










**TPS53676** 

ZHCSN24A - AUGUST 2019 - REVISED MAY 2021

# TPS53676 具有 AVSBus™ 和 PMBus™ 接口的双通道 D-CAP+™ (N+M ≤ 7 相) 压多相控制器

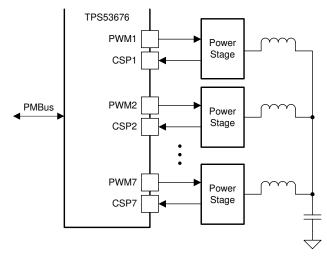
#### 1 特性

- 输入电压范围: 4.5V 至 17V
- 输出电压范围: 0.25V 至 5.5V
- 每相位开关频率范围: 300 kHz 至 2000 kHz
- 支持 N+M 相位配置(N+M≤7, M≤3)的双路
- 根据 PMBus 1.3.1 第 III 部分,符合 AVSBus 标准
- PMBus v1.3.1 系统接口,用于电压、电流、功率、 温度和故障状态的配置、控制和遥测
- 通过 VOUT COMMAND 进行自适应电压调节 (AVS)
- 增强型 D-CAP+ 控制可提供卓越的瞬态性能和出色 的动态电流共享
- 可编程环路补偿
- 灵活的相位触发顺序
- 用于通道 A 启动电压设置的外部引脚搭接
- 单独的相电流校准和报告
- 相位热平衡管理 (TBM)
- 完全支持动态切相 (DPS)
- 快速添相以减弱下冲 (USR)
- 针对过冲衰减 (OSR) 的体二极管制动
- 无驱动器配置,有助于实现高效的高频开关
- 与 TI NexFET™ 功率级完全兼容,可实现高密度解 决方案
- 精确的可编程自适应电压定位 (AVP)
- 获得专利的 AutoBalance™ 相位平衡
- 6 mm × 6 mm 48 引脚 QFN 封装

#### 2 应用

- 数据中心网络交换机
- 校园网交换机和分支交换机
- 核心和边缘路由器
- 硬件加速器卡
- 高性能 CPU/ASIC/FPGA 电源

#### 3 说明


TPS53676 是一款具有双通道、内置非易失性存储器 (NVM) 和 PMBus™ 兼容串行接口的降压控制器,与 TI NexFET™ 智能功率级完全兼容。D-CAP+™ 架构等高 级控制特性可提供快速瞬态响应、低输出电容和良好的 电流共享。该器件还提供新颖的相位交错策略和灵活的 触发序列,来提高热性能。还支持输出电压转换率和电 压定位的可调控制。此外,该器件还支持 PMBus 通信 接口,可向系统主机报告遥测的电压、电流、功率、温 度和故障状况。所有可编程参数均可通过串行接口进行 配置,而且可作为新的默认值存储在 NVM 中,来尽可 能减少外部组件数量。

TPS53676 器件采用热增强型 48 引脚 QFN 封装,额 定工作温度为 - 40°C 至 125°C。

#### 器件信息

| 器件型号     | 封装 <sup>(1)</sup> | 封装尺寸 ( 标称值 ) |  |
|----------|-------------------|--------------|--|
| TPS53676 | QFN (48)          | 6mm × 6mm    |  |

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。



简化版应用



## **Table of Contents**

| 1 特性                                     | 7.7 Power supply fault protection60         |
|------------------------------------------|---------------------------------------------|
| 2 应用                                     |                                             |
| - <i>—,-,-</i><br>3 说明                   |                                             |
| 4 Revision History                       |                                             |
| 5 Pin Configuration and Functions        |                                             |
| 6 Specifications                         | 0 D 0   - 0 D   - 4!   - 400                |
| 6.1 Absolute Maximum Ratings             | 6 10 Layout130                              |
| 6.2 Recommended Operating Conditions     | 44 Davilaa awal Daawwaaw4a4law Oww.aaw4 400 |
| 6.3 ESD Ratings                          | 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.      |
| 6.4 Electrical Specifications            |                                             |
| 7 Detailed Description3                  |                                             |
| 7.1 Overview3                            | 0 11.4 静电放电警告132                            |
| 7.2 Functional Block Diagram3            |                                             |
| 7.3 Power-up and initialization3         |                                             |
| 7.4 Pin connections and bevahior3        |                                             |
| 7.5 Advanced power management functions4 | 3 12.1 Package Option Addendum              |
| 7.6 Control Loop Theory of Operation5    |                                             |
|                                          |                                             |

**4 Revision History** 注:以前版本的页码可能与当前版本的页码不同

| C | hanges from Revision * (December 2020) to Revision A (April 2021) | Page |
|---|-------------------------------------------------------------------|------|
| • | Updated R <sub>HA</sub> resistor values column 表 7-2              | 33   |

## 5 Pin Configuration and Functions

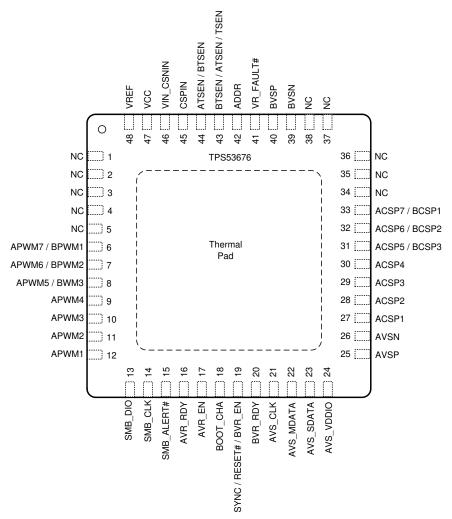



图 5-1. RSL Package 48-Pin QFN (Top View)

表 5-1. Default Functionality of Multifunction Pins

| PIN <sup>(1)</sup> | DEFAULT    |
|--------------------|------------|
| 7, 8, 31, 32       | APWM, ACSP |
| 6, 33              | BPWM, BCSP |
| 19                 | BVR_EN     |
| 43                 | BTSEN      |
| 44                 | ATSEN      |

(1) Default settings can be changed through NVM settings



## 表 5-2. Pin Functions

| PIN           |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|---------------|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NAME          | NO. | I/O | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| ACSP1         | 27  | ı   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| ACSP2         | 28  | I   | Current sense input for channel A. Connect to the IOUT pin of TI smart power stages. Float unused                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| ACSP3         | 29  | I   | CSP pins.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| ACSP4         | 30  | ı   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| ACSP5 / BCSP3 | 31  | I   | Current sense input for phase 7 of channel A or phase 3 of channel B. Float unused CSP pins.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| ACSP6 / BCSP2 | 32  | I   | Current sense input for phase 7 of channel A or phase 2 of channel B. Float unused CSP pins.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| ACSP7 / BCSP1 | 33  | ı   | Current sense input for phase 7 of channel A or phase 1 of channel B. Float unused CSP pins.                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| NC            | 34  | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NC            | 35  | -   | Oo not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NC            | 36  | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NC            | 37  | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NC            | 38  | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| ADDR          | 42  | I   | Voltage divider to VREF and GND. The value of a resistor connected between this pin and GND and the voltage level set the PMBus address. Latched at VCC power up. Use the PIN_DETECT_OVERRIDE command to select addresses which are not available through pinstrap.                                                                                                                                                                                                    |  |  |  |
| APWM1         | 12  | 0   | PWM signal for phase 1 of channel A. Float unused PWM pins.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| APWM2         | 11  | 0   | PWM signal for phase 2 of channel A. Float unused PWM pins.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| APWM3         | 10  | 0   | PWM signal for phase 3 of channel A. Float unused PWM pins.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| APWM4         | 9   | 0   | PWM signal for phase 4 of channel A. Float unused PWM pins.                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| APWM5 / BPWM3 | 8   | 0   | PWM signal for phase 5 of channel A, or phase 3 of channel B. Float unused PWM pins.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| APWM6 / BPWM2 | 7   | 0   | PWM signal for phase 6 of channel A, or phase 2 of channel B. Float unused PWM pins.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| APWM7 / BPWM1 | 6   | 0   | PWM signal for phase 7 of channel A, or phase 1 of channel B. Float unused PWM pins.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| NC            | 5   | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NC            | 4   | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NC            | 3   | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NC            | 2   | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NC            | 1   | -   | Do not connect.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| ATSEN / BTSEN | 44  | I   | Multi-function pin. Configure through PMBus.  ATSEN (default): Connect to the TAO pin of the TI smart power stages of channel A to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages.  BTSEN: Connect to the TAO pin of the TI smart power stages of channel B to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages. Float unused TSEN pins. |  |  |  |
| AVR_EN        | 17  | ı   | Active high enable input for channel A. By default, asserting the AVR_EN pin activates channel A. Polarity and enable conditions are programmable through ON_OFF_CONFIG.                                                                                                                                                                                                                                                                                               |  |  |  |
| AVR_RDY       | 16  | 0   | VRD "Ready" output signal of channel A. This open drain output requires an external pull-up resistor. The AVR_RDY pin is pulled low when a shutdown fault occurs.                                                                                                                                                                                                                                                                                                      |  |  |  |
| AVSN          | 26  | I   | Negative input of the remote voltage sense of channel A.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| AVSP          | 25  | I   | Positive input of the remote voltage sense of channel A.                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| AVS_CLK       | 21  | ı   | AVSBus clock input.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| AVS_MDATA     | 22  | I   | AVSBus master data (MOSI)                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| AVS_SDATA     | 23  | 0   | AVSBus slave data (MISO)                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| AVS_VDDIO     | 24  | I   | AVSBus supply pin. Bypass to ground with minimum 1uF effective ceramic capacitance and connect to a well regulated supply voltage which supplies the logic levels for the AVS communication interface.                                                                                                                                                                                                                                                                 |  |  |  |
| BOOT_CHA      | 18  | I   | Pinstraps for Channel A boot voltage (8 bits). Use the PIN_DETECT_OVERRIDE command to select options which are not available through pinstrap.                                                                                                                                                                                                                                                                                                                         |  |  |  |

## 表 5-2. Pin Functions (continued)

| PIN                       |     |     | DECORPTION .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME                      | NO. | I/O | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| BTSEN / ATSEN /<br>TSEN   | 43  | I   | Multi-function pin. Configure through PMBus.  BTSEN (default): Connect to the TAO pin of the TI smart power stages of channel B to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages.  BTSEN: Connect to the TAO pin of the TI smart power stages of channel A to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages.  TSEN: Connect to the TAO pin of the TI smart power stages of channels A and B to sense the highest temperature of the power stages and to sense the built-in fault signal from the power stages.  Float unused TSEN pins.                                         |
| BVR_EN /<br>RESET# / SYNC | 19  | I/O | Multi-function pin. Configure through PMBus.  BVR_EN (Default): Active high enable input for channel B. Asserting the BVR_EN pin activates channel B. Polarity and enable conditions are programmable through ON_OFF_CONFIG.  RESET#: Active low signal which causes both channels output voltage target to revert to their respective VBOOT values when asserted. Pull-up to 3.3 V.  SYNC: If assigned as an output, this pin provides a free-running clock for other TPS53676 devices to synchronize to. If assigned as an input, an internal phase locked-loop can synchronize switching of one or both channels to a clock supplied to this pin. Phase shift and data direction are programmable through NVM. |
| BVR_RDY                   | 20  | 0   | VRD "Ready" output signal of channel B. This open drain output requires an external pull-up resistor. The BVR_RDY pin is pulled low when a shutdown fault occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BVSN                      | 39  | ı   | Negative input of the remote voltage sense of channel B. If channel B is not used, connect BVSN to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BVSP                      | 40  | ı   | Positive input of the remote voltage sense of channel B. If channel B is not used, connect BVSP to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CSPIN                     | 45  | I   | Positive terminal of the integrated high-side current sensing amplifier. Connect to the supply side of the input current sense element. Tie to VIN_CSNIN, and to the input voltage, if measured input current sensing is not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMB_ALERT#                | 15  | 0   | SMBus or I <sup>2</sup> C bi-directional alert pin interface. (Open drain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SMB_CLK                   | 14  | ı   | SMBus or I <sup>2</sup> C serial clock interface. (Open drain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SMB_DIO                   | 13  | I/O | SMBus or I <sup>2</sup> C bi-directional serial data interface. (Open drain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VCC                       | 47  | Р   | 3.3-V power input. Bypass to GND with a ceramic capacitor with a value greater than or equal to 1 $\mu$ F. Used to power all digital logic circuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VIN_CSNIN                 | 46  | I   | Negative terminal of the integrated high-side current sense amplifier. Connect to the power-stage side of the current sense element. The VIN_CSNIN voltage is also used to determine the correct on-time for the converter. Tie to CSPIN, and to the input voltage, if measured input current sensing is not used.                                                                                                                                                                                                                                                                                                                                                                                                |
| VREF                      | 48  | 0   | 1.5-V LDO reference voltage. Bypass to GND with 1-µF effective ceramic capacitor. Connect the VREF pin to the REFIN pin of the TI smart power stages as the current sense common-mode voltage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VR_FAULT#                 | 41  | 0   | VR fault indicator. (Open-drain). The failures include the high-side FETs short, over-voltage, over-temperature, and the input over-current conditions. Use the fault signal on the platform to remove the power source by turning off the AC power supply. When the failure occurs, the VR_FAULT# pin is LOW, and put the controller into latch-off mode.                                                                                                                                                                                                                                                                                                                                                        |
| Thermal Pad               | 1   | G   | Analog ground pad. Connect to GND plan with vias.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback



## **6 Specifications**

## **6.1 Absolute Maximum Ratings**

over operating free-air temperature range (unless otherwise noted)

|                        | and the second s | MIN   | MAX                   | UNIT |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|------|
|                        | CSPIN, VIN_CSNIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0.3 | 19                    | V    |
|                        | Pin voltage, duration less than 100 ns ACSP1, ACSP2, ACSP3, ACSP4, ACSP5 / BCSP3, ACSP6 / BCSP2, ACSP7 / BCSP1, ADDR, ATSEN / BTSEN, AVR_EN, AVSP, AVS_VDDIO, BOOT_CHA, BTSEN / ATSEN / TSEN, BVSP, BVR_EN / RESET# / SYNC, SMB_CLK, SMB_DIO, VCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.3 | 5.0                   | V    |
| Input voltage (1) (2)  | Pin voltage, duration greater than or equal to 100 ns ACSP1, ACSP2, ACSP3, ACSP4, ACSP5 / BCSP3, ACSP6 / BCSP2, ACSP7 / BCSP1, ADDR, ATSEN / BTSEN, AVR_EN, AVSP, AVS_VDDIO, BOOT_CHA, BTSEN / ATSEN / TSEN, BVSP, BVR_EN / RESET# / SYNC, SMB_CLK, SMB_DIO, VCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0.3 | 3.6                   | V    |
|                        | AVS_CLK, AVS_MDATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.3  | AVS<br>VDDIO +<br>0.5 | V    |
|                        | AVSN, BVSN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0.3 | 0.3                   | V    |
|                        | Pin voltage, duration less than 100 ns<br>APWM1, APWM2, APWM3, APWM4, APWM5 / BPWM3, APWM6 / BPWM2,<br>APWM7 / BPWM1, AVR_RDY, BVR_RDY, SMB_ALERT#, VR_FAULT#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 0.3 | 5.0                   | V    |
| Output voltage (1) (2) | Pin voltage, duration greater than or equal to 100 ns APWM1, APWM2, APWM3, APWM4, APWM5 / BPWM3, APWM6 / BPWM2, APWM7 / BPWM1, AVR_RDY, BVR_RDY, SMB_ALERT#, VR_FAULT#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.3 | 3.6                   | V    |
|                        | AVS_SDATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.3  | AVS<br>VDDIO +<br>0.5 | V    |
|                        | VREF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.3 | 1.65                  | V    |
| Operating junction ten | nperature, T <sub>J</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 40  | 150                   | °C   |
| Storage temperature,   | T <sub>STG</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 55  | 150                   | °C   |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### (2) All voltage values are with respect to the network ground terminal GND unless otherwise noted.

## **6.2 Recommended Operating Conditions**

|               |                                                                                                                                                                                      | MIN   | NOM | MAX          | UNIT |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--------------|------|
|               | CSPIN, VIN_CSNIN                                                                                                                                                                     | 4.5   | 12  | 17           |      |
|               | VCC                                                                                                                                                                                  | 2.97  | 3.3 | 3.6          |      |
| Input voltage | ACSP1, ACSP2, ACSP3, ACSP4, ACSP5 / BCSP3, ACSP6 / BCSP2, ACSP7 / BCSP1, ATSEN / BTSEN, AVR_EN, AVSP, BOOT_CHA, BTSEN / ATSEN / TSEN, BVSP, BVR_EN / RESET# / SYNC, SMB_CLK, SMB_DIO | - 0.1 | 3.6 |              | V    |
| mpat voltage  | AVS_VDDIO                                                                                                                                                                            | 1.14  |     | 3.6          | •    |
|               | AVS_CLK, AVS_MDATA                                                                                                                                                                   | -0.1  |     | AVS<br>VDDIO |      |
|               | ADDR                                                                                                                                                                                 |       |     | 1.52         |      |
|               | AVSN, BVSN                                                                                                                                                                           | - 0.1 |     | 0.1          |      |

|                      |                                                                                                                  | MIN   | NOM MAX      | UNIT |
|----------------------|------------------------------------------------------------------------------------------------------------------|-------|--------------|------|
|                      | VREF                                                                                                             | - 0.1 | 1.52         |      |
| Output voltage       | APWM1, APWM2, APWM3, APWM4, APWM5 / BPWM3, APWM6 / BPWM2, APWM7 / BPWM1, AVR_RDY, BVR_RDY, SMB_ALERT#, VR_FAULT# | - 0.1 | 3.6          | V    |
|                      | AVS_SDATA                                                                                                        | -0.1  | AVS<br>VDDIO |      |
| Ambient temperature, | T <sub>A</sub>                                                                                                   | - 40  | 125          | °C   |

## 6.3 ESD Ratings

|                    |               |                                                                                | VALUE | UNIT |
|--------------------|---------------|--------------------------------------------------------------------------------|-------|------|
| \/                 | Electrostatic | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              | ±1000 | V    |
| V <sub>(ESD)</sub> | discharge     | Charged-device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±500  | V    |

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

#### 6.4 Electrical Specifications

#### **6.4.1 Thermal Information**

|                        |                                              | TPS53676   |      |
|------------------------|----------------------------------------------|------------|------|
|                        | THERMAL METRIC(1)                            | RSL (VQFN) | UNIT |
|                        |                                              | 48 PINS    |      |
| R <sub>0</sub> JA      | Junction-to-ambient thermal resistance       | 25.2       | °C/W |
| R <sub>θ JC(top)</sub> | Junction-to-case (top) thermal resistance    | 14.8       | °C/W |
| R <sub>0</sub> JB      | Junction-to-board thermal resistance         | 7.9        | °C/W |
| $\Psi$ JT              | Junction-to-top characterization parameter   | 0.2        | °C/W |
| Y <sub>JB</sub>        | Junction-to-board characterization parameter | 7.8        | °C/W |
| R <sub>θ JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | 0.7        | °C/W |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

#### **6.4.2 Supply**

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}{\rm C}$  unless otherwise specified

|                                            | PARAMETER                                 | TEST CONDITIONS  | MIN  | TYP MAX | UNIT |  |  |  |  |  |
|--------------------------------------------|-------------------------------------------|------------------|------|---------|------|--|--|--|--|--|
| Supply: Currents, UVLO, and Power-On Reset |                                           |                  |      |         |      |  |  |  |  |  |
| I <sub>VCC</sub>                           | VCC supply current with all phases active | Enable = 'HI '   |      | 100     | mA   |  |  |  |  |  |
| V <sub>CCNORMAL</sub>                      | VCC Normal Range                          | Normal operation | 2.97 | 3.6     | V    |  |  |  |  |  |
| V <sub>CCUVLOH</sub>                       | VCC UVLO 'OK ' Threshold                  | Ramp up          | 2.92 | 2.97    | V    |  |  |  |  |  |
| V <sub>CCUVLOL</sub>                       | VCC UVLO Fault Threshold                  | Ramp down        | 2.68 | 2.82    | V    |  |  |  |  |  |
| V <sub>CCUVLOH</sub>                       | VCC UVLO Hysteresis                       | Hyseteresis      | 138  | 600     | mV   |  |  |  |  |  |

#### 6.4.3 DAC and Voltage Feedback

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}{\rm C}$  unless otherwise specified

|                     | PARAMETER           | TEST CONDITIONS                           | MIN               | TYP MA | X UN |
|---------------------|---------------------|-------------------------------------------|-------------------|--------|------|
| References: I       | DAC and VREF        |                                           |                   |        |      |
| $V_{MODE}$          | Supported VOUT_MODE | VOUT_MODE = 16h                           | ULINEAI<br>N = -1 | -      |      |
| V <sub>DACRNG</sub> | VDAC range          | No external divider.<br>VOUT_MAX ≤ 1.87 V | 0.25              | 1.     | 37 V |

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                        | PARAMETER                                                       | TEST CONDITIONS                                                                 | MIN   | TYP    | MAX   | UNIT |
|------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------|-------|--------|-------|------|
|                        |                                                                 | No external divider<br>VOUT_MAX > 1.87 V                                        | 0.50  |        | 3.74  | V    |
| R <sub>DIV</sub>       | External resistor for output voltage scaling with Vout > 3.74 V | VOUT to VSP resistor                                                            |       | 500    |       | Ω    |
|                        |                                                                 | VSP to VSN resistor                                                             |       | 500    |       | Ω    |
| V <sub>DAC</sub>       | VSP accuracy                                                    | $0.25 \leqslant \text{VSP} \leqslant 1 \text{ V, I}_{\text{CORE}} = 0 \text{A}$ | -5    |        | 5     | mV   |
|                        |                                                                 | 1 V < VSP ≤ 1.87 V; I <sub>CORE</sub> = 0A                                      | -0.5  |        | 0.5   | %    |
|                        |                                                                 | 1.87 V < VSP ≤ 5 V; I <sub>CORE</sub> = 0A                                      | -1    | ,      | 1     | %    |
| V <sub>VREF</sub>      | VREF output accuracy                                            | VCC = 2.97 V to 3.6 V, I <sub>VREF</sub> = 0                                    | 1.493 | 1.5    | 1.507 | V    |
| V <sub>VREF(REG)</sub> | VREF load regulation (sourcing)                                 | I <sub>VREF</sub> = 0A to 10 mA                                                 | -8    |        |       | mV   |
|                        | VREF load regulaiton (sinking)                                  | I <sub>VREF</sub> = -10 mA to 0A                                                |       |        | 8     | mV   |
| V <sub>TRIM(RES)</sub> | Vout offset NVM resolution (1)                                  | MFR_SPECIFIC_ED[13:12] = 00b                                                    |       | 0.9765 |       | mV   |
|                        |                                                                 | MFR_SPECIFIC_ED[13:12] = 01b                                                    |       | 1.9531 |       | mV   |
|                        |                                                                 | MFR_SPECIFIC_ED[13:12] = 10b                                                    |       | 3.9063 |       | mV   |
|                        |                                                                 | MFR_SPECIFIC_ED[13:12] = 11b                                                    |       | 7.8125 |       | mV   |
| V <sub>TRIM(RNG)</sub> | Vout offset NVM range (1)                                       | VOUT_TRIM in SLINEAR16 format                                                   | -128  |        | 127   | LSB  |
| Voltage Sen            | se: AVSP/BVSP and AVSN/BVSN                                     |                                                                                 |       |        | 1     |      |
| I <sub>AVSP</sub>      | AVSP Input Bias Current                                         | Not in Fault, Disable or UVLO;<br>AVSP = VDAC = 1.8 V<br>AVSN = 0 V             |       |        | 50    | μΑ   |
| I <sub>AVSN</sub>      | AVSN Input Bias Current                                         | Not in Fault, Disable or UVLO;<br>AVSP = VDAC = 1.8 V,<br>AVSN = 0 V            | -55   |        |       | μΑ   |
| I <sub>BVSP</sub>      | BVSP Input Bias Current                                         | Not in Fault, Disable or UVLO;<br>BVSP = VDAC = 1.8 V,<br>BVSN = 0 V            |       |        | 50    | μΑ   |
| I <sub>BVSN</sub>      | BVSN Input Bias Current                                         | Not in Fault, Disable or UVLO;<br>BVSP = VDAC = 1.8 V,<br>BVSN = 0 V            | -55   |        |       | μΑ   |

<sup>(1)</sup> Specified by Design.

#### **6.4.4 Control Loop Parameters**

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                        | PARAMETER                          | TEST CONDITIONS                                                       | MIN TYP | MAX | UNIT |
|------------------------|------------------------------------|-----------------------------------------------------------------------|---------|-----|------|
| Programma              | ble Loadline and Loop Compensation | n                                                                     |         | -   |      |
| R <sub>DCLL(RES)</sub> | DC load line resolution            | VOUT_DROOP = 0 to 1 m $\Omega$                                        | 7.8125  | 5   | μΩ   |
|                        |                                    | VOUT_DROOP = 1 to 2 m $\Omega$                                        | 15.625  | 5   | μΩ   |
|                        |                                    | VOUT_DROOP = 2 to 4 m $\Omega$                                        | 31.25   | 5   | μΩ   |
|                        |                                    | VOUT_DROOP = 4 to 8 m $\Omega$                                        | 62.5    | 5   | μΩ   |
| R <sub>DCLL(ACC)</sub> | DC load line accuracy              | VOUT_DROOP > 0.3 m Ω                                                  | -2.5    | 2.5 | %    |
| R <sub>ACLL(RES)</sub> | AC loadline resolution (1)         | USER_DATA_01[47:32] = 0 m $\Omega$ (program in SLINEAR11 format)      | 15.625  | 5   | μΩ   |
|                        |                                    | USER_DATA_01[47:32] = 1 to 2 m $\Omega$ (program in SLINEAR11 format) | 31.25   | 5   | μΩ   |
|                        |                                    | USER_DATA_01[47:32] = 2 to 4 m $\Omega$ (program in SLINEAR11 format) | 62.5    | 5   | μΩ   |
|                        |                                    | USER_DATA_01[47:32] = 4 to 8 m $\Omega$ (program in SLINEAR11 format) | 125     | 5   | μΩ   |
| R <sub>ACLL(RES)</sub> | AC loadline accuracy (1)           | AC loadline > 0.3 m $\Omega$                                          | -5      | 5   | %    |

|                    | PARAMETER                                                                        | TEST CONDITIONS             | MIN   | TYP | MAX   | UNIT |
|--------------------|----------------------------------------------------------------------------------|-----------------------------|-------|-----|-------|------|
| t <sub>INT</sub>   | Static integration-time constant (1)                                             | USER_DATA_01[23:20] = 0000b | 0.9   | 1   | 1.1   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 0001b | 1.8   | 2   | 2.2   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 0010b | 2.7   | 3   | 3.3   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 0011b | 3.6   | 4   | 4.4   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 0100b | 4.5   | 5   | 5.5   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 0101b | 5.4   | 6   | 6.6   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 0110b | 6.3   | 7   | 7.7   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 0111b | 7.2   | 8   | 8.8   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 1000b | 8.1   | 9   | 9.9   | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 1001b | 9     | 10  | 11    | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 1010b | 9.9   | 11  | 12.1  | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 1011b | 10.8  | 12  | 13.2  | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 1100b | 11.7  | 13  | 14.3  | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 1101b | 12.6  | 14  | 15.4  | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 1110b | 13.5  | 15  | 16.5  | μs   |
|                    |                                                                                  | USER_DATA_01[23:20] = 1111b | 14.4  | 16  | 17.6  | μs   |
| t <sub>DINT</sub>  | Dynamic integration-time constant (1)                                            | USER_DATA_01[27:24] = 0000b | 0.8   | 1   | 1.2   | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 0001b | 1.9   | 2   | 2.1   | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 0010b | 2.85  | 3   | 3.15  | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 0011b | 3.8   | 4   | 4.2   | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 0100b | 4.75  | 5   | 5.25  | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 0101b | 5.7   | 6   | 6.3   | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 0110b | 6.65  | 7   | 7.35  | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 0111b | 7.6   | 8   | 8.4   | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 1000b | 8.55  | 9   | 9.45  | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 1001b | 9.5   | 10  | 10.5  | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 1010b | 10.45 | 11  | 11.55 | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 1011b | 11.4  | 12  | 12.6  | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 1100b | 12.35 | 13  | 13.65 | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 1101b | 13.3  | 14  | 14.7  | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 1110b | 14.25 | 15  | 15.75 | μs   |
|                    |                                                                                  | USER_DATA_01[27:24] = 1111b | 15.2  | 16  | 16.8  | μs   |
| G <sub>INTTC</sub> | Scaling factor for integration time constants (1)                                | USER_DATA_01[4] = 0b        |       | 1   |       | х    |
|                    |                                                                                  | USER_DATA_01[4] = 1b        |       | 6   |       | х    |
| ≺ <sub>AC</sub>    | AC gain settings (1)                                                             | USER_DATA_01[13:12] = 00b   | 0.45  | 0.5 | 0.55  | х    |
|                    |                                                                                  | USER_DATA_01[13:12] = 01b   | 0.9   | 1   | 1.1   | х    |
|                    |                                                                                  | USER_DATA_01[13:12] = 10b   | 1.35  | 1.5 | 1.65  | х    |
|                    |                                                                                  | USER_DATA_01[13:12] = 11b   | 1.8   | 2   | 2.2   | х    |
| < <sub>INT</sub>   | Integration gain settings (1)                                                    | USER_DATA_01[15:14] = 00b   | 0.45  | 0.5 | 0.55  | х    |
|                    |                                                                                  | USER_DATA_01[15:14] = 01b   | 0.9   | 1   | 1.1   | х    |
|                    |                                                                                  | USER_DATA_01[15:14] = 10b   | 1.35  | 1.5 | 1.65  | х    |
|                    |                                                                                  | USER_DATA_01[15:14] = 11b   | 1.8   | 2   | 2.2   | х    |
| V <sub>DINT</sub>  | Dynamic Integration Voltage Setting.<br>Based on V <sub>ERR</sub> <sup>(1)</sup> | USER_DATA_01[11:8] = 000b   | 48    | 60  | 72    | mV   |
|                    |                                                                                  | USER DATA 01[11:8] = 001b   | 68    | 80  | 92    | mV   |



|                   | PARAMETER        | TEST CONDITIONS            | MIN | TYP      | MAX | UNIT |
|-------------------|------------------|----------------------------|-----|----------|-----|------|
|                   |                  | USER_DATA_01[11:8] = 010b  | 88  | 100      | 112 | mV   |
|                   |                  | USER_DATA_01[11:8] = 011b  | 108 | 120      | 132 | mV   |
|                   |                  | USER_DATA_01[11:8] = 100b  | 128 | 140      | 152 | mV   |
|                   |                  | USER_DATA_01[11:8] = 101b  | 148 | 160      | 172 | mV   |
|                   |                  | USER_DATA_01[11:8] = 110b  | 168 | 180      | 192 | mV   |
|                   |                  | USER_DATA_01[11:8] = 111b  | С   | Disabled |     |      |
| Ramp Sele         | ections          | ·                          |     |          |     |      |
| V <sub>RAMP</sub> | Ramp Setting (1) | USER_DATA_01[19:17] = 000b | 70  | 80       | 90  | mV   |
|                   |                  | USER_DATA_01[19:17] = 001b | 110 | 120      | 130 | mV   |
|                   |                  | USER_DATA_01[19:17] = 010b | 150 | 160      | 170 | mV   |
|                   |                  | USER_DATA_01[19:17] = 011b | 190 | 200      | 210 | mV   |
|                   |                  | USER_DATA_01[19:17] = 100b | 230 | 240      | 250 | mV   |
|                   |                  | USER_DATA_01[19:17] = 101b | 270 | 280      | 290 | mV   |
|                   |                  | USER_DATA_01[19:17] = 110b | 310 | 320      | 330 | mV   |
|                   |                  | USER_DATA_01[19:17] = 111b | 350 | 360      | 370 | mV   |

<sup>(1)</sup> Specified by Design.

## 6.4.5 Dynamic VID (DVID) Tuning

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                        | PARAMETER                                                          | TEST CONDITIONS                                                                                                                                                                                      | MIN | TYP M | ΑX | UNIT |
|------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----|------|
| Dynamic Vo             | Itage Transitions                                                  |                                                                                                                                                                                                      |     |       |    |      |
| V <sub>OFS(WAKE)</sub> | V <sub>DAC</sub> offset during soft-start <sup>(1)</sup>           | USER_DATA_04[1:0] = 00b                                                                                                                                                                              |     | 0     |    | mV   |
|                        | (independently programmable for each channel)                      | USER_DATA_04[1:0] = 01b                                                                                                                                                                              |     | 30    |    | mV   |
|                        |                                                                    | USER_DATA_04[1:0] = 10b                                                                                                                                                                              |     | 60    |    | mV   |
|                        |                                                                    | USER_DATA_04[1:0] = 11b                                                                                                                                                                              |     | 90    |    | mV   |
| V <sub>OFS(UP)</sub>   | V <sub>DAC</sub> offset during upward transitions <sup>(1)</sup>   | USER_DATA_04[11:10] = 00b                                                                                                                                                                            |     | 0     |    | mV   |
|                        | (independently programmable for each channel)                      | USER_DATA_04[11:10] = 01b                                                                                                                                                                            |     | 10    |    | mV   |
|                        |                                                                    | USER_DATA_04[11:10] = 10b                                                                                                                                                                            |     | 20    |    | mV   |
|                        |                                                                    | USER_DATA_04[11:10] = 11b                                                                                                                                                                            |     | 30    |    | mV   |
| V <sub>OFS(DOWN)</sub> | V <sub>DAC</sub> offset during downward transitions <sup>(1)</sup> | USER_DATA_04[9:8] = 00b                                                                                                                                                                              |     | 0     |    | mV   |
|                        | (independently programmable for each channel)                      | USER_DATA_04[9:8] = 01b                                                                                                                                                                              |     | 10    |    | mV   |
|                        |                                                                    | USER_DATA_04[9:8] = 10b                                                                                                                                                                              |     | 20    |    | mV   |
|                        |                                                                    | USER_DATA_04[9:8] = 11b                                                                                                                                                                              |     | 30    |    | mV   |
| R <sub>DCLL(UP)</sub>  | Dynamic DC load line during up transitions (1)                     | $\begin{array}{l} \text{VOUT\_DROOP} = 0.0 \text{ to } 1.0 \text{ m}\Omega \\ \text{USER\_DATA\_04[36:32]} = 00 \text{h to } 1 \text{Fh} \\ \text{Resolution} = 0.03125 \text{ m}\Omega \end{array}$ | 0   | 0.968 | 75 | mΩ   |
|                        | (independently programmable for each channel)                      | VOUT_DROOP = 1.0 to 2.0 m $\Omega$ USER_DATA_04[36:32] = 00h to 1Fh Resolution = 0.0625 m $\Omega$                                                                                                   | 0   | 1.93  | 75 | mΩ   |
|                        |                                                                    | VOUT_DROOP = 2.0 to 4.0 m $\Omega$<br>USER_DATA_04[36:32] = 00h to 1Fh<br>Resolution = 0.125 m $\Omega$                                                                                              | 0   | 3.87  | 50 | mΩ   |

| Fh 0  |                                       |                                                                                                |
|-------|---------------------------------------|------------------------------------------------------------------------------------------------|
|       | 7.75                                  | m Ω                                                                                            |
| 0     | 0.9375                                | mΩ                                                                                             |
| 0     | 1.875                                 | mΩ                                                                                             |
| 0     | 3.75                                  | mΩ                                                                                             |
| 0     | 7.5                                   | mΩ                                                                                             |
| Fh 0  | 0.96875                               | mΩ                                                                                             |
| Fh 0  | 1.9375                                | mΩ                                                                                             |
| Fh 0  | 3.8750                                | mΩ                                                                                             |
| Fh 0  | 7.75                                  | mΩ                                                                                             |
| 0     | 1                                     | m Ω                                                                                            |
| 1     | 2                                     | mΩ                                                                                             |
| 2     | 4                                     | m Ω                                                                                            |
| 4     | 8                                     | m Ω                                                                                            |
|       | 1                                     | clks                                                                                           |
|       | 2                                     | clks                                                                                           |
|       | 4                                     | clks                                                                                           |
|       | 8                                     | clks                                                                                           |
|       | 1                                     | clks                                                                                           |
|       | 2                                     | clks                                                                                           |
|       | 4                                     | clks                                                                                           |
|       | 8                                     | clks                                                                                           |
| 0h 5  | 5.875                                 | mV/μs                                                                                          |
| 0h 10 | 11.75                                 | mV/μs                                                                                          |
|       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1.875 0 3.75 0 7.5 Fh 0 0.96875 Fh 0 3.8750 Fh 0 7.75 0 1 1 2 2 4 4 8 1 1 2 4 8 8 0h 5 5.875 |

|                       | PARAMETER                  | TEST CONDITIONS                  | MIN    | TYP MAX      | UNIT  |
|-----------------------|----------------------------|----------------------------------|--------|--------------|-------|
|                       |                            | VOUT_TRANSITION_RATE = E0F0h     | 15     | 17.625       | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E140h     | 20     | 23.5         | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E190h     | 25     | 29.375       | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E1E0h     | 30     | 35.25        | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E230h     | 35     | 41.125       | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E280h     | 39     | 47           | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E005h     | 0.3125 | 0.36718<br>8 | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E00Ah     | 0.625  | 0.73437<br>5 | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E00Fh     | 0.9375 | 1.10156<br>3 | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E014h     | 1.25   | 1.46875      | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E019h     | 1.5625 | 1.83593<br>8 | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E01Eh     | 1.875  | 2.20312<br>5 | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E023h     | 2.1875 | 2.57031<br>3 | mV/μs |
|                       |                            | VOUT_TRANSITION_RATE = E028h     | 2.5    | 2.9375       | mV/μs |
| SR <sub>VOUTAVS</sub> | Slew Rate Setting (AVSBus) | AVS Transition Rate = 5 mV/ μ s  | 4.8    | 5.5          | mV/μs |
|                       |                            | AVS Transition Rate = 10 mV/ μ s | 9.5    | 10.9         | mV/μs |
|                       |                            | AVS Transition Rate = 15 mV/ μ s | 14.2   | 16.4         | mV/μs |
|                       |                            | AVS Transition Rate = 20 mV/ μ s | 19     | 21.8         | mV/μs |
|                       |                            | AVS Transition Rate = 25 mV/ μ s | 23.6   | 27.3         | mV/μs |
|                       |                            | AVS Transition Rate = 30 mV/ μ s | 28.3   | 32.7         | mV/μs |
|                       |                            | AVS Transition Rate = 35 mV/ μ s | 32.9   | 38.2         | mV/μs |
|                       |                            | AVS Transition Rate = 40 mV/ μ s | 37.5   | 43.6         | mV/μs |

<sup>(1)</sup> Specified by Design.

