5	9.60	
IS2	Negative OC limit LS FET			-8.5		A
IS2	Zero-cross detection comparator trip point			135		mA

SOFT-START COUNTER

$\mathrm{t}_{\text {SS }}$	SS setting 1: 2.0 MHz CLK	$\mathrm{V}_{\text {VSET }}=0.1 \mathrm{~V}$ to 0.28 V	0.45
	SS setting 2: 1.0 MHz CLK	$\mathrm{V}_{\text {VSET }}=0.1 \mathrm{~V}$ to 0.28 V	0.9
	SS setting 3: 0.5 MHz CLK	$\mathrm{V}_{\text {VSET }}=0.1 \mathrm{~V}$ to 0.28 V	1.8
	SS setting 4: 0.25 MHz CLK	$\mathrm{V}_{\text {VSET }}=0.1 \mathrm{~V}$ to 0.28 V	3.6

OUTPUT ADJUSTMENT

Output voltage adjust upper limit		10		\%
Output voltage adjust lower limit		-20		\%
Step size			0.5	\%
INTERNAL BOOTSTRAP SWITCH				
Forward voltage	$\mathrm{V}_{\text {VREG(BOOT) }}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.16	0.3	V

OUTPUT VOLTAGE OVERSHOOT REDUCTION						
POWER-ON DELAY						
	Power-on delay time	From EN to SS; $\mathrm{V}_{\text {IN }}>4 \mathrm{~V}$		500		us
POWER GOOD and OV/UV WARNING						
$\mathrm{V}_{\text {RSP }}$	OV warning level	RSP rising (fault)	105	110	115	\% $5^{*} V_{\text {VSET }}$
	OV warning level	RSP falling (reset)	100	105	109	
	UV warning level	RSP falling (fault)	87	90	93.5	
	UV warning level	RSP rising (reset)	91	95	99	
	PGD delay time	Delay from SS finish to PGD high		500		$\mu \mathrm{s}$
$\mathrm{R}_{\mathrm{ds}(\text { (on)PGFET }}$		PGD FET On Resistance, $\mathrm{I}_{\text {PGOOD }}=5 \mathrm{~mA}$	4.1	5.8	9.1	Ω

OUTPUT OVERVOLTAGE PROTECTION (OVP)

$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ (unless otherwise noted)						
PARAMETER ${ }^{(1)}$		TEST CONDITIONS	MIN	TYP	MAX	UNIT$\%$$5^{*} V_{\text {VSET }}$
$\mathrm{V}_{\text {RSP }}$	OVP trip level	RSP rising (fault), $\mathrm{V}_{\mathrm{VSET}} \leq 1.04 \mathrm{~V}$	110	115	120	
	OVP reset level	RSP falling	76	80	84	
	OVP delay		100			ns
OUPUT UNDERVOLTAGE PROTECTION (UVP)						
$\mathrm{V}_{\text {RSP }}$	UVP detect voltage		76	80	84	$\begin{gathered} \% \\ 5^{*} V_{\text {SET }} \end{gathered}$
	UV delay			100		ns
THERMAL SHUTDOWN						
$\mathrm{T}_{\text {SDN }}$	Shutdown temperature ${ }^{(1)}$		155	165		${ }^{0} \mathrm{C}$
	Hysteresis ${ }^{(1)}$			15		${ }^{0} \mathrm{C}$

(1) Specified by design. Not production tested.

6.6 Typical Characteristics

Measured at $25^{\circ} \mathrm{C}$ unless otherwise specified

INSTRUMENTS

图 6－7．Load Regulation

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V} \quad \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \quad \mathrm{f}_{\mathrm{SW}}=400 \mathrm{KHz}$ ， FCCM
图 6－9．Load Regulation

图 6－11．Ambient Temperature vs Output Current

图 6－8．Load Regulation

$V_{\text {IN }}=12 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$
$\mathrm{f}_{\mathrm{sw}}=1 \mathrm{MHz}$
图 6－10．Ambient Temperature vs Output Current

$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$
$\mathrm{f}_{\mathrm{SW}}=2.2 \mathrm{MHz}$
图 6－12．Ambient Temperature vs Output Current

图 6－19．Start－up and Shutdown by EN at 0－A Output Current

图 6－21．Steady State at 10－A Output Current

图 6－23．20－A Overcurrent Protection by Electronic Load

图 6－20．Steady State at 0－A Output Current

图 6－22．Switch Node Ringing and Dead－Time at 10－A Output Current

图 6－24．Short Overcurrent Protection Hiccup by Electronic Load

图 6－25．Overvoltage Protection，Negative OCP， then Undervoltage Protection by Load Stepdown

图 6－26．Load Transient 2 A to 12 A to 2 A at $20 \mathrm{~A} /$ $\mu \mathrm{S}$

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$
$\mathrm{f}_{\mathrm{SW}}=1.0 \mathrm{MHz} \mathrm{BOM}$

图 6－27．Load Transient in DCM to FCM 0．5 A to 10.5 A to 0.5 A at $1 \mathrm{~A} / \mu \mathrm{s}$

ZHCSM62C - SEPTEMBER 2020 - REVISED DECEMBER 2021

7 Detailed Description

7.1 Overview

The TPS542A50 is a high-efficiency, single-channel, synchronous buck converter with integrated n-channel MOSFETs. The device suits low-output voltage point-of-load applications with $15-\mathrm{A}$ or lower current. The TPS542A50 has a maximum operating junction temperature of $150^{\circ} \mathrm{C}$, making it suitable for high-ambient temperature applications such as wireless infrastructure. The input voltage range is 4 V to 18 V , and the output voltage range is 0.5 V to 5.5 V . The device features a fixed-frequency, voltage-control mode with a switching frequency range of 400 kHz to 2.2 MHz , allowing for efficiency and size optimization when selecting output filter components. The controller features selectable internal compensation that makes the device easy to use with low external component count. The internal compensation networks support a wide range of output inductance and capacitance, supporting all types of capacitors. The controller uses a digital PWM modulator that allows for very narrow on-times with low jitter, making it ideal for high-frequency and high-step down ratio applications. The switching frequency of the device can be synchronized to an external clock applied to the SYNC pin. The TPS542A50 also features an $I^{2} \mathrm{C}$ interface for device configuration and output voltage adjustment.

7.2 Functional Block Diagram

7．3 Feature Description

7．3．1 Enable and Adjustable Undervoltage Lockout

The EN pin provides electrical on／off control of the device．Once the EN pin voltage exceeds the threshold voltage（typically 1.2 V ），the device starts operation．If the EN pin voltage is pulled below the threshold voltage， the regulator stops switching and enters low power shutdown．

The EN pin has an internal pullup current source，allowing the user to float the EN pin for enabling the device． The EN pin can also be externally driven high or low．When the pulse－width is less than 22 us，the EN pin will detect the pulse as a low and cause the device to enter hiccup－mode．If the pulse－width is greater than 22 us ， then the EN pin will detect the pulse as low but will not enter hiccup－mode．

For adjustable input undervoltage lockout（UVLO），connect the EN pin to the middle point of an external resistor divider．Once the EN pin voltage exceeds the threshold，an additional $5 \mu \mathrm{~A}$ of hystersis current is added to facilitate UVLO hysteresis．方程式 1 shows the calculation of resistor divider network．