## 6.4.6 Undershoot Reduction (USR) and Overshoot Reduciton (OSR)

VCC = 3.3 V, CSPIN = VIN CSNIN = 12 V,  $T_{\rm J}$  = -40 to 125  $^{\circ}{\rm C}$  unless otherwise specified

|                         | PARAMETER                                                           | TEST CONDITIONS             | MIN  | TYP  | MAX  | UNIT |
|-------------------------|---------------------------------------------------------------------|-----------------------------|------|------|------|------|
| Multi-Level OSR and USR |                                                                     |                             |      |      |      |      |
| V <sub>USR1</sub>       | USR Level 1 Voltage Setting (V <sub>DAC</sub> -V <sub>DROOP</sub> ) | USER_DATA_02[12:8] = 00010b | 5    | 15   | 25   | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 00011b | 7.5  | 17.5 | 27.5 | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 00100b | 10   | 20   | 30   | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 00101b | 12.5 | 22.5 | 32.5 | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 00110b | 15   | 25   | 35   | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 00111b | 17.5 | 27.5 | 37.5 | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 01000b | 20   | 30   | 40   | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 01001b | 22.5 | 32.5 | 42.5 | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 01010b | 25   | 35   | 45   | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 01011b | 27.5 | 37.5 | 47.5 | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 01100b | 30   | 40   | 50   | mV   |
|                         |                                                                     | USER_DATA_02[12:8] = 01101b | 32.5 | 42.5 | 52.5 | mV   |

|                    | PARAMETER                                                           | TEST CONDITIONS                  | MIN  | TYP      | MAX  | UNIT   |
|--------------------|---------------------------------------------------------------------|----------------------------------|------|----------|------|--------|
|                    |                                                                     | USER_DATA_02[12:8] = 01110b      | 35   | 45       | 55   | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 01111b      | 37.5 | 47.5     | 57.5 | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 10000b      | 40   | 50       | 60   | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 10001b      | 42.5 | 52.5     | 62.5 | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 10010b      | 45   | 55       | 65   | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 10011b      | 47.5 | 57.5     | 67.5 | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 10100b      | 50   | 60       | 70   | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 10101b      | 52.5 | 62.5     | 72.5 | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 10110b      | 55   | 65       | 75   | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 10111b      | 57.5 | 67.5     | 77.5 | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 11000b      | 60   | 70       | 80   | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = 11001b (1)  | 62.5 | 72.5     | 82.5 | mV     |
|                    |                                                                     | USER_DATA_02[12:8] = other (1)   | С    | Disabled |      |        |
| USR2               | USR Level 2 Voltage Setting (V <sub>DAC</sub> -V <sub>DROOP</sub> ) | USER_DATA_02[36:32] = 00000b     | 5    | 15       | 25   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 00001b     | 7.5  | 17.5     | 27.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 00010b     | 10   | 20       | 30   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 00011b     | 12.5 | 22.5     | 32.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 00100b     | 15   | 25       | 35   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 00101b     | 17.5 | 27.5     | 37.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 00110b     | 20   | 30       | 40   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 00111b     | 22.5 | 32.5     | 42.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 01000b     | 25   | 35       | 45   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 01001b     | 27.5 | 37.5     | 47.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 01010b     | 30   | 40       | 50   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 01011b     | 32.5 | 42.5     | 52.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 01100b     | 35   | 45       | 55   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 01101b     | 37.5 | 47.5     | 57.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 01110b     | 40   | 50       | 60   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 01111b     | 42.5 | 52.5     | 62.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 10000b     | 45   | 55       | 65   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 10001b     | 47.5 | 57.5     | 67.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 10010b     | 50   | 60       | 70   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 10011b     | 52.5 | 62.5     | 72.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 10100b     | 55   | 65       | 75   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 10101b     | 57.5 | 67.5     | 77.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 10110b     | 60   | 70       | 80   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 10111b     | 62.5 | 72.5     | 82.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 11000b     | 65   | 75       | 85   | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = 11001b (1) | 67.5 | 77.5     | 87.5 | mV     |
|                    |                                                                     | USER_DATA_02[36:32] = others (1) | С    | Disabled |      | mV     |
| PH <sub>USR1</sub> | Maximum phase added in USR level 1                                  | USER_DATA_02[1:0] = 00b          |      | 3        |      | phases |
|                    |                                                                     | USER_DATA_02[1:0] = 01b          |      | 4        |      | phases |
|                    |                                                                     | USER_DATA_02[1:0] = 10b          |      | 5        |      | phases |

|                   | PARAMETER                           | TEST CONDITIONS                                  | MIN | TYP             | MAX | UNIT   |
|-------------------|-------------------------------------|--------------------------------------------------|-----|-----------------|-----|--------|
|                   |                                     | USER_DATA_02[1:0] = 11b                          | а   | All<br>vailable |     | phases |
| V <sub>OSR</sub>  | OSR Voltage Setting                 | USER_DATA_02[19:16] = 0000b                      | 8   | 20              | 32  | mV     |
|                   |                                     | USER_DATA_02[19:16] = 0001b                      | 18  | 30              | 42  | mV     |
|                   |                                     | USER_DATA_02[19:16] = 0010b                      | 28  | 40              | 52  | mV     |
|                   |                                     | USER_DATA_02[19:16] = 0011b                      | 38  | 50              | 62  | mV     |
|                   |                                     | USER_DATA_02[19:16] = 0100b                      | 48  | 60              | 72  | mV     |
|                   |                                     | USER_DATA_02[19:16] = 0101b                      | 58  | 70              | 82  | mV     |
|                   |                                     | USER_DATA_02[19:16] = 0110b                      | 68  | 80              | 92  | mV     |
|                   |                                     | USER_DATA_02[19:16] = 0111b                      | 78  | 90              | 102 | mV     |
|                   |                                     | USER_DATA_02[19:16] = 1000b                      | 88  | 100             | 112 | mV     |
|                   |                                     | USER_DATA_02[19:16] = 1001b                      | 98  | 110             | 122 | mV     |
|                   |                                     | USER_DATA_02[19:16] = 1010b                      | 108 | 120             | 132 | mV     |
|                   |                                     | USER_DATA_02[19:16] = 1011b                      | 118 | 130             | 142 | mV     |
|                   |                                     | USER_DATA_02[19:16] = 1100b                      | 128 | 140             | 152 | mV     |
|                   |                                     | USER_DATA_02[19:16] = 1101b                      | 138 | 150             | 162 | mV     |
|                   |                                     | USER_DATA_02[19:16] = 1110b                      | 148 | 160             | 172 | mV     |
|                   |                                     | USER_DATA_02[19:16] = 1111b (1)                  | D   | isabled         |     |        |
| BB <sub>OSR</sub> | OSR pulse truncation for 1ph (1)    | USER_DATA_02[7] = 0b                             |     | Disable         |     |        |
|                   |                                     | USER_DATA_02[7] = 1b                             |     | Enable          |     |        |
| BB <sub>OSR</sub> | OSR body braking for normal phases  | USER_DATA_02[5] = 0b<br>and USER_DATA_02[7] = 0b |     | Disable         |     |        |
|                   |                                     | USER_DATA_02[5] = 1b<br>or USER_DATA_02[7] = 1b  |     | Enable          |     |        |
| TB <sub>OSR</sub> | OSR body braking time durations (1) | USER_DATA_02[4:2] = 000b                         | 0.3 | 0.4             | 0.5 | μs     |
|                   |                                     | USER_DATA_02[4:2] = 001b                         | 0.4 | 0.5             | 0.6 | μs     |
|                   |                                     | USER_DATA_02[4:2] = 010b                         | 0.5 | 0.6             | 0.7 | μs     |
|                   |                                     | USER_DATA_02[4:2] = 011b                         | 0.8 | 0.9             | 1   | μs     |
|                   |                                     | USER_DATA_02[4:2] = 100b                         | 0.9 | 1               | 1.1 | μs     |
|                   |                                     | USER_DATA_02[4:2] = 101b                         | 1   | 1.1             | 1.2 | μs     |
|                   |                                     | USER_DATA_02[4:2] = 110b                         | 1.8 | 1.9             | 2   | μs     |
|                   |                                     | USER_DATA_02[4:2] = 111b                         | 1.9 | 2               | 2.1 | μs     |

<sup>(1)</sup> Specified by Design

## 6.4.7 Dynamic Phase Shedding (DPS)

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}{\rm C}$  unless otherwise specified

|                        | PARAMETER                                                       | TEST CONDITIONS         | MIN | TYP | MAX | UNIT  |  |
|------------------------|-----------------------------------------------------------------|-------------------------|-----|-----|-----|-------|--|
| Dynamic Phase Shedding |                                                                 |                         |     |     |     |       |  |
| PH <sub>DPS</sub>      | Minimum operating phase numbers with DPS enabled <sup>(1)</sup> | USER_DATA_07[3:2] = 00b |     | 1   |     | Phase |  |
|                        |                                                                 | USER_DATA_07[3:2] = 01b |     | 2   |     | Phase |  |
|                        |                                                                 | USER_DATA_07[3:2] = 10b |     | 4   |     | Phase |  |
|                        |                                                                 | USER_DATA_07[3:2] = 11b |     | 8   |     | Phase |  |
| t <sub>DPAFIL</sub>    | Filter time constant for phase adding (1)                       | USER_DATA_07[7:6] = 00b |     | 0.5 |     | μs    |  |
|                        |                                                                 | USER_DATA_07[7:6] = 01b |     | 1   |     | μs    |  |
|                        |                                                                 | USER_DATA_07[7:6] = 10b |     | 1.5 |     | μs    |  |

Submit Document Feedback

|      | PARAMETER                                                                                                                                        | TEST CONDITIONS          | MIN   | TYP | MAX   | UNIT |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|-----|-------|------|
|      |                                                                                                                                                  | USER_DATA_07[7:6] = 11b  |       | 2   |       | μs   |
| DPA2 | Dynamic phase adding thresholds (1-2ph)                                                                                                          | USER_DATA_07[11:8] = 0h  | 8.2   | 12  | 15.4  | A    |
|      | Average current, assuming DPA Hysteresis is set equal to 1/2 I <sub>SUM</sub> ripple for active phase number, accounting for ripple cancellation | USER_DATA_07[11:8] = 1h  | 8.8   | 13  | 17.3  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = 2h  | 12.2  | 14  | 15.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = 3h  | 13.3  | 15  | 16.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = 4h  | 14.3  | 16  | 17.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = 5h  | 15.1  | 17  | 18.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = 6h  | 16.2  | 18  | 19.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = 7h  | 17.3  | 19  | 20.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = 8h  | 17.9  | 20  | 21.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = 9h  | 19.2  | 21  | 22.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = Ah  | 20.2  | 22  | 23.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = Bh  | 21.3  | 23  | 24.8  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = Ch  | 22.3  | 24  | 25.8  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = Dh  | 23.2  | 25  | 26.8  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = Eh  | 24    | 26  | 27.8  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[11:8] = Fh  | 24.9  | 27  | 28.8  | Α    |
| PA3  | Dynamic phase adding thresholds (2-3ph)                                                                                                          | USER_DATA_07[23:20] = 0h | 25.2  | 30  | 35.8  | Α    |
|      | Average current, assuming DPA Hysteresis is set equal to 1/2 I <sub>SUM</sub> ripple for active phase number, accounting for ripple cancellation | USER_DATA_07[23:20] = 1h | 27.5  | 32  | 37.4  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = 2h | 29.1  | 34  | 40    | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = 3h | 31.9  | 36  | 41.2  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = 4h | 33.5  | 38  | 43.5  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = 5h | 35.6  | 40  | 45.4  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = 6h | 37.8  | 42  | 47    | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = 7h | 39.7  | 44  | 49.3  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = 8h | 45.6  | 50  | 55.2  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = 9h | 55.6  | 60  | 65.3  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = Ah | 65.8  | 70  | 75.2  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = Bh | 75.3  | 80  | 85.5  | A    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = Ch | 85.8  | 90  | 95    | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = Dh | 95.8  | 100 | 105   | A    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = Eh | 105.7 | 110 | 114.9 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[23:20] = Fh | 114.3 | 120 | 125.9 | Α    |
| PA4  | Dynamic phase adding thresholds (3-4ph)                                                                                                          | USER_DATA_07[19:16] = 0h | 40.6  | 46  | 52.2  | Α    |
|      | Average current, assuming DPA Hysteresis is set equal to 1/2 I <sub>SUM</sub> ripple for active phase number, accounting for ripple cancellation | USER_DATA_07[19:16] = 1h | 43.5  | 48  | 53.6  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = 2h | 43.2  | 50  | 57.4  | Α    |
|      |                                                                                                                                                  |                          |       |     |       |      |



|      | PARAMETER                                                                                                                                        | TEST CONDITIONS          | MIN   | TYP | MAX   | UNIT |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|-----|-------|------|
|      |                                                                                                                                                  | USER_DATA_07[19:16] = 4h | 48.2  | 54  | 60.2  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = 5h | 51.5  | 56  | 61.4  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = 6h | 52.8  | 58  | 64.4  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = 7h | 54.7  | 60  | 66.3  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = 8h | 74.7  | 80  | 86    | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = 9h | 94.6  | 100 | 106.1 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = Ah | 114.9 | 120 | 125.4 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = Bh | 135.2 | 140 | 145.4 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = Ch | 154.6 | 160 | 166.1 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = Dh | 175.1 | 180 | 185.5 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = Eh | 194.5 | 200 | 205.6 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[19:16] = Fh | 213.4 | 220 | 226.7 | Α    |
| DPA5 | Dynamic phase adding thresholds (4-5ph)                                                                                                          | USER_DATA_07[31:28] = 0h | 55.9  | 62  | 69    | A    |
|      | Average current, assuming DPA Hysteresis is set equal to 1/2 I <sub>SUM</sub> ripple for active phase number, accounting for ripple cancellation | USER_DATA_07[31:28] = 1h | 59.5  | 64  | 69.6  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = 2h | 59.6  | 66  | 73.2  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = 3h | 63.4  | 68  | 73.3  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = 4h | 65.1  | 70  | 76    | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = 5h | 67.3  | 72  | 77.3  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = 6h | 69    | 74  | 79.6  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = 7h | 71.1  | 76  | 81.4  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = 8h | 85.1  | 90  | 95.4  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = 9h | 94.9  | 100 | 105.8 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = Ah | 104.9 | 110 | 115.8 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = Bh | 115.2 | 120 | 125.4 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = Ch | 135.2 | 140 | 145.4 | Α    |
|      |                                                                                                                                                  | USER DATA 07[31:28] = Dh | 154.5 | 160 | 165.6 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = Eh | 175.2 | 180 | 185.2 | A    |
|      |                                                                                                                                                  | USER_DATA_07[31:28] = Fh | 193.4 | 200 | 206.7 | A    |
| DPA6 | Dynamic phase adding thresholds (5-6ph)                                                                                                          | USER_DATA_07[27:24] = 0h | 71.7  | 78  | 84.8  | A    |
|      | Average current, assuming DPA Hysteresis is set equal to 1/2 I <sub>SUM</sub> ripple for active phase number, accounting for ripple cancellation | USER_DATA_07[27:24] = 1h | 74.8  | 81  | 87.1  | А    |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = 2h | 77.9  | 84  | 90.6  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = 3h | 81.6  | 87  | 92.8  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = 4h | 84.5  | 90  | 95.7  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = 5h | 87.2  | 93  | 99.5  | Α    |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = 6h | 89.9  | 96  | 102.7 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = 7h | 93    | 99  | 105.5 | Α    |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = 8h | 103.4 | 110 | 117   | Α    |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = 9h | 114.5 | 120 | 126.5 | A    |
|      |                                                                                                                                                  |                          |       |     |       |      |
|      |                                                                                                                                                  | USER_DATA_07[27:24] = Ah | 124   | 130 | 137.1 | A    |

|          | PARAMETER                                                                                                                                        | TEST CONDITIONS                | MIN                 | TYP                     | MAX   | UNIT |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|-------------------------|-------|------|
|          |                                                                                                                                                  | USER_DATA_07[27:24] = Ch       | 154.1               | 160                     | 166.6 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[27:24] = Dh       | 174.8               | 180                     | 185.5 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[27:24] = Eh       | 194.2               | 200                     | 205.8 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[27:24] = Fh       | 213.2               | 220                     | 227.3 | Α    |
|          | Dynamic phase adding thresholds                                                                                                                  |                                | 210.2               | 220                     |       |      |
| DPA7     | (6-7ph)                                                                                                                                          | USER_DATA_07[39:36] = 0h       | 100.1               | 105                     | 110.5 | Α    |
|          | Average current, assuming DPA Hysteresis is set equal to 1/2 I <sub>SUM</sub> ripple for active phase number, accounting for ripple cancellation | USER_DATA_07[39:36] = 1h       | 105.6               | 110                     | 114.7 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = 2h       | 109.8               | 115                     | 120.8 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = 3h       | 115.5               | 120                     | 125   | Α    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = 4h       | 120.2               | 125                     | 130.2 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = 5h       | 125.2               | 130                     | 135.4 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = 6h       | 130.6               | 135                     | 140.1 | Α    |
|          |                                                                                                                                                  | USER DATA 07[39:36] = 7h       | 135.3               | 140                     | 144.8 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = 8h       | 155.1               | 160                     | 165.2 | Α    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = 9h       | 175.2               | 180                     | 185.1 | A    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = Ah       | 195.2               | 200                     | 205   | A    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = Bh       | 215                 | 220                     | 225.3 |      |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = Ch       | 235                 | 240                     | 245.2 | A    |
|          |                                                                                                                                                  |                                |                     |                         |       |      |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = Dh       | 274.7               | 280                     | 285.7 | A    |
|          |                                                                                                                                                  | USER_DATA_07[39:36] = Eh       | 314.3               | 320                     | 325.7 | A    |
|          | DPA Hysteresis (1-2ph)                                                                                                                           | USER_DATA_07[39:36] = Fh       | 353.9               | 360                     | 366.1 | A    |
| HYST2    | Set equal to 1/2 I <sub>SUM</sub> ripple with 1 phase operational                                                                                | USER_DATA_07[59:56] = 0h to Fh | 0                   |                         | 15    | Α    |
| HYST3    | DPA Hysteresis (2-3ph) Set equal to 1/2 I <sub>SUM</sub> ripple with 2 phases operational                                                        | USER_DATA_07[71:68] = 0h to Fh | 0                   |                         | 15    | Α    |
| HYST4    | DPA Hysteresis (3-4ph) Set equal to 1/2 I <sub>SUM</sub> ripple with 3 phases operational                                                        | USER_DATA_07[67:64] = 0h to Fh | 0                   |                         | 15    | А    |
| HYST5    | DPA Hysteresis (4-5ph) Set equal to 1/2 I <sub>SUM</sub> ripple with 4 phases operational                                                        | USER_DATA_07[79:76] = 0h to Fh | 0                   |                         | 15    | А    |
| HYST6    | DPA Hysteresis (5-6ph) Set equal to 1/2 I <sub>SUM</sub> ripple with 5 phases operational                                                        | USER_DATA_07[75:72] = 0h to Fh | 0                   |                         | 15    | Α    |
| HYST7    | DPA Hysteresis (6-7ph) Set equal to 1/2 I <sub>SUM</sub> ripple with 6 phases operational                                                        | USER_DATA_07[87:84] = 0h to Fh | 0                   |                         | 15    | Α    |
| HYST-DPS | Dynamic phase shedding hysteresis                                                                                                                | USER_DATA_07[15:14] = 00b      |                     | 0                       |       | Α    |
|          |                                                                                                                                                  | USER_DATA_07[15:14] = 01b      |                     | 1                       |       | Α    |
|          |                                                                                                                                                  | USER_DATA_07[15:14] = 10b      |                     | 2                       |       | Α    |
|          |                                                                                                                                                  | USER_DATA_07[15:14] = 11b      |                     | 3                       |       | Α    |
| DPS2     | Phase shed threshold (2-1ph)                                                                                                                     | Avg. current, calculated       | IDBA2 -             | 1 × I <sub>HYST-D</sub> | PS    | Α    |
|          | Phase shed threshold (3-2ph)                                                                                                                     | Avg. current, calculated       |                     | 2 × I <sub>HYST-D</sub> |       | Α    |
| DPS3     | Phase shed threshold (4-3ph)                                                                                                                     | Avg. current, calculated       |                     |                         |       |      |
| DPS4     | · · · /                                                                                                                                          | +                              |                     | 3 × I <sub>HYST-D</sub> |       | A    |
| DPS5     | Phase shed threshold (5-4ph)                                                                                                                     | Avg. current, calculated       | I <sub>DPA5</sub> - | 4 × I <sub>HYST-D</sub> | PS    | A    |

| PARAMETER              |                                                   | TEST CONDITIONS          | MIN                                           | TYP                   | MAX  | UNIT |
|------------------------|---------------------------------------------------|--------------------------|-----------------------------------------------|-----------------------|------|------|
| I <sub>DPS6</sub>      | Phase shed threshold (6-5ph)                      | Avg. current, calculated | I <sub>DPA6</sub> -                           | 5 × I <sub>HYST</sub> | -DPS | Α    |
| I <sub>DPS7</sub>      | Phase shed threshold (7-6ph)                      | Avg. current, calculated | I <sub>DPA7</sub> - 6 × I <sub>HYST-DPS</sub> |                       |      | Α    |
| T <sub>DPS_DELAY</sub> | Dynamic phase shedding delay (N+1 ph to N ph) (1) |                          | 115                                           | 120                   | 125  | μs   |

(1) Specified by Design

#### 6.4.8 Turbo Mode and Thermal Balance Management (TBM)

VCC = 3.3 V, CSPIN = VIN CSNIN = 12 V, TJ = -40 to 125  $^{\circ}$ C unless otherwise specified

|                    | PARAMETER                               | TEST CONDITIONS           | MIN | TYP MA | UNIT |
|--------------------|-----------------------------------------|---------------------------|-----|--------|------|
| Turbo Mod          | le and Thermal Management               |                           |     |        |      |
| N <sub>turbo</sub> | Number of turbo phases                  |                           | 0   | ,      | 4    |
| G <sub>TURBO</sub> | Current share gain for Turbo Phases (1) | USER_DATA_10[6:5] = 00b   |     | 100    | %    |
|                    |                                         | USER_DATA_10[6:5] = 01b   |     | 150    | %    |
|                    |                                         | USER_DATA_10[6:5] = 10b   |     | 180    | %    |
|                    |                                         | USER_DATA_10[6:5] = 11b   |     | 220    | %    |
| K <sub>T</sub>     | Thermal balance gain (1)                | USER_DATA_10[3:0] = 0000b |     | 8.0    | %    |
|                    |                                         | USER_DATA_10[3:0] = 0001b |     | 0.85   | %    |
|                    |                                         | USER_DATA_10[3:0] = 0010b |     | 0.9    | %    |
|                    |                                         | USER_DATA_10[3:0] = 0011b |     | 0.95   | %    |
|                    |                                         | USER_DATA_10[3:0] = 0100b |     | 1      | %    |
|                    |                                         | USER_DATA_10[3:0] = 0101b |     | 1.05   | %    |
|                    |                                         | USER_DATA_10[3:0] = 0110b |     | 1.1    | %    |
|                    |                                         | USER_DATA_10[3:0] = 0111b |     | 1.15   | %    |
|                    |                                         | USER_DATA_10[3:0] = 1000b |     | 1.2    | %    |

<sup>(1)</sup> Specified by Design.

### 6.4.9 Overcurrent Limit (OCL)

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                              | PARAMETER                             | TEST CONDITIONS                                            | MIN   | TYP | MAX  | UNIT |
|------------------------------|---------------------------------------|------------------------------------------------------------|-------|-----|------|------|
| Overcurrent Limit Thresholds |                                       |                                                            |       |     |      |      |
| I <sub>OCL</sub>             | Phase Valley OCL Thresholds           | Programmable Range                                         | 17    |     | 130  | Α    |
|                              | (Program through IOUT_OC_FAULT_LIMIT) | Programmable Resolution<br>17 A ≤ I <sub>OCL</sub> ≤ 80 A  |       | 3   |      | Α    |
|                              |                                       | Programmable Resolution<br>85 A ≤ I <sub>OCL</sub> ≤ 130 A |       | 5   |      | Α    |
|                              |                                       | Threshold Accuracy<br>17 A ≤ I <sub>OCL</sub> ≤ 80 A       | -3.05 |     | 3.05 | Α    |
|                              |                                       | Threshold Accuracy<br>85 A ≤ I <sub>OCL</sub> ≤ 130 A      | -5.55 |     | 5.55 | Α    |

#### 6.4.10 Telemetry

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V, T<sub>J</sub> = -40 to 125  $^{\circ}$ C unless otherwise specified

|                     | PARAMETER                                  | TEST CONDITIONS | MIN | TYP | MAX | UNIT |  |  |  |
|---------------------|--------------------------------------------|-----------------|-----|-----|-----|------|--|--|--|
| Telemetry           |                                            |                 |     |     |     |      |  |  |  |
| t <sub>CS_FIL</sub> | Per-phase current filter time constant (1) |                 |     | 230 |     | μs   |  |  |  |

|                         | PARAMETER                             | TEST CONDITIONS                                        | MIN    | TYP MAX     | UNIT |
|-------------------------|---------------------------------------|--------------------------------------------------------|--------|-------------|------|
| CS_UPDATE               | Per-phase current update time (1)     |                                                        |        | 14          | μs   |
| CS_RNG                  | Per-phase current reporting range     |                                                        | -10    | 120         | Α    |
| IMON_FIL                | IMON average time (1)                 |                                                        |        | 290         | μs   |
| IMON_UPDATE             | IMON update time (1)                  |                                                        |        | 12          | μs   |
| MON_RNG                 | IMON reporting range                  |                                                        | -10    | 70 x<br>Nph | А    |
| MON_ERROR               | Per-phase and total current error (1) | Summed of the per-phase currents and the total current |        | 1.0         | A/ph |
| MON_CAL_OF_<br>.SB      | IMON Calibration Offset LSB (1)       | IOUT_CAL_OFFSET resolution                             |        | 0.125       | А    |
| MON_CAL_OF_<br>RNG      | IMON Calibration Offset Range (1)     | IOUT_CAL_OFFSET range                                  | -4     | 3.75        | Α    |
| MON_CAL_GA_<br>LSB      | IMON Calibration Gain LSB (1)         | IOUT_CAL_GAIN resolution                               |        | 0.2         | %    |
| MON_CAL_GA_<br>RNG      | IMON Calibration Gain Range (1)       | IOUT_CAL_GAIN range                                    | -10    | 10          | %    |
| MON_LSB                 | IMON LSB via PMBus (1)                |                                                        |        | 0.125       | Α    |
| MON_ACC                 | Digital IMON Accuracy                 | 6-phase, I <sub>OUT</sub> = 0 A                        | -2.4   | 2.4         | Α    |
|                         |                                       | 6-phase, I <sub>OUT</sub> = 25.5 A                     | -9.41  | 9.41        | %    |
|                         |                                       | 6-phase, I <sub>OUT</sub> = 51 A                       | -4.71  | 4.71        | %    |
|                         |                                       | 6-phase, I <sub>OUT</sub> = 76.5 A                     | -3.14  | 3.14        | %    |
|                         |                                       | 6-phase, I <sub>OUT</sub> = 102 A                      | -2.35  | 2.35        | %    |
|                         |                                       | 6-phase, I <sub>OUT</sub> = 127.5 A                    | -1.88  | 1.88        | %    |
|                         |                                       | 6-phase, I <sub>OUT</sub> = 153 A                      | -1.57  | 1.57        | %    |
|                         |                                       | 6-phase, I <sub>OUT</sub> = 255 A                      | -0.94  | 0.94        | %    |
|                         |                                       | 2-phase, I <sub>OUT</sub> = 0 A                        | -0.8   | 0.8         | Α    |
|                         |                                       | 2-phase, I <sub>OUT</sub> = 8.2 A                      | -10.2  | 10.2        | %    |
|                         |                                       | 2-phase, I <sub>OUT</sub> = 16.4 A                     | -4.88  | 4.88        | %    |
|                         |                                       | 2-phase, I <sub>OUT</sub> = 24.6 A                     | -3.25  | 3.25        | %    |
|                         |                                       | 2-phase, I <sub>OUT</sub> = 32.8 A                     | -2.44  | 2.44        | %    |
|                         |                                       | 2-phase, I <sub>OUT</sub> = 41 A                       | -1.95  | 1.95        | %    |
|                         |                                       | 2-phase, I <sub>OUT</sub> = 49.2 A                     | -1.63  | 1.63        | %    |
|                         |                                       | 2-phase, I <sub>OUT</sub> = 82 A                       | -0.98  | 0.98        | %    |
|                         |                                       | 1-phase, I <sub>OUT</sub> = 0 A                        | -0.35  | 0.35        | Α    |
|                         |                                       | 1-phase, I <sub>OUT</sub> = 3 A                        | -11.67 | 11.67       | %    |
|                         |                                       | 1-phase, I <sub>OUT</sub> = 6 A                        | -6.4   | 6.4         | %    |
|                         |                                       | 1-phase, I <sub>OUT</sub> = 9 A                        | -3.89  | 3.89        | %    |
|                         |                                       | 1-phase, I <sub>OUT</sub> = 12 A                       | -2.92  | 2.92        | %    |
|                         |                                       | 1-phase, I <sub>OUT</sub> = 15 A                       | -2.33  | 2.33        | %    |
|                         |                                       | 1-phase, I <sub>OUT</sub> = 18 A                       | -1.94  | 1.94        | %    |
|                         |                                       | 1-phase, I <sub>OUT</sub> = 30 A                       | -1.17  | 1.17        | %    |
| V <sub>READ_VOUT</sub>  | READ_VOUT accuracy                    | V <sub>VSP</sub> = 0.25 V to 0.75 V                    | -5     | 5           | mV   |
| 55.                     |                                       | V <sub>VSP</sub> = 0.75 V to 1.5 V                     | -10    | 10          | mV   |
|                         |                                       | V <sub>VSP</sub> > 1.5 V                               | -15.0  | 15.0        | mV   |
| V <sub>READ_VOUT_</sub> | READ_VOUT update rate (1)             |                                                        |        | 200         | μs   |
| V <sub>READ_VIN</sub>   | READ_VIN accuracy                     | V <sub>IN</sub> = 4.5 V to 17 V                        | -2     | 2           | %    |

|                          | PARAMETER                                                              | TEST CONDITIONS                                                                        | MIN   | TYP | MAX  | UNIT |
|--------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------|-----|------|------|
| V <sub>READ_VIN_UP</sub> | READ_VIN update rate (1)                                               |                                                                                        |       | 150 |      | μs   |
| Гетр                     | READ_TEMPERATURE_1 accuracy                                            | 0.28 V to 1.8 V on TSEN pin (-40C to 150C)                                             | -2.5  |     | 2.5  | С    |
| Temp <sub>UPDATE</sub>   | READ_TEMPERATURE_1 update rate (1)                                     |                                                                                        |       | 150 |      | μs   |
| V <sub>TSENUVR</sub>     | TSEN low voltage (rising edge)                                         | Low voltage detection on TSEN pin before soft-start and during operations              | 220   | 245 | 270  | mV   |
| / <sub>TSENUVF</sub>     | TSEN low voltage (falling edge)                                        | Low voltage detection on TSEN pin before soft-start and during operations              | 135   | 160 | 185  | mV   |
| / <sub>TSENUVH</sub>     | TSEN low voltage (hysteresis) (1)                                      | Low voltage detection on TSEN pin before soft-start and during operations              | 50    |     |      | mV   |
| TSEN                     | TSEN filter time constant (1)                                          |                                                                                        |       | 5   |      | MHz  |
| C <sub>TSEN</sub>        | Maximum capacitance on TSEN pin (1)                                    | To get < 0.5us response time                                                           |       |     | 220  | pF   |
| RINSHUNT                 | Input current shunt range                                              |                                                                                        | 0.1   |     | 10   | mΩ   |
| G <sub>INSHUNT</sub>     | Input amplifer gain options for different shunts (analog gain setting) | GINSHUNT = 0h                                                                          |       | 20  |      | V/V  |
|                          |                                                                        | GINSHUNT = 1h                                                                          |       | 30  |      | V/V  |
|                          |                                                                        | GINSHUNT = 2h                                                                          |       | 40  |      | V/V  |
|                          |                                                                        | GINSHUNT = 3h                                                                          |       | 50  |      | V/V  |
|                          |                                                                        | GINSHUNT = 4h                                                                          |       | 60  |      | V/V  |
|                          |                                                                        | GINSHUNT = 5h                                                                          |       | 70  |      | V/V  |
|                          |                                                                        | GINSHUNT = 6h                                                                          |       | 80  |      | V/V  |
|                          |                                                                        | GINSHUNT = 7h                                                                          | -     | 100 |      | V/V  |
| V <sub>CSIN_MAX</sub>    | Maximum CSPIN-CSNIN voltage can be sensed <sup>(1)</sup>               | IIN x Shunt (mohm) x Analog Gain                                                       |       |     | 800  | mV   |
| IIN FIL                  | IIN average time (1)                                                   |                                                                                        | -     | 440 |      | μs   |
| IIN_UPDATE               | IIN update time (1)                                                    |                                                                                        |       | 24  |      | μs   |
| IIN_RNG                  | IIN reporting range (1)                                                |                                                                                        | -5    | ,   | 100  | Α    |
| IN                       | READ_IIN accuracy                                                      | IIN = 5.0 A (1 mV),<br>RSHUNT = 0.2 m $\Omega$ ,<br>GINSHUNT = 20 and 100 V/V          | -1    |     | 1    | Α    |
|                          |                                                                        | IIN = 10.0 A (2 mV),<br>RSHUNT = 0.2 m $\Omega$ ,<br>GINSHUNT = 20 and 100 V/V         | -1    |     | 1    | Α    |
|                          |                                                                        | IIN = 20.0 A (4 mV),<br>RSHUNT = 0.2 m $\Omega$ ,<br>GINSHUNT = 20 and 100 V/V         | -3.25 |     | 3.25 | %    |
|                          |                                                                        | IIN = 40.0 A (8 mV),<br>RSHUNT = 0.2 m $\Omega$ ,<br>GINSHUNT = 20 and 100 V/V         | -3.25 |     | 3.25 | %    |
|                          |                                                                        | IIN = 70.0 A (14 mV), RSHUNT = 0.2 m $\Omega$ , GINSHUNT = 20 and 100 V/V              | -2    |     | 2    | %    |
| N_CAL                    | Calculated input current accuracy (1)                                  | I <sub>IN</sub> = 5A; 12Vin to 1.8Vout                                                 | -10   |     | 10   | %    |
|                          |                                                                        | I <sub>IN</sub> = 10A                                                                  | -5    |     | 5    | %    |
|                          |                                                                        | I <sub>IN</sub> = 40A                                                                  | -3.5  |     | 3.5  | %    |
|                          |                                                                        | IIN = 70A                                                                              | -3    |     | 3    | %    |
| V <sub>READ_PIN</sub>    | READ_PIN accuracy                                                      | V <sub>IN</sub> = 12 V; VCSPIN-VCSNIN = 14 mV; (70A @ 0.2 mohm shunt); Exclude ripple; | -2.5  |     | 2.5  | %    |

|                      | PARAMETER          | TEST CONDITIONS | MIN               | TYP | MAX | UNIT |
|----------------------|--------------------|-----------------|-------------------|-----|-----|------|
| P <sub>OUT_ACC</sub> | READ_POUT Accuracy |                 | Per IOUT and VOUT |     |     | %    |

<sup>(1)</sup> Specified by Design.

#### 6.4.11 Phase-Locked Loop and Closed-Loop Frequency Control

VCC = 3.3 V, CSPIN = VIN CSNIN = 12 V,  $T_{\rm J}$  = -40 to 125  $^{\circ}{\rm C}$  unless otherwise specified

|                       | PARAMETER                                                           | TEST CONDITIONS                                                                     | MIN                      | TYP | MAX  | UNIT |
|-----------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------|-----|------|------|
| Switching F           | requency                                                            |                                                                                     |                          |     |      |      |
| f <sub>SW(RNG)</sub>  | Switching Frequency Range                                           | $V_{IN}$ = 12 V, $V_{VSP}$ = 1.0 V $f_{SW} \times N_{\oplus} \leq 8 \text{ MHz}$    | 300                      |     | 2000 | kHz  |
| f <sub>SW(TOL)</sub>  | Switching Frequency Tolerance                                       | $V_{IN}$ = 12 V, $V_{VSP}$ = 1.0 V<br>$f_{SW} \times N_{\oplus} \leq 8 \text{ MHz}$ | - 10                     |     | 10   | %    |
| Phase-Lock            | Loop and Synchronization                                            |                                                                                     |                          |     |      |      |
| V <sub>IL(SYNC)</sub> | SYNC input logic low (1)                                            |                                                                                     |                          |     | 0.8  | V    |
| V <sub>IH(SYNC)</sub> | SYNC input logic high (1)                                           |                                                                                     | 1.35                     |     |      | V    |
| V <sub>OL(SYNC)</sub> | SYNC output logic low (1)                                           | I <sub>PIN</sub> = ± 0.5 mA                                                         |                          |     | 0.4  | V    |
| V <sub>OH(SYNC)</sub> | SYNC output logic high (1)                                          | I <sub>PIN</sub> = ± 0.5 mA                                                         | 1.7                      |     |      | V    |
| t <sub>PW(SYNC)</sub> | SYNC input minimum pulse width (1)                                  |                                                                                     | 100                      |     |      | ns   |
| D <sub>SYNCOUT</sub>  | SYNC output duty cycle (1)                                          |                                                                                     | 40                       | 50  | 60   | %    |
| f <sub>SYNC</sub>     | Synchronization frequency (1)                                       |                                                                                     | 200                      | ,   | 2000 | kHz  |
| Df <sub>SYNC</sub>    | SYNC allowable frequency difference from free-running frequency (1) | FREQUENCY_SWITCH from 300 kHz to 2 MHz                                              | - 50                     |     | 50   | kHz  |
| M <sub>SYNCA</sub>    | Channel A Sync mode (1)                                             | MFR_SPECIFIC_E4[5] = X<br>MFR_SPECIFIC_E4[8] = 0b<br>MFR_SPECIFIC_E4[14] = 0b       | Disabled                 |     |      |      |
|                       |                                                                     | MFR_SPECIFIC_E4[5] = 0b<br>MFR_SPECIFIC_E4[8] = 1b<br>MFR_SPECIFIC_E4[14] = 0b      | Internal Clock, CLF Mode |     |      |      |
|                       |                                                                     | MFR_SPECIFIC_E4[5] = 1b<br>MFR_SPECIFIC_E4[8] = 0b<br>MFR_SPECIFIC_E4[14] = 1b      | External Clock, PLL Mode |     |      |      |
| M <sub>SYNCB</sub>    | Channel B Sync mode (1)                                             | MFR_SPECIFIC_E4[6] = X<br>MFR_SPECIFIC_E4[9] = 0b<br>MFR_SPECIFIC_E4[15] = 0b       | Disabled                 |     |      |      |
|                       |                                                                     | MFR_SPECIFIC_E4[6] = 0b<br>MFR_SPECIFIC_E4[9] = 1b<br>MFR_SPECIFIC_E4[15] = 0b      | Internal Clock, CLF Mode |     |      |      |
|                       |                                                                     | MFR_SPECIFIC_E4[6] = 1b<br>MFR_SPECIFIC_E4[9] = 0b<br>MFR_SPECIFIC_E4[15] = 1b      | External Clock, PLL Mode |     |      |      |
| PH <sub>SYNCA</sub>   | Channel A SYNC Phase Offset (1)                                     | MFR_SPECIFIC_E4[23:20] = 0h                                                         |                          | 0   |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 1h                                                         |                          | 30  |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 2h                                                         |                          | 60  |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 3h                                                         | ,                        | 90  |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 4h                                                         | ,                        | 120 |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 5h                                                         |                          | 150 |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 6h                                                         |                          | 180 |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 7h                                                         | ·                        | 210 |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 8h                                                         |                          | 240 |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = 9h                                                         |                          | 270 |      | deg  |
|                       |                                                                     | MFR_SPECIFIC_E4[23:20] = Ah                                                         |                          | 300 |      | deg  |



|                     | PARAMETER                       | TEST CONDITIONS             | MIN | TYP | MAX | UNIT |
|---------------------|---------------------------------|-----------------------------|-----|-----|-----|------|
|                     |                                 | MFR_SPECIFIC_E4[23:20] = Bh |     | 330 |     | deg  |
| PH <sub>SYNCB</sub> | Channel B SYNC Phase Offset (1) | MFR_SPECIFIC_E4[31:28] = 0h |     | 0   |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 1h |     | 30  |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 2h |     | 60  |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 3h |     | 90  |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 4h |     | 120 |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 5h |     | 150 |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 6h |     | 180 |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 7h |     | 210 |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 8h |     | 240 |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = 9h |     | 270 |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = Ah |     | 300 |     | deg  |
|                     |                                 | MFR_SPECIFIC_E4[31:28] = Bh |     | 330 |     | deg  |

<sup>(1)</sup> Specified by Design.

#### 6.4.12 Logic Interface

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                        | PARAMETER                             | TEST CONDITIONS                                                                | MIN   | TYP | MAX   | UNIT |
|------------------------|---------------------------------------|--------------------------------------------------------------------------------|-------|-----|-------|------|
| Logic Interfa          | ace Pins                              |                                                                                |       |     |       |      |
| V <sub>AENL</sub>      | Channel A ENABLE Logic Low            |                                                                                |       |     | 0.975 | V    |
| V <sub>AENH</sub>      | Channel A ENABLE Logic High           |                                                                                | 1.525 |     |       | V    |
| V <sub>AENHYS</sub>    | Channel A ENABLE Hysteresis (1)       |                                                                                | 0.4   |     | 0.6   | V    |
| t <sub>AENDIG</sub>    | Channel A ENABLE Deglitch (1)         |                                                                                | 0.275 |     |       | μs   |
| t <sub>AENVRRDYF</sub> | Channel A ENABLE Low to VRRDY Low     | No soft-stop; Only valid when using AVR_EN pin.                                |       |     | 1.5   | μs   |
| I <sub>AENH</sub>      | Channel A I/O Leakage                 | Leakage current , V <sub>AVR_EN</sub> = 1.1 V                                  | ,     |     | 25    | μΑ   |
| V <sub>BENL</sub>      | Channel B ENABLE Logic Low            |                                                                                |       |     | 0.925 | V    |
| V <sub>BENH</sub>      | Channel B ENABLE Logic High           |                                                                                | 1.225 |     |       | V    |
| V <sub>BENHYS</sub>    | Channel B ENABLE Hysteresis (1)       |                                                                                | 0.2   |     | 0.3   | V    |
| t <sub>BENDIG</sub>    | Channel B ENABLE Deglitch (1)         |                                                                                | 0.275 |     |       | μs   |
| t <sub>BENVRRDYF</sub> | Channel B ENABLE Low to VRRDY Low (1) | No soft-stop; Only valid when using BVR_EN pin.                                |       |     | 1.5   | μs   |
| I <sub>BENH</sub>      | Channel B I/O Leakage                 | Leakage current , V <sub>BVR_EN</sub> = 1.1 V                                  |       |     | 25    | μΑ   |
| $V_{PWML}$             | PWMx Output Low-level                 | I <sub>LOAD</sub> = ± 0.5 mA                                                   |       |     | 0.11  | V    |
| $V_{PWMH}$             | PWMx Output High-level                | I <sub>LOAD</sub> = ± 0.5 mA; VCC = 2.97 V                                     | 2.85  |     |       | V    |
| V <sub>PWM_Tri</sub>   | PWMx Tri-State                        | I <sub>LOAD</sub> = ± 100 μA                                                   | 1.440 | 1.5 | 1.560 | V    |
| t <sub>P-S_H-L</sub>   | PWMx H-L Transition-time (1)          | $C_{LOAD}$ = 10 pF; $I_{LOAD}$ = ± 100 $\mu$ A; 10% to 90% both edges          |       |     | 10    | ns   |
| t <sub>P-S_TRI</sub>   | PWMx Tri-State Transition (1)         | $C_{LOAD}$ = 10 pF; $I_{LOAD}$ = ± 100 µA; 10% or 90% to tri-state; both edges |       |     | 20    | ns   |

<sup>(1)</sup> Specified by Design.

## 6.4.13 Current Sensing and Current Sharing

over operating free-air temperature range (unless otherwise noted)

| PARAMETER                                | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|------------------------------------------|-----------------|-----|-----|-----|------|
| <b>Current Sense and Current Sharing</b> |                 |     |     |     |      |

over operating free-air temperature range (unless otherwise noted)

|                               | PARAMETER                                     | TEST CONDITIONS                                                      | MIN  | TYP | MAX  | UNIT |
|-------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------|-----|------|------|
| I <sub>ACSPx</sub>            | ACSPx leakage current                         | V <sub>ACSPx</sub> = 2.1 V                                           |      |     | 75   | μΑ   |
| I <sub>BAL_TOL</sub>          | Internal current share tolerance (1)          | At 20.5A/ph operations                                               | -4.5 |     | 4.5  | %    |
| I <sub>SHARE_WRN_T</sub><br>H | Current Share Warning Threshold               | Based on the filtered CSPx average current USER_DATA_11[47:46] = 00b | 2.8  | 5   | 7.2  | Α    |
|                               | (independently programmable for each channel) | USER_DATA_11[47:46] = 01b                                            | 7.5  | 10  | 12.5 | Α    |
|                               |                                               | USER_DATA_11[47:46] = 10b                                            | 12.5 | 15  | 17.5 | Α    |

<sup>(1)</sup> Specified by Design.

#### 6.4.14 Pin Detection Thresholds

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                     | PARAMETER                                          | TEST CONDITIONS                                 | MIN TYP MA | K UNIT |
|---------------------|----------------------------------------------------|-------------------------------------------------|------------|--------|
| R <sub>DECODE</sub> | Low-Side Pinstrap Resistor Decode (3 LSB bits) (1) | $R_{LOWER}$ = 154 k $\Omega$ with 1% tolerance  | 111        | Bin    |
|                     |                                                    | R <sub>LOWER</sub> = 115 k Ω with 1% tolerance  | 110        | Bin    |
|                     |                                                    | $R_{LOWER}$ = 86.6 k $\Omega$ with 1% tolerance | 101        | Bin    |
|                     |                                                    | $R_{LOWER}$ = 64.9 k $\Omega$ with 1% tolerance | 100        | Bin    |
|                     |                                                    | $R_{LOWER}$ = 49.9 k $\Omega$ with 1% tolerance | 011        | Bin    |
|                     |                                                    | $R_{LOWER}$ = 37.4 k $\Omega$ with 1% tolerance | 010        | Bin    |
|                     |                                                    | $R_{LOWER}$ = 27.4 k $\Omega$ with 1% tolerance | 001        | Bin    |
|                     |                                                    | $R_{LOWER}$ = 20.0 k $\Omega$ with 1% tolerance | 000        | Bin    |
| / <sub>DECODE</sub> | Pin Voltage Decode (5 MSB bits) (1)                | V <sub>PIN</sub> = 22.5 mV                      | 00000      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 67.5 mV                      | 00001      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 112.5 mV                     | 00010      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 157.5 mV                     | 00011      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 202.5 mV                     | 00100      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 247.5 mV                     | 00101      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 292.5 mV                     | 00110      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 337.5 mV                     | 00111      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 382.5 mV                     | 01000      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 427.5 mV                     | 01001      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 472.5 mV                     | 01010      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 517.5 mV                     | 01011      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 562.5 mV                     | 01100      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 607.5 mV                     | 01101      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 652.5 mV                     | 01110      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 697.5 mV                     | 01111      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 742.5 mV                     | 10000      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 787.5 mV                     | 10001      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 832.5 mV                     | 10010      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 877.5 mV                     | 10011      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 922.5 mV                     | 10100      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 967.5 mV                     | 10101      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 1012.5 mV                    | 10110      | Bin    |
|                     |                                                    | V <sub>PIN</sub> = 1057.5 mV                    | 10111      | Bin    |

| PARAMETER | TEST CONDITIONS              | MIN | TYP   | MAX | UNIT |
|-----------|------------------------------|-----|-------|-----|------|
|           | V <sub>PIN</sub> = 1102.5 mV |     | 11000 |     | Bin  |
|           | V <sub>PIN</sub> = 1147.5 mV |     | 11001 |     | Bin  |
|           | V <sub>PIN</sub> = 1192.5 mV |     | 11010 |     | Bin  |
|           | V <sub>PIN</sub> = 1237.5 mV |     | 11011 |     | Bin  |
|           | V <sub>PIN</sub> = 1282.5 mV |     | 11100 |     | Bin  |
|           | V <sub>PIN</sub> = 1327.5 mV |     | 11101 |     | Bin  |
|           | V <sub>PIN</sub> = 1372.5 mV |     | 11110 |     | Bin  |
|           | V <sub>PIN</sub> = 1417.5 mV |     | 11111 |     | Bin  |

<sup>(1)</sup> The same decoding scheme and thresholds apply to both the ADDR\_CONFIG and VBOOT\_CHA pins.

#### 6.4.15 ADDR Pinstrap Decoding

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}{\rm C}$  unless otherwise specified

| PARAMETER          |                                                | TEST CONDITIONS                | MIN       | TYP         | MAX  | UNIT |
|--------------------|------------------------------------------------|--------------------------------|-----------|-------------|------|------|
| PMB <sub>ADD</sub> | PMBus Address (7 bit I <sup>2</sup> C Address) | Pinstrap Mode                  | 88d + 5 N | /ISB of dec | code | Bin  |
|                    |                                                | NVM Mode (PIN_DETECT_OVERRIDE) | SLAVE     | _ADDRES     | S    | Bin  |

#### 6.4.16 BOOT\_CHA Pinstrap Decoding

VCC = 3.3 V, CSPIN = VIN CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                    | PARAMETER                  | TEST CONDITIONS                               | MIN      | TYP        | MAX   | UNIT |
|--------------------|----------------------------|-----------------------------------------------|----------|------------|-------|------|
| V <sub>BOOTA</sub> | Boot voltage for Channel A | Pinstrap Mode<br>Decode = 0d                  |          | 0          | V     |      |
|                    |                            | Pinstrap Mode<br>Decode = 1d to 253d          | 0.24 + ( | Decode × 0 | ).01) | V    |
|                    |                            | Pinstrap Mode<br>Decode = 254d                |          | 3.3        |       | V    |
|                    |                            | Pinstrap Mode<br>Decode = 255d <sup>(1)</sup> |          | 5          |       | V    |
|                    |                            | NVM Mode (PIN_DETECT_OVERRIDE)                | VOUT     | _COMMAN    | 1D    | V    |

<sup>(1)</sup> Requires an external divider on the VSP and VSN pins. VOUT\_SCALE\_LOOP is automatically programmed to 0.5

#### 6.4.17 Timing Specifications

Submit Document Feedback

VCC = 3.3 V, CSPIN = VIN CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                      | PARAMETER                                     | TEST CONDITIONS                           | MIN                         | TYP MAX                 | UNIT |
|----------------------|-----------------------------------------------|-------------------------------------------|-----------------------------|-------------------------|------|
| Timing Spe           | ecifications                                  |                                           |                             |                         |      |
| t <sub>ENABLE</sub>  | Enable delay time options (1)                 | TON_DELAY range = 0.5 ms to 127.5 ms with | 0.5                         | 127.5                   | ms   |
|                      | (independently programmable for each channel) | TON_DELAY resolution                      |                             | 0.5                     | ms   |
|                      |                                               | TON_DELAY accuracy                        | -10                         | 10                      | %    |
| t <sub>DISABLE</sub> | Disable delay time options (1)                | TOFF_DELAY range = 0.5 ms to 127.5 ms     | 0.5                         | 127.5                   | ms   |
|                      | (independently programmable for each channel) | TOFF_DELAY resolution                     |                             | 0.5                     | ms   |
|                      |                                               | TOFF_DELAY accuracy                       | -10                         | 10                      | %    |
| PH <sub>START</sub>  | Operating Phases during Soft-Start (1)        | USER_DATA_07[5:4] = 00b                   | MIN(4, N <sub>TOTAL</sub> ) |                         | ph   |
|                      | (independently programmable for each channel) | USER_DATA_07[5:4] = 01b                   | MIN(                        | 6, N <sub>TOTAL</sub> ) | ph   |

|                       | PARAMETER                                     | TEST CONDITIONS                                     | MIN | TYP                | MAX | UNIT |
|-----------------------|-----------------------------------------------|-----------------------------------------------------|-----|--------------------|-----|------|
|                       |                                               | USER_DATA_07[5:4] = 11b                             |     | N <sub>TOTAL</sub> |     | ph   |
| t <sub>OFF_MIN</sub>  | Controller minimum OFF time range             | Programmable Range<br>USER_DATA_02[23:20] = 0 to Fh | 40  |                    | 135 | ns   |
|                       | (independently programmable for each channel) | Resolution                                          |     | 15                 |     | ns   |
|                       |                                               | Accuracy (all settings)                             | -25 |                    | 25  | ns   |
| t <sub>ON_MIN</sub>   | Controller minimum ON time (1)                | USER_DATA_02[39:38] = 0 to 3h                       | 30  |                    | 60  | ns   |
|                       | (independently programmable each channel)     | Resolution                                          |     | 10                 |     | ns   |
|                       |                                               | Accuracy                                            | -12 |                    | 12  | ns   |
| t <sub>ON_BLANK</sub> | Rising-edge blanking time range (1)           | Programmable Range<br>USER_DATA_02[31:24]           | 20  |                    | 155 | ns   |
|                       | (independently programmable for each channel) | Resolution                                          |     | 5                  |     | ns   |
|                       |                                               | Accuracy                                            | -25 |                    | 25  | ns   |

<sup>(1)</sup> Specified by Design.

#### **6.4.18 Faults and Converter Protection**

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V, T  $_{\rm J}$  = -40 to 125  $^{\circ}{\rm C}$  unless otherwise specified

|                     | PARAMETER                                | TEST CONDITIONS                       | MIN      | TYP | MAX  | UNIT |
|---------------------|------------------------------------------|---------------------------------------|----------|-----|------|------|
| PROTEC              | TION                                     |                                       | <u> </u> |     |      |      |
|                     | Channel A Tracking OV Fault Threshold    | Programmable Range <sup>(2)</sup>     | 32       |     | 448  | mV   |
| V <sub>OVTRKA</sub> | ( Offset with respect to output voltage  | Resolution                            |          | 32  |      | mV   |
|                     | target including VDROOP )                | Accuracy (all settings)               | -16      |     | 16   | mV   |
|                     | Channel B Tracking OV Fault Threshold    | Programmable Range (2)                | 32       |     | 448  | mV   |
| $V_{OVTRKB}$        | ( Offset with respect to output voltage  | Resolution                            |          | 32  |      | mV   |
|                     | target including VDROOP )                | Accuracy (all settings)               | -20      |     | 20   | mV   |
|                     |                                          | Programmable Range (2)                | 0.6      |     | 3.7  | V    |
| V                   | Channel A Fixed OV Fault Threshold       | Resolution                            |          | 0.1 |      | V    |
| V <sub>OVFIXA</sub> | Charmer A Fixed OV Fault Threshold       | Accuracy (V <sub>OVFIX</sub> < 3.6 V) | -50      |     | 50   | mV   |
|                     |                                          | Accuracy (V <sub>OVFIX</sub> ≥ 3.6 V) | -65      |     | 65   | mV   |
|                     |                                          | Programmable Range (2)                | 0.6      |     | 3.7  | V    |
|                     | Channel B Fixed OV Fault Threehold       | Resolution                            |          | 0.1 |      | V    |
| V <sub>OVFIXB</sub> | Channel B Fixed OV Fault Threshold       | Accuracy (V <sub>OVFIX</sub> < 3.6 V) | -50      |     | 50   | mV   |
|                     |                                          | Accuracy (V <sub>OVFIX</sub> ≥ 3.6 V) | -65      |     | 65   | mV   |
| V <sub>OVPB-A</sub> | Pre-biased OVP Channel A threshold (1)   |                                       |          | 3.7 |      | V    |
| V <sub>OVPB-B</sub> | Pre-biased OVP Channel B threshold (1)   |                                       |          | 3.7 |      | V    |
|                     | Channel A Tracking OV Warning            | Programmable Range <sup>(2)</sup>     | 16       |     | 448  | mV   |
| $V_{OVW-A}$         | Threshold (Offset with respect to output | Resolution                            |          | 8   |      | mV   |
|                     | voltage target including VDROOP)         | Accuracy (all settings)               | -12      |     | 12   | mV   |
|                     | Channel B Tracking OV Warning            | Programmable Range <sup>(2)</sup>     | 24       |     | 448  | mV   |
| $V_{OVW-B}$         | Threshold (Offset with respect to output | Resolution                            |          | 8   |      | mV   |
|                     | voltage target including VDROOP)         | Accuracy (all settings)               | -23      | ,   | 23   | mV   |
|                     | Channel A UV Warning Threshold ( Offset  | Programmable Range <sup>(2)</sup>     | -16      |     | -448 | mV   |
| $V_{UVW-A}$         | with respect to output voltage target    | Resolution                            |          | 8   |      | mV   |
|                     | including VDROOP )                       | Accuracy (all settings)               | -11      |     | 11   | mV   |



|                       | PARAMETER                                         | TEST CONDITIONS                               | MIN | TYP | MAX                                                                                     | UNIT |
|-----------------------|---------------------------------------------------|-----------------------------------------------|-----|-----|-----------------------------------------------------------------------------------------|------|
|                       | Channel B UV Warning Threshold ( Offset           | Programmable Range (2)                        | -8  |     | -448                                                                                    | mV   |
| $V_{UVW-B}$           | with respect to output voltage target             | Resolution                                    |     | 8   |                                                                                         | mV   |
|                       | including VDROOP )                                | Accuracy (all settings)                       | -22 |     | -448  22 448  16 448  21  1023  7 4 1023  7 4 1023  3 3 3 3 3 3 3                       | mV   |
|                       | Channel A Tracking UV Fault Threshold             | Programmable Range <sup>(2)</sup>             | 32  |     | 448                                                                                     | mV   |
| V <sub>UVF-A</sub>    | ( Offset with respect to output voltage           | Resolution                                    |     | 32  | -448  22 448  16 448  21  1023  7 4 1023  7 4 1023  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | mV   |
|                       | target including VDROOP )                         | Accuracy (all settings)                       | -16 |     | 16                                                                                      | mV   |
|                       | Channel B Tracking UV Fault Threshold             | Programmable Range <sup>(2)</sup>             | 32  |     | 448                                                                                     | mV   |
| $V_{UVF-B}$           | ( Offset with respect to output voltage           | Resolution                                    |     | 32  |                                                                                         | mV   |
|                       | target including VDROOP )                         | Accuracy (all settings)                       | -21 |     | 21                                                                                      | mV   |
| t <sub>DLY(UVF)</sub> | Deglitch Time for Triggering UV Fault (1)         | VOUT_UV_FAULT_RESPONSE[2:0] = x00b            |     | 4   |                                                                                         | μs   |
|                       |                                                   | VOUT_UV_FAULT_RESPONSE[2:0] = x01b            |     | 8   |                                                                                         | μs   |
|                       |                                                   | VOUT_UV_FAULT_RESPONSE[2:0] = x10b            |     | 12  |                                                                                         | μs   |
|                       |                                                   | VOUT_UV_FAULT_RESPONSE[2:0] = x11b            |     | 16  |                                                                                         | μs   |
|                       |                                                   | Programmable Range (2)                        | 1   |     | 1023                                                                                    | Α    |
|                       | Channel A Overcurrent Protection                  | Resolution                                    |     | 1   |                                                                                         | Α    |
| I <sub>OCP-A</sub>    | Threshold                                         | Accuracy (11 phase, I <sub>OCP</sub> ≤ 135 A) | -7  |     | 7                                                                                       | Α    |
|                       |                                                   | Accuracy (11 phase, I <sub>OCP</sub> > 135 A) | -4  |     | 4                                                                                       | %    |
|                       |                                                   | Programmable Range <sup>(2)</sup>             | 1   |     | 1023                                                                                    | Α    |
|                       | Channel B Overcurrent Protection                  | Resolution                                    |     | 1   |                                                                                         | Α    |
| I <sub>OCP-B</sub>    | Threshold                                         | Accuracy (4 phase, I <sub>OCP</sub> ≤ 75 A)   | -3  |     | 3                                                                                       | Α    |
|                       |                                                   | Accuracy (4 phase, I <sub>OCP</sub> > 75 A)   | -3  |     | 3                                                                                       | %    |
|                       |                                                   | Programmable Range (2)                        | 1   |     | 1023                                                                                    | Α    |
|                       | Channel A Overcurrent Warning                     | Resolution                                    |     | 1   |                                                                                         | Α    |
| I <sub>OCW-A</sub>    | Threshold                                         | Accuracy (11 phase, I <sub>OCW</sub> ≤ 135 A) | -7  |     | 7                                                                                       | Α    |
|                       |                                                   | Accuracy (11 phase, I <sub>OCW</sub> > 135 A) | -4  |     | 4                                                                                       | %    |
|                       |                                                   | Programmable Range (2)                        | 1   |     | 1023                                                                                    | Α    |
|                       | Channel B Overcurrent Warning                     | Resolution                                    |     | 1   |                                                                                         | Α    |
| I <sub>OCW-B</sub>    | Threshold                                         | Accuracy (4 phase, I <sub>OCW</sub> ≤ 75 A)   | -3  |     | 3                                                                                       | Α    |
|                       |                                                   | Accuracy (4 phase, I <sub>OCW</sub> > 75 A)   | -3  |     | 3                                                                                       | %    |
|                       |                                                   | Programmable Range                            | 90  |     | 160                                                                                     | °C   |
| T <sub>OTF</sub>      | Over-temperature Fault threshold                  | Resolution                                    |     | 1   |                                                                                         | °C   |
|                       |                                                   | Accuracy (all settings)                       | -3  |     | 3                                                                                       | °C   |
|                       |                                                   | Programmable Range                            | 90  |     | 160                                                                                     | °C   |
| T <sub>OTW</sub>      | Over-temperature Warning threshold <sup>(1)</sup> | Resolution                                    |     | 10  |                                                                                         | °C   |
|                       |                                                   | Accuracy (all settings)                       | -3  |     | 3                                                                                       | °C   |
|                       |                                                   | Programmable Range                            | 4   |     | 18                                                                                      | V    |
| $V_{IOVF}$            | Input over-voltage fault threshold                | Resolution                                    |     | 1   |                                                                                         | V    |
|                       |                                                   | Accuracy                                      | -2  |     | 2                                                                                       | %    |
|                       |                                                   | Programmable Range                            | 4   |     | 18                                                                                      | V    |
| $V_{IOVW}$            | Input over-voltage warning threshold              | Resolution                                    |     | 1   |                                                                                         | V    |
|                       |                                                   | Accuracy                                      | -2  |     | 2                                                                                       | %    |

#### www.ti.com.cn

#### VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V, $T_J$ = -40 to 125 $^{\circ}$ C unless otherwise specified

|                     | PARAMETER                                                                                                               | TEST CONDITIONS                                                     | MIN   | TYP  | MAX   | UNIT |
|---------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|------|-------|------|
|                     |                                                                                                                         | Programmable Range                                                  | 4.25  |      | 11.5  | V    |
| $V_{IUVW}$          | Input under-voltage warning threshold                                                                                   | Resolution                                                          |       | 0.25 |       | V    |
|                     |                                                                                                                         | Accuracy (all settings)                                             | -0.25 |      | 0.25  | V    |
|                     |                                                                                                                         | Programmable Range                                                  | 4.0   |      | 11.25 |      |
| $V_{IUVF}$          | Input under-voltage fault threshold                                                                                     | Resolution                                                          |       | 0.25 |       |      |
|                     |                                                                                                                         | Accuracy (all settings)                                             | -0.25 |      | 0.25  | V    |
| t <sub>IUVF</sub>   | Input Under-Voltage Fault Response<br>Time <sup>(1)</sup><br>Time from VIN < V <sub>IUVF</sub> to converter<br>shutdown | VIN_UV_FAULT_RESPONSE = 80h<br>Shutdown immediately, do not restart |       |      | 300   | μs   |
|                     |                                                                                                                         | Programmable Range                                                  | 4     |      | 128   | Α    |
| IOCF                | Input over-current fault threshold                                                                                      | Resolution                                                          |       | 4    |       | Α    |
|                     |                                                                                                                         | Accuracy (all settings)                                             | -3.5  |      | 3.5   | Α    |
|                     |                                                                                                                         | Programmable Range                                                  | 4     |      | 128   | Α    |
| $I_{\text{IOCW}}$   | Input over-current warning threshold                                                                                    | Resolution                                                          |       | 4    |       | Α    |
|                     |                                                                                                                         | Accuracy (all settings)                                             | -4    |      | 4     | Α    |
|                     |                                                                                                                         | USER_DATA_11[15:14] = 00b                                           |       | 5    |       | ms   |
| t                   | Hiccup Wait Time (1)                                                                                                    | USER_DATA_11[15:14] = 01b                                           |       | 10   |       | ms   |
| t <sub>HICCUP</sub> | Applies only to HICCUP fault responses                                                                                  | USER_DATA_11[15:14] = 10b                                           |       | 25   |       | ms   |
|                     |                                                                                                                         | USER_DATA_11[15:14] = 11b                                           |       | 50   |       | ms   |
| V <sub>PSFLT</sub>  | ATSEN/BTSEN pin voltage causing Power stage fault (TAO HIGH)                                                            |                                                                     |       | 2.6  |       | V    |
|                     | ATSEN/BTSEN pin voltage clearing<br>Power stage fault (TAO HIGH)                                                        |                                                                     |       | 2.4  |       | V    |
|                     | ATSEN/BTSEN pin voltage hysteresis for Power stage fault (TAO HIGH)                                                     |                                                                     |       | 0.2  |       | V    |

Specified by Design.