图7－1．EN UVLO

$$
\begin{align*}
R H S & =\frac{V_{\text {START }}-V_{S T O P}}{I_{H}} \\
R L S & =\frac{R_{H S} \cdot V_{E N}}{V_{S T O P}-V_{E N}+R H S}\left(I_{P}+I_{H}\right) \\
V_{E N} & =1.2 V ; I_{P}=0.6 \mu A ; I_{H}=5 \mu A \tag{1}
\end{align*}
$$

7．3．2 Input and VREG Undervoltage Lockout Protection

The TPS542A50 provides fixed VIN and VREG UVLO thresholds and hysteresis．The typical VIN turnon threshold is 3.85 V and hystersis is 0.25 V ．The typical VREG turnon threshold is 2.8 and hysteresis is 0.2 V ．There is no power－up sequence．Once all of the UVLO requirements have been met and the EN pin voltage exceeds the enable threshold，the converter begins operation．

7．3．3 Voltage Reference and Setting the Output Voltage

The device has a 1．2－V reference that comes out on the SREF pin．To set the reference voltage of the converter， connect the VSET pin to the mid－point of a resistor divider between SREF and AGND．TI recommends that the total impedance of this divider network be $>6 \mathrm{k} \Omega$ ．For best accuracy，the resistor＇s tolerance of 0.1% is recommended．Do not connect anything other than a resistor divider network to SREF．

There is an internal $5: 1$ resistor divider between the RSP and RSN feedback pins，so the VSET voltage must be set to $1 / 5$ of the desired output voltage．VSET can be programmed to any value between 0.1 and 1.1 V ．

7．3．4 Remote Sense Function

RSP and RSN pins are used for remote sensing purposes．Always connect RSP to the positive sensing point of the load，and always connect the RSN pin to the load return．There is an internal $5: 1$ divider in the device，so do

ZHCSM62C - SEPTEMBER 2020 - REVISED DECEMBER 2021
not connect an external feedback resistor divider. The converter loop gain can tolerate between 10Ω to 50Ω in series with RSP and output voltage.

7.3.5 Switching Frequency

The internal oscillator of the device can be set to one of seven switching frequencies by a resistor to ground on the FSEL pin or through $\mathrm{I}^{2} \mathrm{C}$ programming. The FSEL pin can be shorted to ground to reduce BOM component count. When shorted to ground, the default converter switching frequency is used. If the user programs the switching frequency using the $I^{2} \mathrm{C}$ interface, TI recommends shorting the FSEL pin to ground to reduce component count. The following frequencies can be programmed on the FSEL pin.
表 7-1. Frequency
Resistor Selection

$\mathbf{R}_{\text {FSEL }}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{f}_{\mathbf{S W}}(\mathbf{k H z})$
Short	1000
7.5	400
18.2	600
26.1	800
35.7	1000
47.5	1200
61.9	2000
78.7	2200

The oscillator can also be synchronized to an external clock on the SYNC pin. The external clock frequency must be within -10% and $+15 \%$ of the programmed frequency of the converter. The SYNC pin has an internal pulldown so it can be left floating externally.
When the converter operates at 2 MHz or 2.2 MHz , it is recommended to set the OCP at 13 A or lower and without a snubber circuit. For operation with OCP at 16.5 A, a snubber circuit is required. The snubber circuit components can start with a $470-\mathrm{pF}$ cap and $2-\Omega$ resistor to help reduce voltage ringing levels. It is recommended for the ringing levels to be $2-\mathrm{V}$ below the Absolute Maximum Ratings between SW and GND at room temperature. The component values will need to be tuned to achieve optimal results.

7.3.6 Voltage Control Mode Internal Compensation

The TPS542A50 has 15 unique internal compensation settings to cover a wide range of output inductors and capacitors. For each switching frequency option, there are four compensation options that can be chosen using a single resistor to ground on the COMP pin or through $I^{2} \mathrm{C}$ programming.

In addition to selecting the compensation option, the COMP pin also selects the device $I^{2} \mathrm{C}$ address. The following compensation settings and $I^{2} \mathrm{C}$ address combinations can be programmed on the COMP pin.

表 7-2. Compensation and $\mathrm{I}^{2} \mathrm{C}$ Address Resistor

Selection

$\mathrm{R}_{\text {COMP }}(\mathrm{k} \Omega$)	$I^{2} \mathrm{C}$ ADDRESS	COMPENSATION SETTING
Short	0×60	COMP 2
7.5	0×60	COMP 1
18.2		COMP 2
26.1		COMP 3
35.7		COMP 4
47.5	0×61	COMP 1
61.9		COMP 2
78.7		COMP 3
102		COMP 4

TPS542A50
Each compensation network consists of two zeros and one high frequency pole．表 7－3 maps the compensation settings to the first zero frequency at different output voltage range，second zero frequency，and high frequency pole．

表 7－3．Compensation Settings

FREQUENCY（kHz）	COMPENSATION SETTING	ZERO 1 （kHz）FOR VOUT＝ $0.5 \mathrm{~V}-1.1 \mathrm{~V}$	$\begin{aligned} & \text { ZERO } 1 \\ & (\mathrm{kHz}) \text { for } \\ & \text { VOUT = } 1.2 \\ & \text { V-1.5 V } \end{aligned}$	$\begin{gathered} \text { ZERO } 1 \\ (\mathrm{kHz}) \text { FOR } \\ \text { VOUT }=1.6 \\ \text { V-2.8 V } \end{gathered}$	$\begin{gathered} \text { ZERO } 1 \\ \text { (kHz) FOR } \\ \text { VOUT }=2.9 \\ \text { V-4.0 } \end{gathered}$	$\begin{gathered} \text { ZERO } 1(\mathrm{kHz}) \\ \text { for VOUT = } 4.1 \\ \text { V-5.5 V } \end{gathered}$	$\begin{gathered} \text { ZERO } 2 \\ (k H z) \end{gathered}$	$\begin{aligned} & \text { POLE } \\ & \text { (kHz) } \end{aligned}$
400	COMP 1	2.2	2.1	1.8	1.6	1.2	5.5	60
	COMP 2	2.2	2.1	1.8	1.6	1.2	7.3	80
	COMP 3	3.6	3.4	3.0	2.7	2.0	14.5	159
	COMP 4	7.2	7.0	6.1	5.4	4.1	28.4	312
600	COMP 1	2.2	2.1	1.8	1.6	1.2	5.5	60
	COMP 2	2.7	2.6	2.3	2.0	1.5	11.0	121
	COMP 3	4.5	4.3	3.8	3.4	2.5	18.1	199
	COMP 4	10.5	10.1	8.8	7.9	5.9	45.2	497
800	COMP 1	2.2	2.1	1.8	1.6	1.2	7.3	80
	COMP 2	3.6	3.4	3.0	2.7	2.0	14.5	159
	COMP 3	7.2	7.0	6.0	5.4	4.1	28.4	312
	COMP 4	13.5	13	11.4	10.1	7.6	55.6	612
1000	COMP 1	2.2	2.1	1.9	1.7	1.2	9.0	99
	COMP 2	4.5	4.3	3.8	3.4	2.5	18.1	199
	COMP 3	9.0	8.7	7.6	6.7	5.1	37.1	408
	COMP 4	18.8	18.2	15.9	14.1	10.6	72.3	796
1200	COMP 1	2.7	2.6	2.3	2.0	1.5	11.0	121
	COMP 2	4.5	4.3	3.8	3.4	2.5	18.1	199
	COMP 3	10.5	10.1	8.8	7.9	5.9	45.2	497
	COMP 4	23.5	22.7	19.9	17.7	13.3	90.4	995
2000	COMP 1	4.5	4.3	3.8	3.4	2.5	18.1	199
	COMP 2	9	8.7	7.6	6.7	5.1	37.1	408
	COMP 3	18.8	18.2	15.9	14.1	10.6	72.3	796
	COMP 4	37.7	36.4	31.8	28.3	21.2	144.7	1592
2200	COMP 1	4.5	4.3	3.8	3.4	2.5	18.1	199
	COMP 2	9	8.7	7.6	6.7	5.1	37.1	408
	COMP 3	18.8	18.2	15.9	14.1	10.6	72.3	796
	COMP 4	37.7	36.4	31.8	28.3	21.2	144.7	1592