#### 6.4.19 PMBus/AVS Interfaces

VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V,  $T_J$  = -40 to 125  $^{\circ}$ C unless otherwise specified

|                               | PARAMETER                                             | TEST CONDITIONS | MIN  | TYP | MAX | UNIT |  |  |  |
|-------------------------------|-------------------------------------------------------|-----------------|------|-----|-----|------|--|--|--|
| PMBus T                       | Bus Timing and Physical Characteristics               |                 |      |     |     |      |  |  |  |
| t <sub>PMB-BUF</sub>          | PMBus Free time between STOP and START conditions (1) |                 | 0.5  |     |     | μs   |  |  |  |
| t <sub>PMB-HD-</sub><br>STA   | Hold time after Repeated Start Condition (1)          |                 | 0.26 |     |     | μs   |  |  |  |
| t <sub>PMB-SU-</sub><br>STO   | Stop condition Setup time (1)                         |                 | 0.26 |     |     | μs   |  |  |  |
| t <sub>PMB-HD-</sub><br>DAT   | SMB_DIO Hold Time (1) (2)                             |                 | 0    |     |     | μs   |  |  |  |
| t <sub>PMB-SU-</sub><br>DAT   | SMB_DIO Setup Time                                    |                 | 50   |     |     | ns   |  |  |  |
| t <sub>PMB-</sub><br>TIMEOUT  | SMB_CLK low timeout (1) (3)                           |                 | 25   |     | 35  | ms   |  |  |  |
| t <sub>PMB-LOW</sub>          | SMB_CLK low time (1)                                  |                 | 0.5  |     |     | μs   |  |  |  |
| t <sub>PMB-HIGH</sub>         | SMB_CLK high time (1) (4)                             |                 | 0.26 |     | 50  | μs   |  |  |  |
| t <sub>PMB-LOW-</sub><br>SEXT | Maximum clock stretching time (slave) (1) (5)         |                 |      |     | 25  | ms   |  |  |  |

Settings are programmed through PMBus commands as described in the *Programming* section of this document. The device internally maps programmed settings to hardware supported values.



|                               | PARAMETER                                                                                     | TEST CONDITIONS                                                | MIN                   | TYP                   | MAX                   | UNIT   |
|-------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------|-----------------------|-----------------------|--------|
| t <sub>PMB-LOW-</sub><br>MEXT | Maximum clock stretching time (master) (1) (6)                                                |                                                                |                       |                       | 10                    | ms     |
|                               | SMB_DIO/SMB_CLK rise time,                                                                    | 100 kHz Class                                                  |                       |                       | 1000                  | ns     |
| t <sub>R-PMB</sub>            | ( V <sub>IL(MAX)</sub> -150 mV to V <sub>IH(MIN)</sub> +150 mV) <sup>(1)</sup>                | 400 kHz Class                                                  |                       |                       | 300                   | ns     |
|                               |                                                                                               | 1000 kHz Class                                                 |                       |                       | 120                   | ns     |
|                               | SMB_DIO/SMB_CLK fall time, ( V <sub>IH(MIN)</sub>                                             | 100 kHz Class                                                  |                       |                       | 1000                  | ns     |
| t <sub>F-PMB</sub>            | +150 mV to V <sub>IL(MAX)</sub> + 150 mV) <sup>(1)</sup>                                      | 400 kHz Class                                                  |                       |                       | 300                   | ns     |
|                               |                                                                                               | 1000 kHz Class                                                 |                       |                       | 120                   | ns     |
| t <sub>PMB-REJ</sub>          | Noise spike suppression-time (1) (7)                                                          |                                                                |                       |                       | 50                    | ns     |
| I <sub>LK-PMB-</sub><br>BUS   | Input leakage per PMBus segment (1)                                                           |                                                                | -200                  |                       | 200                   | μΑ     |
| I <sub>LK-PMB-</sub><br>PIN   | Input leakage for PMBus pins                                                                  |                                                                | -10                   |                       | 10                    | μΑ     |
| C <sub>PMB-BUS</sub>          | PMBus Bus Capacitance <sup>(1)</sup>                                                          |                                                                |                       |                       | 400                   | pF     |
| C <sub>PMB-PIN</sub>          | PMBus Pin Capacitance (1)                                                                     |                                                                |                       |                       | 10                    | pF     |
| V <sub>PULLUP</sub><br>PMBus  | PMBus interface pull ups (1)                                                                  |                                                                | 1.62                  |                       | 3.63                  | V      |
| V <sub>IL_PMBus</sub>         | SMB_DIO, SMB_CLK Input logic low                                                              |                                                                |                       |                       | 0.8                   | V      |
| V <sub>IH_PMBu</sub><br>s     | SMB_DIO, SMB_CLK Input logic high                                                             |                                                                | 1.35                  |                       |                       | V      |
| V <sub>HYST_PM</sub>          | Hysteresis voltage                                                                            |                                                                | 80                    |                       |                       | mV     |
| V <sub>OL_PMBu</sub>          | Low-level output voltage                                                                      | I <sub>OL</sub> = -20 mA                                       |                       |                       | 0.4                   | V      |
| PMB <sub>CLKR</sub>           | PMBus clock frequency range <sup>(1)</sup>                                                    | PMBus Clock Requirements (9)                                   | 0.05                  |                       | 2                     | MHz    |
| AVSBus T                      | iming and Physical Characteristics                                                            |                                                                |                       |                       | ļ.                    |        |
| t <sub>P-AVS</sub>            | AVS_CLK Active Clock Period (1)                                                               |                                                                | 20                    |                       | 200                   | ns     |
| t <sub>HIGH-</sub><br>AVSCLK  | AVS_CLK high period (1)                                                                       |                                                                | 10                    |                       |                       | ns     |
| t <sub>LOW-</sub>             | AVS_CLK low period (1)                                                                        |                                                                |                       | t <sub>P-AVS</sub> /2 |                       | ns     |
| t <sub>TO-</sub><br>AVSCLK    | AVS Clock Timeout Delay (1)                                                                   | Clock idle period before clock timeout condition is recognized |                       | 5                     |                       | μs     |
| N <sub>PRECLK</sub> -         | Number of preamble AVSCLK required to accept AVS frame after AVS clock timeout (1)            |                                                                | 2                     |                       |                       | cycles |
| t <sub>R-AVSDAT</sub>         | AVS_MDATA, AVS_SDATA rise time (1)                                                            |                                                                |                       |                       | 3                     | ns     |
| t <sub>F-AVSDAT</sub>         | AVS_MDATA, AVS_SDATA fall time (1)                                                            |                                                                |                       |                       | 3                     | ns     |
| t <sub>PD-AVS</sub>           | Time for signals to propagate from one device to another <sup>(1)</sup>                       |                                                                |                       |                       | 4                     | ns     |
| t <sub>CAPT</sub> -           | Time from falling clock edge in Master to data capture inside slave <sup>(1)</sup>            |                                                                | t <sub>PD-AVS</sub>   | 2+t <sub>PD-AVS</sub> |                       | ns     |
| t <sub>SU-AVSS</sub>          | Time from data-out edge in Master to clock edge in Slave (1)                                  |                                                                | 2+t <sub>PD-AVS</sub> |                       |                       | ns     |
| t <sub>LAUNCH</sub> -<br>AVSS | Time from rising clock edge in Master to data-out transition at Slave's data-out port (1) (8) |                                                                | 2+t <sub>PD-AVS</sub> | 8 + t <sub>PD-</sub>  | 14 + t <sub>PD-</sub> | ns     |
| t <sub>H-AVSM</sub>           | Time from capture clock edge in Master to data-out edge in Slave (for next bit) (1)           |                                                                | 2                     | t <sub>LOW-</sub>     |                       | ns     |
| I <sub>LK-AVS</sub>           | AVSBus pin (AVS_MDATA, AVS_SDATA, AVS_CLK, AVS_VDDIO) leakage                                 |                                                                | -10                   |                       | 10                    | μA     |

#### www.ti.com.cn

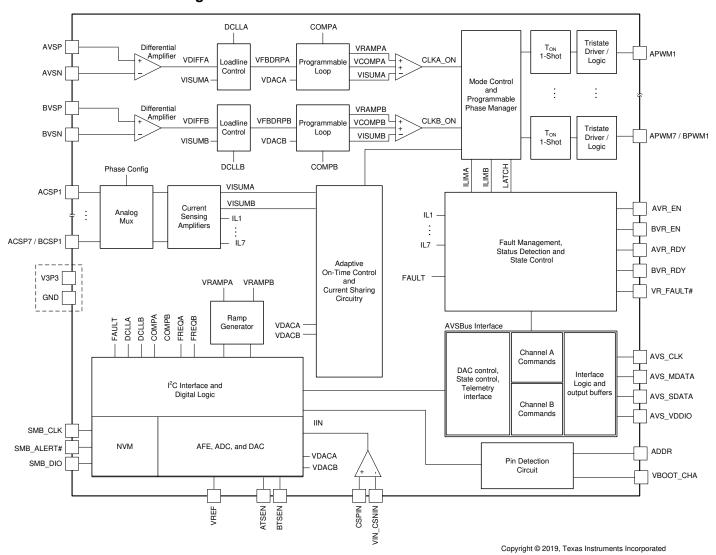
#### VCC = 3.3 V, CSPIN = VIN\_CSNIN = 12 V, $T_J$ = -40 to 125 $^{\circ}$ C unless otherwise specified

|                              | PARAMETER                        | TEST CONDITIONS           | MIN                       | TYP MAX                   | UNIT |
|------------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|------|
| V <sub>DDIO-</sub><br>AVSBus | AVS_VDDIO input range            |                           | 1.14                      | 3.6                       | V    |
| V <sub>IL</sub><br>AVSMDA    | AVS_MDATA input logic low        |                           |                           | 0.4*V <sub>DDI</sub><br>o | V    |
| V <sub>IH</sub> -<br>AVSMDA  | AVS_MDATA input logic high       |                           | 0.6*V <sub>DDI</sub><br>0 |                           | V    |
| V <sub>OL-</sub><br>AVSSDA   | AVS_SDATA output logic low       |                           |                           | 0.2*V <sub>DDI</sub><br>o | V    |
| V <sub>OH-</sub><br>AVSSDA   | AVS_SDATA output logic high      |                           | 0.8*V <sub>DDI</sub><br>0 |                           | V    |
| AVS <sub>CLKR</sub>          | AVSBus clock frequency range (1) | AVSBus Clock Requirements | 5                         | 50 <sup>(10)</sup>        | MHz  |

- (1) Specified by Design.
- (2) A device must internally provide sufficient hold time for the SMBDAT signal (with respect to the V<sub>IH, MIN</sub> of the SMBCLK signal) to bridge the undefined region of the falling edge of SMBCLK.
- (3) Devices participating in a transfer can abort the transfer in progress and release the bus when any single clock low interval exceeds the value of t<sub>TIMEOUT, MIN</sub>. After the master in a transaction detects this condition, it must generate a stop condition within or after the current data byte in the transfer process. Devices that have detected this condition must reset their communication and be able to receive a new START condition no later than t<sub>TIMEOUT, MAX</sub>. Typical device examples include the host controller, and embedded controller, and most devices that can master the SMBus. Some simple devices do not contain a clock low drive circuit; this simple kind of device typically may reset its communications port after a start or a stop condition. A timeout condition can only be ensured if the device that is forcing the timeout holds the SMBCLK low for t<sub>TIMEOUT, MAX</sub> or longer
- (4) t<sub>PMB-HIGH, MAX</sub> provides a simple guaranteed method for masters to detect bus idle conditions. A master can assume that the bus is free if it detects that the clock and data signals have been high for greater than t<sub>HIGH, MAX</sub>.
- (5) t<sub>PMB-LOW-SEXT</sub> is the cumulative time a given slave device is allowed to extend the clock cycles in one message from the initial START to the STOP. It is possible that another slave device or the master also extends the clock, causing the combined clock low extend time to be greater than tLOW:SEXT. Therefore, this parameter is measured with the slave device as the sole target of a full-speed master
- (6) t<sub>PMB-LOW-MEXT</sub> is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or another master also extends the clock, causing the combined clock low time to be greater
- (7) Devices must provide a means to reject noise spikes of a duration up to the maximum specified value.
- (8) The clock used by the slave is a delayed version of the clock in the master. For that reason, launching data from the slave starts later than launching from the master, and relatively speaking, capturing by the master comes earlier. If tdelay is large on a given board, it may be necessary to increase thigh to compensate and give more time for the data to go from the slave to the master.
- (9) I2C High-speed mode is not supproted.
- (10) Due to the upper limit t<sub>LAUNCH-AVSS</sub> operation at 50 MHz typically requires changing the duty cycle of the AVS\_CLK to allow more launch time for the TPS53676

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback




## 7 Detailed Description

#### 7.1 Overview

The TPS53676 is a 7-phase step-down controller with two channels, built-in non-volatile memory (NVM), AVSBus, and PMBus interface, and is fully compatible with TI NexFET power stages.

## 7.2 Functional Block Diagram



Submit Document Feedback

#### 7.3 Power-up and initialization

#### 7.3.1 First power-up

When power is applied to TPS53676, an initialization procedure performs self-checks of internal memories, performs pin detection, and loads the values stored in non-volatile memory to operating memory. This procedure can take up to 20 ms to complete, during which time the device may not respond to PMBus commands. Initialization takes place the first time power is applied to the VCC pin and does not repeat unless the device is power cycled. Pin configuration is loaded during this time. Until initialization is complete, all pins remain high impedance, except for the AVR RDY and BVR RDY pins which are pulled low by default.

Once initialization is complete, the device waits for an enable condition specified by the ON\_OFF\_CONFIG command to begin power conversion. By default the device is configured to wait for the AVR\_EN pin to be set high to enable channel A, and the BVR\_EN pin to be set high to enable channel B. Once an enable condition is received, TPS53676 checks that the powerstage input supply (VIN\_CSNIN pin) is above the VIN\_ON value, and the powerstage driver is fully powered (e.g. that no TAO\_LOW condition exists). This takes approximately 750  $\mu$  s (up to 1.0 ms) to complete before the first PWM pulses are output by the controller. This process repeats each time power conversion is enabled for any reason, including enable cycling or fault shutdown.

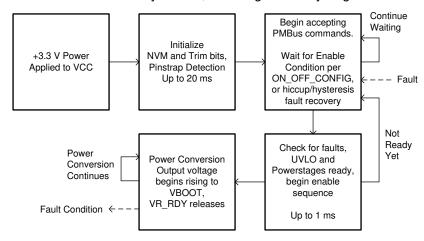



图 7-1. Initialization process

#### 7.3.2 Boot voltage configuration (BOOT CHA)

By default, the boot voltage for channel A is given by pin-detection on the BOOT\_CHA pin. Alternatively, configure the device to use a value stored in non-volatile memory (NVM) for VOUT\_COMMAND using the PIN\_DETECT\_OVERRIDE command. See † 7.4.4 for more information. The boot voltage for Channel B is given by the value stored in non-volatile memory for VOUT\_COMMAND always. Whenever power conversion is enabled, each channel boots to its VBOOT value, regardless of whether the output voltage was changed after the last boot-up.

Use the VOUT\_COMMAND PMBus command or the AVSBus Vout command to change the output voltage on-the-fly. This is one implementation of adaptive voltage scaling (AVS) or dynamic VID (DVID). Output voltage transitions occur at the value slew rate specified by the VOUT\_TRANSITION\_RATE command.

#### 7.3.3 Power Sequencing

There are no strict supply sequencing requirements for TPS53676. VIN\_CSNIN and CSP, the powerstage 5-V supply, and the controller VCC (3.3-V) may be safely powered up independently of each other. TI recommends that the AVR\_EN/BVR\_EN signals be asserted last, once all supplies are established and have had time to settle. Refer to *Power Supply Recommendations* for more information.

#### 7.4 Pin connections and bevahior

#### 7.4.1 Supplies: VCC and VREF

The VCC pin supplies all analog and digital circuits internal to the device. Connect a 3.3-V supply voltage, and local ceramic bypass capacitor with a minimum effective capacitance of  $1.0~\mu\text{F}$ .

The VREF pin is the output of an internal LDO with a nominal voltage of 1.5 V. The VREF voltage provides a common-mode voltage for the power stage IOUT pins, as well as internal analog circuits. Bypass the VREF pin local to the controller, with a ceramic bypass capacitor with a minimum effective capacitance of 1.0 µF. Connect VREF to the REFIN pins of the power stages.

#### 7.4.2 Differential remote sensing and output voltage scaling: AVSP/AVSN, BVSP/BVSN

A differential remote sense amplifier enables the controller to compensate for I×R drop due to PCB copper, in high current applications. Connect the AVSP/BVSP and AVSN/BVSN pins respectively to the output voltage at the load point, through the network described in  $\[mathbb{R}\]$  7-2. A connection to the output voltage, local to the power stages, shown by  $R_{LCL\_P}$  and  $R_{LCL\_N}$ , maintains closed loop operation even if the load is uninstalled, or the remote sense connection is opened. Route the differential remote sense lines as a tightly-coupled differential pair, and maintain a wide clearance to any fast switching nets, such as power stage switch nodes or power input voltage. Optionally, use a small filtering capacitor, shown as  $C_{FILT}$ , at the controller side to improve noise immunity.

An internal precision reference DAC generates the output voltage set-point. The reference DAC is produces reference voltages up to 1.87 V. For output voltage set-points below 1.87 V, no scaling (internal or external) is required, and the sensed output voltage is compared directly to the reference voltage.

For output voltage set-points between 1.87 V and 3.74 V, the controller applies internal scaling of the remote sense amplifier, and no external sense divider is needed. Set the VOUT\_MAX command greater than 1.87 V to enable this internal scaling. For output voltage set-points greater than 3.74 V, apply an external sense divider with  $R_{RMT\_P} = R_{DIV} = 500~\Omega$ , and set the VOUT\_SCALE\_LOOP command to 0.5 V/V. This enables output voltage set-points up to 5.5 V. The overvoltage/undervoltage thresholds are referenced to the VSP/VSN pins only and need to be scaled appropriately for applications with an external resistor divider. Refer to  $\frac{1}{8}$  7-1 for more information.

TPS53676 performs an open- and short-circuit detection on the AVSP/AVSN and BVSP/BVSN pins at initialization to determine if the voltage sense lines are open. The controller flags a fault condition and does not attempt to boot if an open sense line is detected. Ground the VSP/VSN lines for unused channels to prevent false-triggering, in applications which do not make use of both channels. As such, the local sense resistor connection may be omitted, but is still recommended for debug and system bode plot measurement.

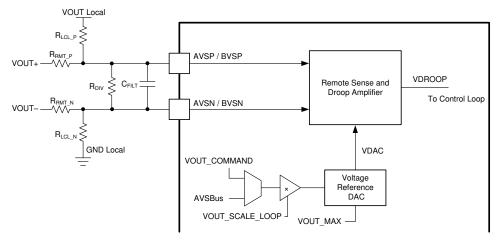



图 7-2. Differential remote sensing

Submit Document Feedback

| 1     | Texas<br>Instruments |
|-------|----------------------|
| www.t | i.com.cn             |
|       |                      |

| Component / Command <sup>(1)</sup> | Value (Vout ≤ 1.87 V) | Value (1.87 V < Vout ≤ 3.74 V) | Value (3.74 V < Vout ≤ 5.5 V) |
|------------------------------------|-----------------------|--------------------------------|-------------------------------|
| R <sub>LCL_P</sub>                 | DNP                   | DNP                            | DNP                           |
| R <sub>RMT_P</sub>                 | 0 Ω                   | 0 Ω                            | 500 Ω                         |
| R <sub>RMT_N</sub>                 | 0 Ω                   | 0 Ω                            | 0 Ω                           |
| R <sub>LCL_N</sub>                 | DNP                   | DNP                            | DNP                           |
| R <sub>DIV</sub>                   | DNP                   | DNP                            | 500 Ω                         |
| C <sub>FILT</sub>                  | 100 pF (optional)     | 100 pF (optional)              | 100 pF (optional)             |
| VOUT_SCALE_LOOP                    | 1.0                   | 1.0                            | 0.5                           |
| VOUT_MAX                           | VOUT_MAX ≤ 1.87 V     | 1.87 V < VOUT_MAX ≤ 3.74 V     | 3.74 V < VOUT_MAX ≤ 5.5 V     |
| VOUT_COMMAND                       | VOUT_COMMAND ≤ 1.87 V | VOUT_COMMAND ≤ 3.74 V          | VOUT_COMMAND ≤ 5.5 V          |

<sup>(1)</sup> PMBus commands may accept a greater range of values than those listed, this table gives TI recommended values.

#### 7.4.3 Input current sensing: VIN\_CSNIN and CSPIN

The VIN\_CSNIN and CSP pins are internally connected to a high-side current sense amplifier. Kelvin connect these pins to the external sense element R<sub>SENSE</sub> as shown in <a>SENSE</a> 7-3,</a>and route back to the controller as a tightly coupled differential pair. R<sub>SENSE</sub> may be a precision current sense shunt resistor or an input inductor DCR, with an associated temperature compensation network. TI recommends adding common-mode filtering capacitors, shown as C<sub>CMFILT</sub>, and a differential-mode filtering capacitor C<sub>DMFILT</sub> to reduce measurement noise. A typical value for these capacitors is 1.0 μF.

For designs that do not use input current sensing, connect VIN CSNIN and CSPIN together, and to the input voltage supply. The controller requires input voltage sense for proper on-time generation. Ensure the VIN CSNIN and CSPIN pins remain within ± 300 mV due to internal ESD protection structures on these pins.

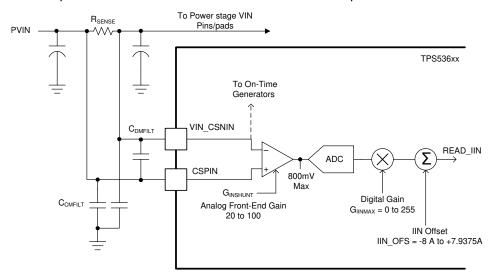



图 7-3. Input current sensing

Once properly calibrated, the READ IIN command returns measured input current data in real time. The 7.5.3 describes the process and equations for input current calibration.

#### 7.4.4 Pin-strap detection and PIN\_DETECT\_OVERRIDE

The ADDR pin provides limited resistor pin detection for the PMBus slave address. Connect a resistor divider to ADDR as shown in 图 7-4. Refer to 表 7-2 to select resistor values. The table shows series E96 value equivalents. Use 1% tolerance resistors for all values. The device loads the decoded value into the SLAVE ADDRESS command, after pin detection completes. Disable ADDR pin detection using PIN DETECT OVERRIDE, to use another address, which is not available in the table.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

The BOOT\_CHA pin provides resistor pin detection for the channel A boot voltage. The channel B boot voltage does not have pin detection and must be programmed in non-volatile memory. Connect a resistor divider to BOOT\_CHA as shown in 表 7-2. The table shows series E96 value equivalents. Use 1% tolerance resistors for all values. After pin detection completes, the decoded result is loaded into the VOUT\_COMMAND command for PAGE 0.

For each each pin detection, during boot-up the device performs two measurements to determine an 8 bit binary number, referred to as the *pinstrap decode*. The 3 LSB bits are determined by shorting the high-side resistor and measuring the low-side resistor value. Pin voltage measurement determines the 5 MSB bits. Pinstrap decodes are mapped to PMBus addresses, and Channel A VBOOT values as shown in the tables below.

Use the PIN\_DETECT\_OVERRIDE command to achieve values not given by the tables below. This command instructs the device at power-up, whether to follow the values given by pin detection, or use values stored in non-volatile memory to populate the SLAVE ADDRESS, and VOUT COMMAND commands.

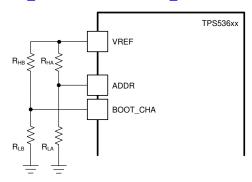



图 7-4. Pin-strap pin connections

#### Example: Selecting a PMBus address not available by pin-strapping

- Select the ADDR resistors R<sub>HA</sub> and R<sub>LA</sub> to ensure each device on the bus still has a unique adddress at the first power-up. Each device must still be addressed uniquely, in order to configure the PIN DETECT OVERRIDE command.
- 2. Set bit 1 of PIN DETECT OVERRIDE 0b, to disable pin detection for the ADDR pin.
- 3. Write the SLAVE\_ADDRESS command, to configure the new slave address, in 7-bit right justified binary format.
- 4. Issue a STORE\_USER\_ALL command to commit the configuration to non-volatile memory
- 5. At the next power cycle, the values stored in non-volatile memory are used, instead of those selected by the ADDR resistors.

Submit Document Feedback



## 表 7-2 shows ADDR pinstrap decoding.

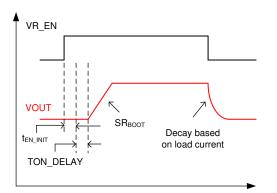
## 表 7-2. ADDR pinstrap decoding

| MSB    | PMBus Address | R <sub>LA</sub> (kΩ) | R <sub>HA</sub> (kΩ) |
|--------|---------------|----------------------|----------------------|
| 00000Ь | 88d / B0h     | 20                   | 1300                 |
| 00001b | 89d / B2h     | 20                   | 422                  |
| 00010b | 90d / B4h     | 20                   | 249                  |
| 00011b | 91d / B6h     | 20                   | 169                  |
| 00100b | 92d / B8h     | 20                   | 127                  |
| 00101b | 93d / BAh     | 20                   | 102                  |
| 00110b | 94d / BCh     | 20                   | 82.5                 |
| 00111b | 95d / BEh     | 20                   | 68.1                 |
| 01000b | 96d / C0h     | 20                   | 59                   |
| 01001b | 97d / C2h     | Not recommended      | - reserved address   |
| 01010b | 98d / C4h     | 20                   | 43.2                 |
| 01011b | 99d / C6h     | 20                   | 38.3                 |
| 01100b | 100d / C8h    | 20                   | 33.2                 |
| 01101b | 101d / CAh    | 20                   | 29.4                 |
| 01110b | 102d / CCh    | 20                   | 26.1                 |
| 01111b | 103d / CEh    | 20                   | 23.2                 |
| 10000b | 104d / D0h    | 20                   | 20.5                 |
| 10001b | 105d / D2h    | 20                   | 18.2                 |
| 10010b | 106d / D4h    | 20                   | 16.2                 |
| 10011b | 107d / D6h    | 20                   | 14.3                 |
| 10100b | 108d / D8h    | 20                   | 12.4                 |
| 10101b | 109d / DAh    | 20                   | 11                   |
| 10110b | 110d / DCh    | 20                   | 9.53                 |
| 10111b | 111d / DEh    | 20                   | 8.45                 |
| 11000b | 112d / E0h    | 20                   | 7.15                 |
| 11001b | 113d / E2h    | 20                   | 6.19                 |
| 11010b | 114d / E4h    | 20                   | 5.11                 |
| 11011b | 115d / E6h    | 20                   | 4.22                 |
| 11100b | 116d / E8h    | 20                   | 3.4                  |
| 11101b | 117d / EAh    | 20                   | 2.61                 |
| 11110b | 118d / ECh    | 20                   | 1.87                 |
| 11111b | 119d / EEh    | 20                   | 1.15                 |



# 表 7-3. BOOT\_CHA Pinstrap Decoding

|        |                    | 20.0 kΩ<br>= 000b    | R <sub>LB</sub> = 2    |                      | R <sub>LB</sub> = 3<br>LSB = |                         | R <sub>LB</sub> = 4 | 9.9 kΩ<br>• 011b        | R <sub>LB</sub> = 6 |                         | R <sub>LB</sub> = 8 |                      | R <sub>LB</sub> = 1<br>LSB = | 15.0 kΩ<br>= 110b    | R <sub>LB</sub> = 1:<br>LSB = |                      |
|--------|--------------------|----------------------|------------------------|----------------------|------------------------------|-------------------------|---------------------|-------------------------|---------------------|-------------------------|---------------------|----------------------|------------------------------|----------------------|-------------------------------|----------------------|
| MSB    | V <sub>BOOTA</sub> | R <sub>HB</sub> (kΩ) | V <sub>BOOTA</sub> (V) | R <sub>HB</sub> (kΩ) | V <sub>BOOTA</sub>           | R <sub>HB</sub><br>(kΩ) | V <sub>BOOTA</sub>  | R <sub>HB</sub><br>(kΩ) | V <sub>BOOTA</sub>  | R <sub>HB</sub><br>(kΩ) | V <sub>BOOTA</sub>  | R <sub>HB</sub> (kΩ) | V <sub>BOOTA</sub>           | R <sub>HB</sub> (kΩ) | V <sub>BOOTA</sub>            | R <sub>HB</sub> (kΩ) |
| 00000ь | Do No              | ot Use               | 0.25                   | 1780                 | 0.26                         | 2430                    | 0.27                | 3240                    | 0.28                | 4220                    | 0.29                | 5620                 | 0.3                          | 7500                 | 0.31                          | 9760                 |
| 00001b | 0.32               | 422                  | 0.33                   | 576                  | 0.34                         | 787                     | 0.35                | 1050                    | 0.36                | 1370                    | 0.37                | 1820                 | 0.38                         | 2430                 | 0.39                          | 3240                 |
| 00010b | 0.4                | 249                  | 0.41                   | 340                  | 0.42                         | 464                     | 0.43                | 619                     | 0.44                | 806                     | 0.45                | 1070                 | 0.46                         | 1430                 | 0.47                          | 1910                 |
| 00011b | 0.48               | 169                  | 0.49                   | 232                  | 0.5                          | 316                     | 0.51                | 422                     | 0.52                | 549                     | 0.53                | 732                  | 0.54                         | 976                  | 0.55                          | 1300                 |
| 00100b | 0.56               | 127                  | 0.57                   | 174                  | 0.58                         | 237                     | 0.59                | 316                     | 0.6                 | 412                     | 0.61                | 549                  | 0.62                         | 732                  | 0.63                          | 976                  |
| 00101b | 0.64               | 102                  | 0.65                   | 140                  | 0.66                         | 191                     | 0.67                | 255                     | 0.68                | 332                     | 0.69                | 442                  | 0.7                          | 576                  | 0.71                          | 787                  |
| 00110b | 0.72               | 82.5                 | 0.73                   | 113                  | 0.74                         | 154                     | 0.75                | 205                     | 0.76                | 267                     | 0.77                | 357                  | 0.78                         | 475                  | 0.79                          | 634                  |
| 00111b | 0.8                | 68.1                 | 0.81                   | 95.3                 | 0.82                         | 130                     | 0.83                | 174                     | 0.84                | 226                     | 0.85                | 301                  | 0.86                         | 392                  | 0.87                          | 536                  |
| 01000b | 0.88               | 59                   | 0.89                   | 80.6                 | 0.90                         | 110                     | 0.91                | 147                     | 0.92                | 191                     | 0.93                | 255                  | 0.94                         | 332                  | 0.95                          | 453                  |
| 01001b | 0.96               | 49.9                 | 0.97                   | 68.1                 | 0.98                         | 93.1                    | 0.99                | 124                     | 1                   | 162                     | 1.01                | 215                  | 1.02                         | 287                  | 1.03                          | 383                  |
| 01010b | 1.04               | 43.2                 | 1.05                   | 59                   | 1.06                         | 80.6                    | 1.07                | 110                     | 1.08                | 140                     | 1.09                | 187                  | 1.1                          | 249                  | 1.11                          | 332                  |
| 01011b | 1.12               | 38.3                 | 1.13                   | 52.3                 | 1.14                         | 71.5                    | 1.15                | 95.3                    | 1.16                | 124                     | 1.17                | 165                  | 1.18                         | 221                  | 1.19                          | 294                  |
| 01100b | 1.2                | 33.2                 | 1.21                   | 45.3                 | 1.22                         | 61.9                    | 1.23                | 82.5                    | 1.24                | 107                     | 1.25                | 143                  | 1.26                         | 191                  | 1.27                          | 255                  |
| 01101b | 1.28               | 29.4                 | 1.29                   | 40.2                 | 1.3                          | 54.9                    | 1.31                | 73.2                    | 1.32                | 95.3                    | 1.33                | 127                  | 1.34                         | 169                  | 1.35                          | 226                  |
| 01110b | 1.36               | 26.1                 | 1.37                   | 35.7                 | 1.38                         | 48.7                    | 1.39                | 64.9                    | 1.4                 | 84.5                    | 1.41                | 113                  | 1.42                         | 150                  | 1.43                          | 200                  |
| 01111b | 1.44               | 23.2                 | 1.45                   | 31.6                 | 1.46                         | 43.2                    | 1.47                | 57.6                    | 1.48                | 75                      | 1.49                | 97.6                 | 1.5                          | 133                  | 1.51                          | 178                  |
| 10000b | 1.52               | 20.5                 | 1.53                   | 28                   | 1.54                         | 38.3                    | 1.55                | 51.1                    | 1.56                | 66.5                    | 1.57                | 88.7                 | 1.58                         | 118                  | 1.59                          | 158                  |
| 10001b | 1.6                | 18.2                 | 1.61                   | 24.9                 | 1.62                         | 34                      | 1.63                | 45.3                    | 1.64                | 59                      | 1.65                | 78.7                 | 1.66                         | 105                  | 1.67                          | 140                  |
| 10010b | 1.68               | 16.2                 | 1.69                   | 22.1                 | 1.7                          | 30.1                    | 1.71                | 40.2                    | 1.72                | 52.3                    | 1.73                | 69.8                 | 1.74                         | 93.1                 | 1.75                          | 124                  |
| 10011b | 1.76               | 14.3                 | 1.77                   | 19.6                 | 1.78                         | 26.7                    | 1.79                | 35.7                    | 1.8                 | 46.4                    | 1.81                | 61.9                 | 1.82                         | 82.5                 | 1.83                          | 110                  |
| 10100b | 1.84               | 12.4                 | 1.85                   | 17.4                 | 1.86                         | 23.2                    | 1.87                | 30.9                    | 1.88                | 40.2                    | 1.89                | 53.6                 | 1.9                          | 71.5                 | 1.91                          | 95.3                 |
| 10101b | 1.92               | 11                   | 1.93                   | 15                   | 1.94                         | 20.5                    | 1.95                | 27.4                    | 1.96                | 35.7                    | 1.97                | 47.5                 | 1.98                         | 63.4                 | 1.99                          | 84.5                 |
| 10110b | 2                  | 9.53                 | 2.01                   | 13.3                 | 2.02                         | 18.2                    | 2.03                | 24.3                    | 2.04                | 30.9                    | 2.05                | 41.2                 | 2.06                         | 54.9                 | 2.07                          | 75                   |
| 10111b | 2.08               | 8.45                 | 2.09                   | 11.5                 | 2.1                          | 15.8                    | 2.11                | 21                      | 2.12                | 27.4                    | 2.13                | 36.5                 | 2.14                         | 48.7                 | 2.15                          | 64.9                 |
| 11000b | 2.16               | 7.15                 | 2.17                   | 9.76                 | 2.18                         | 13.3                    | 2.19                | 17.8                    | 2.2                 | 23.2                    | 2.21                | 30.9                 | 2.22                         | 41.2                 | 2.23                          | 54.9                 |
| 11001b | 2.24               | 6.19                 | 2.25                   | 8.45                 | 2.26                         | 11.5                    | 2.27                | 15.4                    | 2.28                | 20                      | 2.29                | 26.7                 | 2.30                         | 35.7                 | 2.31                          | 47.5                 |
| 11010b | 2.32               | 5.11                 | 2.33                   | 7.15                 | 2.34                         | 9.53                    | 2.35                | 13                      | 2.36                | 16.9                    | 2.37                | 22.1                 | 2.38                         | 29.4                 | 2.39                          | 40.2                 |
| 11011b | 2.4                | 4.22                 | 2.41                   | 5.76                 | 2.42                         | 7.87                    | 2.43                | 10.5                    | 2.44                | 13.7                    | 2.45                | 18.2                 | 2.46                         | 24.3                 | 2.47                          | 32.4                 |
| 11100b | 2.48               | 3.4                  | 2.49                   | 4.64                 | 2.50                         | 6.34                    | 2.51                | 8.45                    | 2.52                | 11                      | 2.53                | 14.7                 | 2.54                         | 19.6                 | 2.55                          | 26.1                 |
| 11101b | 2.56               | 2.61                 | 2.57                   | 3.57                 | 2.58                         | 4.87                    | 2.59                | 6.49                    | 2.60                | 8.45                    | 2.61                | 11.3                 | 2.62                         | 15                   | 2.63                          | 20                   |
| 11110b | 2.64               | 1.87                 | 2.65                   | 2.55                 | 2.66                         | 3.48                    | 2.67                | 4.64                    | 2.68                | 6.04                    | 2.69                | 8.06                 | 2.70                         | 10.7                 | 2.71                          | 14.3                 |
| 11111b | 2.72               | 1.15                 | 2.73                   | 1.58                 | 2.74                         | 2.15                    | 2.75                | 2.87                    | 2.76                | 3.74                    | 2.77                | 4.99                 | 3.3                          | 6.65                 | 5 (1)                         | 8.87                 |


(1) Requires the use of an external output voltage divider.

# 7.4.5 Enable and disable: AVR\_EN and BVR\_EN

The ON\_OFF\_CONFIG command controls the conditions which TPS53676 requires to enable power conversion. By default only the AVR\_EN (active high) pin enables channel A, and only the BVR\_EN pin (active high) enables channel B. This command can program the controller ignore the VR\_EN pins and require the OPERATION command to be sent to enable power conversion, or even require a combination of the two.

When enabled, first the controller waits for a delay time given by TON\_DELAY, then ramps the output voltage at a controlled slew rate  $SR_{BOOT}$ . The device requires 750  $\mu$ s typically (up to 1.0 ms), to begin ramping the output voltage, after being enabled. Turn-on delay added by the TON\_DELAY is in addition to this delay.

The ON\_OFF\_CONFIG command also controls the turn-off behavior. When configured for *immediate-off*, the controller immediately tri-states all PWM pins assigned to that channel and stops transferring power immediately. When configured for *soft-off* the controller first waits for the TOFF\_DELAY time, then actively ramps down the output voltage at a controlled slew rate.



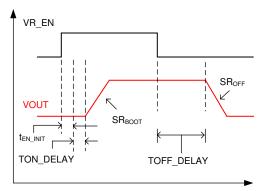



图 7-5. Soft-start and immediate-off (decay)

图 7-6. Soft-start and soft-off

The TON\_RISE and TOFF\_FALL commands are used to calculate the turn-on and turn-off (in the case of soft-off) slew rates. While these commands are numerically programmable from 0 to 31.75 ms, only a limited set of slew rates are supported. During the enable time period, the device calculates the target rising and falling slew rates according to 方程式 1 and 方程式 2, then selects the nearest available value from 表 7-4.

$$SR_{BOOT} = LOOKUP\left(\frac{VOUT\_COMMAND}{TON\_RISE}\right)$$
 (1)

$$SR_{OFF} = LOOKUP\left(\frac{VOUT\_COMMAND}{TOFF\_FALL}\right)$$
 (2)

表 7-4. Supported SR<sub>BOOT</sub> and SR<sub>OFF</sub> slew rates

| Supported slew rates (mV/ μ s) |       |  |  |  |  |  |  |
|--------------------------------|-------|--|--|--|--|--|--|
| 0.093                          | 0.313 |  |  |  |  |  |  |
| 0.097                          | 0.625 |  |  |  |  |  |  |
| 0.101                          | 0.938 |  |  |  |  |  |  |
| 0.105                          | 1.250 |  |  |  |  |  |  |
| 0.111                          | 1.563 |  |  |  |  |  |  |
| 0.117                          | 1.875 |  |  |  |  |  |  |
| 0.124                          | 2.188 |  |  |  |  |  |  |
| 0.131                          | 2.50  |  |  |  |  |  |  |
| 0.140                          | 5.00  |  |  |  |  |  |  |
| 0.151                          | 10.00 |  |  |  |  |  |  |
| 1.163                          | 15.00 |  |  |  |  |  |  |
| 0.175                          | 20.00 |  |  |  |  |  |  |

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback



# 表 7-4. Supported SR<sub>BOOT</sub> and SR<sub>OFF</sub> slew rates (continued)

| Supported slew rates (mV/ μs) |       |  |  |  |  |  |
|-------------------------------|-------|--|--|--|--|--|
| 0.192                         | 25.00 |  |  |  |  |  |
| 0.213                         | 30.00 |  |  |  |  |  |
| 0.238                         | 35.00 |  |  |  |  |  |
| 0.265                         | 40.00 |  |  |  |  |  |

### Example: VOUT COMMAND = 0.88 V, TON RISE = 1.0 ms

The target slew rate is calculated as  $SR_{BOOT}$  = LOOKUP(880 mV/1000  $\mu$ s) = 0.88 mV/ $\mu$ s. The nearest supported value of 0.9375 mV/ µ s is selected.