表 7－4 shows the second zero frequency placement about two times based on a ratio（ $\mathrm{f}_{\mathrm{O}} / \mathrm{f}_{\mathrm{sw}}$ ）of the LC frequency（ f_{O} ）to the switching frequency and lists the values in 表 7－3．The second zero frequency does not change with the output voltage．The high frequency pole is about 10 times of the second zero frequency to attenuate the switching frequency noise and to have a safe gain margin．
The output filter LC frequency must be designed between the first and second zero frequencies．The ratio of the LC frequency to the switching frequency in 表 7－4 is a guide to select the LC frequency f_{0} ．For example，the LC frequency for $1-\mathrm{MHz}$ switching frequency is 10 kHz at 1% ratio．Given $1-\mathrm{V}$ output voltage，COMP2 has the first zero at 4.5 kHz to compensate the LC filter double poles．For the same LC filter and switching frequencies of $3.3-\mathrm{V}$ output voltage，COMP3 has the first zero at 6.7 kHz to compensate the LC filter double poles．The compensation setting needs to consider for the output capacitor derating，especially ceramic capacitor，and inductor tolerance．It is recommended to verify the load transient and bode plot based upon the compensation selection．

表 7－4．Second Zero Frequency

$\mathbf{f o}_{\mathrm{o}} / \mathrm{f}_{\text {Sw }}$	COMPENSATION SETTING	SECOND ZERO FREQUENCY
0.5%	COMP 1	$\sim 2 \mathrm{X}$ of $0.5 \% \mathrm{fo}_{\mathrm{o}} / \mathrm{f}_{\mathrm{sw}}$
1%	COMP 2	$\sim 2 \mathrm{X}$ of $1 \% \mathrm{f}_{\mathrm{o}} / \mathrm{f}_{\mathrm{sw}}$
2%	COMP 3	$\sim 2 X$ of $2 \% \mathrm{f}_{\mathrm{o}} / \mathrm{fsw}_{\mathrm{sw}}$
4%	COMP 4	$\sim 2 X$ of $4 \% \mathrm{f}_{\mathrm{o}} / \mathrm{f}_{\mathrm{sw}}$

7．3．7 Soft Start and Prebiased Output Start－up

The TPS542A50 uses a programmable soft－start rate to gradually ramp the output voltage reference to reduce inrush currents．The device prevents current from being discharged from the output during start－up when a pre－biased condition exists．No switching pulses occur until the internal soft－start reference exceeds the voltage on the error amplifier input voltage（RSP and RSN pins）．The TPS542A50 supports the output voltage with pre－biased up to 100\％．
The soft－start clock in 表 7－5 can be programmed on the SS／PFM pin along with enabling／disabling PFM and hiccup time．These same options can also be programmed through the $I^{2} \mathrm{C}$ interface．The SS／PFM pin can be shorted to ground to reduce BOM component count．When shorted to ground the default soft－start slew rate is used，and PFM is disabled．If the user programs these functions frequently using the $1^{2} \mathrm{C}$ interface， TI recommends shorting the SS／PFM pin to ground to reduce component count．The soft－start timing in 表 7－6 can be programmed based upon the output voltage and soft－start clock．There are four choices of soft－start times to select different soft－start clocks．To prevent an OC fault trigger at start－up，it is recommended to increase the length of soft－start time to reduce the inrush current from exceeding the peak current limit．Using 1－V output voltage as an example，the soft－start time equals to 1.8 ms at $0.5-\mathrm{MHz}$ SS CLK and 0.45 ms at $2.0-\mathrm{MHz} \mathrm{SS}$ CLK．

表 7－5．Soft－Start CLK and PFM Resistor Selection and Hiccup Time

$\mathbf{R S S I P F M}^{(k \Omega)}$	PFM	$\begin{aligned} & \text { SS CLK } \\ & (M H z) \end{aligned}$	HICCUP DURATION（ms）
Short	Disable	1.0	25.2
7.5	Enable	2.0	12.6
18.2		1.0	25.2
26.1		0.50	50.4
35.7		0.25	100.8
47.5	Disable	2.0	12.6
61.9		1.0	25.2
78.7		0.50	50.4
102		0.25	100.8

表 7-6. Soft-Start Timing versus Output Voltage

VSET (V)	VOUT (V)	LSB SIZE (mV)	SS TIMING (ms) AT CLK: 2.0 MHz	SS TIMING (ms) AT CLK: 1.0 MHz	SS TIMING (ms) AT CLK: 0.5 MHz	SS TIMING (ms) AT CLK: 0.25 MHz
0.1	0.5	0.112	0.45	0.9	1.8	3.6
0.2	1	0.223	0.45	0.9	1.8	3.6
0.28	1.4	0.313	0.45	0.9	1.8	3.6
0.3	1.5	0.167	0.9	1.8	3.6	7.2
0.4	2.0	0.223	0.9	1.8	3.6	7.2
0.5	2.5	0.279	0.9	1.8	3.6	7.2
0.56	2.8	0.313	0.9	1.8	3.6	7.2
0.6	3.0	0.167	1.8	3.6	7.2	14.4
0.7	3.5	0.195	1.8	3.6	7.2	14.4
0.8	4	0.223	1.8	3.6	7.2	14.4
0.9	4.5	0.251	1.8	3.6	7.2	14.4
1	5.0	0.279	1.8	3.6	7.2	14.4

7.3.8 Power Good

The power good pin is an open-drain output and needs to pull up to a voltage supply if a designer uses this feature. During normal converter operation, the device leaves this pin floating. Power good warnings occur if the output voltage is not within the OV or UV warning levels. Power Good (PGD) is forced low if OV or UV is exceeded, when the converter is in soft start, and when the converter is in shutdown or programming mode. The PGD pin is released to floating after the PGD delay time when all of the above conditions are met.
TI recommends connecting a pullup resistor to a voltage source that is 5.5 V or less, such as to the device VREG pin.

7.3.9 OvervoItage and Undervoltage Protection

An output overvoltage (OV) fault is triggered if the output voltage, sensed by RSP/RSN, is greater than the OVP trip level. When this condition is detected, the converter terminates the switching cycle and turns on the low-side FET to discharge the output voltage. The low-side FET remains on until the low-side FET current reaches the negative overcurrent limit. When the negative overcurrent limit is reached, the low set FET turns off for 2000 ns. After the 2000 ns delay, the low-side FET turns back on until the negative overcurrent limit is reached. This process repeats until the output voltage is discharged below the undervoltage fault threshold (typically 80% set $\mathrm{V}_{\text {OUt }}$). The converter then enters hiccup for seven cycles of soft-start CLK frequency due to the output voltage being below the UV threshold.
An output undervoltage fault is triggered if the output voltage, sensed by RSP/RSN, is less than UVP threshold. When this condition is detected, power conversion is disabled, and the converter enters hiccup for seven cycles of soft-start CLK frequency.