The expected rise time is approximately (880 mV / 0.9375 mV/  $\mu$  s)  $\approx$  940  $\mu$  s.

## 7.4.6 System feedback: AVR\_RDY and BVR\_RDY

The AVR\_RDY and BVR\_RDY pins are used to signal to the system, when each channel is in regulation. These pins are open drain structures, and require external pull-up resistors. During boot-up, the VR RDY pins are released when the internal reference DAC reaches the boot voltage. Any condition which causes the channel to stop converting power, causes its VR RDY pin to pull low. This includes any fault protection-related shutdown, or the channel simply being disabled. The VR RDY pins do not assert to alert the host to any warning conditions or faults configured to be ignored. The VR RDY pins de-assert at the beginning of the TOFF DELAY time, when soft-off is used.

# 7.4.7 Catastrophic fault alert: VR FAULT#

The VR FAULT# pin is an open drain output, which alerts the system to potentially catastrophic power supply faults. The VR FAULT# pin is an open drain structure. Connect an external pull-up resistor to this pin.

Only the most critical fault conditions assert the VR\_FAULT# pin. Fault responses configured to be ignored, do not assert the VR FAULT# pin. The VR FAULT CONFIG PMBus command provides some options to control which fault conditions cause this pin to assert.

Fault conditions which assert the VR\_FAULT# pin include:

- Over-voltage fault (including pre-bias OVP, fixed OVP, and tracking OVP)
- Powerstage fault (TAO HIGH)
- Input overcurrent fault
- Output overcurrent fault (configurable)
- Over-temperature fault (configurable)
- Faults from channel A only, or channel A+B (configurable)

### 7.4.8 Output voltage reset: RESET#

By default, pin 19 functions as the channel B enable pin, BVR EN. Use the MULTIFUNCTION PIN CONFIG command to assign pin 19 as a hardware voltage reset signal, RESET#, as needed. When pin 19 is not assigned as BVR\_EN, the AVR\_EN pin becomes a shared enable pin for both channels. RESET# is an activelow signal. Connect an external pull-up to this pin to make its default state high (e.g. not in reset).

Asserting the RESET# pin low during regulation causes the output voltage of both channels to slew back to their respective  $V_{BOOT}$  values, at the slew rate defined by  $VOUT\_TRANSITION\_RATE$ . While RESET# is asserted low, new output voltage targets from PMBus are ignored. 图 7-7 describes the behavior of the RESET# pin.

Product Folder Links: TPS53676

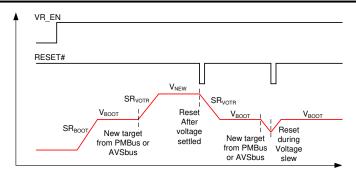



图 7-7. RESET# behavior

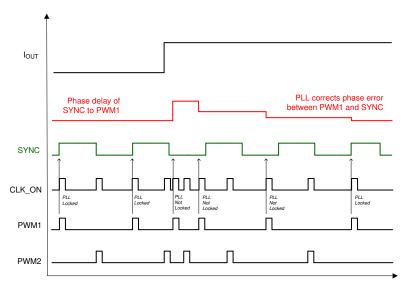
The RESET# pin is not a global reset pin for the device. Asserting RESET# changes only the output voltage target of both channels. RESET# does not cause any operating state change or re-initialization.

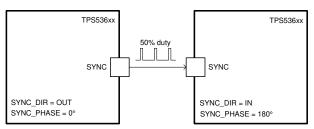
## 7.4.9 Synchronization: SYNC

By default, pin 19 functions as the channel B enable pin, BVR\_EN. Use the MULTIFUNCTION\_PIN\_CONFIG command to assign pin 19 as a synchronization pin as needed. When pin 19 is not assigned as BVR\_EN, the AVR\_EN pin becomes a shared enable pin for both channels. When there is no SYNC pin assigned, configure the SYNC\_CONFIG to operate based on internal timing, in order to maintain an accurate switching frequency over the full range of operation. Any external clock applied to TPS53676 must have a 50% duty cycle, and the FREQUENCY\_SWITCH command must still be programmed as close as possible to the desired switching frequency after any scaling. The input on the SYNC pin must be ±50 kHz from the configured FREQUENCY\_SWITCH value.

An internal phase-locked loop (PLL) adjusting the on-time of each phase enables edge synchronization. During steady-state operation, when synchronization is used, the PWM pin assigned to order 0 is synchronized to a clock on the SYNC pin. The DCAP+ control topology is inherently a variable frequency scheme. During load transients, the pulse frequency of each channel modulates to maintain voltage regulation. Load transients cause the PLL to lose phase lock, and slowly return to phase lock based on the PLL loop bandwidth. The PLL bandwidth is much slower than the voltage regulation loop, and it can take many cycles for the PLL to re-lock following a transient event. 

7-8 illustrates the DCAP+ response to a load transient using edge synchronization.





图 7-8. Synchronization behavior (2 phase example, no phase shift)

The SYNC\_CONFIG command configures various options related to synchronization. These include: enable/disable of the PLL, sync direction (clock master or clock slave), input clock division ratio, phase shift, and gain/

scalar terms to increase/decrease the PLL loop bandwidth. Refer to the *Technical Reference Manual* for a complete register map.

☑ 7-9 and ☑ 7-10 illustrate two common methods of synchronizing multiple converters based on TPS53676.

Use the programmable phase shift parameters to phase spread multiple converters, to improve ripple cancellation and reduce beat frequencies on input supplies.



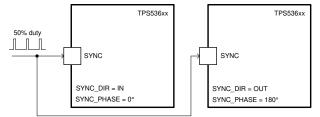



图 7-9. Clock master driving a clock slave

图 7-10. Two clock slaves driven externally

# 7.4.10 Smart power stage connections: PWM, CSP and TSEN

Interface the controller to TI smart power stage devices, as shown in \( \begin{aligned} \frac{7-11}{2} \end{aligned} \)

Connect the PWM pins of the controller to the PWM pins of the power stage devices. The PWM pins are three-state logic outputs of the controller. A PWM pin being logic-high commands the power stage device to turn its high-side FET on, and its low-side FET off. A PWM pin being logic-low commands the power stage device to turn its low-side FET on and its high-side FET off. TI power stage devices provide a weak drive on their PWM pins, causing them to float to a mid-level value when the controller stops driving them. During enable, or dynamic phase addition, the controller starts phases switching with a transition from tri-state to high. Similarly, during disable or dynamic phase shedding, the controller disables phases with a transition from low-to-tri-state. Float unused PWM pins on the controller.

Connect the IOUT pins of the powerstage devices to the CSP pins of the controller. Connect the VREF pin of the controller to the REFIN pins of the powerstage devices. A local bypass capacitor  $C_{VREF}$ , is required for the controller VREF pin. Optionally, add a local VREF bypass capacitor at the powerstage devices. VREF provides common-mode voltage for the IOUT signal, which is a voltage representing the output current of each powerstage with a nominal gain of 5 mV/A. Float unused CSP pins on the controller.

Connect the TAO/FAULT pins of all powerstages within a channel to each other, and to the corresponding TSEN pin of the controller. For example, tie all TAO/FAULT pins of powerstages used on channel A together and to the controller ATSEN pin. TI recommends adding a 2200 pF capacitor to the TSEN pins at the controller to reduce temperature measurement noise. TI recommends keeping a place holder for a 1000 pF capacitor at the powerstage side. Refer to the individual powerstage datasheet for more detailed recommendations. During normal operation, the TSEN pins provide a voltage signal proportional to the temperature of the warmest powerstage device according to the equation below . During a UVLO condition, the powerstages pull the shared TAO line low to inform the controller they are not able to accept PWM input. When powerstages detect a fault condition internally, they pull the shared TAO pin high to inform the controller a fault condition has occurred. If channel B is not used, float the BTSEN pin.

$$READ\_TEMPERATURE\_1 = \left(\frac{V_{TSEN} - 600mV}{8mV}\right) ^{\circ} C$$
 (3)

Submit Document Feedback

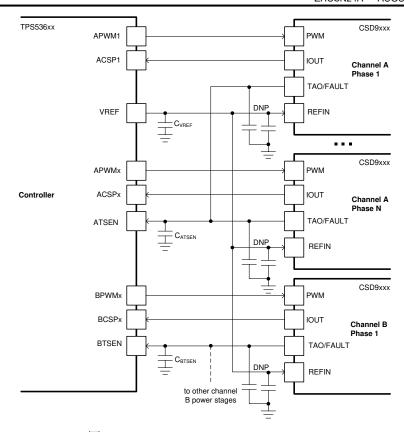



图 7-11. Power stage pin connections

### 7.4.11 PMBus pins: SMB\_DIO, SMB\_CLK, and SMB\_ALERT#

The SMB\_CLK, SMB\_DIO, and SMB\_ALERT# pins are used for PMBus communication, an open-drain interface. TPS53676 is compatible with both 1.8-V and 3.3-V logic levels as shown in to Part I of the PMBus specification, revision v1.3.1. At least one external pull-up resistor is required for these pins. The 100 kHz, 400 kHz and 1 MHz modes of operation are supported. PMBus is a shared bus, where devices are assigned a communication address. Select the PMBus slave address as described in † 7.4.4. The controller device stretches clock pulses during operation when more processing time is required. Clock stretching support in the PMBus master is mandatory. See the † 7.8 section for more information about PMBus functionality.

### 7.4.12 AVSBus: AVS\_CLK, AVS\_MDATA, AVS\_SDATA, and AVS\_VDDIO

₹ 7-12 illustrates how to interface the TPS53676 with a host ASIC or load with an integrated *Serial Peripheral Interface* (SPI) port. AVSBus is a point-to-point protocol and does not use a chip select (CS) pin. AVSBus uses push-pull signaling and requires a separate supply pin, AVS\_VDDIO. Connect a well-regulated supply bewteen 1.14 V and 3.6 V to AVS\_VDDIO, and a local high quality ceramic bypass capacitor of 100 nF minimum effective capacitance. The input high and low thresholds are set relative to the voltage supplied at the AVS\_VDDIO pin, as shown in the *Electrical Specifications* table. In applications which do not use AVSBus, ground the AVS\_VDDIO, AVS\_CLK and AVS\_MDATA pins; float the AVS\_SDATA pin.

AVSBus communication can be run at up to 50 MHz clock rate, and may require special care in PCB routing for signal integrity. Note the TPS53676 device has a clock-to-output delay of up to 14 ns, which exceeds the half-clock cycle setup time nominally given to an AVSBus slave at the full 50 MHz clock rate. This may require changing the duty cycle of the clock to compensate, as described in the AVSBus specification. Refer to the *PMBus specification revision 1.3.1, part III* for more information about AVSBus.



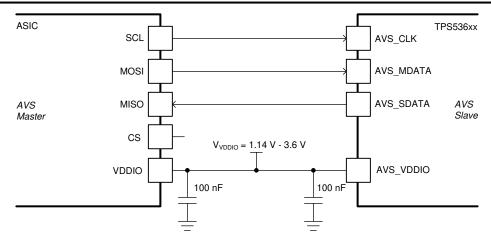



图 7-12. AVSBus connection diagram

# 7.5 Advanced power management functions

### 7.5.1 Adaptive voltage scaling or dynamic VID (DVID)

☑ 7-13 shows a conceptual view of the TPS53676 output voltage control, and dynamic behavior.

Update the VOUT\_COMMAND value through PMBus, to change the output voltage of each channel on-the-fly. Optionally, use the OPERATION command to toggle the output voltage bewteen the VOUT\_MARGIN\_HIGH, VOUT\_MARGIN\_LOW and VOUT\_COMMAND values. This is described in more detail in 节 7.5.2. AVSBus may also control the output voltage and slew rate when configured to do so through OPERATION.

The VOUT\_MAX and VOUT\_MIN commands define the maximum and minimum allowed voltage, through any combination of offsets and voltage target commands. If commanded higher or lower than these limits, the output voltage transitions to these limits and stops.

The soft-start and soft-stop slew rates are calculated using the current output voltage target and TON\_RISE and TOFF\_FALL command values. All output voltage transitions which occur during normal power conversion follow the slew rate defined by VOUT\_TRANSITION\_RATE.

The VOUT\_SCALE\_LOOP parameter must be set properly, when an external output voltage divider is being used. This value is used internally to provide scaling for all output voltage related parameters.

Update the VOUT\_TRIM value to apply a static offset to the output voltage target. This may be used to fine-tune the output voltage in production, or null any board related offsets.

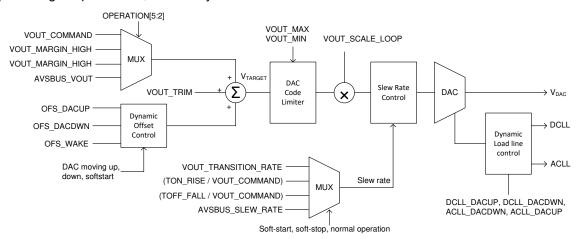



图 7-13. Output voltage control conceptual view

TPS53676 provides several options to fine-tune the controller response to high speed output voltage transitions. For example, large output voltage steps upward cause an inrush current, required to charge the output capacitors for that channel. This inrush current combined with the DC load line setting make the output voltage appear to move more slowly than the commanded slew rate. Use the <code>DVID\_CONFIG</code> command to configure <code>dynamic</code> loadlines and offsets which apply only during output voltage transitions. Typically, set the DC and AC load lines for upward moving transitions to a value equal or lower than the nominal. Similarly, typically, set the DC and AC loadlines to a value larger than the nominal value for downward moving transitions. Refer to the <code>Technical Reference Manual</code> for a register map of this command.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

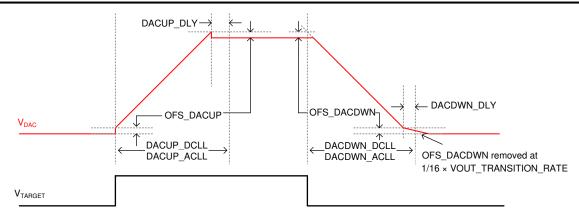



图 7-14. Dynamic load line and offset control

The DVID\_CONFIG command also allows the user to configure dynamic offsets which are only applied during output voltage transitions. The configured *recovery delays* determine when the load line and offset values return to nominal settings, in terms of PWM (order 0) cycle counts. 

7-14 illustrates the dynamic load line, offset and recovery delay behavior of the controller.

## 7.5.2 Output voltage margining

Output voltage margin testing allows power designers to test the response of their system to across output voltage tolerance corners.

The MARGIN bits in the OPERATION command can be used to toggle the active channel between several states:

| MARGIN<br>bits | Description                    | Output voltage target | Voltage fault detection |  |
|----------------|--------------------------------|-----------------------|-------------------------|--|
| 0000b          | Margin none                    | VOUT_COMMAND          | Enabled                 |  |
| 0101b          | Margin low (act on faults)     | VOUT_MARGIN_LOW       | Enabled                 |  |
| 0110b          | Margin low (ignore on faults)  | VOUT_MARGIN_LOW       | Disabled                |  |
| 1001b          | Margin high (act on faults)    | VOUT_MARGIN_HIGH      | Enabled                 |  |
| 1010b          | Margin high (ignore on faults) | VOUT_MARGIN_HIGH      | Disabled                |  |
| Other          | Not su                         | upported/invalid data |                         |  |

表 7-5. Supported MARGIN settings

## Example procedure: voltage margin (ignore fault) testing

- 1. Write to the PAGE command to select the desired channel (E.g. 00h for channel A).
- 2. Write VOUT COMMAND to the desired value during margin none operation.
- 3. Write VOUT\_MARGIN\_LOW to the desired value during margin low operation.
- 4. Write VOUT\_MARGIN\_HIGH to the desired value during margin high operation.
- 5. Write the ON\_OFF\_CONFIG command to ensure the device is configured to respect the OPERATION command.
- 6. Toggle to margin none operation. Write OPERATION to 80h.
- 7. Toggle to margin low (ignore fault) operation. Write OPERATION to 94h.
- 8. Toggle to margin high (ignore fault) operation. Write OPERATION to A4h.

### 7.5.3 Power supply telemetry and calibration

表 7-6 summarizes the available telemetry functions through PMBus.

表 7-6. Summary of telemetry functions

| & 7-0. Summary of telemetry functions |                                                      |               |                                                     |                                                                             |  |  |  |
|---------------------------------------|------------------------------------------------------|---------------|-----------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Parameter                             | Parameter Sensed Signal(s)                           |               | PMBus Command(s)                                    | Range                                                                       |  |  |  |
| Output voltage                        | VSP-VSN                                              | Paged         | READ_VOUT                                           | 0 to 3.74 V<br>(VOUT_SCALE_LOOP=1.0)<br>0 to 5.5 V<br>(VOUT_SCALE_LOOP=0.5) |  |  |  |
| Output current                        | rrent CSP1 to CSP7                                   |               | READ_IOUT (PHASE=FFh) IOUT_CAL_GAIN IOUT_CAL_OFFSET | (-10.0 to 70.0 A) × N <sub>φ</sub> + Offset                                 |  |  |  |
| Per-phase current                     | CSP1 to CSP7                                         | Paged, Phased | READ_IOUT<br>(PHASE=00h, 01h,)<br>IOUT_CAL_OFFSET   | -10.0 to 70.0 A per phase                                                   |  |  |  |
| Output power                          | Calculated<br>(V <sub>OUT</sub> × I <sub>OUT</sub> ) | Paged         | READ_POUT                                           | Per READ_VOUT and READ_IOUT                                                 |  |  |  |
| Power stage temperature               | ATSEN, BTSEN                                         | Paged         | READ_TEMPERATURE_1                                  | -40 to 165 °C                                                               |  |  |  |
| Input voltage                         | VIN_CSNIN                                            | Shared        | READ_VIN                                            | 0.0 to 18.7 V                                                               |  |  |  |
| Input current                         | CSPIN, VIN_CSNIN                                     | Shared        | READ_IIN<br>MFR_CALIBRATION_<br>CONFIG              | -5.0 to 100.0 A                                                             |  |  |  |
| Input power                           | Calculated<br>(V <sub>IN</sub> × I <sub>IN</sub> )   | Shared        | READ_PIN                                            | Per READ_VIN and READ_IIN                                                   |  |  |  |

No sensor gain or offset calibration is required for output voltage, temperature or input voltage telemetry.

# 7.5.3.1 Output current calibration

Use the IOUT\_CAL\_GAIN to adjust the gain of the output current measurements. One gain setting is provided which applies to all phases in the channel. Use the IOUT\_CAL\_OFFSET to adjust the current measurement offset for each phase. The offset for the total channel is calculated as a sum of the configured offsets for all phases. During power supply characterization use the PHASE\_CONFIG command to configure the controller for 1-phase mode, to enable measurement of a single phase measurement offset. Refer to the example below.

The READ IOUT command value is calculated according to 方程式 4 and 方程式 5.

$$READ\_IOUT_{TOTAL} = \frac{1}{IOUT\_CAL\_GAIN} \times \sum_{phases}^{active} (CSP_i - VREF) + \sum_{phases}^{active} IOUT\_CAL\_OFFSET_i$$
 (4)

#### where

- READ\_IOUT\_TOTAL is the total output current telemetry value, accessible with PHASE=FFh
- IOUT\_CAL\_GAIN is the output current gain setting (one per channel)
- CSP<sub>i</sub> is the voltage of the current sense signal from each power stage
- VREF is the digitized value of the internal 1.5-V LDO
- · IOUT CAL OFFSET; is the output current offset setting for each phase

$$READ\_IOUT_{PHASE i} = \frac{1}{IOUT\_CAL\_GAIN} \times (CSP_i - VREF) + IOUT\_CAL\_OFFSET_i$$
 (5)

#### where

- READ\_IOUT<sub>PHASE i</sub> is the per-phase current telemetry value, accessible with PHASE=00h for phase 1, 01h for phase 2, etc ...
- IOUT CAL GAIN is the output current gain setting (one per channel)

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

- CSP<sub>i</sub> is the voltage of the current sense signal for that phase
- VREF is the digitized value of the internal 1.5-V LDO
- IOUT\_CAL\_OFFSET; is the output current offset setting for that phase

### Example procedure: Per-Phase calibration of READ\_IOUT

First select the correct IOUT CAL GAIN for the whole channel:

- 1. With all phases active, apply the first load current, I<sub>OUT1</sub>, to the converter and wait for the READ\_IOUT value to stabilize. Read-back and record the value of READ\_IOUT as I<sub>MON1</sub>.
- 2. With all phases active, apply the second load current, I<sub>OUT2</sub>, to the converter and wait for the READ\_IOUT value to stabilize. Read-back and record the value of READ\_IOUT as I<sub>MON2</sub>.
- 3. Calculate the new gain setting according to 方程式 6.
- 4. Write the PAGE to the current channel, and the PHASE to FFh.
- 5. Write the newly calculated value to IOUT CAL GAIN.
- 6. Perform an NVM Store operation and power cycle.

$$IOUT\_CAL\_GAIN_{new} = \frac{I_{OUT2} - I_{OUT1}}{I_{MON2} - I_{MON1}} \times IOUT\_CAL\_GAIN_{current}$$
(6)

Next, select the IOUT CAL OFFSET for each phase according to the procedure below:

- 1. Record the current values of PHASE CONFIG and IOUT CAL OFFSET for each phase.
- Adjust the TON\_RISE temporarily to accommodate enabling power conversion with one phase only active, if needed.
- With power conversion disabled for both channels, update the PHASE\_CONFIG command so that only the first phase is active, and its assigned ORDER is 0.
- Enable power conversion through the VR\_EN pins or OPERATION as configured through ON OFF CONFIG.
- 5. Apply a known load current, I<sub>OUT1</sub>. Wait for the READ\_IOUT to stabilize and record the value as I<sub>MON1</sub>.
- 6. Calculate the new IOUT CAL OFFSET per 方程式 7, where i is the currently configured phase.
- 7. Store the newly calculated offset for the first phase value in memory temporarily.
- 8. Repeat steps 3-7 for each phase in the converter.
- 9. Disable power conversion.
- 10. Set the PHASE\_CONFIG back to the original value.
- 11. Write the PAGE to the current channel, and the PHASE to 00h for the first phase.
- 12. Write the newly calculated IOUT\_CAL\_OFFSET value.
- 13. Repeat steps 11-12 for each phase. PHASE value 01h refers to the 2nd phase, 02h refers to the 3rd phase and so on.
- 14. Re-set the TON RISE to the desired value during normal operation, if needed.
- 15. Perform an NVM Store operation and power cycle.

$$IOUT\_CAL\_OFFSET_{new} = I_{OUT i} - (I_{MON i} + IOUT\_CAL\_OFFSET_{current})$$
(7)

## 7.5.3.2 Input current calibration (measured)

Use MFR\_CALIBRATION\_CONFIG command to adjust the gain and offset of the input current sensor. First, set analog front-end gain such to keep the signal at the ADC to be less than 800 mV. Then set the digital gain to fine-tune the total gain based on the selected input current shunt. Finally adjust the input current offset based on lab measurements. A detailed example of input current sensor calibration is shown in *Pin Functions*.

The equation for input current sense measurements is shown in 方程式 8.

$$READ\_IIN = I_{IN} \times R_{SENSE} \times G_{INSHUNT} \times \left(\frac{G_{IINMAX}}{800 \text{ mV}}\right) + IIN\_OFS$$
(8)

where

www.ti.com.cn

- · I<sub>IN</sub> is the true input current in amperes
- R<sub>SENSE</sub> is the effective sense element gain in ohms
- · G<sub>INSHUNT</sub> is the analog front-end gain
- G<sub>IINMAX</sub> is a digital-domain gain factor used for fine tuning
- IIN\_OFS is an offset factor applied to the resulting value in amperes

Estimate the maximum input current for the design using 方程式 9.

$$I_{IN(MAX)} = \left(\frac{V_{OUT(A)} \times I_{PEAK(A)}}{V_{IN} \times \eta_{IPEAK(A)}} + \frac{V_{OUT(B)} \times I_{IPEAK(B)}}{V_{IN} \times \eta_{IPEAK(B)}}\right) \times K_{MARGIN}$$
(9)

#### where

- $V_{OUT(A)}$  and  $V_{OUT(B)}$  are the output voltage for channels A and B respectively
- IPEAK(A) and IPEAK(B) are the peak design currents for channels A and B respectively
- V<sub>IN</sub> is the input voltage for the design
- $\eta_{IPEAK(A)}$  and  $\eta_{IPEAK(B)}$  are the full-load conversion efficiency for channels A and B respectively
- K<sub>MARGIN</sub> is a factor of safety used for design margin

Select the analog front-end gain,  $G_{IINSHUNT}$ , to maximize the signal level at the ADC whie remaining within its full scale range of 800 mV. Select the closest available value less than the result of 方程式 10.

$$G_{\text{IINSHUNT}} \le \frac{800 \text{ mV}}{I_{\text{IN}(\text{MAX})} \times R_{\text{SENSE}}}$$
 (10)

Finally select the digital gain factor,  $G_{IINMAX}$ , with a resolution of 0.5 per LSB, to fine-tune the current sense gain using 方程式 11.

$$G_{\text{IINMAX}} = \frac{800 \text{ mV}}{G_{\text{IINSHUNT}} \times R_{\text{SENSE}}}$$
 (11)

# Example: 12V to 1.0 V 4+0 design at 100 A, $R_{SENSE}$ = 1.0 m $\Omega$

Channel B is not used in this design. Estimate the maximum input current, according to the calculation below.

$$I_{IN(MAX)} = \left(\frac{1.0V \times 100A}{12V \times 90\%}\right) \times 1.25 = 11.6A$$
 (12)

Select the analog front-end gain, and digital gain factors as shown below. Set the IIN\_OFS to 0.0 A, and tune based on design characterization measurements.

$$G_{\text{IINSHUNT}} \le \frac{800 \text{mV}}{11.6 \text{A} \times 1.0 \text{m}\Omega} \rightarrow G_{\text{IINSHUNT}} = 60.0 \tag{13}$$

$$G_{\text{IINMAX}} = \frac{800\text{mV}}{60.0 \times 1.0\text{m}\Omega} \approx 13.5 \tag{14}$$

Finally, the calibrated input current measurement is verified to be calibrated properly.

READ\_IIN = 
$$I_{IN} \times 1.0 \text{m}\Omega \times 60 \times \left(\frac{13.5}{800 \text{mV}}\right) \approx 1.0 \times I_{IN}$$
 (15)

# 7.5.3.3 Input current calibration (calculated)

Applications which do not use measured current sensing can still report calculated input current based on the output voltage, output current and input voltage of each channel. To use calculated input current reporting, connect the VIN\_CSNIN and CSPIN pins together, and to the input voltage. A connection to the input voltage is still required for the control loop to set the correct on-time. Use the CALCIIN\_RD setting in MISC\_OPTIONS to enable calculated input current reporting. The controller estimates the converter power efficiency for each channel by comparing the actual on-time of the PWM pins, which get wider as the conversion loss increases to maintain voltage and frequency regulation, to the idealized on-time assuming no power loss. Fine-tune the gain

of the calculated input current measurement through PMBus, using the MFR\_CALIBRATION\_CONFIG command.

$$I_{IN(CALC)} = \frac{V_{OUT(A)} \times I_{OUT(A)}}{V_{IN} \times \eta_{est(A)} \times CALCIIN\_EFF\_A} + \frac{V_{OUT(B)} \times I_{OUT(B)}}{V_{IN} \times \eta_{est(B)} \times CALCIIN\_EFF\_B}$$
(16)

#### where

- V<sub>OUT(A)</sub> is the output voltage telemetry value for channel A
- IOUT<sub>(A)</sub> is the output current telemetry value for channel A
- V<sub>IN</sub> is the input current telemetry value (shared)
- η est(A) is the controller's estimated conversion efficiency on channel A
- CALCIIN EFF A is the PMBus programmable gain factor to fine-tune the current gain for channel A
- V<sub>OUT(B)</sub> is the output voltage telemetry value for channel B
- IOUT(B) is the output current telemetry value for channel B
- η est(B) is the controller's estimated conversion efficiency on channel B
- · CALCIIN\_EFF\_B is the PMBus programmable gain factor to fine-tune the current gain for channel B

# 7.5.4 Flexible phase assignment

Use the PHASE\_CONFIG command to assign each PWM pin to a logical phase number. Refer to the *Technical Reference Manual* for a register map of the PHASE\_CONFIG command. Each PWM pin has 4 available settings:

- **ENABLE:** Controls whether the phase is active or remains at tristate always.
- **PAGE:** Assigns each phase to channel A or channel B. This setting also determines which CSP pins are incorporated in the I<sub>SUM</sub> control signals for each channel.
- **PHASE**: Assigns each phase within a channel a PHASE setting at which it can be addressed. Note the PHASE assignment is not backed by non-volatile memory, and each phase is assigned a derived PHASE setting at power-on.
- ORDER: Controls the order in which phases are fired with respect to each other. 

  7-15 and 

  7-16 illustrate the effect of different ordering assignments. Reconfigure the phase ordering to ensure adjacent phases do not interfere with each other due to layout related coupling issues. If dynamic phase shedding is used, phases add or drop according to their assigned ORDER value.



图 7-15. 0-1-2-3-4-5 fire order (6 phase example)

图 7-16. 0-2-4-1-3-5 fire order (6 phase example)

Observe the following rules when updating the phase configuration settings. The *Fusion Digital Power Designer* GUI enforces these rules, but the controller itself does not:

www.ti.com.cn

- Channel A may be assigned up to 7 phases. Channel B may be assigned up to 3 phases.
- The ORDER assignments within a channel must be continuous, and start at 0. Do not skip phase order assignments.
- The PHASE assignments within a channel must be continuous, start at 0 counting upward from APWM1 for channel A and downward from BPWM1 for channel B.

### Example: 3+2 phase configuration with non-standard fire order

- 1. Disable power conversion, as specified per ON OFF CONFIG.
- Write the PHASE CONFIG command as shown below.
- 3. Issue STORE DEFAULT ALL to save the current settings into NVM as default values for the next power-on. **まって Evample actions 2.0**

| 表 1-1. Example settings: 3+2 |      |  |  |  |  |  |
|------------------------------|------|--|--|--|--|--|
|                              | Page |  |  |  |  |  |
|                              | 0    |  |  |  |  |  |

| Physical Phase               | Enable | Page | Phase | Order |
|------------------------------|--------|------|-------|-------|
| Pins 12, 27 (APWM1)          | 1      | 0    | 0     | 0     |
| Pins 11, 28 (APWM2)          | 1      | 0    | 1     | 2     |
| Pins 10, 29 (APWM3)          | 1      | 0    | 2     | 1     |
| Pins 9, 30 (APWM4)           | 0      | х    | х     | x     |
| Pins 8, 31 (APWM5/<br>BPWM3) | 0      | х    | х     | х     |
| Pins 7, 32 (APWM6/<br>BPWM2) | 1      | 1    | 1     | 1     |
| Pins 6, 33 (APWM7/<br>BPWM1) | 1      | 1    | 0     | 0     |
| Pins 5, 34 (NC)              | 0      | х    | х     | x     |
| Pins 4, 35 (NC)              | 0      | х    | х     | x     |
| Pins 3, 36 (NC)              | 0      | х    | х     | x     |
| Pins 2, 37 (NC)              | 0      | х    | х     | х     |
| Pins 1, 37 (NC)              | 0      | х    | х     | х     |

### 7.5.5 Thermal balance management (TBM)

In any practical multiphase printed circuit board design, some power stages are physically located near to, or between other phases. Power stages physically located between two other power stages experience mutual heating as a result of power dissipation from adjacent power stages. Hence, even though the controller device regulates the DC current sharing of each phase, the temperature of each power stage may be different.

Optionally, adjust the per-phase current sharing ratio K<sub>T</sub> for each phase using the ISHARE\_CONFIG command. This open-loop adjustment allows the designer to balance the temperature of each phase to compensate for mutual heating and non-uniform ground copper for heat spreading. The per-phase current limit of each phase is not affected by this setting. Refer to the Technical Reference Manual for a register map of ISHARE\_CONFIG.

Thermal balancing is accomplished by scaling the gain of each phase current, as provided to the current sharing amplifier, in the on-time generator circuit for each phase. Refer to 🛚 7-22 for more information. Each phase has an independently programmable gain K<sub>T</sub>. Current share gain is assigned according to the logical phase number (PHASE setting) for each phase. The current carried by each phase when thermal balancing is active, can be calculated according to 方程式 17.

First, calculate the effective thermal phase number, N<sub>T</sub> as shown below. Note this value changes with different numbers of operational phases, when phase shedding is enabled.

$$N_{T} = \frac{1}{K_{T1}} + \frac{1}{K_{T2}} + \dots + \frac{1}{K_{Tn}}$$
 (17)

where

N<sub>T</sub> is the effective thermal phase number.



• K<sub>T1</sub>, K<sub>T2</sub>, K<sub>Tn</sub> are the individual thermal balance gains for phase 1, phase 2, ... phase n.

Then each phase carries a portion of the total current,  $I_{SUM}$ , as shown in 方程式 18.

$$I_{PHASE i} = \frac{I_{SUM}}{N_{T} \times K_{Ti}}$$
 (18)

#### where

- · Ii is the phase current for the i-th phase in amperes
- I<sub>SUM</sub> is the total current carried by all phases in amperes
- K<sub>Ti</sub> is thermal balance gain assigned to the i-th phase
- $\bullet$   $\,$   $\,$  N  $_{T}$  is the effective thermal phase number, calculated above

Then, the current sharing ratio, comparing one phase to another is given by 方程式 19.

$$\frac{I_{\text{PHASE i}}}{I_{\text{PHASE j}}} = \frac{K_{\text{Tj}}}{K_{\text{Ti}}} \tag{19}$$

#### where

- I<sub>i</sub> and I<sub>j</sub> are the phase current of the i-th and j-th phases in amperes
- $K_{Ti}$  and  $K_{Tj}$  are the thermal balance gains of the i-th and j-th phases

Submit Document Feedback

### Example: Balancing phase temperature for 7-phase converter

Consider a 7-phase converter with the following thermal balance gains assigned:

| PHASE   | Thermal Balance<br>Gain K <sub>i</sub> | VALUE | PHASE   | Thermal Balance<br>Gain K <sub>i</sub> | VALUE |
|---------|----------------------------------------|-------|---------|----------------------------------------|-------|
| Phase 1 | K <sub>1</sub>                         | 0.8   | Phase 5 | K <sub>5</sub>                         | 1.0   |
| Phase 2 | K <sub>2</sub>                         | 0.9   | Phase 6 | K <sub>6</sub>                         | 0.9   |
| Phase 3 | K <sub>3</sub>                         | 1.0   | Phase 7 | K <sub>7</sub>                         | 0.8   |
| Phase 4 | K <sub>4</sub>                         | 1.0   |         |                                        |       |

Calculate  $N_T$  according to 方程式 20.

$$N_{T} = \frac{1}{0.8} + \frac{1}{0.9} + \frac{1}{1.0} + \frac{1}{1.0} + \frac{1}{1.0} + \frac{1}{0.9} + \frac{1}{0.8} \approx 7.722$$
 (20)

$$I_1 = I_7 = \frac{I_{\text{SUM}}}{N_{\text{T}} \times K_1} = \frac{I_{\text{SUM}}}{7.722 \times 0.8} \approx I_{\text{SUM}} \times 0.162$$
 (21)

$$I_2 = I_6 = \frac{I_{SUM}}{N_T \times K_2} = \frac{I_{SUM}}{7.722 \times 0.9} \approx I_{SUM} \times 0.144$$
 (22)

$$I_3 = I_4 = I_5 = \frac{I_{SUM}}{N_T \times K_3} = \frac{I_{SUM}}{7.772 \times 1.0} \approx I_{SUM} \times 0.129$$
 (23)

The ratios of two phase currents can be easily calculated as shown in 方程式 24 and 方程式 25.

$$\frac{I_2}{I_1} = \frac{K_{T1}}{K_{T2}} = \frac{0.9}{0.8} \approx 1.125 \tag{24}$$

$$\frac{I_4}{I_6} = \frac{K_{T6}}{K_{T4}} = \frac{0.9}{1.0} \approx 0.9$$
 (25)

## 7.5.6 Dynamic phase adding/shedding (DPA/DPS)

The dynamic phase shedding (DPS) feature allows the controller to dynamically select the number of operational phases for each channel, based on the total output current. This increases the total converter efficiency by reducing unnecessary switching losses when the output current is low enough to be supported by a fewer number of phases, than are available in hardware. Use the PHASE\_SHED\_CONFIG command to configure the phase adding/shedding thresholds. Refer to the *Technical Reference Manual* for a full listing of available thresholds.

Set the DPS\_EN bit to 0b to disable phase shedding operation. The MIN\_PH setting determines the minimum number of phases which are active during light-load operation.

Phase adding is detected based on the summed peak current of all phases in the analog domain. Phase shedding is detected based on average current telemetry, with a forced delay of 120  $\mu$ s. The phase add thresholds are not affected by current measurement calibration, but the phase shed thresholds are.

Each phase has 3 settings available:

- Phase add threshold (PH\_ADDx) selects the nominal phase adding threshold. Set this value approximately
  equal to the peak efficiency point per phase to optimize overall converter efficiency.
- Phase add hysteresis (DPA\_HYSTx) selects the phase add threshold hsyteresis. Nominally set this value to
  one-half the value of the ripple current on the I<sub>SUM</sub> current for that number of phases.

Phase drop hysteresis (DPS\_HYST) selects the phase drop hysteresis (per-phase average current). There
is one setting per channel.

The phase add/drop thresholds can be calculated according to the equations below. First determine the ripple cancellation effect for each combination of phase numbers, for the chosen duty cycle using 方程式 26. This value affects the true add thresholds.

$$K_{i} = \frac{\Delta I_{RIPPLE(ISUM)}}{\Delta I_{RIPPLE(PHASE)}} \approx \frac{N_{i} \times \left(D - \frac{m}{N_{i}}\right) \times \left(\frac{m+1}{N_{i}} - D\right)}{D \times (1 - D)}$$
(26)

#### where

- K<sub>i</sub> is the ripple cancellation ratio before the phase transition
- $\Delta I_{ripple(ISUM)}$  is the ripple in the summed current after cancellation
- $\Delta I_{ripple(IPHASE)}$  is the ripple each individual phase
- · N<sub>i</sub> is the number of phases currently active
- · D is the converter duty cycle, nominally Vout / Vin
- m is the maximum integer which does not exceed N<sub>i</sub> × D (can be zero)

Calculate the DC phase adding thresholds based on the chosen configuration using 方程式 27. Phases are added based on peak I<sub>SUM</sub> current, after being passed through a 1  $\mu$ s filter. Typically, choose the DPA\_HYST settings to cancel out the current ripple term. Then the DC current adding threshold is equal to the PH\_ADDx value selected.

$$I_{DPA(i \text{ to } i+1)} \approx PH\_ADD_{i+1} + DPA\_HYST_{i+1} - K_i \times \frac{\Delta I_{RIPPLE(PHASE)}}{2}$$
(27)

#### where

- I<sub>DPA(i to i+1)</sub> is the DC current at which the controller transitions from i to i+1 phases
- PH ADD; is the selected phase add threshold for phase number i
- DPA HYST; is the selected phase add hysteresis for phase number i
- $\Delta$  I<sub>RIPPLE(PHASE)</sub> is the ripple each individual phase

Calculate the DC phase drop thresholds based on the chosen configuration using 方程式 28 phases are added based on the output current telemetry value, with a deglitch filter of 130  $\mu$ s.

$$I_{DPS(i+1 \text{ to } i)} \approx PH\_ADD_{i+1} - i \times DPS\_HYST$$
(28)

### where

- I<sub>DPS(i+1 to i)</sub> is the DC current at which the controller transitions from i+1 to i phases
- PH\_ADD<sub>i+1</sub> is the selected phase add threshold for phase number i+1
- · N<sub>i</sub> is the number of phases currently active before the phase shed event
- DPA HYST; is the selected phase shed hysteresis

# Phase add/shed example: 600-kHz, 7-phase, 12-V to 0.8-V converter, with 120 nH inductor

Assume 
$$V_{IN}$$
 = 12 V,  $V_{OUT}$  = 0.88,  $f_{SW}$  = 600 kHz, L = 120 nH.

The example below explains how to calculate the phase adding and shedding thresholds for 2 to 3 phases. First calculate the inductor ripple current in one phase. Set the DPA\_HYST3 setting to approximately 1/2 the inductor current ripple in one phase. Assuming the phase adding threshold for phase 3, PH\_ADD3, parameter is set to 40.0 A, and the phase shed hysteresis, DPS\_HYST is set to 2.0 A, the phase adding and shedding thresholds are calculated as shown below.

$$I_{RIPPLE(PHASE)} = \frac{V_{OUT} \times (V_{OUT} - V_{IN})}{V_{IN} \times L \times f_{SW}} = \frac{0.88V \times (12V - 0.88V)}{12V \times 120nH \times 600kHz} = 11.3A$$
 (29)

Submit Document Feedback



$$m = FLOOR\left(2 \times \frac{0.88V}{12V}\right) = 0 \tag{30}$$

$$K_{2} \approx \frac{N_{i} \times \left(D - \frac{m}{N_{i}}\right) \times \left(\frac{m+1}{N_{i}} - D\right)}{D \times (1 - D)} \approx \frac{2phases \times \left(\frac{0.88V}{12V} - \frac{0}{12phases}\right) \times \left(\frac{0+1}{12phases} - \frac{0.88V}{12V}\right)}{\frac{0.88V}{12V} \times \left(1 - \frac{0.88V}{12V}\right)} \approx 0.92 \tag{31}$$

$$I_{DPA(2 \text{ to } 3)} \approx PH\_ADD_3 + DPA\_HYST_3 - K_i \times \frac{\Delta I_{RIPPLE(PHASE)}}{2} \approx 40A + 6A - 0.92 \times \frac{11.3A}{2} = 40.8A$$
 (32)

$$I_{DPS(3 \text{ to } 2)} \approx PH\_ADD_3 - 2 \times DPS\_HYST = 40A - 2 \times 2A = 36A$$
 (33)

# 7.6 Control Loop Theory of Operation

### 7.6.1 Adaptive voltage positioning and DC load line (droop)

TPS53676 supports adaptive voltage positioning (AVP) through the VOUT\_DROOP PMBus command. This feature is also referred to as the DC load line (DCLL) for the control loop. Use a non-zero DC load line to reduce output voltage set-point as a function of the load current, with a controlled slope. This feature is optional. Set the DC load line to  $0.0 \text{ m} \Omega$  in applications which do not use a load line.

The DC load line provides two main benefits:

- Reducing the output voltage set-point, reduces the power consumption of the system, when the load current is high.
- Adaptive voltage positioning increases the allowable undershoot and overshoot during load transient events.
   7-17 and 7-18 compare example output voltage specifications for systems with zero load line and non-zero load line. The nominal setting for the output voltage is chosen to be higher, to allow the entire transient window as margin for transient overshoot and undershoot.

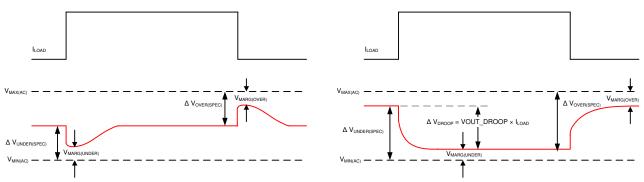
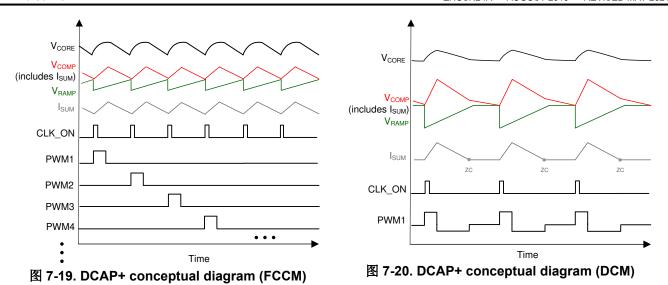



图 7-17. Load transient specification (zero load line)


图 7-18. Load transient specification (non-zero load line)

## 7.6.2 DCAP+ conceptual overview

The summed inductor currents,  $I_{SUM}$ , and output voltage deviation information, along with appropriate gain and integration, are processed to form a control signal  $V_{COMP}$ . Neglecting the output voltage information and integration, the  $V_{COMP}$  signal is a scaled version of  $I_{SUM}$ . A compensating ramp signal,  $V_{RAMP}$ , has a slope proportional to the number of phases, and switching frequency setting. When the  $V_{RAMP}$  and  $V_{COMP}$  signals intersect, the controller fires a new pulse.

Phase management logic distributes new pulses to the next phase in the firing order sequence. Each phase is assigned a firing order, at which pulses are passed to that phase. A separate, slower loop adjusts the on-times for each phase based on the output voltage setpoint, switching frequency setting, and current balance error.

Submit Document Feedback



## 7.6.3 Off-time control: loop compensation and transient tuning

▼ 7-21 shows a conceptual block diagram of the DCAP+ off-time control loop. Transient response tuning is accomplished by changing the parameters which generate the V<sub>COMP</sub> signal. These parameters are accessible using the COMPENSATION\_CONFIG command. Refer to the Technical Reference Manual for a register map of this command.

The  $V_{COMP}$  signal is generated by the sum of three signal paths. Finally the  $V_{COMP}$  signal is scaled by the AC gain parameter,  $K_{AC}$ .

- Proportional path: An error amplifier subtracts the sensed output voltage from the output voltage target, set by V<sub>DAC</sub>. The gain of the proportional path is set by the AC load line (ACLL). Reducing the value of the AC load line increases the proportional path gain, which gives faster transient response. Setting the AC load line to a very low value can lead to low phase margin.
- Integral path: The difference between the sensed output voltage and the output voltage target, V<sub>DAC</sub>, is compared to the ideal droop (I<sub>SUM</sub> × DCLL) value to create an error voltage, V<sub>ERR</sub>. An integrator adjusts the setpoint of V<sub>COMP</sub>, to drive the output voltage error to zero. Integration provides high DC gain, giving the power supply excellent output regulation and DC load line performance. The programmable integration time constant, <sup>T</sup> INT changes the settling time of the output voltage following a transient. Increasing the integration time constant improves phase margin. The programmable integration path gain, K<sub>INT</sub>, sets the gain of the integral path.
- Current feedback: The summed phase current, I<sub>SUM</sub>, with a nominal gain of 5 mV/A, is used directly to generate V<sub>COMP</sub>, as well as in the integral path to set the DC load line. The gain of this path is not affected by the IOUT\_CAL\_GAIN or IOUT\_CAL\_OFFSET calibration commands.

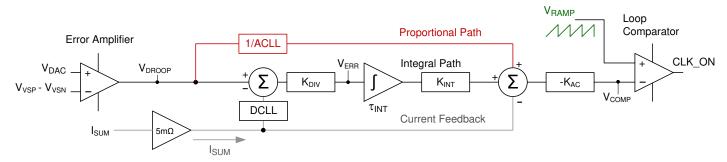



图 7-21. Loop compensation conceptual block diagram

# 7.6.4 On-time control: adaptive ton and autobalance current sharing

The nominal on-time for each phase is determined by an adaptive one-shot circuit, which generates on-times according to 方程式 34. PWM on-times are adjusted very slowly compared to off-times, so the DCAP+ modulator behaves similar to a constant-on-time architecture.

Use the FREQUENCY\_SWITCH command to set the nominal per-phase switching frequency.

$$t_{ON} = \frac{V_{DAC} + K_{ISHARE} \times (I_L - I_{AVG})}{V_{IN} \times FREQUENCY\_SWITCH} + \Delta PLL\_CLF \tag{34}$$

#### where

- t<sub>ON</sub> is the on-time for the phase in seconds
- V<sub>DAC</sub> is the output voltage set-point in volts
- · FREQUENCY\_SWITCH is the commanded switching frequency in Hz
- V<sub>IN</sub> is the sensed input voltage from the VIN\_CSNIN pin
- K<sub>ISHARE</sub> is the gain of the current share loop
- I<sub>I</sub> is the current carried by the phase
- I<sub>AVG</sub> is the average phase current for all phases
- $\triangle$  PLL\_CLF is the on-time adjustment from the closed loop frequency correction circuit

Current sharing is implemented by adapting the on-time for each phase, according to the difference between its own phase current  $I_L$ , and the average of all phase currents  $I_{AVG}$ . When the phase current for any one phase is greater than the average of all phase currents, the on-time of that phase is reduced accordingly. Similarly, if the phase current of any one phase is less than the average of all phase currents, the on-time of that phase is increased.

The on-time is also proportional to the sensed input voltage, which provides the controller with inherent input voltage feed-forward.

Furthermore, a frequency control loop adjusts the on-times for each phase to drive the actual switching frequency equal to the FREQUENCY\_SWITCH setting. An internal clock counts the number of observed pulses over a set interval, and compares the result to the calculated ideal number. If too many pulses are fired in the sampling period, the switching frequency is too high, and the on-times are increased to reduce the steady-state switching frequency. If too few pulses are fired during the sampling period, the switching frequency is too low and the on-times are reduced to increase the steady-state frequency. The PWM pin assigned to ORDER=0 is used for counting purposes, as it does not drop due to phase shedding.

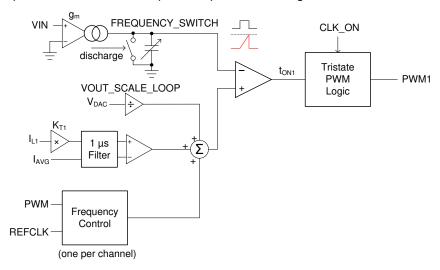



图 7-22. On-time generation and auto-balance current sharing

### 7.6.5 Load transient response

TPS53676 achieves fast load transient performance using the inherently variable switching frequency characteristics of DCAP+ control. 图 7-23 illustrates the load insertion behavior, in which PWM pulses are generated with faster frequency than the steady-state frequency, to provide more energy to the output voltage, improving undershoot performance. 图 7-24 illustrates the load release behavior, in which PWM pulses can be delayed to avoid charging extra energy to the load until the output voltage reaches the peak overshoot.

When there is a sudden load increase, the output voltage immediately drops. The controller device reacts to this drop by lowering the voltage on internal  $V_{COMP}$  signal. This forces PWM pulses to fire more frequently, which causes the inductor current to rapidly increase. As the converter output current reaches the new load current, the device reaches a steady-state operating condition and the PWM switching resumes the steady-state frequency.

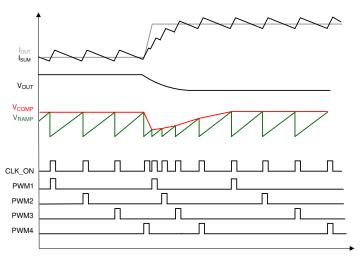



图 7-23. Load insertion response (4-phase example, 0-1-2-3 ordering)

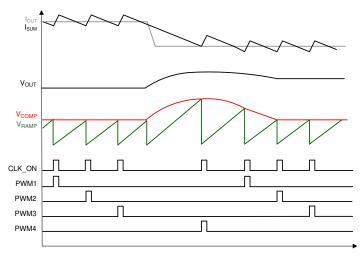



图 7-24. Load release response (4-phase Example, 0-1-2-3 ordering)

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

# 7.6.6 Forced minimum on-time, minimum off-time and leading-edge blanking time

Under normal linear operation, the PWM on- and off-times are generated by the control loop. To improve noise immunity, the controller forces a minimum on-time whenever the PWM pins pulse high. The off-time for any phase is limited by a forced minimum off-time. Although TI smart power stage devices have built-in protection from glitches on the PWM pins also, this feature provides redundant protection against cross-conduction issues.

The controller also limits the time between sending pulses to any two adjacent phases. This is referred to as the leading-edge blanking time, t<sub>BLANK</sub>. Increase the leading edge blanking time to prevent over-compensation (or "ring-back") by the controller during heavy load transient events. The minimum on-time, minimum off-time, and leading edge blanking time are programmable by the NONLINEAR\_CONFIG PMBus command. Refer to the *Technical Reference Manual* for a register map of this command.

For multiphase designs, the maximum per-phase switching frequency during transients, is limited by the leading edge blanking time parameters as shown in 方程式 35. The controller also forces a minimum-off-time per phase. The greater of the two limits the maximum frequency.

$$f_{\text{PHASE(max)}} = \frac{1}{N_{\Phi} \times t_{\text{BLANK}}}$$
 (35)

where

- $N_{\Phi}$  is the number of active phases
- · t<sub>BLANK</sub> is the leading edge blanking time in seconds

## 7.6.7 Nonlinear: undershoot reduction (USR), overshoot reduction (OSR) and dynamic integration

Nonlinear features improve the controller response to severe repetitive load transient conditions.

When the controller is subjected to load transients at very high frequency, the output voltage may not be able to completely settle before the next transient event occurs. As a result, particularly during overshoot events, when the controller is firing pulses infrequently, the controller integration path can see error which does not completely settle. Accumulation of large overshoot error can cause the controller response to following undershoot events to be slower. To prevent excess accumulation of error during repetitive load transient events, the controller implements *dynamic integration*. When the output voltage overshoots its target by a certain voltage, V<sub>DINT</sub>, the controller integration time constant can be changed to an alternate value, the dynamic integration time constant. Use the COMPENSATION\_CONFIG command to configure the dynamic integration time constant and threshold voltage. Typically, set the dynamic integration constant to a longer time than the static integration time constant.

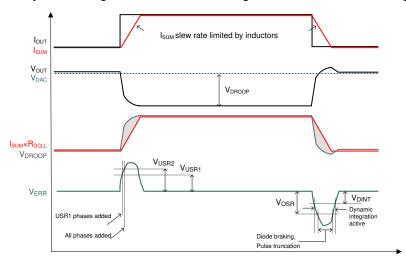
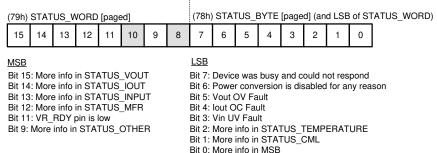



图 7-25. Dynamic integration, OSR, USR detection

Systems which use the dynamic phase shedding feature, may still have sudden and severe load transient events occur. The undershoot reduction (USR) feature allows the controller to add phases even before the



output current reaches the dynamic phase adding thresholds. This ensures the transient undershoot event is stopped as quickly as possible. TPS53676 has two levels of USR. The USR1 threshold is used to quickly enable a configurable number of phases, USR1\_PH. The USR2 threshold adds all enabled phases, assigned to that channel. Use the NONLINEAR CONFIG command to configure the USR1 and USR2 features.


The overshoot reduction (OSR) feature reduces output voltage overshoot during severe load transient events, by turning off the low-side FETs of the powerstage devices (e.g. tri-stating the controller PWM pins), when an overshoot event occurs. The inductor current of each phase must remain continuous, forcing the output current through the body diode of each low-side FET. This dissipates excess energy more quickly than keeping the powerstage low-side FET fully conducting, due to the forward voltage drop characteristics of the body diodes. As a result, the transient overshoot is smaller when this technique is used, compared to simply turning on the low-side FET of each powerstage. However, this results in excess heat which must be properly managed in systems with highly repetitive transient conditions. Additionally, TPS53676 can be configured to truncate PWM pulses, to reduce the worst-case response time to overshoot events. The NONLINEAR\_CONFIG command provides four controls for overshoot reduction: an enable bit for diode braking, an enable bit for pulse truncation, the OSR threshold, V<sub>OSR</sub>, and the diode braking timeout, which limits the maximum amount of time during which diode braking takes place, to manage excess heating. Refer to the *Technical Reference Manual* for a register map of this command.



# 7.7 Power supply fault protection

### 7.7.1 Host notification and status reporting

TPS53676 supports a full set of PMBus status registers and the SMB\_ALERT# notification protocol. All of the fault conditions listed in the table on the following pages have associated status bits. Status bits and SMB\_ALERT# may be cleared using the CLEAR\_FAULTS command, commanding the offending channel to disable (as specified in ON\_OFF\_CONFIG), or by power cycling. Most commonly, issue CLEAR\_FAULTS with the PAGE set to FFh, to clear faults for both channels.



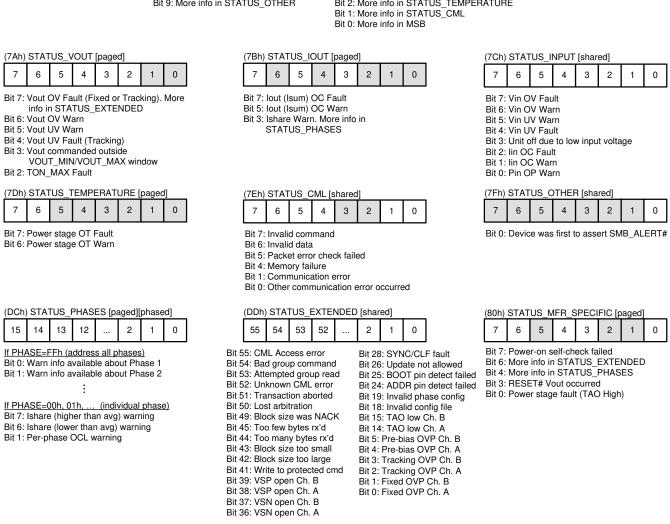



图 7-26. Status register support and decoding

Submit Document Feedback

Product Folder Links: TPS53676

TPS53676 supports a full set of PMBus status registers and the SMB\_ALERT# notification protocol. Any condition which causes a status bit to assert, also causes TPS53676 to assert the SMB\_ALERT# signal (unless that bit is masked via SMBALERT\_MASK). Use the alert response address (ARA) protocol to determine the address of the device experiencing a fault condition in multi-slave systems. The SMB\_ALERT# protocol is optional, and the system designer may choose to implement fault management through other means. The figure below shows a flow diagram of using the ARA protocol.

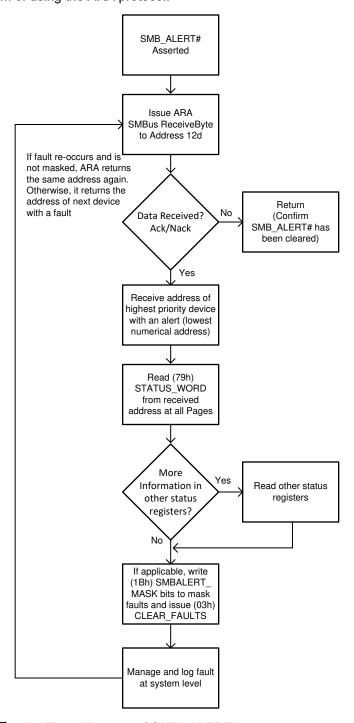



图 7-27. Flow diagram of SMB\_ALERT# response protocol

# 7.7.2 Fault type and response definitions

Paged fault conditions apply only to a single channel and are duplicated for channel A and channel B. Paged fault conditions only cause one channel to shut down when triggered. For latch-off faults, the enable for that channel must be toggled to re-enable power conversion. For example, if channel B experiences an overvoltage fault, only channel B stops power conversion, and channel B must be commanded to disable power conversion, and re-enable power conversion to continue normal operation.

*Shared* fault conditions apply to channels A and B simultaneously. Shared fault conditions cause both channels A and B to shut down when triggered.

Warning conditions do not cause any interruption to power conversion. They are meant to inform the system host of changing conditions so that it can react prior to a fault being triggered. Warnings do conditions set associated PMBus status bits and trigger the SMB ALERT# signal when not masked.

Fault conditions set to the *ignore response* are treated as warnings. Faults set to the ignore response do not cause any interruption of power conversion but do still cause status bits and SMB\_ALERT# to trigger.

Fault conditions set to the *latch-off response* cause power conversion to stop immediately. The channel must be commanded to stop power conversion then restart to continue operation. Start-up from a latch-off fault is identical to a normal power-up and the configured TON\_DELAY is still observed. The RSTOSD option in MISC\_OPTIONS controls whether the boot voltage returns to its last programmed value, or boots to its VBOOT value.

Fault conditions set to the *hysteretic response* cause power conversion to stop immediately. When the fault condition no longer exists, the TPS53676 attempts to restart immediately. The configured TON\_DELAY is still observed.

Fault conditions set to the *hiccup response* cause power condition to stop immediately. After a hiccup wait time, 25 ms by default, TPS53676 attempts to re-enable power conversion. The configured TON\_DELAY is still observed. If the fault condition has disappeared, the start-up attempt succeeds and power conversion continues. Otherwise, the process repeats indefinitely. The RSTOSD option in MISC\_OPTIONS controls whether the boot voltage returns to its last programmed value, or boots to its VBOOT value.

The TOFF\_DELAY is not respected during any fault shutdown response.

Submit Document Feedback



# 7.7.3 Fault behavior summary

# 表 7-8. Fault detection and behavior

| ₹ 7-6. Fault detection and benavior |                               |                                                                                         |                             |                                              |                                                          |                                                               |                                  |                                                                                                                                                    |
|-------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Fault Name                          | Shared /<br>Paged /<br>Phased | Condition                                                                               | Latency                     | Enabled                                      | Programmable Range                                       | Response                                                      | Alerts (1)                       | Clearing <sup>(2)</sup>                                                                                                                            |
| Output Voltage / Current / Power    |                               |                                                                                         |                             |                                              |                                                          |                                                               |                                  |                                                                                                                                                    |
| Pre-Bias OV<br>Fault                | Shared                        | VSP voltage<br>exceeded<br>threshold                                                    | Max 350 μs<br>after 3.3V OK | Until initialization complete, then disabled | 3.7 V fixed by design                                    | All PWM Low, Latch-Off                                        | VR_FAULT#                        | 3.3 V Power Cycle                                                                                                                                  |
| Fixed OV Fault                      | Paged                         | VSP voltage<br>exceeded fixed<br>threshold                                              | 1.0 µs                      | After initialization complete                | 0.6 V to 3.7 V                                           | Ignore, Latch-Off, Hiccup<br>PWM Pulled Low                   | VR_FAULT# if not ignore response | 3.3 V power cycle if<br>triggered while<br>power conversion<br>is disabled.<br>Otherwise,<br>clearable through<br>Enable cycle, or<br>CLEAR_FAULTS |
| Tracking OV<br>Fault                | Paged                         | VSP-VSN<br>voltage<br>exceeded VID<br>+ Droop + OV<br>Offset                            | 1.0 µs                      | During power conversion                      | Offset from current VID+Droop,<br>+32 to +448 mV Offset  | Ignore, Latch-Off, Hiccup<br>PWM pulled low                   | VR_FAULT# if not ignore response | Enable cycle, or<br>CLEAR_FAULTS                                                                                                                   |
| Tracking OV<br>Warn                 | Paged                         | VSP-VSN<br>voltage<br>exceeded VID<br>+ Droop + OV<br>Offset                            | 2.0 µs                      | During power conversion                      | Offset from current VID + Droop<br>+24 to +448 mV Offset | Warning only                                                  | n/a                              | Enable cycle, or CLEAR_FAULTS                                                                                                                      |
| Tracking UV<br>Warn                 | Paged                         | VSP-VSN<br>voltage below<br>VID + Droop -<br>UV Offset                                  | 2.0 µs                      | During power conversion                      | Offset from current VID + Droop<br>-24 to -448 mV Offset | Warning only                                                  | n/a                              | Enable cycle, or<br>CLEAR_FAULTS                                                                                                                   |
| Tracking UV<br>Fault                | Paged                         | VSP-VSN<br>voltage below<br>VID + Droop-<br>UV Offset                                   | 1.0 µs                      | During power conversion                      | Offset from current VID + Droop<br>-32 to -448 mV Offset | Ignore, Latch-Off, Hiccup<br>PWM Tri-State                    | n/a                              | Enable cycle, or<br>CLEAR_FAULTS                                                                                                                   |
| Max Turn-on<br>time<br>(TON_MAX)    | Paged                         | VSP-VSN did<br>not rise to<br>threshold<br>quickly enough<br>during soft-<br>start      | 500 µs                      | During soft-<br>start only                   | 0 ms to 31.75 ms                                         | Ignore, Latch-Off, Hiccup<br>PWM Tri-State                    | n/a                              | Enable cycle, or CLEAR_FAULTS                                                                                                                      |
| Vout Min/Max<br>Warning             | Paged                         | Vout<br>commanded<br>above<br>VOUT_MAX or<br>below<br>VOUT_MIN                          | N/A                         | During power conversion                      | VOUT_MAX and<br>VOUT_MIN                                 | DAC Voltage clamped to limit<br>Warning only                  | n/a                              | Enable cycle, or CLEAR_FAULTS                                                                                                                      |
| Over-current<br>Fault               | Paged                         | Total current exceeded threshold                                                        | 175 µs                      | During power conversion                      | 0 to 1023 A <sup>(3)</sup>                               | Ignore, Latch-Off, Hiccup<br>PWM Tri-State                    | VR_FAULT#<br>configurable        | Enable cycle, or CLEAR_FAULTS                                                                                                                      |
| Per-Phase<br>Over-current<br>Limit  | Paged,<br>Phased              | Phase current exceeded threshold                                                        | Cycle-by-cycle              | During power conversion                      | 17 to 130 A <sup>(3)</sup>                               | Warning only,<br>PWM pulses skipped to limit<br>phase current | n/a                              | Enable cycle, or CLEAR_FAULTS                                                                                                                      |
| Current Share<br>Warning            | Paged,<br>Phased              | Phase current<br>above or below<br>average<br>current for all<br>phases by<br>threshold | 175 µs                      | During power conversion                      | 5 to 20 A per phase                                      | Warning only                                                  | n/a                              | Enable cycle, or CLEAR_FAULTS                                                                                                                      |

<sup>(1)</sup> Any fault response which causes a shutdown event de-asserts VR\_RDY. All faults have associated PMBus status bits and SMB\_ALERT# response (unless masked by SMBALERT\_MASK commands)

<sup>(2)</sup> Fault condition must have disappeared, otherwise fault re-triggers immediately

<sup>(3)</sup> IOUT\_OC\_FAULT\_LIMIT[PAGE=x][PHASE=FFh] sets the per-page OC fault threshold, IOUT\_OC\_FAULT\_LIMIT[PAGE=x] [PHASE=Other] sets the per-phase OCL threshold



# 表 7-9. Fault detection and behavior (continued)

| Fault Name                            | Shared /<br>Paged /<br>Phased | Condition                                                          | Latency                                 | Enabled                                                     | Programmable Range                     | Response                                                                                       | Alerts (1)                       | Clearing (2)                     |
|---------------------------------------|-------------------------------|--------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|
| Power Stage Fe                        |                               |                                                                    |                                         |                                                             |                                        |                                                                                                |                                  |                                  |
| Over-<br>Temperature<br>Fault         | Paged                         | Power Stage<br>Temperature<br>exceeded<br>threshold                | 950 µs                                  | After initialization complete                               | +90 to +160 °C                         | Ignore, Latch-Off, Hiccup<br>PWM Tri-State                                                     | VR_FAULT# configurable           | Enable cycle, or CLEAR_FAULTS    |
| Over-<br>Temperature<br>Warning       | Paged                         | Power Stage<br>Temperature<br>exceeded<br>threshold                | 950 µs                                  | After initialization complete                               | +90 to +160 °C                         | Warning only                                                                                   | n/a                              | Enable cycle, or<br>CLEAR_FAULTS |
| Power Stage<br>Fault                  | Paged                         | TAO pulled<br>high by power<br>stage                               | 1.0 µs                                  | After initialization complete                               | TAO > 2.5 V                            | Ignore, Latch-Off, Hiccup<br>PWM Tri-State                                                     | VR_FAULT# if not ignore response | Enable cycle, or CLEAR_FAULTS    |
| Power Stage<br>Not Ready<br>(TAO LOW) | Paged                         | TAO pulled low<br>by power stage                                   | 1.0 µs                                  | After initialization complete                               | TAO < 230 mV Falling (50mV hysteresis) | Hysteresis<br>Start-up is blocked if not yet<br>enabled, or rail is shutdown.<br>PWM tristated | n/a                              | Enable cycle, or<br>CLEAR_FAULTS |
| Input Voltage /                       | Current / Po                  | wer                                                                |                                         |                                                             |                                        |                                                                                                |                                  |                                  |
| Input Over-<br>Voltage Fault          | Shared                        | VIN_CSNIN<br>voltage<br>exceeded<br>threshold                      | 950 µs                                  | After initialization complete                               | 0 to 19 V                              | Ignore, Latch-Off, Hiccup<br>PWM Tri-State                                                     | n/a                              | Enable cycle, or CLEAR_FAULTS    |
| Input Over-<br>Voltage<br>Warning     | Shared                        | VIN_CSNIN<br>voltage<br>exceeded<br>threshold                      | 950 µs                                  | After initialization complete                               | 0 to 19 V                              | Warning only                                                                                   | n/a                              | Enable cycle, or CLEAR_FAULTS    |
| Input Under-<br>Voltage<br>Warning    | Shared                        | VIN_CSNIN<br>voltage below<br>threshold                            | 950 µs                                  | VIN > VIN_ON<br>first time and<br>either channel<br>enabled | 4.0 to 11.25 V                         | Warning only                                                                                   | n/a                              | Enable cycle, or<br>CLEAR_FAULTS |
| Input Under-<br>Voltage Fault         | Shared                        | VIN_CSNIN<br>voltage below<br>threshold                            | 950 µs                                  | VIN > VIN_ON<br>first time and<br>either channel<br>enabled | 4.0 to 11.25 V                         | Ignore, Latch-Off, Hiccup<br>PWM Tri-State                                                     | n/a                              | Enable cycle, or CLEAR_FAULTS    |
| Input Over-<br>Current Fault          | Shared                        | CSPIN-<br>VIN_CSNIN<br>current below<br>threshold                  | 525 µs                                  | During power conversion                                     | 4 to 128 A                             | Ignore, Latch-Off, Hiccup<br>PWM Tri-State                                                     | VR_FAULT# if not ignore response | Enable cycle, or CLEAR_FAULTS    |
| Input Over-<br>Current<br>Warning     | Shared                        | CSPIN-<br>VIN_CSNIN<br>current below<br>threshold                  | 525 µs                                  | During power conversion                                     | 4 to 128 A                             | Warning only                                                                                   | n/a                              | Enable cycle, or<br>CLEAR_FAULTS |
| Input Over-<br>Power Warning          | Shared                        | Computed input power above threshold                               | 525 µs                                  | During power conversion                                     | 8 to 2044 W                            | Warning only                                                                                   | n/a                              | Enable cycle, or<br>CLEAR_FAULTS |
| Self-Checking                         |                               |                                                                    |                                         |                                                             |                                        |                                                                                                |                                  |                                  |
| Invalid ADDR<br>Pinstrap              | Shared                        | ADDR pin<br>open, low,<br>high, or non-<br>convergent<br>detection | Checked once at initialization          | Checked<br>during power-<br>on and enable                   | Per detection thresholds               | Latch-Off, PWM tristate                                                                        | n/a                              | 3.3 V Power Cycle                |
| Invalid BOOT<br>Pinstrap              | Shared                        | BOOT pin<br>open, low,<br>high, or non-<br>convergent<br>detection | Checked once at initialization          | Checked<br>during power-<br>on and enable                   | Per detection thresholds               | Latch-Off, PWM tristate                                                                        | n/a                              | 3.3 V Power Cycle                |
| PMBus Interfac                        | е                             |                                                                    |                                         |                                                             |                                        | ·                                                                                              |                                  |                                  |
| PMBus<br>Communicatio<br>n Error      | Shared                        | PMBus<br>Communicatio<br>n Error (See<br>STATUS_CML)               | Per PMBus<br>communication<br>frequency | After initialization complete                               | See PMBus Specification                | Warning only                                                                                   | n/a                              | Enable cycle, or CLEAR_FAULTS    |

Any fault response which causes a shutdown event de-asserts VR\_RDY. All faults have associated PMBus status bits and SMB\_ALERT# response (unless masked by SMBALERT\_MASK commands)
Fault condition must have disappeared, otherwise fault re-triggers immediately

# 7.7.4 Detailed fault descriptions

# 7.7.4.1 Overvoltage fault (OVF) and warning (OVW)

TPS53676 supports several forms of overvoltage protection. The figure below describes the overvoltage protection scheme in more detail.