7.3.10 Overcurrent Protection

The device senses overcurrent (OC) in both the high-side and low-side power MOSFETs using cycle by cycle detection. OC is detected in the low-side FET by sensing the voltage across the FET while it is on. After the low-side FET turns on, there is a blanking time of approximately 70 ns to allow noise to settle before the OC comparator begins sensing. If the peak current limit is hit, then an OC fault condition is detected which causes the device to stop switching and enter hiccup for seven cycles of soft-start CLK frequency. The overcurrent limit is set through a single resistor to ground on the ILIM pin or through I^{2} C programming. The ILIM pin can be shorted to ground to reduce BOM component count. When shorted to ground, the default current limit is used. If the user programs the current limit using the $I^{2} \mathrm{C}$ interface, TI recommends shorting the ILIM pin to ground to reduce component count. Current limits shown in 表 7-7 can be programmed on the ILIM pin.

ZHCSM62C - SEPTEMBER 2020 - REVISED DECEMBER 2021
表 7-7. Current Limit Resistor Selection

$\mathbf{R}_{\mathbf{1 L I M}}(\mathbf{k} \mathbf{\Omega})$	TYPICAL LIMIT (A)
Short	20
7.5	5.5
18.2	8
26.1	10.5
35.7	13
47.5	16.5
61.9	20

The device also senses negative overcurrent in the low-side FET by sensing the voltage across the FET while it is on. After the low-side FET turns on, there is a blanking time to allow noise to settle before the OC comparator begins sensing. Once a negative OC fault condition is detected, the device stops switching and enters hiccup for seven cycles of soft-start CLK frequency. The negative overcurrent threshold is fixed to a single value.
Overcurrent is detected in the high-side FET by sensing the voltage across the FET while it is on. After the high-side FET turns on, there is a blanking time to allow noise to settle before the OC comparator begins sensing. Once an OC fault condition is detected, the device stops switching and enters hiccup for seven cycles of soft-start CLK frequency. At start-up, the inrush current has the potential of exceeding the peak current limit, thereby causing the device to enter hiccup. To prevent an OC fault trigger at start-up, it is recommended to increase the soft-start time or decrease the load at the output to reduce the inrush current from exceeding the peak current limit. The high-side overcurrent threshold is fixed to a single value. For an application with on-time less than 70 ns , the high-side FET overcurrent is not guaranteed to enable. In this case, the low-side OC will dominate and protect the load while the output current ramps up gradually. With on-times less than 70 ns and a hard short at the load, the controller loop will extend the on-time to respond to the output voltage drooping, and as a result, both high-side and low-side OC protections will engage to protect the load.

7.3.11 High-Side FET Throttling

When the high-side FET turns on or off, the ringing voltage across the FET depends on the output current, loop inductance, and PCB parasitic inductance. To diminish the ringing voltage during turning on or off, the TPS542A50 reduces the gate driver strength when TPS542A50 detects PVIN higher than 14 V with $0.5-\mathrm{V}$ hysteresis.

7.3.12 Overtemperature Protection

When the device senses a temperature above the thermal shutdown limit (typically $165^{\circ} \mathrm{C}$), power conversion is disabled. The converter remains disabled until the temperature cools down to the thermal recovery limit (typically $150^{\circ} \mathrm{C}$). At this point, the converter enters hiccup for seven cycles of soft-start CLK frequency.

7.4 Device Functional Modes

7.4.1 Pulse-Frequency Modulation Eco-mode ${ }^{T M}$ Light Load Operation

When the SS/PFM pin is terminated with a $35.7-\mathrm{k} \Omega$ or lower resistance, the TPS542A50 operates in pulsefrequency modulation (PFM) for light load conditions to maintain high efficiency.
As the output current decreases from heavy-load conditions, the inductor current also decreases until the valley of the inductor current reaches zero amps, which is the boundary between continuous-conduction mode (CCM) and discontinuous-conduction mode (DCM). The synchronous MOSFET turns off when this zero inductor current is detected. As the load current decreases further, the converter runs in DCM. In DCM operation, the on-time is maintained to a level approximately the same as during CCM and the converter off-time is modulated to maintain the proper output voltage. For the application of $5-\mathrm{V}$ input voltage, it is not recommend to operate in PFM due to the accuracy of the zero comparator which will be reduced because of the low input voltage.

7.4.2 Forced Continuous-Conduction Mode

When the SS/PFM pin is terminated with a $47.5-\mathrm{k} \Omega$ or higher resistance, the TPS542A50 operates in forced continuous conduction mode (FCCM) for all load currents. During FCCM, the switching frequency is set by an internal oscillator for which the frequency can either be selected by the FSEL pin, programmed through $I^{2} \mathrm{C}$, or synchronized to an external clock on the SYNC pin.

7.4.3 Soft Start

The TPS542A50 operates in FCCM during soft start regardless of the setting selected by the SS/PFM pin. If PFM is enabled by the SS/PFM pin, the PFM operation begins after PGD is asserted. The delay between soft start finishing and PGD being asserted is typically $500 \mu \mathrm{~s}$. During the start-up, the TPS542A50 has the low-side current limit at 16.5 A when the OCP configures 20 A . However, if the OCP configures below 16.5 A such as 13 A, then the current limit during soft start sets to be at 13 A . To prevent an OC fault trigger at start-up, it is recommended to increase the length of soft-start time to reduce the inrush current from exceeding the peak current limit.

7.5 Programming

7.5.1 $\mathrm{I}^{2} \mathrm{C}$ Address Selection

The $I^{2} \mathrm{C}$ address is selected by a single resistor to ground on the COMP pin. Note that this function is combined with setting the compensation value. Refer to 表 7-8 for selecting a COMP pin resistor value for your application.
表 7-8. COMP Resistor
Selection for I ${ }^{2}$ C Address

$\mathbf{R}_{\text {comp }}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{I}^{2} \mathbf{C}$ ADDRESS
≤ 35.7	0×60
≥ 47.5	0×61

7.5.2 Powering Device Into Programming Mode

The TPS542A50 can be powered on into programming mode for pre-operation configuration by bringing the SYNC pin above the SYNC threshold. This wakes up the device from low-power shutdown mode and the $I^{2} \mathrm{C}$ interface is active for communication. Once the device configuration is complete, the EN pin can be brought above the EN threshold to begin power conversion. After this, the SYNC pin can either be driven low, Hi-Z, or used to synchronize the switching frequency to an external clock.

7.5.3 Device Configuration

The device settings can be configured when in programming mode before the device begins power conversion. When in programming mode, the switching frequency, current limit, internal compensation, soft-start rate, and FCCM enable/disable can be configured. Once the voltage on the EN pin exceeds the EN threshold and power conversion begins, these registers are read only. Configuration settings will be lost if device is allowed to go back into low-power shutdown mode.