- **Pre-Bias OVF** protects the converter while initialization runs. This protection is active t<sub>INIT-PBOV</sub>, 350 μs maximum after the VCC pin voltage is established, until initialization is complete. The threshold is hard-coded to 3.7 V. In response to this condition, all PWM pins (regardless of channel assignment) pull low, regardless of the overvoltage response setting. This fault cannot be cleared without a power cycle of the VCC pin. The fixed overvoltage protection becomes active after t<sub>INIT-LOGIC</sub>, up to 20 ms after the VCC pin voltage is established. This fault detection cannot be disabled.
- **Fixed OVF** is a programmable limit based on the VSP pin voltage, above which it is not safe to operate the load device. Program the threshold through the MFR\_PROTECTION\_CONFIG command. This fault detection is active regardless of power conversion. If triggered while power conversion is disabled, this fault is treated as potentially catastrophic, and cannot be cleared without a power cycle of the VCC pin.
- Tracking OVF is a fault limit, programmable as an offset from the current VOUT\_COMMAND value. Program this threshold through VOUT\_OV\_FAULT\_LIMIT. When the VSP-VSN pin differential voltage exceeds this limit during power conversion, the tracking overvoltage fault condition is detected. This fault detection is disabled whenever power conversion is disabled.
- Tracking OVW is a warning limit, programmable as an offset from the current VOUT\_COMMAND value.
   Program this threshold through VOUT\_OV\_WARN\_LIMIT. When the VSP-VSN pin differential voltage
   exceeds this limit during power conversion, the tracking overvoltage warning condition is detected. This is a
   warning condition only, and does not cause any interruption to power conversion. The overvoltage warning
   provides early feedback to they system host allowing it to make adjustments prior a fault triggering.

In response to the overvoltage warning condition, TPS53676 sets the appropriate status bits in STATUS\_WORD and STATUS VOUT and asserts the SMB ALERT# line if these bits are not masked.

In response to the overvoltage fault condition TPS53676 responds according to the programmed VOUT\_OV\_FAULT\_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced a fault to pull low immediately. Additionally, TPS53676 sets the appropriate status bits in STATUS WORD and STATUS VOUT and asserts the SMB ALERT# line if these bits are not masked.

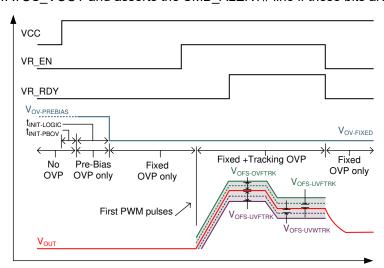



图 7-28. Overvoltage Protection

Program the tracking overvoltage fault threshold through the VOUT\_OV\_FAULT\_LIMIT command as an absolute voltage. When a new VOUT\_OV\_FAULT\_LIMIT command is received the device calculates the tracking overvoltage offset value internally according to the equation below. The threshold voltages get scaled with the

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

use of an external voltage sensing divider and VOUT\_SCALE\_LOOP. TPS53676 supports tracking overvoltage fault offsets from +32 mV to +448 mV in 32 mV steps.

Program the tracking overvoltage warning through the VOUT\_OV\_WARN\_LIMIT command as an absolute voltage. Similarly, when a new VOUT\_OV\_WARN\_LIMIT command is received, the device calculates the tracking overvoltage warning offset according to the equation below. The threshold voltages get scaled with the use of an external voltage sensing divider and VOUT\_SCALE\_LOOP. TPS53676 supports tracking overvoltage warning offsets from +24 mV to +448 mV in 8 mV steps.

Program the fixed overvoltage fault threshold through MFR\_PROTECTION\_CONFIG. TPS53676 supports values from 0.6 V to 3.7 V, in 100 mV steps.

$$V_{OFS(OVF\ TRK)} = \frac{VOUT\_OV\_FAULT\_LIMIT - VOUT\_COMMAND}{VOUT\_SCALE\_LOOP}$$
(36)

$$V_{OFS(OVW TRK)} = \frac{VOUT\_OV\_WARN\_LIMIT - VOUT\_COMMAND}{VOUT\_SCALE\_LOOP}$$
(37)

The over-voltage warning and fault trip thresholds include the load-line setting as shown in the equations below.

$$V_{OVW(trip)} = VOUT\_COMMAND + V_{OFS(OVW TRK)} - VOUT\_DROOP \times I_{OUT}$$
(38)

$$V_{OVF(trip)} = Min(V_{OVFIX}, VOUT\_COMMAND + V_{OFS(OVFTRK)} - VOUT\_DROOP \times I_{OUT})$$
(39)

Updates to VOUT\_COMMAND do not cause these the overvoltage offsets to be recalculated. After the output voltage target has been changed, TPS53676 reports the fault and warning thresholds by adding the previously select offset value to the current VOUT\_COMMAND.

## **Example: Programming the OVF and OVW offsets**

Assume the current VOUT\_COMMAND is 1.000 V, the VOUT\_DROOP setting is equal to 0.5 m  $\Omega$ , and the load current is equal to 100 A.

- Program the VOUT\_OV\_WARN\_LIMIT to 1.128 V (1.0 V + 128 mV), to select the +128 mV tracking overvoltage warning offset. The VOUT\_DROOP is assumed to be zero for calculation purposes. However, the over-voltage warning trip threshold does account for the load-line setting and is equal to 1.128 V 0.5 m Ω × I<sub>OUT</sub>.
- Program the VOUT\_OV\_FAULT\_LIMIT to 1.256 V (1.0 V + 256 mV), to select the +256 mV tracking overvoltage fault offset. The VOUT\_DROOP is assumed to be zero for calculation purposes. However, the over-voltage fault trip threshold does account for the load-line setting and is equal to 1.256 V 0.5 m  $\Omega$  × I<sub>OUT</sub>.

If the VOUT\_COMMAND value is changed to is 1.100 V, the TPS53676 reports VOUT\_OV\_WARN\_LIMIT as 1.228 V (1.1 V + 128 mV), and VOUT\_OV\_FAULT\_LIMIT as 1.356 V (1.1 V + 256 mV). The offset values are not changed.

Submit Document Feedback

# 7.7.4.2 Undervoltage fault (UVF) and warning (UVW)

Two undervoltage threshold limits are provided:

- Tracking UVF is a fault limit, programmable as an offset from the current VOUT\_COMMAND value. Program this threshold through VOUT\_UV\_FAULT\_LIMIT. When the VSP-VSN pin differential voltage falls below this limit during power conversion, the tracking undervoltage fault condition is detected. This fault detection is disabled whenever power conversion is disabled.
- Tracking UVW is a warning limit, programmable as an offset from the current VOUT\_COMMAND value. Program this threshold through VOUT\_UV\_WARN\_LIMIT. When the VSP-VSN pin differential voltage exceeds this limit during power conversion, the tracking undervoltage warning condition is detected. This is a warning condition only, and does not cause any interruption to power conversion. The undervoltage warning provides early feedback to they system host allowing it to make adjustments prior a fault triggering.

In response to the undervoltage warning condition, TPS53676 sets the appropriate status bits in STATUS\_WORD and STATUS\_VOUT and asserts the SMB\_ALERT# line if these bits are not masked.

In response to the undervoltage fault condition TPS53676 responds according to the programmed VOUT\_UV\_FAULT\_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced a fault to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS\_WORD and STATUS\_VOUT and asserts the SMB\_ALERT# line if these bits are not masked.

Program the tracking undervoltage fault threshold through the VOUT\_UV\_FAULT\_LIMIT command as an absolute voltage. When a new VOUT\_UV\_FAULT\_LIMIT command is received, the device calculates the tracking undervoltage offset value internally according to the equation below. Threshold voltages get scaled with the use of an external voltage sensing divider, and VOUT\_SCALE\_LOOP. TPS53676 supports tracking undervoltage fault offsets from -32 mV to -448 mV in 32 mV steps.

Program the tracking undervoltage warning through the VOUT\_UV\_WARN\_LIMIT command as an absolute voltage. When a new VOUT\_UV\_WARN\_LIMIT command is received, the device calculates the tracking undervoltage warning offset according to the equation below. Threshold voltages get scaled with the use of an external voltage sensing divider, and VOUT\_SCALE\_LOOP. TPS53676 supports tracking undervoltage warning offsets from -24 mV to -448 mV in 8 mV steps.

$$V_{OFS(UVW\ TRK)} = \frac{VOUT\_COMMAND - VOUT\_UV\_WARN\_LIMIT}{VOUT\_SCALE\_LOOP}$$
(40)

$$V_{OFS(UVF\ TRK)} = \frac{VOUT\_COMMAND - VOUT\_UV\_FAULT\_LIMIT}{VOUT\_SCALE\_LOOP}$$
(41)

The undervoltage warning and fault trip thresholds include the load-line setting as shown in the equations below.

$$V_{IJVW(trip)} = VOUT\_COMMAND - V_{OFS(IJVW|TRK)} - VOUT\_DROOP \times I_{OUT}$$
(42)

$$V_{IJVF(trip)} = VOUT\_COMMAND - V_{OFS(IJVF\ TRK)} - VOUT\_DROOP \times I_{OUT}$$
(43)

### **Example: Programming the UVF and UVW thresholds**

Assume the current VOUT\_COMMAND is 1.000 V, the VOUT\_DROOP setting is equal to 0.5 m  $\Omega$ , and the load current is equal to 100 A.

- Program the VOUT\_UV\_WARN\_LIMIT to 0.872 V (1.0 V 128 mV), to select the -128 mV tracking undervoltage warning offset. The VOUT\_DROOP is assumed to be zero for calculation purposes. However, the undervoltage warning trip threshold does account for the load-line setting and is equal to 0.872 V 0.5 m Ω × I<sub>OUT</sub>.
- Program the VOUT\_UV\_FAULT\_LIMIT to 0.744 V (1.0 V 256 mV), to select the -256 mV tracking undervoltage fault offset. The VOUT\_DROOP is assumed to be zero for calculation purposes. However, the

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback



undervoltage fault trip threshold does account for the load-line setting and is equal to 0.744 V - 0.5 m  $\Omega$  × I<sub>OUT</sub>.

If the VOUT\_COMMAND value is changed to is 1.100 V, the TPS53676 reports VOUT\_UV\_WARN\_LIMIT as 0.972 V (1.1 V - 128 mV), and VOUT\_UV\_FAULT\_LIMIT as 0.844 V (1.1 V - 256 mV). The offset values are not changed.

# 7.7.4.3 Maximum turn-on time exceeded (TON MAX)

The TON\_MAX\_FAULT\_LIMIT command sets a maximum allowable time during which the output voltage must reach the regulation window during turn-on. The TON\_MAX time is defined as the time between the first switching pulses, and the sensed output voltage exceeding the the minimum allowed regulation point, defined as  $V_{\text{TONMAX}}$ , in the equation below. Program the TON\_MAX\_FAULT\_LIMIT greater than the TON\_RISE.

$$V_{TONMAX} = VOUT_UV_FAULT_LIMIT - (VOUT_DROOP \times IOUT_OC_FAULT_LIMIT)$$
(44)

The figure below illustrates the TON\_MAX fault. TPS53676 enables its undervoltage fault protection at the first PWM pulses, during the output voltage rise time. Consequently, whenever the VOUT\_UV\_FAULT\_RESPONSE is not set to the ignore response, it triggers first and disables power conversion prior to the TON MAX time.

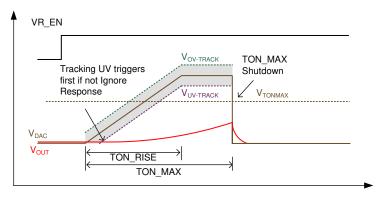



图 7-29. TON\_MAX fault

In response to the TON\_MAX fault condition, TPS53676 responds according to the programmed TON\_MAX\_FAULT\_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced the fault to tristate immediately. The TPS53676 then sets the appropriate status bits in STATUS\_WORD and STATUS\_VOUT and asserts the SMB\_ALERT# line if these bits are not masked.

### 7.7.4.4 Output commanded out-of-bounds (VOUT MIN MAX)

The VOUT\_MIN and VOUT\_MAX commands set the minimum and maximum allowed output voltage targets. TPS53676 does not ramp the output voltage target for either channel outside these limits for any reason. This includes being commanded to do so by VOUT\_COMMAND, VOUT\_MARGIN\_HIGH, VOUT\_MARGIN\_LOW or VOUT\_TRIM.

Whenever the output voltage target is commanded outside the limits set by VOUT\_MIN and VOUT\_MAX, the TPS53676 device detects the VOUT\_MIN\_MAX warning condition. In response, the device begins ramping the output voltage target of that channel to the new target and clamps to the VOUT\_MIN or VOUT\_MAX value. An example is shown in  $\[ \] 7-30.$ 

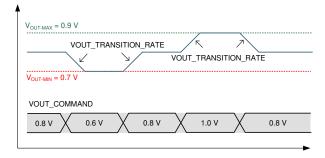



图 7-30. VOUT\_MIN\_MAX example

# 7.7.4.5 Overcurrent fault (OCF), warning (OCW), and per-phase overcurrent limit (OCL)

TPS53676 provides three layers of overcurrent protection:

- Overcurrent fault (OCF) is a programmable threshold which sets the maximum allowed total current (sum of all phases) for a channel. Detection is based on output current telemetry. When the sensed output current for a channel exceeds this limit, the output overcurrent fault is detected. Program this threshold using the IOUT OC FAULT LIMIT command with the PHASE set to FFh. TPS53676 supports values of 0 to 1023 A per channel.
- Per-phase overcurrent limit (OCL) is a programmable cycle-by-cycle valley current limit for each individual phase current, to protect against inductor saturation. TPS53676 does not pass PWM pulses to phases when their current is above the configured OCL threshold. Other than cycle-by-cycle current limit, no action is taken when the per-phase OCL is engaged. Typically, in the case of a severe overload event, power conversion is disabled when the output voltage reaches the VOUT\_UV\_FAULT\_LIMIT. This is illustrated in the figure below. Program the OCL threshold using the IOUT\_OC\_FAULT\_LIMIT command with the PHASE set to 00h. TPS53676 supports values of 17 A to 130 A per phase.
- Overcurrent warning (OCW) is a programmable warning threshold based on the total current (sum of all phases) for a channel. Detection is based on output current telemetry. When the sensed output current for a channel exceeds this limit, the output overcurrent warning is detected. Program this threshold using the IOUT OC WARN LIMIT. TPS53676 supports values of 0 to 1023 A per channel.

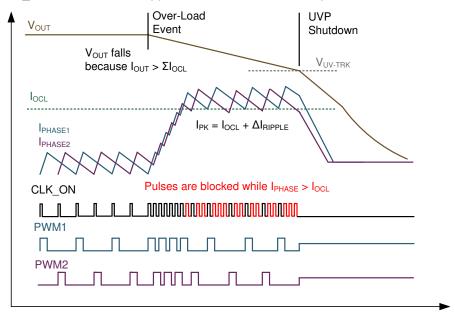



图 7-31. Per-phase OCL (2 phase example)

Typically, set the per-phase OCL threshold greater than total peak design current I<sub>PK-CHANNEL</sub> to allow margin for transient events, as shown in the equation below. TI recommends 30-50% design margin. Then peak current allowed in any individual phase is given by the equation below. Select output inductor components such that current saturation levels are above this limit, including margin for threshold and current sensing accuracy.

$$I_{OCL(min)} = K_{MARGIN} \times \frac{I_{OUT(peak)}}{N_{\Phi}} - \frac{1}{2} \Delta I_{RIPPLE}$$
(45)

where

- I<sub>OCL(min)</sub> is the per-phase overcurrent limit in amperes
- I<sub>OUT(PEAK)</sub> is the peak design current in amperes
- $N_{\phi}$  is the number of phases assigned to the channel
- K<sub>MARGIN</sub> is a factor of safety for design margin

Submit Document Feedback

$$I_{PEAK(phase)} = I_{OCL} + \Delta I_{RIPPLE}$$

(46)

#### where

- I<sub>PEAK(phase)</sub> is the peak current observed in any individual phase
- I<sub>OCI</sub> is the per-phase overcurrent limit in amperes
- △ I<sub>RIPPI F</sub> is the peak-to-peak inductor current ripple

In response to the overcurrent warning condition, TPS53676 sets the appropriate status bits in STATUS\_WORD and STATUS\_IOUT and asserts the SMB\_ALERT# line if these bits are not masked.

In response to the overcurrent fault condition, TPS53676 responds according to the programmed IOUT\_OC\_FAULT\_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced a fault to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS\_WORD and STATUS\_IOUT and asserts the SMB\_ALERT# line if these bits are not masked.

### 7.7.4.6 Current share warning (ISHARE)

The TPS53676 telemetry system continually monitors the average current in each phase, and compares it to the average current of all phases assigned the channel. For each phase, whenever the condition described by the equation below is satisfied, the current share warning condition is detected. Configure the current share warning threshold through the MFR\_PROTECTION\_CONFIG command.

$$\left(\frac{I_{\text{SUM}}}{N_{\Phi}} - I_{\text{PHASE}}\right) \le -I_{\text{SHAREW}} \quad \text{or} \quad \left(I_{\text{PHASE}} - \frac{I_{\text{SUM}}}{N_{\Phi}}\right) \ge +I_{\text{SHAREW}}$$
 (47)

### where

- · IPHASE is the current in each individual phase of a channel
- · I<sub>SUM</sub> is the total current in that channel
- $N_{\Phi}$  is the total number of phases assigned to that channel
- I<sub>SHAREW</sub> is the programmed ISHARE warning in amperes

In response to the current share warning condition, TPS53676 sets the appropriate status bits in STATUS\_WORD and STATUS\_IOUT and asserts the SMB\_ALERT# line if these bits are not masked.

### 7.7.4.7 Overtemperature fault protection (OTF) and warning (OTW)

TI smart power stages sense their internal die temperature and output temperature information as a voltage signal through their TAO pins. The temperature sense output of the powerstage device includes an OR'ing function such that the voltage signal present at the TSEN pin of the TPS53676 represents that of the hottest powerstage in the channel. The TPS53676 digitizes its TSEN pins to provide temperature telemetry.

- Overtemperature fault (OTF) is a programmable threshold which sets the maximum allowed temperature of the powerstage devices attached to a channel. Detection is based on output temperature telemetry. When the sensed temperature for a channel exceeds this limit, the overtemperature fault condition is detected. Program this threshold using the OT\_FAULT\_LIMIT command. TPS53676 supports values of 90 to 160 °C.
- Overtemperature warning (OTW) is a programmable threshold which sets a warning based on the temperature sense telemetry for a channel. Detection is based on temperature sense telemetry. When the sensed temperature for a channel exceeds this limit, the overtemperature warning is detected. Program this threshold using the OT WARN LIMIT. TPS53676 supports values of 90 to 160 °C.

In response to the overtemperature warning condition, TPS53676 sets the appropriate status bits in STATUS\_WORD and STATUS\_TEMPERATURE and asserts the SMB\_ALERT# line if these bits are not masked.

In response to the overtemperature fault condition, TPS53676 responds according to the programmed OT\_FAULT\_RESPONSE. When not set to the ignore response, this causes the PWM pins of the rail which experienced a fault to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS\_WORD and STATUS TEMPERATURE and asserts the SMB ALERT# line if these bits are not masked.

# 7.7.4.8 Powerstage fault (TAO\_HIGH) and powerstage not ready (TAO\_LOW)

In addition to temperature sense information, the TPS53676 and TI smart power stage devices use the TAO lines to communicate fault information:

- Powerstage fault (TAO\_HIGH) is a fault condition detected when any of the connected powerstage devices
  pulls its TAO line high (> 2.5 V). This occurs for any fault conditions detected inside the smart powerstage
  itself. Refer to the individual powerstage datasheets for a complete list of conditions which cause the
  powerstage fault. Program the controller response to a powerstage fault with MFR\_PROTECTION\_CONFIG.
- Powerstage not ready (TAO\_LOW) is a fault condition detected when the TAO line is low (160 mV falling, 245 mV rising) for any reason. At power-on, the TI smart power stages hold their TSEN/TAO lines low, until their internal logic is valid, and their state is known (TAO\_LOW condition). Once each device is in a valid state, it's pull-down of the shared TSEN/TAO line is released, and the TAO/TSEN lines are driven by the power-stage devices, based on temperature sense telemetry. The start-up of TPS53676 is blocked while the TAO\_LOW condition exists, such that the controller does not attempt to begin conversion, until the TAO/TSEN line is released by all power stages. During the initial power-on, no status bit or alerts are set if the controller is commanded to enable with one of its TSEN/TAO pins low. This is done to accomodate power sequences which have the power stage 5V rail being enabled after the controller 3.3V. The TAO\_LOW fault is a hysteretic-type response. When the TSEN/TAO pin is released, if the VR enable condition is still active, power conversion starts immediately.

In response to the powerstage fault, the TPS53676 responds according to the configured fault response in MFR\_PROTECTION\_CONFIG. When not set to the ignore response, this causes the PWM pins for that channel to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS\_WORD and STATUS MFR SPECIFIC and asserts the SMB ALERT# line if these bits are not masked.

In response to the TAO\_LOW condition, TPS53676 tristates the PWM pins for that channel. TPS53676 then sets the appropriate status bits in STATUS\_WORD and STATUS\_MFR\_SPECIFIC and asserts the SMB\_ALERT# line if these bits are not masked. TAO\_LOW is a hysteretic fault and cannot be configured otherwise.

Product Folder Links: TPS53676

#### 7.7.4.9 Input overvoltage fault (VIN OVF) and warning (VIN OVW)

TPS53676 supports two layers of input overvoltage protection:

- Input overvoltage fault (VIN\_OVF) is a programmable threshold which sets the maximum allowed input
  voltage, above which it is not safe to convert power. Detection is based on input voltage telemetry. When the
  sensed input voltage exceeds this limit, the input overvoltage fault condition is detected. Program this
  threshold using the VIN\_OV\_FAULT\_LIMIT command. TPS53676 supports values of 0 to 19 V.
- Input overvoltage warning (VIN\_OVW) is a programmable threshold which sets a warning based on the input voltage sense telemetry. Detection is based on input voltage sense telemetry. When the sensed input voltage for a channel exceeds this limit, the input overvoltage warning is detected. Program this threshold using the VIN\_OV\_WARN\_LIMIT command. TPS53676 supports values of 0 to 19 V.

In response to the input overvoltage fault, the TPS53676 responds according to the configured fault response in VIN\_OV\_FAULT\_RESPONSE. When not set to the ignore response, this causes the PWM pins for both channels to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS\_WORD and STATUS INPUT and asserts the SMB ALERT# line if these bits are not masked.

#### 7.7.4.10 Input undervoltage fault (VIN UVF), warning (VIN UVW) and turn-on voltage (VIN ON)

Three programmable parameters control the TPS53676 input undervoltage protection. More detail is shown in the figure below.

- Turn-on voltage (VIN\_ON) is the input voltage at which TPS53676 allows power conversion to be enabled. Program this threshold through the VIN\_ON command. The input undervoltage fault and warning are masked until the turn-on voltage is exceeded the first time during power-up. TPS53676 does not act on commands to enable power conversion while the input voltage is below this limit. No action is taken when the input voltage falls below this threshold during power conversion. Detection is based on input voltage telemetry. TPS53676 supports values from 4.25 V to 11.5 V.
- Input undervoltage fault (VIN\_UVF) is the input voltage at which power conversion stops. Program this threshold through the VIN\_UV\_FAULT\_LIMIT command. This command is also forced equal to the turn-off voltage (VIN\_OFF). Detection is based on input voltage telemetry. When the sensed input voltage falls below this limit, the input undervoltage fault condition is detected. This fault is masked until the sensed input voltage exceeds the turn-on voltage VIN\_ON for the first time. TPS53676 supports values from 4.00 V to 11.25 V.
- Input undervoltage warning (VIN\_UVW) is a programmable threshold which sets a warning based on the
  input voltage sense telemetry for a channel. Detection is based on input voltage sense telemetry. When the
  sensed input voltage below this limit, the input undervoltage warning is detected. Program this threshold
  using the VOUT\_UV\_WARN\_LIMIT command. TPS53676 supports values of 4.0 V to 11.25 V.

The input undervoltage fault is triggered when the sensed input voltage falls below the VIN\_UV\_FAULT\_LIMIT threshold, and considered to be cleared when the sensed input voltage exceeds the VIN\_ON limit. The input undervoltage fault is enabled only when either of the channels is enabled. Toggling the enable for both channels at the same time with the input voltage above the VIN\_UV\_FAULT\_LIMIT threshold clears the fault, and enables power conversion to begin automatically after the input voltage exceeds the VIN\_ON limit. In the case where the enable for each channel is independent, commanding one channel to enable conversion does not clear the input undervoltage condition and power conversion may not start automatically when the input voltage exceeds the VIN\_ON thresholds. TI recommends to enable power conversion only after the input voltage exceeds the VIN\_ON as shown in the figure below.

Copyright © 2023 Texas Instruments Incorporated

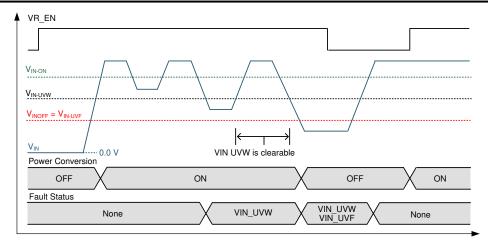



图 7-32. Input undervoltage protection (VR\_EN active high control)

#### 7.7.4.11 Input overcurrent fault (IIN\_OCF) and warning (IIN\_OCW)

- Input overcurrent fault (IIN\_OCF) is a programmable threshold which sets the maximum allowed input current for the converter. Detection is based on input current telemetry. When the sensed input current exceeds this limit, the input overcurrent fault condition is detected. Program this threshold using the IIN OC FAULT LIMIT command. TPS53676 supports values of 4 to 128A.
- Input overcurrent warning (IIN\_OCW) is a programmable threshold which sets a warning threshold for the input current for the converter. Detection is based on input current telemetry. When the sensed input current exceeds this limit, the input overcurrent warning condition is detected. Program this threshold using the IIN OC WARN LIMIT command. TPS53676 supports values of 4 to 128A.

In response to the input overcurrent fault, the TPS53676 responds according to the configured fault response in the IIN\_OC\_FAULT\_RESPONSE command. When not set to the ignore response, this causes the PWM pins for both channels to tristate immediately. TPS53676 then sets the appropriate status bits in STATUS\_WORD and STATUS\_INPUT and asserts the SMB\_ALERT# line if these bits are not masked.

#### 7.7.4.12 Input overpower warning (PIN\_OPW)

The PIN\_OP\_WARN\_LIMIT command sets an input overpower warning limit for the converter. Detection is based on the input power telemetry, which is derived by multiplying the input voltage and input current measurement values. When the input current telemetry measurements exceeds this limit, TPS53676 detects the input overpower warning condition. TPS53676 supports values from 8 to 2044 W.

The input overpower warning does not interrupt power conversion. In response, TPS53676 sets the appropriate status bits in STATUS\_WORD and STATUS\_INPUT and asserts the SMB\_ALERT# line if these bits are not masked.

### 7.7.4.13 PMBus command, memory and logic errors (CML)

The STATUS\_CML command provides information about communication errors which have occurred. Communication errors are warnings and do not cause any interruption to power conversion.

- Invalid command (IVC) occurs when the host attempts to access TPS53676 at a command which it does not support.
- Invalid data (IVD) occurs when the host sends data to a supported command which is out of range or unsupported.
- Packet error check (PEC) error occurs when TPS53676 receives a transaction with an invalid or incorrect PEC byte.
- Communication error (COMM) occurs when the SMBus timeout condition is detected.
- Other (CML\_OTHER) can occur due to multiple conditions (may not be an exhaustive list):
  - Wrong transaction prototype e.g. accessing a read word command as a read block
  - Block command send with the incorrect number of bytes, or block count was not acknowledged



- Bus arbitration was lost
- Transaction aborted

#### 7.8 Programming

#### 7.8.1 PMBus Interface

TPS53676 is designed to be compatible with the timing and physical layer electrical characteristics of the Power Management Bus (PMBus) Specification, part I, revision 1.3.1 available at <a href="http://pmbus.org">http://pmbus.org</a>. The 100-kHz, 400-kHz, and 1000-kHz classes are supported. Input logic levels are designed to be compatible with 1.8-V and 3.3-V logic. PMBus revision 1.3 is derived from the System Management Bus (SMBus) revision 3.0, available at <a href="http://smbus.org/">http://smbus.org/</a>. The communication mechanism is based on the inter-integrated circuit I<sup>2</sup>C protocol.

A master with clock stretching support is mandatory for communication with TPS53676 through the PMBus interface. TPS53676 does support the packet error check (PEC) protocol. If the system host supplies clock pulses for the PEC byte, PEC is used. If the CLK pulses are not present before a STOP, the PEC is not used. TPS53676 can be configured to require PEC for each transaction in systems which require high reliability of communication.

TPS53676 supports the SMB\_ALERT# response protocol. The SMB\_ALERT# response protocol is a mechanism by which a slave device can alert the master device that it is available for communication. The master device processes this event and simultaneously accesses all slave devices on the bus (that support the protocol) through the alert response address (ARA). Only the slave device that caused the alert acknowledges this request. The host device performs a modified receive byte operation to ascertain the slave devices address. At this point, the master device can use the PMBus status commands to query the slave device that caused the alert. By default, these devices implement the auto alert response, a manufacturer specific improvement to the SMB\_ALERT# response protocol, intended to mitigate the issue of bus hogging. For more information on the SMBus alert response protocol, see the System Management Bus (SMBus) specification.

#### 7.8.1.1 PMBus transaction types

Support for the following SMBus transaction types is mandatory. The use of PEC is optional. Refer to the SMBus specification and *Technical Reference Manual* for more detailed transaction diagrams.

Note that the SMBus Write Block and Read Block transaction types contain a repeated start condition, which may not be compatible with all I<sup>2</sup>C master device IP.

- · Write Byte / Read Byte
- · Write Word / Read Word
- Write Block / Read Block
- · Send Byte / Receive Byte
- Block-Write-Block-Read Process Call (for SMBALERT\_MASK commands)

#### 7.8.1.2 PMBus data formats

TPS53676 supports 3 data formats according to the PMBus specification. The data format for each command is listed along with its address and supported values.

- ULINEAR16 format uses a 16-bit unsigned integer. The default LSB size is 2<sup>-10</sup> = 0.97656 mV
- SLINEAR16 format uses a 16-bit number representing a decimal. This number has two fields: the 5 MSB bits form an two's complement exponent, referred to as N, and the 11 LSB bits form a two's complement mantissa, referred to as M. The decimal number is represented as D = M × 2<sup>N</sup>
- **Unsigned binary format** uses direct bit maps with each command being subdivided into multiple fields that can have different meaning. Refer to the register maps in the *Technical Reference Manual* for these commands.

TPS53676 accepts writes to SLINEAR11 format commands with any desired exponent value. TI recommends using the default exponent listed for each command for writes to ensure consistent NVM store and restore behavior.

Telemetry commands in the SLINEAR11 format return data with variable exponent values according to the absolute value of the retured value. As a rule TPS53676 returns data in the SLINEAR11 format with the smallest

possible exponent, to provide the highest possible command resolution. As a result the host must be able to support decoding of the SLINEAR11 format with any exponent value.

#### 7.8.1.2.1 Example PMBus number format conversions

#### Example: Decode SLINEAR11 number E804h

```
E804h = 11101 00000000100b

Exponent = 11101b. N = -3 (5-bit two's complement)

Mantissa = 00000000100b. M = 4 (11-bit two's complement)

The decimal number D = M \times 2^N = 4 \times 2^{-3} = 0.5
```

#### Example: Encode 5.25 to SLINEAR11 with exponent -4

```
Exponent = -4 = 11100b (5-bit two's complement)

Mantissa = 5.25 / 2^N = 5.25 / 2^{-4} = 84d = 00001010100b (11-bit two's complement)

SLINEAR11 representation = 11100 00001010100b = E054h
```

#### Example: Encode 1.00 V to ULINEAR16 with VOUT\_MODE = 16h

```
VOUT_MODE = 16h (Linear Absolute). Exponent (PARAMETER) = 10110b = -10 (5-bit two's complement) 1.00 \text{ V} = 1.00 / 2^{-10} = 1024d = 0400h
```

#### Example: Decode 03E6h in ULINEAR16 with VOUT MODE = 16h

```
VOUT_MODE = 16h (Linear Absolute). Exponent (PARAMETER) = 10110b = -10 (5-bit two's complement) 2^{-10} \times 03D6h = 0.9746 \text{ V}
```

#### 7.8.1.2.2 Example system code for PMBus format conversion

Example code for handling the SLINEAR11 and ULINEAR16 formats at the system level is given below. Example code in C-like syntax is provided for reference only. Error checking code is not included. It is the responsibility of the system designer to verify and test all system code.

```
//Maps 5 bit linear exponent to LSB value (2^(twos complement of index))
const float LUT_linear_exponents[32] = {
    1.0,2.0,4.0,8.0,16.0,32.0,64.0,128.0,256.0,512.0,1024.0,2048.0,4096.0,8192.0,
    16384.0,32768.0,0.0000152587890625,0.000030517578125,0.00006103515625,
    0.0001220703125,0.000244140625,0.00048828125,0.0009765625,0.001953125,0.00390625,
    0.0078125,0.015625,0.03125,0.0625,0.125,0.25,0.5
};
```

#### 图 7-33. Linear exponent to LSB converstion (look-up table approach)



```
unsigned int float_to_slinear11(float number, signed int exponent)
    signed int mantissa;
    float 1sb;
    //Decode the exponent and generate twos complement form
    if(exponent < 0) {</pre>
        1sb = LUT_linear_exponents[(exponent+32)];
    } else {
       lsb = LUT_linear_exponents[exponent];
    //Decode mantissa based on exponent and generate twos complement form
   mantissa = (signed int) (number / lsb);
    //If numbers are negative, de-sign-extend to 5/11 bit numbers
   mantissa &= 0x07FF;
   exponent &= 0x1F;
   return (mantissa | (exponent << 11));</pre>
                               图 7-34. Floating point to SLINEAR11 conversion
float slinear11 to float(unsigned int number)
    unsigned int exponent;
   int mantissa;
    float 1sb;
   exponent = number >> 11;
   mantissa = number & 0x07FF;
    //Sign extend Mantissa to 32 bits (use your int size here)
    if (mantissa > 0 \times 03FF) {
       mantissa |= 0xFFFFF800;
   lsb = LUT_linear_exponents[exponent];
    return ((float)mantissa)*lsb;
}
                               图 7-35. SLINEAR11 to floating point conversion
unsigned int float to ulinear16 (float number, unsigned char vout mode)
{
    float 1sb;
   lsb = LUT_linear_exponents[(vout_mode & 0x1F)];
   return (unsigned int) (number/lsb);
                               图 7-36. Floating point to ULINEAR16 conversion
float ulinear16_to_float(unsigned int number, unsigned char vout_mode)
    float 1sb;
   lsb = LUT_linear_exponents[(vout_mode & 0x1F)];
   return ((float)number) *1sb;
```

#### 图 7-37. ULINEAR16 to floating point conversion

# 7.8.1.3 Raw non-volatile memory programming

TPS53676 has 256 bytes of internal EEPROM non-volatile memory (NVM). Each PMBus command with NVM backup is mapped into the NVM array. For example, if a command supports 16 possible values, there are 4 corresponding bits for that field. The NVM array is designed withstand being overwritten greater than 1,000 times over the lifetime of the device.

The USER\_NVM\_INDEX and USER\_NVM\_EXECUTE commands provide access to read and write the raw data bytes. These commands allow the entire configuration data for the device to be read/written with a minimum number of transactions, to save programming time. The USER\_NVM\_EXECUTE command is a 32 byte block

Instruments

which accesses blocks of raw NVM data. The USER\_NVM\_INDEX command is an auto-incrementing byte command which which selects which 32 bytes of memory are being accessed via the USER NVM EXECUTE command.

The Fusion Digital Power Designer software provided for this device is capable of exporting raw configuration data, as well as XML configuration files containing the value of each PMBus command.

#### **Configuration validation**

The first 9 bytes of data returned by USER NVM EXECUTE with index zero, are identifying information for the configuration. Bytes 0 to 6 represent the IC DEVICE ID. Bytes 7-8 represent the IC DEVICE REV. Byte 9 represents the currently configured PMBus slave address.