ZHCSM62C－SEPTEMBER 2020 －REVISED DECEMBER 2021
www．ti．com．cn
When the TPS542A50 detects an individual fault of OCP，OT，OV，or UV，the STATUS register（0x01）asserts a logic high or＂1＂in its respective bit field．The asserted fault bits will remain high even after the fault is removed． To clear the asserted fault bits，cycle power to the device，or write a logic high to the bit field of the STATUS register for the desired bits to be cleared．Bits can be cleared individually or all at once by writing＂0xDE．＂In the case of both OCP and OT bits detection，they are designed to automatically clear one another．For example，in the case of an OCP fault followed by an OT fault，the OCP will initially assert a logic high，but when the OT is encountered，the OCP will automatically clear to a logic low or＂0＂，and only the OT fault bit will remain asserted as a logic high．If the events are encountered in the reverse order，then only the OCP will remain asserted as a logic high and the OT fault bit will be cleared to a logic low．

7．5．4 Output Voltage Adjustment

The TPS542A50 output voltage can be adjusted in $\sim 0.028 \%$ increments from -20% to $+10 \%$ of the set output voltage．This function can only be performed after PGOOD goes high．During programming mode，these registers are read only．
For positive margin，write to 0×02 and 0×03 registers．Writing only to the 0×02 register does not adjust the output voltage．Writing to both registers， 0×02 and 0×03 ，does adjust the output voltage．Bits［7：3］of register 0×02 must be equal to 0000 for a positive output voltage adjustment．Bits［7：3］of register 0×02 must be 1111 for a negative output voltage adjustment．
－Writing $0 x 01$ to $0 x 02$ register and $0 x 66$ to $0 x 03$ register will margin the output voltage $+10 \%$ ．The output voltage will transition with a slew rate of soft start．
－Writing 0xFD to 0×02 register and 0×34 to 0×03 register will margin the output voltage -20% ．
－Writing $0 x 01$ to the $0 x 03$ register will step the output voltage margin by one positive step．The $0 x 02$ register does not have to be written for small positive steps．

7．6 Pin－Strap Programming

表 7－9 and 表 7－10 provide the binary code for these pin－strap pins．
表 7－9．Pin－Strap Programming 1

$\mathbf{R}_{\mathbf{I L I M}} \mathbf{(k \mathbf { \Omega })}$	$\mathbf{R}_{\text {FSEL }} \mathbf{(k \mathbf { \Omega })}$	BINARY CODE
7.5	7.5	000
18.2	18.2	001
26.1	26.1	010
35.7	35.7	011
47.5	47.5	100
61.9	61.9	101
N／A	78.7	110
N／A	N／A	111

表 7－10．Pin－Strap Programming 2

$\mathrm{R}_{\mathrm{SS} / \mathrm{PFM}}$ $\text { (} \mathrm{\Omega} \Omega \text {) }$	BINARY CODE	COMPENSATION SETTING	$I^{2} C$ ADDRESS	BINARY CODE
7.5	00	COMP 1	0×60	00
18.2	01	COMP 2		01
26.1	10	COMP 3		10
35.7	11	COMP 4		11
47.5	00	COMP 1	0×61	00
61.9	01	COMP 2		01
78.7	10	COMP 3		10
102	11	COMP 4		11

7．7 Register Maps

表 7－11 lists the memory－mapped registers for the Device registers．All register offset addresses not listed in 表 7－11 should be considered as reserved locations and the register contents should not be modified．

表 7－11．Device Registers

Offset	Acronym	Register Name
0×0	ID	Section
0×1	STATUS	Go
0×2	VOUT＿ADJ1	Go
0×3	VOUT＿ADJ2	Go
0×4	CONFIG1	Go
0×5	CONFIG2	Go

Complex bit access types are encoded to fit into small table cells．表 7－12 shows the codes that are used for access types in this section．

表 7－12．Device Access Type Codes

Access Type	Code	Description
Read Type		
R	R	Read
Write Type	Write	
W	W	
Reset or Default Value	Value after reset or the default value	
－n		

7．7．1 ID Register（Offset＝0x0）［reset＝0x21］

ID is shown in 图 7－2 and described in 表 7－13．
Return to Summary Table．
图 7－2．ID Register

| 7 | 6 | 5 | 4 | 3 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | IC＿Revision | | | | |
| | R－0x21 | | | | |

表 7－13．ID Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	IC＿Revision	R	0×21	IC Revision

7．7．2 STATUS Register（Offset $=0 \times 1$ ）［reset $=0 \times 0$ ］

STATUS is shown in 图 7－3 and described in 表 7－14．
Return to Summary Table．
图 7－3．STATUS Register

7	6	5	4	2	2	1	0
RESERVED	OT＿FAULT	OC＿FAULT	OV＿FAULT	UV＿FAULT	PGOOD		
R－0×0	R／W－0x0	R／W－0x0	R／W－0x0	R／W－0x0	R／W－0x0		

表 7－14．STATUS Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-5$	RESERVED	R	0×0	Reserved
4	OT＿FAULT	R／W	0×0	Overtemperature Fault Flag
3	OC＿FAULT	R／W	0×0	Overcurrent Fault Flag
2	OV＿FAULT	R／W	0×0	Output Overvoltage Fault Flag
1	UV＿FAULT	R／W	0×0	Output Undervoltage Fault Flag
0	PGOOD	R／W	0×0	Power Good Indicator

7．7．3 VOUT＿ADJ1 Register（Offset＝0x2）［reset＝0x0］

VOUT＿ADJ1 is shown in 图 7－4 and described in 表 7－15．
Return to Summary Table．
图 7－4．VOUT＿ADJ1 Register

7	6	4	3	2	1	0
RESERVED			VOUT＿ADJ			
R／W－0x0			R／W－0x0			

表 7－15．VOUT＿ADJ1 Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-4$	RESERVED	R／W	0×0	Reserved
$3-0$	VOUT＿ADJ	R／W	0×0	Output Voltage Adjustment Most Significant Bits

For the command to work，bits［7：4］must match bit 3 ．For example，bit $[7: 4]=0000$ then bit 3 must equal 0 ． Otherwise，no changes are made．

7．7．4 VOUT＿ADJ2 Register（Offset $=0 \times 3$ ）［reset $=0 \times 0$ ］

VOUT＿ADJ2 is shown in 图 7－5 and described in 表 7－16．
Return to Summary Table．
图 7－5．VOUT＿ADJ2 Register

7	6	5	4	2	1	0
VOUT＿ADJ						
R／W－0x0						

表 7－16．VOUT＿ADJ2 Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-0$	VOUT＿ADJ	R／W	0×0	Output Voltage Adjustment Least Significant Bits

7．7．5 CONFIG1 Register（Offset $=0 \times 4$ ）［reset $=0 \times 0 \mathrm{~B}]$

CONFIG1 is shown in 图 7－6 and described in 表 7－17．
Return to Summary Table．
图 7－6．CONFIG1 Register

7	6	5	4	2	1
RESERVED	RESERVED	RESERVED	COMP	FSW	
R－ 0×0	R－0x0	R－0x0	R／W－ 0×1	R／W－ 0×3	

表 7－17．CONFIG1 Register Field Descriptions

Bit	Field	Type	Reset	Description
7	RESERVED	R	0×0	Reserved
6	RESERVED	R	0×0	Reserved
5	RESERVED	R	0×0	Reserved
$4-3$	COMP	R／W	0×1	Internal Compensation
$2-0$	FSW	R／W	0×3	Switching Frequency

7．7．6 CONFIG2 Register（Offset $=0 \times 5$ ）［reset $=0 \times 2 \mathrm{D}]$

CONFIG2 is shown in 图 7－7 and described in 表 7－18．
Return to Summary Table．
图 7－7．CONFIG2 Register

7	6	5	4	3	1	0
RESERVED	ILIM	FCCM	SS			
R－0x0	R／W－0x3	R／W－0x1	R／W－0x1			

表 7－18．CONFIG2 Register Field Descriptions

Bit	Field	Type	Reset	Description
$7-6$	RESERVED	R	0×0	Reserved
$5-3$	LIIM	R／W	0×3	Overcurrent Limit
2	FCCM	R／W	0×1	Force Continuous Conduction Mode
$1-0$	SS	R／W	0×1	Soft Start Rate

8 Application and Implementation

Note

以下应用部分中的信息不属于 TI 器件规格的范围，TI 不担保其准确性和完整性。 TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计，以确保系统功能。

8．1 Application Information

The TPS542A50 is a high－efficiency，single－channel，synchronous buck converter with integrated n－channel MOSFETs．The device suits low－output voltage point－of－load applications with $15-\mathrm{A}$ or lower current．The TPS542A50 has a maximum operating junction temperature of $150^{\circ} \mathrm{C}$ ，which makes it suitable for high－ambient temperature applications such as wireless infrastructure．The input voltage range is 4 V to 18 V ，and the output voltage range is 0.5 V to 5.5 V ．The device features a fixed－frequency voltage－control mode with a switching frequency range of 400 kHz to 2.2 MHz ，allowing for efficiency and size optimization when selecting output filter components．The controller features selectable internal compensation making the device easy to use with a low external－component count．The internal compensation networks are able to support a wide range of output inductance and capacitance，supporting all types of capacitors．The controller utilizes a digital PWM modulator that allows for very narrow on－times making it ideal for high－frequency and high－step down ratio applications． The switching frequency of the device can be synchronized to an external clock applied to the SYNC pin．The TPS542A50 also features an $I^{2} \mathrm{C}$ interface for device configuration and output voltage adjustments．

8．2 Typical Application

8．2．1 Full Analog Configuration

A resistor to ground on the FSEL，COMP，SS／PFM，and ILIM pins configure the device．Any of these pins can be grounded to use the default values and reduce component count．

图 8－1．Full Analog Configuration

822．1．1 Design Requirements

For this design example，use the input parameters shown in 表 8－1．
表 8－1．Design Example Specifications

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IN }}$ ，Input Voltage		9	12	14	V
$\mathrm{~V}_{\text {IN（ripple），}}$ Input Ripple Voltage				0.2	V
$\mathrm{~V}_{\text {OUT }}$ ，Output Voltage			1		V
$\mathrm{~V}_{\text {PP，}}$ Ouput Ripple Voltage			15		mV
$\mathrm{V}_{\text {OVER }}$, Transient Response Overshoot	$\mathrm{I}_{\text {STEP }}=5 \mathrm{~A}$ at $1 \mathrm{~A} / \mu \mathrm{s}$		30		mV

表 8－1．Design Example Specifications（continued）

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
VUNDER，Transient Response Undershoot	$\mathrm{I}_{\text {STEP }}=5 \mathrm{~A}$ at $1 \mathrm{~A} / \mu \mathrm{s}$		30		mV
$\mathrm{l}_{\text {Out }}$ ，Output Current			10		A
Ioc，Over－Current Trip Point			16		A
$\mathrm{F}_{\text {SW }}$ ，Switching Frequency			1.2		MHz
$\mathrm{t}_{\text {SS }}$ ，Soft－start time			0.5		ms

8．2．1．2 Detailed Design Procedure

8．2．1．2．1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPS542A50 device with the WEBENCH® Power Designer．
1．Start by entering the input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ ，output voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$ ，and output current（ $\mathrm{l}_{\mathrm{OUT}}$ ）requirements．
2．Optimize the design for key parameters such as efficiency，footprint，and cost using the optimizer dial．
3．Compare the generated design with other possible solutions from Texas Instruments．
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real－time pricing and component availability．

In most cases，these actions are available：
－Run electrical simulations to see important waveforms and circuit performance
－Run thermal simulations to understand board thermal performance
－Export customized schematic and layout into popular CAD formats
－Print PDF reports for the design，and share the design with colleagues
Get more information about WEBENCH tools at www．ti．com／WEBENCH．

8．2．1．2．2 Output Voltage Calculation

The output voltage equals five times of VSET．To set VSET voltage，a resistor divider network is required from SREF（ 1.2 V ）．方程式 2 shows the output voltage calculation．It is recommended to use R_{1} and R_{2} in the range of $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ with a resistance－tolerance of 0.1% for best accuracy and that the total impedance of this divider network be $>6 \mathrm{k} \Omega$ ．For example， R_{1} equals $50 \mathrm{k} \Omega$ and R_{2} equals $10 \mathrm{k} \Omega$ for $1-\mathrm{V}$ output voltage．

$$
\begin{align*}
& \text { VOUT }=5 \times \text { VSET } \\
& \text { VSET }=\frac{R_{2}}{R_{1}+R_{2}} \times 1.2 \\
& \text { VOUT }=5 \times \frac{R_{2}}{R_{1}+R_{2}} \times 1.2 \tag{2}
\end{align*}
$$

8．2．1．2．3 Switching Frequency Selection

There is a trade off between higher and lower switching frequencies．Higher switching frequencies can produce a smaller solution size using lower valued inductors and smaller output capacitors compared to a power supply that switches at a lower frequency．However，the higher switching frequency causes extra switching losses， which decreases efficiency and impacts thermal performance．In this design，a moderate switching frequency of 1．2 MHz that achieves both a small solution size and a high efficiency operation is selected．TPS542A50 offers seven choices of switching frequency in 表 $7-1$ ．RFSET equals to $47.5 \mathrm{k} \Omega$ for $1.2-\mathrm{MHz}$ switching frequency．

8．2．1．2．4 Inductor Selection

The inductor value is a compromise between having a good load step transient response，output ripple voltage， and efficiency．A good practice is to select the inductor ripple current value between 15% to 50% of the maximum output current．The output capacitor absorbs the inductor－ripple current．Therefore，selecting a high inductor－ripple current impacts the selection of the output capacitor because the output capacitor must have a ripple－current rating equal to or greater than the inductor－ripple current．Using 35% target ripple current，the required inductor size can be calculated as shown in 方程式 3.

$$
\begin{equation*}
\mathrm{L}=\frac{\text { Vout } \times(\mathrm{VIN}-\text { Vout })}{\mathrm{VIN} \times f \text { fsw } \times \operatorname{louT} \times 0.35}=\frac{1.0 \mathrm{~V} \times(12 \mathrm{~V}-1.0 \mathrm{~V})}{12 \mathrm{~V} \times 1.2 \mathrm{MHz} \times 10 \mathrm{~A} \times 0.35}=218 \mathrm{nH} \tag{3}
\end{equation*}
$$

A standard inductor value of 220 nH is selected．

8．2．1．2．5 Input Capacitor Selection

The TPS542A50 requires a high－quality，ceramic，type X5R or X7R，input decoupling capacitor with a value of at least $1 \mu \mathrm{~F}$ of effective capacitance on the PVIN pin，relative to PGND．The power stage input decoupling capacitance（effective capacitance at the PVIN and PGND pins）must be sufficient to supply the high switching currents demanded when the high－side MOSFET switches on，while providing minimal input voltage ripple as a result．This effective capacitance includes any DC bias effects．The voltage rating of the input capacitor must be greater than the maximum input voltage．The capacitor must also have a ripple current rating greater than the maximum input current ripple to the device during full load．The input ripple current can be calculated by 方程式 4.

$$
\begin{equation*}
\operatorname{ICIN}(\mathrm{rms})=\operatorname{IOUT}(\max) \times \sqrt{\frac{\mathrm{VOUT}}{\mathrm{VIN}} \times \frac{(\mathrm{VIN}-\mathrm{VOUT})}{\mathrm{VIN}}}=2.8 \mathrm{Amps} \tag{4}
\end{equation*}
$$

The minimum input capacitance and ESR values for a given input voltage ripple specification， $\mathrm{V}_{\operatorname{IN}(\text {（ripple）}}$ ，are shown in 方程式 5 ．The input ripple is composed of a capacitive portion， $\mathrm{V}_{\operatorname{IN}(\mathrm{RIPPLE} \text { CAP）}}$ ，and a resistive portion， $V_{\text {IN（RIPPLE＿ESR）}}$ ．

$$
\begin{aligned}
& \operatorname{CIN}(\min)=\frac{\operatorname{loUT}(\max) \times(1-\mathrm{D}) \times \mathrm{D}}{\operatorname{VIN}\left(\mathrm{RIPPLE}_{-} \mathrm{CAP}\right) \times \mathrm{fSW}}=6.4 \mu \mathrm{~F} \\
& \mathrm{ESRCIN}(\max)=\frac{\operatorname{VIN}\left(\mathrm{RIPPLE} _\mathrm{ESR}\right)}{\operatorname{IOUT}(\max)+\frac{\operatorname{IRIPPLE}}{2}}=8.5 \mathrm{~m} \Omega
\end{aligned}
$$

where
－D is the duty cycle
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the capacitor．The capacitance variations due to temperature can be minimized by selecting a dielectric material that is stable over temperature．X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors because they have a high capacitance to volume ratio and are fairly stable over temperature．The input capacitor must also be selected with the DC bias taken into account．For this example design，a ceramic capacitor with at least a $25-\mathrm{V}$ voltage rating is required to support the maximum input voltage．For this design，allow $0.1-\mathrm{V}$ input ripple for $\left.V_{I N(R I P P L E}{ }^{C A P}\right)$ ，and $0.1-\mathrm{V}$ input ripple for $\mathrm{V}_{\operatorname{IN}(\text { RIPPLE＿ESR）}}$ ．Using 方程式 5 ，the minimum input capacitance for this design is $6.4 \mu \mathrm{~F}$ ，and the maximum ESR is $8.5 \mathrm{~m} \Omega$ ．In a real application，it is recommended to use a combination of small capacitors such as $0.1 \mu \mathrm{~F}$ and larger value $10-\mu \mathrm{F}$ or $22-\mu \mathrm{F}$ ceramic capacitors in parallel for the power stage．

8．2．1．2．6 Bootstrap Capacitor Selection

A ceramic capacitor with a value of $0.1 \mu \mathrm{~F}$ must be connected between the BOOT and SW pins for proper operation．It is recommended to use a ceramic capacitor with X5R or better grade dielectric．Use a capacitor with a voltage rating of 25 V or higher．

8．2．1．2．7 R－C Snubber and VIN Pin High－Frequency Bypass

Though it is possible to operate the TPS542A50 within absolute maximum ratings without voltage ringing reduction techniques，some designs may require external components to further reduce ringing levels．This example uses two approaches：a high frequency power stage bypass capacitor on the VIN pins，and an R－C snubber between the SW area and GND．

The high－frequency VIN bypass capacitor is a lossless ringing reduction technique which helps minimize the outboard parasitic inductances in the power stage，which store energy during the high－side MOSFET on－time，

TPS542A50
www．ti．com．cn
ZHCSM62C－SEPTEMBER 2020 －REVISED DECEMBER 2021
and discharge once the high－side MOSFET is turned off．For this example two of $0.1-\mu \mathrm{F}$ to $1-\mu \mathrm{F}, 25-\mathrm{V}, 0402-$ sized high－frequency capacitors are used．The placement of these capacitors is critical to its effectiveness．
Additionally，an optional R－C snubber circuit is added to this example．To balance efficiency and spike levels， a $220-\mathrm{pF}$ capacitor and a $2-\Omega$ resistor are chosen．In this example，a 0805 －sized resistor is chosen，which is rated for 0.125 W ，nearly twice the estimated power dissipation．It is recommended for the R－C snubber circuit to sustain the ringing levels 2－V below the absolute maximum ratings at room temperature．See the Seminar 900 Topic 2 －Snubber Circuits：Theory，Design and Application application note for more information about snubber circuits．

8．2．1．2．8 Output Capacitor Selection

There are three primary considerations for selecting the value of the output capacitor．The output capacitor affects three criteria：
－Stability
－Regulator response to a change in load current or load transient
－Output voltage ripple
These three considerations are important when designing regulators that must operate where the electrical conditions are unpredictable．The output capacitance needs to be selected based on the most stringent of these three criteria．

8．2．1．2．9 Response to a Load Transient

The output capacitance must supply the load with the required current when current is not immediately provided by the regulator．When the output capacitor supplies load current，the impedance of the capacitor greatly affects the magnitude of voltage deviation（such as undershoot and overshoot）during the transient．

Use 方程式 6 and 方程式 7 to calculate the minimum output capacitance to meet the undershoot and overshoot requirements．For this example， $\mathrm{C}_{\text {OUT（min＿under）}}$ is $136 \mu \mathrm{~F}$ and $92 \mu \mathrm{~F}$ for $\mathrm{C}_{\text {OUT（min＿over）．}}$ ．In a real application，the value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the capacitor．It is recommended to check the capacitor datasheet and account for the capacitance derating．

$$
\begin{align*}
& \mathrm{C}_{\mathrm{OUT}(\text { min_under) }}=\frac{\left.\mathrm{L} \times \Delta \mathrm{I}_{\mathrm{LOAD}(\max)}\right)^{2}}{2 \times \Delta \mathrm{V}_{\mathrm{LOAD}(\text { INSERT })} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {VOUT }}\right)}+\frac{\Delta \mathrm{L}_{\mathrm{LOAD}(\text { max })} \times(1-\mathrm{D}) \times \mathrm{t}_{\mathrm{SW}}}{\Delta \mathrm{~V}_{\mathrm{LOAD}(\text { INSERT })}} \tag{6}\\
& \mathrm{C}_{\text {OUT(min_over) })}=\frac{\mathrm{L}_{\mathrm{OUT}} \times\left(\Delta \mathrm{I}_{\mathrm{LOAD}(\max)}\right)^{2}}{2 \times \Delta \mathrm{V}_{\mathrm{LOAD}(\text { release })} \times \mathrm{V}_{\mathrm{OUT}}} \tag{7}
\end{align*}
$$

where
－ $\mathrm{C}_{\text {OUT（min＿under）}}$ is the minimum output capacitance to meet the undershoot requirement
－Cout（min＿over）is the minimum output capacitance to meet the overshoot requirement
－ D is the duty cycle
－L is the output inductance value $(0.22 \mu \mathrm{H})$
－$\Delta \mathrm{I}_{\mathrm{LOAD}(\max)}$ is the maximum transient step（5 A）
－$V_{\text {OUT }}$ is the output voltage value（ 1 V ）
－ t_{sw} is the switching period（ $0.833 \mu \mathrm{~s}$ ）
－ $\mathrm{V}_{\mathbb{I}}$ is the minimum input voltage for the design（12 V）
－$\Delta \mathrm{V}_{\text {LOAD（insert）}}$ is the undershoot requirement（ 30 mV ）
－$\Delta \mathrm{V}_{\text {LOAD（release）}}$ is the overshoot requirement（ 30 mV ）

8．2．1．2．10 Pin－Strap Setting

For overcurrent protection at $16.5 \mathrm{~A}, 47.5 \mathrm{k} \Omega$ is chosen from 表 7－7．For $0.5-\mathrm{ms}$ soft start and FCCM operation， $47.5 \mathrm{k} \Omega$ is chosen from 表 7－5 and 表 7－6．

For converter stability and selecting the compensation network，表 7－3 provides four compensation choices． First，the power stage double pole filter frequency needs to be known．For this example，the output capacitor
bank selects as $4 \times 100-\mu \mathrm{F}$ ceramic capacitors in 0805 size to account the capacitor de－rate factors．Next，the LC filter frequency is calculated to 17 kHz ．Finally，COMP3 becomes the best choice to select by using a $26.1-\mathrm{k} \Omega$ or $78.7-\mathrm{k} \Omega$ resistor on the COMP pin to GND．

8．2．1．3 Application Curves

图8－3．Load Transient 5 A to 10 A to 5 A at $1 \mathrm{~A} / \mu \mathrm{s}$

图 8－2． $450 \mu \mathrm{~s}$ Start－up by EN at 0－A Output Current

图8－4．Bode Plot at 10－A Output Current

8．2．1．4 Typical Application Circuits

图 8－5．Typical Application Circuit for 1．8－V Output at 1.0 MHz

图 8－6．Typical Application Circuit for 2．5－V Output at 0.8 MHz

图 8－7．Typical Application Circuit for 3．3－V Output at 0.8 MHz

图 8－8．Typical Application Circuit for 5－V Output at 0.6 MHz

9 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 4 V and 18 V ．This input supply must be well regulated．Proper bypassing of input supplies（AVIN and PVIN）is critical for noise performance，as is the PCB layout and grounding scheme．See the recommendations in 节 10 ．

10 Layout

10.1 Layout Guidelines

- The PVIN pins are the power inputs to the main half bridge and AVIN is the power input to the controller.
- Connect AVIN and PVIN together on the PCB. It is important that these pins are at the same voltage potential because the controller feedforward block uses this voltage information in the modulator to increase transient performance. For AVIN, it is best to use RC filter from PVIN such as $10-\Omega$ and 100 nF .
- To minimize the power loop inductance for the half bridge, place the bypassing capacitors as close as possible to the PVIN pins on the converter. When using a multilayer PCB (more than two layers), the power loop inductance is minimized by having the return path to the input capacitor small and directly underneath the first layer as shown below. Loop inductance is reduced due to flux cancellation as the return current is directly underneath and flowing in the opposite direction.
- Place the bias capacitor for VREG pin as close as possible to the pin as shown below.
- The resistor divider network for SREF and VSET needs to placed as close as possible to the pins. Limit the high frequency noise source coupling onto these components.
- RSP and RSN signals are best to route parallel to the load sense location. It is recommended to limit high frequency noise source coupling onto these traces.
- PGND thermal vias: It is recommended to add vias under and outside the IC of PGND plane as shown below.
- AGND thermal vias: It is recommended to add at least two vias under the IC of AGND plane as shown below.
- AGND plane can be routed as a separate island in an internal layer. AGND can connect as a net tied to PGND between the two thermal grounds under the IC as shown below.
- Total PCB area can be routed in 17 mm by 14 mm as shown below. See the Using the TPS542A50EVM-059 user's guide for more details.

10.2 Layout Example

图 10-1. Example PCB Layout

11 Device and Documentation Support

11．1 Device Support

11．1．1 Development Support

11．1．1．1 Fusion Digital Power ${ }^{\text {TM }}$ Designer Tool

Click here to download the Graphical User Interface（GUI）used to configure and monitor the TPS542A50 with the Fusion Digital Power ${ }^{\text {TM }}$ designer．
The Fusion Digital Power ${ }^{\text {TM }}$ designer uses the PMBus protocol to communicate with the device over serial bus by way of a TI USB adapter．
Some of the tasks you can perfrom with the GUI include：
－Turn on or off the power supply output，either through hardware control line or the PMBus OPERATION command．
－Monitor real－time data．Items such as input voltage，output voltage，output current，temperature，and warnings／faults are continuously monitored and displayed by the GUI．
Get more information about the software tool at www．ti．com／tool／FUSION＿DIGITAL＿POWER＿DESIGNER．

11．1．1．2 Custom Design With WEBENCH® Tools

Click here to create a custom design using the TPS542A50 device with the WEBENCH® Power Designer．
1．Start by entering the input voltage $\left(\mathrm{V}_{\text {IN }}\right)$ ，output voltage（ $\mathrm{V}_{\text {OUT }}$ ），and output current（ $\mathrm{l}_{\text {OUT }}$ ）requirements．
2．Optimize the design for key parameters such as efficiency，footprint，and cost using the optimizer dial．
3．Compare the generated design with other possible solutions from Texas Instruments．
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real－time pricing and component availability．
In most cases，these actions are available：
－Run electrical simulations to see important waveforms and circuit performance
－Run thermal simulations to understand board thermal performance
－Export customized schematic and layout into popular CAD formats
－Print PDF reports for the design，and share the design with colleagues
Get more information about WEBENCH tools at www．ti．com／WEBENCH．

11.2 接收文档更新通知

要接收文档更新通知，请导航至 ti．com 上的器件产品文件夹。点击订阅更新进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

11.3 支持资源

TI E2E ${ }^{T M}$ 支持论坛是工程师的重要参考资料，可直接从专家获得快速，经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者＂按原样＂提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI的《使用条款》。

11．4 Trademarks

Eco－mode ${ }^{T M}$ and TI E2E ${ }^{T M}$ are trademarks of Texas Instruments．
WEBENCH ${ }^{\circledR}$ is a registered trademark of Texas Instruments．
所有商标均为其各自所有者的财产。

11．5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD．Texas Instruments recommends that all integrated circuits be handled with appropriate precautions．Failure to observe proper handling and installation procedures can cause damage．
ESD damage can range from subtle performance degradation to complete device failure．Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications．

11.6 术语表

TI 术语表 本术语表列出并解释了术语，首字母缩略词和定义。

ZHCSM62C - SEPTEMBER 2020 - REVISED DECEMBER 2021
www.ti.com.cn

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TPS542A50RJMR	ACTIVE	VQFN-HR	RJM	33	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 150	542A50	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TeXAS
PACKAGE MATERIALS INFORMATION
INSTRUMENTS

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TPS542A50RJMR	VQFN- HR	RJM	33	3000	330.0	12.4	4.25	4.75	1.2	8.0	12.0	Q3

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS542A50RJMR	VQFN-HR	RJM	33	3000	367.0	367.0	38.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

SOLDER MASK DETAILS

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI＂按原样＂提供技术和可靠性数据（包括数据表），设计资源（包括参考设计），应用或其他设计建议，网络工具，安全信息和其他资源不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性，某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：（1）针对您的应用选择合适的 TI 产品，（2）设计，验证并测试您的应用，（3）确保您的应用满足相应标准以及任何其他功能安全，信息安全，监管或其他要求。
这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔，损害，成本，损失和债务，TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti．com 上其他适用条款／TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments，Post Office Box 655303，Dallas，Texas 75265
Copyright © 2022 ，德州仪器（TI）公司