During the NVM import process, the controller checks these 9 bytes versus its current configuration, and NACKs the USER NVM EXECUTE (index = 0) command if the data does not match.

#### **Example: Configuration validation**

- Reading the USER NVM EXECUTE (index 0) from a configured device returns value 0x54 49 53 67 60 00 00 04 60 ··· [NVM bytes 0 to 22]. This indicates the configuration data was generated from a device with IC\_DEVICE\_ID 0x54 49 53 67 60 00, IC\_DEVICE\_REV 00 04 and PMBus address 0x60.
- Writing the USER NVM EXECUTE (index 0) with the value 0x54 49 53 67 60 00 00 04 60 ··· [NVM bytes 0 to 22] to a new device causes it to check its IC\_DEVICE\_ID is equal to 0x54 49 53 67 60 00, check its IC DEVICE REV is equal to 00 04 and check its PMBus address 0x60. If any of these checks fail, the write operation is rejected.
- Writing the USER NVM EXECUTE (index 0) with the value 0xFF FF FF FF FF FF 00 04 60 ··· [NVM bytes 0 to 22] to a new device causes it skip the IC DEVICE ID check, but still check its IC DEVICE REV is equal to 00 04 and check its PMBus address 0x60. If any of these checks fail, the write operation is rejected.
- Writing the USER NVM EXECUTE (index 0) with the value 0xFF FF FF FF FF FF FF 60 ··· [NVM bytes 0 to 22] to a new device causes it skip the IC DEVICE ID check, skip its IC DEVICE REV check, but still check its PMBus address 0x60. If any of these checks fail, the write operation is rejected.
- 0 to 22] to a new device causes it skip the IC DEVICE ID check, skip its IC DEVICE REV check, and skip its PMBus address check. No checks were performed, so the data is accepted.

#### Procedure: Read all configuration data

Follow the procedures below to read-back NVM data for TPS53676 devices.

- 1. Configure the device as desired through PMBus commands, then issue STORE USER ALL. Power cycle the device or issue RESTORE USER ALL with power conversion disabled to ensure operating memory and non-volatile memory bytes are matching.
- 2. Write the USER NVM INDEX command to 00h.
- 3. Read back and record the USER NVM EXECUTE command (index = 0).
- 4. Read back and record the USER\_NVM\_EXECUTE command (index = 1).
- 5. Read back and record the USER NVM EXECUTE command (index = 2).
- 6. Read back and record the USER NVM EXECUTE command (index = 3).
- 7. Read back and record the USER NVM EXECUTE command (index = 4).
- 8. Read back and record the USER\_NVM\_EXECUTE command (index = 5).
- 9. Read back and record the USER NVM EXECUTE command (index = 6).
- Read back and record the USER NVM EXECUTE command (index = 7).
- 11. Read back and record the USER NVM EXECUTE command (index = 8). The last 23 bytes of this command are not used by the device. TI recommends replacing these bytes with 00h for consistency across different configurations.

#### Procedure: Write all configuration data

Follow the procedures below to write NVM data for TPS53676 devices.

- 1. Apply +3.3V to the VCC pin of TPS53676
- 2. Ensure power conversion is disabled for both channels.
- 3. Write the USER NVM INDEX command to 00h.
- 4. Write the previously recorded USER\_NVM\_EXECUTE (index = 0). In this example, disable the self-validation checks by replacing the first 9 bytes with FFh.
- 5. Write the previously recorded USER NVM EXECUTE (index = 1).
- 6. Write the previously recorded USER NVM EXECUTE (index = 2).
- 7. Write the previously recorded USER NVM EXECUTE (index = 3).
- 8. Write the previously recorded USER NVM EXECUTE (index = 4).
- 9. Write the previously recorded USER NVM EXECUTE (index = 5).
- 10. Write the previously recorded USER NVM EXECUTE (index = 6).
- 11. Write the previously recorded USER NVM EXECUTE (index = 7).
- 12. Write the previously recorded USER\_NVM\_EXECUTE (index = 8). Replace the last 23 bytes with 00h. An NVM store operation is automatically performed once the last block is successfully received.
- 13. Wait 100 ms for non-volatile memory programming to complete successfully. Ensure that the +3.3V power supply to the device is not interrupted during this time to guarantee proper memory storage and retention.
- 14. **Do not** issue an NVM store operation at this point. This overwrites the NVM array with the data values in operating memory.
- 15. Power cycle the device or issue RESTORE\_USER\_ALL to continue operation with the newly programmed values. Multifunction pin configurations require a power cycle to take effect.

# 表 7-10. Supported Commands and NVM Defaults

| CMD<br>Code | Command Name              | Default Behavior<br>Ch. A (PAGE = 0)                                      | Default Behavior<br>Ch. B (PAGE = 1)        | Default<br>Hex<br>Ch. A | Default<br>Hex<br>Ch. B | R/W<br>Access,                       |
|-------------|---------------------------|---------------------------------------------------------------------------|---------------------------------------------|-------------------------|-------------------------|--------------------------------------|
| 00h         | PAGE                      | Commands address both Channel A and C                                     | Channel B                                   |                         | Fh                      | R/W                                  |
| 01h         | OPERATION                 | OPERATION Off, Margin None                                                | OPERATION Off, Margin None                  | 00h                     | 00h                     | R/W                                  |
| 02h         | ON_OFF_CONFIG             | AVR_EN pin only, Active High                                              | BVR_EN pin only, Active High                | 17h                     | 17h                     | R/W, NVM                             |
| 03h         | CLEAR_FAULTS              | Clears all faults related to channel A                                    | Clears all faults related to channel B      | N/A                     | N/A                     | w                                    |
| 04h         | PHASE                     | Commands address all phases in channel                                    | Commands address all phases in channel B    | FFh                     | FFh                     | R/W                                  |
| 05h         | PAGE_PLUS_WRITE           | Utility to send PAGE along with a PMBus w                                 | vrite transaciton                           | Per co                  | mmand                   | w                                    |
| 06h         | PAGE_PLUS_READ            | Utility to send PAGE along with a PMBus re                                | ead transaciton                             | Per co                  | mmand                   | R                                    |
| 10h         | WRITE_PROTECT             | All commands are writeable                                                |                                             | 00h                     |                         | R/W, NVM                             |
| 15h         | STORE_USER_ALL            | Stores all current storable register settings                             | into NVM as new defaults                    | N/A                     |                         | W                                    |
| 16h         | RESTORE_USER_ALL          | Restores all storable register settings from                              | NVM                                         | N/A                     |                         | W                                    |
| 19h         | CAPABILITY                | 1 MHz, PEC, SMB_ALERT Supported                                           |                                             | D4h 00h 00h             |                         | R                                    |
| 1Bh         | SMBALERT_MASK_WORD        | No SMB_ALERT sources masked                                               | No SMB_ALERT sources masked                 | 00h                     | 00h                     | R/W                                  |
| 1Bh         | SMBALERT_MASK_VOUT        | No SMB_ALERT sources masked                                               | No SMB_ALERT sources masked                 | 00h                     | 00h                     | R/W, NVM                             |
| 1Bh         | SMBALERT_MASK_IOUT        | No SMB_ALERT sources masked                                               | No SMB_ALERT sources masked                 | 00h                     | 00h                     | R/W, NVM                             |
| 1Bh         | SMBALERT_MASK_INPUT       | LOW VIN bit is masked                                                     |                                             | 08h                     |                         | R/W, NVM                             |
| 1Bh         | SMBALERT_MASK TEMPERATURE | No SMB_ALERT sources masked                                               | No SMB_ALERT sources masked                 | 00h                     | 00h                     | R/W, NVM                             |
| 1Bh         | SMBALERT_MASK_CML         | No SMB_ALERT sources masked                                               | No SMB_ALERT sources masked                 | 00h                     | 00h                     | R/W, NVM                             |
| 1Bh         | SMBALERT_MASK_MFR         | No SMB_ALERT sources masked                                               | No SMB_ALERT sources masked                 | 06h                     | 06h                     | R/W, NVM                             |
| 1Bh         | SMBALERT_MASK_OTHER       | FIRST_TO_ALERT does not assert SMB_/                                      | ALERT#                                      | 00                      | 0h                      | R                                    |
| 20h         | VOUT_MODE                 | ULINEAR16 Mode, Absolute,<br>Exponent = -10                               | ULINEAR16 Mode, Absolute,<br>Exponent = -10 | 16h                     | 16h                     | R                                    |
| 21h         | VOUT_COMMAND              | 0.880 V<br>From pin-detection by default                                  | 0.800 V                                     | 03 85h                  | 03 33h                  | R/W,<br>NVM/<br>Pin Detect<br>(Ch A) |
| 22h         | VOUT_TRIM                 | +0.000 V                                                                  | +0.000 V                                    | 00 00h                  | 00 00h                  | R/W, NVM                             |
| 24h         | VOUT_MAX                  | 1.869 V (VBOOT_CHA pinstrp active by default) NVM stored value is 1.200 V | 1.400 V                                     | 07 7Ah /<br>04 CDh      | 05 9Ah                  | R/W, NVM                             |
| 25h         | VOUT_MARGIN_HIGH          | 0.000 V                                                                   | 0.000 V                                     | 00 00h                  | 00 00h                  | R/W                                  |
| 26h         | VOUT_MARGIN_LOW           | 0.000 V                                                                   | 0.000 V                                     | 00 00h                  | 00 00h                  | R/W                                  |
| 27h         | VOUT_TRANSITION_RATE      | 5.0 mV/μs                                                                 | 5.0 mV/μs                                   | E0 50h                  | E0 50h                  | R/W, NVM                             |
| 28h         | VOUT_DROOP                | 0.000 mΩ                                                                  | 0.000 mΩ                                    | C8 00h                  | C8 00h                  | R/W, NVM                             |
| 29h         | VOUT_SCALE_LOOP           | 1.000                                                                     | 1.000                                       | E8 08h                  | E8 08h                  | R/W, NVM                             |
| 2Bh         | VOUT_MIN                  | 0.000 V                                                                   | 0.000 V                                     | 00 00h                  | 00 00h                  | R/W, NVM                             |
| 33h         | FREQUENCY_SWITCH          | 500 kHz                                                                   | 500 kHz                                     | 01 F4h                  | 01 F4h                  | R/W, NVM                             |
| 34h         | POWER_MODE                | DPS disabled, all phases FCCM                                             | DPS disabled, all phases FCCM               | 03h                     | 03h                     | R/W                                  |
| 35h         | VIN_ON                    | 9.250 V                                                                   |                                             | F0                      | 25h                     | R/W, NVM                             |



| CMD  | Command Name              | Default Behavior                            | Default Behavior                            | Default<br>Hex    | Default<br>Hex    | R/W<br>Access, |
|------|---------------------------|---------------------------------------------|---------------------------------------------|-------------------|-------------------|----------------|
| Code | Command Name              | Ch. A (PAGE = 0)                            | Ch. B (PAGE = 1)                            | Ch. A             | Ch. B             | NVM            |
| 38h  | IOUT_CAL_GAIN             | 5.000 m Ω                                   | 5.000 m Ω                                   | CA 80h            | CA 80h            | R/W, NVM       |
| 39h  | IOUT_CAL_OFFSET           | 0.000 A (all phases)                        | 0.000 A (all phases)                        | E8 00h            | E8 00h            | R/W, NVM       |
| 40h  | VOUT_OV_FAULT_LIMIT       | 1.072 V (VOUT_COMMAND + 192 mV)             | 0.992 V (VOUT_COMMAND + 192 mV)             | 04 4Ah            | 03 F7h            | R/W, NVM       |
| 41h  | VOUT_OV_FAULT_RESPONSE    | Latch-off and do not restart                | Latch-off and do not restart                | 80h               | 80h               | R/W, NVM       |
| 42h  | VOUT_OV_WARN_LIMIT        | 1.056 V (VOUT_COMMAND + 176 mV)             | 0.976 V (VOUT_COMMAND + 176 mV)             | 04 39h            | 03 E7h            | R/W, NVM       |
| 43h  | VOUT_UV_WARN_LIMIT        | 0.704 V (VOUT_COMMAND - 176 mV)             | 0.623 V (VOUT_COMMAND - 176 mV)             | 02 D1h            | 02 7Eh            | R/W, NVM       |
| 44h  | VOUT_UV_FAULT_LIMIT       | 0.688 V (VOUT_COMMAND - 192 mV)             | 0.607 V (VOUT_COMMAND - 192 mV)             | 02 C0h            | 02 6Eh            | R/W, NVM       |
| 45h  | VOUT_UV_FAULT_RESPONSE    | Latch-off after 5.0 μs and do not restart   | Latch-off after 5.0 μs and do not restart   | 40h               | 40h               | R/W, NVM       |
| 46h  | IOUT_OC_FAULT_LIMIT       | 480 A total current                         | 80 A total current                          | 10 E0h            | 00 50h            | R/W, NVM       |
| 4011 | 1001_00_17\021_Eli\li\li\ | 53 A phase current                          | 53 A phase current                          | 00 35h            | 00 35h            | 1000,100101    |
| 47h  | IOUT_OC_FAULT_RESPONSE    | Latch-off and do not restart                | Latch-off and do not restart                | C0h               | C0h               | R/W, NVM       |
| 4Ah  | IOUT_OC_WARN_LIMIT        | 440 A total current                         | 60 A total current                          | 01 B8h            | 00 3Ch            | R/W, NVM       |
| 4Fh  | OT_FAULT_LIMIT            | 120°C                                       | 120°C                                       | 00 78h            | 00 78h            | R/W, NVM       |
| 50h  | OT_FAULT_RESPONSE         | Latch-off and do not restart                | Latch-off and do not restart                | 80h               | 80h               | R/W, NVM       |
| 51h  | OT_WARN_LIMIT             | 110°C                                       | 110°C                                       | 00 6Eh            | 00 6Eh            | R/W, NVM       |
| 55h  | VIN_OV_FAULT_LIMIT        | 15.0 V                                      |                                             | 00 0Fh            |                   | R/W, NVM       |
| 56h  | VIN_OV_FAULT_RESPONSE     | Latch-off and do not restart                |                                             | 80h               |                   | R/W, NVM       |
| 57h  | VIN_OV_WARN_LIMIT         | 14.0 V                                      |                                             | 00 0Eh            |                   | R/W, NVM       |
| 58h  | VIN_UV_WARN_LIMIT         | 8.50 V                                      |                                             | F0 22h            |                   | R/W, NVM       |
| 59h  | VIN_UV_FAULT_LIMIT        | 8.00 V                                      |                                             | F0 20h            |                   | R/W, NVM       |
| 5Ah  | VIN_UV_FAULT_RESPONSE     | Latch-off and do not restart                |                                             | 80h               |                   | R/W, NVM       |
| 5Bh  | IIN_OC_FAULT_LIMIT        | 52.0 A                                      |                                             | 00 34h            |                   | R/W, NVM       |
| 5Ch  | IIN_OC_FAULT_RESPONSE     | Latch-off and do not restart                |                                             | С                 | 0h                | R/W, NVM       |
| 5Dh  | IIN_OC_WARN_LIMIT         | 44.0 A                                      |                                             | 00                | 2Ch               | R/W, NVM       |
| 60h  | TON_DELAY                 | 0.00 ms                                     | 0.00 ms                                     | F8 00h            | F8 00h            | R/W, NVM       |
| 61h  | TON_RISE                  | 1.5 ms (SR <sub>BOOT</sub> = 0.625 mV/ μ s) | 1.5 ms (SR <sub>BOOT</sub> = 0.625 mV/ μ s) | F0 06h            | F0 06h            | R/W, NVM       |
| 62h  | TON_MAX_FAULT_LIMIT       | 2.0 ms                                      | 2.0 ms                                      | F0 08h            | F0 08h            | R/W, NVM       |
| 63h  | TON_MAX_FAULT_RESPONSE    | Latch-off and do not restart                | Latch-off and do not restart                | 80h               | 80h               | R/W, NVM       |
| 64h  | TOFF_DELAY                | 0.00 ms                                     | 0.00 ms                                     | F8 00h            | F8 00h            | R/W, NVM       |
| 65h  | TOFF_FALL                 | 1.5 ms (SR <sub>OFF</sub> = 0.625 mV/ μs)   | 1.5 ms (SR <sub>OFF</sub> = 0.625 mV/ μ s)  | F0 06h            | F0 06h            | R/W, NVM       |
| 6Bh  | PIN_OP_WARN_LIMIT         | 592.0 W                                     |                                             | 09 28h            |                   | R/W, NVM       |
| 78h  | STATUS_BYTE               | Current status channel A                    | Current status channel B                    | Current<br>Status | Current<br>Status | R              |
| 79h  | STATUS_WORD               | Current status channel A                    | Current status channel B                    | Current<br>Status | Current<br>Status | R/W            |
| 7Ah  | STATUS_VOUT               | Current status channel A                    | Current status channel B                    | Current<br>Status | Current<br>Status | R/W            |

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated



|      | 表 7-10. Supported Commands and NVM Defaults (continued) |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |              |  |  |  |
|------|---------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--|--|--|
| CMD  |                                                         | Default Behavior                            | Default Behavior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default            | Default  | R/W          |  |  |  |
| Code | Command Name                                            | Ch. A (PAGE = 0)                            | Ch. B (PAGE = 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hex                | Hex      | Access,      |  |  |  |
|      |                                                         | , ,                                         | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ch. A              | Ch. B    | NVM          |  |  |  |
| 706  | CTATUS IOLIT                                            | Current status channel A                    | Current status shannel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Current            | Current  | DAM          |  |  |  |
| 7Bh  | STATUS_IOUT                                             | Current status channel A                    | Current status channel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Status             | Status   | R/W          |  |  |  |
| 7Ch  | STATUS_INPUT                                            | Current status                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Curren             | t Status | R/W          |  |  |  |
|      |                                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Current            | Current  |              |  |  |  |
| 7Dh  | STATUS_TEMPERATURE                                      | Current status channel A                    | Current status channel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Status             | Status   | R/W          |  |  |  |
|      |                                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Current            | Current  |              |  |  |  |
| 7Eh  | STATUS_CML                                              | Current status                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Status             | Status   | R/W          |  |  |  |
|      |                                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Current            | Current  |              |  |  |  |
| 7Fh  | STATUS_OTHER                                            | Current status                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | status             | status   | R/W          |  |  |  |
|      |                                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Current            | Current  |              |  |  |  |
| 80h  | STATUS_MFR_SPECIFIC                                     | Current status channel A                    | Current status channel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Status             | Status   | R/W          |  |  |  |
| 005  | DEAD VIN                                                | Manager disput valters                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | t Status |              |  |  |  |
| 88h  | READ_VIN                                                | Measured input voltage                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          | R            |  |  |  |
| 89h  | READ_IIN                                                | Measured input current                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Curren             | t Status | R            |  |  |  |
| 8Bh  | READ_VOUT                                               | Measured output voltage channel A           | Measured output voltage channel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Current            | Current  | R            |  |  |  |
|      | 1.2.2.2.00                                              |                                             | gg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Status             | Status   |              |  |  |  |
| 8Ch  | BEAD IOUT                                               | Macaurad output ourrent channel A           | Magazirod autout aurrent channel P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Current            | Current  | R            |  |  |  |
| OCII | READ_IOUT                                               | Measured output current channel A           | Measured output current channel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Status             | Status   |              |  |  |  |
| 0.01 |                                                         | Measured power stage temperature            | Measured power stage temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Current            | Current  |              |  |  |  |
| 8Dh  | READ_TEMPERATURE_1                                      | channel A                                   | channel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Status             | Status   | R            |  |  |  |
|      |                                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Current            | Current  | _            |  |  |  |
| 96h  | READ_POUT                                               | Calculated output power channel A           | Calculated output power channel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Status             | Status   | R            |  |  |  |
| 97h  | READ_PIN                                                | Calculated input power                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Curren             | t Status | R            |  |  |  |
| 98h  | PMBUS_REVISION                                          | Revision 1.3, Part I and Part II compatible |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                 | 3h       | R            |  |  |  |
| 99h  | MFR_ID                                                  | Manufacturer company identification         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02 00 00h          |          | R/W, NVM     |  |  |  |
| 9Ah  | MFR_MODEL                                               | Manufacturer model identification           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 00              | 00h      | R/W, NVM     |  |  |  |
| 9Bh  | MFR_REVISION                                            | Manufacturer revision identification        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 00 00h          |          | R/W, NVM     |  |  |  |
| 9Dh  | MFR_DATE                                                | Manufacturer date identification            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 00 00h          |          | R/W, NVM     |  |  |  |
| ADh  | IC_DEVICE_ID                                            | TPS53676                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54 49 53 67 60 00h |          | R            |  |  |  |
| AEh  | IC_DEVICE_REV                                           | Revision 2                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00 04h             |          | R            |  |  |  |
|      |                                                         | DC load line: $0.00~\text{m}\Omega$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |              |  |  |  |
|      |                                                         | AC load line: 0.20 m $\Omega$               | AC load line: 0.4375 m $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          |              |  |  |  |
|      |                                                         | Integration time contsant: 1.0 µs           | Integration time contsant: 7.0 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 D0 0E           | 00 53 66 |              |  |  |  |
| B1h  | USER_DATA_01 (COMPENSATION_CONFIG)                      | Dynamic integration contsant: 4.0 μs        | Dynamic integration contsant: 3.0 μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73 0D D0           | 72 1C D0 | R/W, NVM     |  |  |  |
| 5111 | COLIT_DATA_OT (COMPENSATION_CONFIG)                     | Dynamic integration threshold: 60 mV        | Dynamic integration threshold: 120 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 C8h             | 00 C8h   | IVVV, INVIVI |  |  |  |
|      |                                                         | AC gain: 1.0                                | AC gain: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 0011            | 00 0011  |              |  |  |  |
|      |                                                         |                                             | T. Control of the Con |                    |          |              |  |  |  |
|      |                                                         | Integration gain: 1.0                       | Integration gain: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |          |              |  |  |  |



|             |                                               |                                                                                        | NVWI Defaults (continue              |                         | D-f- "                      | Barr     |
|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------|-------------------------|-----------------------------|----------|
| CMD<br>Code | Command Name                                  | Default Behavior<br>Ch. A (PAGE = 0)                                                   | Default Behavior<br>Ch. B (PAGE = 1) | Default<br>Hex<br>Ch. A | Default<br>Hex<br>Ch. B     | Access,  |
|             |                                               | USR1 threshold: 120 mV                                                                 | USR1 threshold: 120 mV               |                         |                             |          |
|             |                                               | USR2 threshold: 50 mV                                                                  | USR2 threshold: 50 mV                |                         |                             |          |
|             |                                               | Min off time: 30 ns                                                                    | Min off time: 30 ns                  | 31 1A 0F                | 31 1A 0F                    |          |
| B2h         | USER_DATA_02 (NONLINEAR_CONFIG)               | Blanking time: 30 ns                                                                   | Blanking time: 35 ns                 | 06 DAh                  | 07 DAh                      | R/W, NVM |
|             |                                               | OSR: Disabled                                                                          | OSR: Disabled                        | 00 27 111               | 07 2741                     |          |
|             |                                               | USR1 phases: 4 phases                                                                  | USR1 phases: 4 phases                |                         |                             |          |
|             |                                               | Corti pilacco. I pilacco                                                               | Corr. p.i.acco p.i.acco              |                         |                             |          |
|             |                                               |                                                                                        |                                      |                         | 31 04 82 01                 |          |
| B3h         | USER_DATA_03 (PHASE_CONFIG)                   | 6+1 configuration, 0-2-4-1-3-5 order on                                                | channel A                            |                         | 5 85 10 80                  | R/W, NVM |
|             |                                               |                                                                                        |                                      |                         | 00 00 00 00                 |          |
|             |                                               |                                                                                        |                                      | 00 0                    | 0 00h                       |          |
|             |                                               | DCLL up: 0.00 m $\Omega$                                                               | DCLL up: 0.00 m $\Omega$             |                         |                             |          |
|             |                                               | DCLL down: 0.00 m $\Omega$                                                             | DCLL down: 0.00 m Ω                  |                         |                             |          |
|             |                                               | ACLL up: 0.50 m Ω                                                                      | ACLL up: 0.75 m Ω                    | 03 60 08                | 03 20 0C                    |          |
| B4h         | USER_DATA_04 (DVID_CONFIG)                    | ACLL down: 0.50 m Ω                                                                    | ACLL down: 0.50 m Ω                  | 08 00 00h               | 08 00 00h                   | R/W, NVM |
|             |                                               | Boot offset: 90mV                                                                      | Boot offset: 40mV                    |                         |                             |          |
|             |                                               | Dynamic offsets: 0 mV                                                                  | Dynamic offsets: 0 mV                |                         |                             |          |
|             |                                               |                                                                                        |                                      | 20.00.44                | 00.00.44                    |          |
|             |                                               |                                                                                        |                                      | 30 08 44                | 30 08 44                    |          |
|             | USER_DATA_07 (PHASE_SHED_CONFIG)              |                                                                                        |                                      | 44 44 44                | 44 44 44                    |          |
| B7h         |                                               | Phase shedding disabled                                                                | Phase shedding disabled              | 44 2F FF                | 48 2F FF                    | R/W, NVM |
|             |                                               |                                                                                        |                                      | FF FF FF                | FF FF FF                    |          |
|             |                                               |                                                                                        |                                      | FFh                     | FFh                         |          |
| B8h         | USER_DATA_08 (AVSBUS_CONFIG)                  | 3-Wire AVSBus mode                                                                     |                                      | 0                       | 1h                          | R/W, NVM |
| BAh         | USER_DATA_10 (ISHARE_CONFIG)                  | All phases = 1.0 K <sub>T</sub>                                                        | All phases = 1.0 K <sub>T</sub>      | 04h all<br>phases       | 04h all<br>phases           | RW, NVM  |
|             |                                               | ISHARE warning: 50 mV                                                                  |                                      |                         |                             |          |
|             |                                               | Fixed OVP channel A: 1.2 V                                                             |                                      |                         |                             |          |
| BBh         | USER_DATA_11                                  | Fixed OVP channel B: 1.6 V                                                             |                                      |                         | 00 02 55 00                 | RW, NVM  |
|             | (MFR_PROTECTION_CONFIG)                       | Powerstage fault response: Latch-off                                                   |                                      | 00 0                    | 00 00 00h                   |          |
|             |                                               | Hiccup wait time: 25 ms                                                                |                                      |                         |                             |          |
|             |                                               |                                                                                        |                                      | 88 00 00 0              | 00 50 00 00                 |          |
| BDh         | USER_DATA_13                                  | IIN abunt: 0.5 m 0. (analog gain: 20. dia                                              | wital gain = 90)                     |                         |                             | RW, NVM  |
| DDII        | (MFR_CALIBRATION_CONFIG)                      | IIN shunt: $0.5 \text{ m}\Omega$ (analog gain: 20, digital gain = 80)                  |                                      |                         | 00 00 00 00 00 00 00<br>00h |          |
|             |                                               |                                                                                        |                                      | 0                       | 0011                        |          |
| CDh         | MFR_SPECIFIC_CD (MULTIFUNCTION_PIN            | Pin 43: BTSEN                                                                          |                                      | Default                 | Default Settings            |          |
|             | _CONFIG_1)                                    | Pin 19: BVR_EN                                                                         |                                      |                         | 3                           | RW, NVM  |
| CEh         | MFR_SPECIFIC_CE (MULTIFUNCTION_PIN _CONFIG_2) | Pin 44: ATSEN                                                                          |                                      | Default                 | Default Settings            |          |
|             | MFR_SPECIFIC_CF                               |                                                                                        |                                      |                         |                             |          |
| CFh         | (SMBALERT_MASK_EXTENDED)                      | On-the-fly SMB_ALERT# Mask bits for bits in STATUS_EXTENDED 00 00 00 00 00 00 00 00 00 |                                      | RW                      |                             |          |
|             |                                               |                                                                                        |                                      | _                       |                             |          |
| D1h         | MFR_SPECIFIC_D1                               | Peak logging function for output voltage                                               | e telemetry                          | Current                 | Current                     | RW       |
|             | (READ_VOUT_MIN_MAX)                           |                                                                                        |                                      |                         | status                      |          |
| DO!         | MFR_SPECIFIC_D2                               | t talamatu.                                                                            | Current                              | Current                 | DVA                         |          |
| D2h         | (READ_IOUT_MIN_MAX)                           | Peak logging function for output current telemetry                                     |                                      |                         | status                      | RW       |
|             | MFR_SPECIFIC_D3                               |                                                                                        |                                      | Current                 | Current                     |          |
| D3h         | (READ_TEMPERATURE_MIN_MAX)                    | Peak logging function for temperature t                                                | relemetry                            | status                  | status                      | RW       |
|             |                                               | 1                                                                                      |                                      | า รเสเนร                | เ อเสเนร                    | 1        |



|             |                                       | orted Commands and N                                                                | vivi belaults (continueu)            |                         |                         |                       |
|-------------|---------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|-------------------------|-------------------------|-----------------------|
| CMD<br>Code | Command Name                          | Default Behavior<br>Ch. A (PAGE = 0)                                                | Default Behavior<br>Ch. B (PAGE = 1) | Default<br>Hex<br>Ch. A | Default<br>Hex<br>Ch. B | R/W<br>Access,<br>NVM |
| D4h         | MFR_SPECIFIC_D4<br>(READ_MFR_VOUT)    | Ouptut voltage telemetry in SLINEAR11 format                                        |                                      | Current<br>status       | Current<br>status       | R                     |
| D5h         | MFR_SPECIFIC_D5<br>(READ_VIN_MIN_MAX) | Peak logging function for input voltage tele                                        | metry                                | Current status          |                         | RW                    |
| D6h         | MFR_SPECIFIC_D6 READ_IIN_MIN_MAX      | Peak logging function for input current teler                                       | metry                                | Current status          |                         | RW                    |
| D7h         | MFR_SPECIFIC_D7<br>(READ_PIN_MIN_MAX) | Peak logging function for input power telemetry                                     |                                      | Current status          |                         | RW                    |
| D8h         | MFR_SPECIFIC_D8 (READ_POUT_MIN_MAX)   | Peak logging function for ouptut power tele                                         | metry                                | Current<br>status       | Current<br>status       | RW                    |
| DAh         | MFR_SPECIFIC_DA (READ_ALL)            | Returns all telemetry data for the current channel                                  |                                      | Current<br>status       | Current<br>status       | R                     |
| DBh         | MFR_SPECIFIC_DB<br>(STATUS_ALL)       | Returns all status information for the current channel                              |                                      | Current<br>status       | Current<br>status       | R                     |
| DCh         | MFR_SPECIFIC_DC<br>(STATUS_PHASES)    | Returns status information for phase-wise to                                        | aults OCL and ISHARE                 | Current status          |                         | R                     |
| DDh         | MFR_SPECIFIC_DD (STATUS_EXTENDED)     | Returns status information for Manufacturer specific bits                           |                                      | Current status          |                         | R                     |
| E3h         | MFR_SPECIFIC_E3 (VR_FAULT_CONFIG)     | VR_FAULT# asserts only due to faults on channel A. OC and OT fault assert VR_FAULT# |                                      | 00 0Eh                  |                         | RW, NVM               |
| E4h         | MFR_SPECIFIC_E4 (SYNC_CONFIG)         | Closed loop frequency enabled for both channels                                     |                                      | 00 12 0A 0A 00 00h      |                         |                       |
| EDh         | MFR_SPECIFIC_ED (MISC_OPTIONS)        | FCCM mode, both channels, PEC not required.                                         |                                      | 10 00 00 60 00h         |                         | RW, NVM               |
| EEh         | MFR_SPECIFIC_EE (PIN_DETECT_OVERRIDE) | Pin detect enabled for ADDR and BOOT_CHA                                            |                                      | 03h                     |                         | RW, NVM               |
| EFh         | MFR_SPECIFIC_EF (SLAVE_ADDRESS)       | 00h in NVM Given by pin-detection by default                                        |                                      | ADDR pinstrap           |                         | RW, NVM               |
| F0h         | MFR_SPECIFIC_F0 (NVM_CHECKSUM)        | CRC of NVM data bytes                                                               |                                      | Current status          |                         | R                     |
| F5h         | MFR_SPECIFIC_F5 (USER_NVM_INDEX)      | Index = 0 (auto-incrementing)                                                       |                                      | Default Settings        |                         | RW                    |
| F6h         | MFR_SPECIFIC_F6 (USER_NVM_EXECUTE)    | Raw NVM data bytes                                                                  |                                      | Default Settings        |                         | RW, NVM               |
| FAh         | MFR_SPECIFIC_FA (NVM_LOCK)            | NVM unlocked                                                                        |                                      | 00 00h                  |                         | RW, NVM               |
| FBh         | MFR_SPECIFIC_FB (MFR_WRITE_PROTECT)   | No command groups write protected                                                   |                                      | 00 00h                  |                         | RW, NVM               |

# TEXAS INSTRUMENTS www.ti.com.cn

#### 7.8.1.4 PMBus Command Descriptions

#### 7.8.1.4.1 (00h) PAGE

Address: 00h

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: No / No

Reset Value: FFh

Updates Allowed: On-the-fly

Supported Values: 00h: Channel A
01h: Channel B
FFh: Both channels

Description: Selects which channel future PMBus commands address, in multi-channel devices.

#### 7.8.1.4.2 (01h) OPERATION

Address: 01h

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: 00h
Updates Allowed: On-the-fly

Supported Values: 00h: Immediate Off, Margin None

40h: Soft-Off, Margin None 80h: On, Margin None 98h: On, Margin Low, Act on Faults

9901: On, Margin Low, Act on Faults
A8h: On, Margin High, Act on Faults
94h: On, Margin Low, Ignore Faults
A4h: On, Margin High, Ignore Faults
R0h: On, AVSRus controls the output to

B0h: On, AVSBus controls the output voltage

Other possible values not shown. See the Technical Reference Manual

Description: The OPERATION command is used to enable or disable power conversion, in conjunction input from the enable pins, according to the configuration

of the ON\_OFF\_CONFIG command.

#### 7.8.1.4.3 (02h) ON\_OFF\_CONFIG

Address: 02h

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly

Supported Values: 03h: Always converting when power is present

16h: VR\_EN pin only, Active High, Soft-Off 17h: VR\_EN pin only, Active High, Immediate Off

1Bh: OPERATION command only

Other possible values not shown. See the Technical Reference Manual

Description: The ON\_OFF\_CONFIG command configures the combination of enable pin input and serial bus commands needed to enable/disable power

conversion

#### 7.8.1.4.4 (03h) CLEAR\_FAULTS

Address: 03h

Transaction Type: Send Byte

Data Format: Data-less

Paged / Phased: Yes / No

Reset Value: N/A

Updates Allowed: On-the-fly

Supported Values: N/A

Description: CLEAR\_FAULTS is used to clear any fault bits that have been set. This command simultaneously clears all bits in all status registers in the selected

PAGE. At the same time, the device releases its SMB\_ALERT# signal output, if SMB\_ALERT# is asserted. CLEAR\_FAULTS is a write-only

command with no data.

#### 7.8.1.4.5 (04h) PHASE

Address: 04h

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: FFh
Updates Allowed: On-the-fly

Supported Values: FFh: Address all phases in the current PAGE

00h to 06h: Address individual phases. For example, 00h addresses Phase 1 (Order 0), and so on.

Description: Selects which phase future PMBus commands address within the active PAGE.

#### 7.8.1.4.6 (05h) PAGE\_PLUS\_WRITE

Address: 05h
Transaction Type: Block Write

Data Format: Unsigned Binary (variable block length)

Paged / Phased: No
Reset Value: N/A
Updates Allowed: On-the-fly

Supported Values: Per command description.

Description: Utility to send PAGE along with a PMBus command write. See the Technical Reference Manual for more information.

#### 7.8.1.4.7 (06h) PAGE\_PLUS\_READ

Address: 06h

Transaction Type: Block-Write-Block-Read Process Call
Data Format: Unsigned Binary (variable block size)

 Paged / Phased:
 No / No

 Reset Value:
 N/A

 Updates Allowed:
 On-the-fly

Supported Values: Per command description.

Description: Utility to send a PAGE and a PMBus read in the same transaction. See the Technical Reference Manual for more information.

#### 7.8.1.4.8 (10h) WRITE\_PROTECT

Address: 10h

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

 Paged / Phased:
 No / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-fly

Supported Values: 00h: Write protection disabled (all writeable commands are accessible)

20h: Disable writes to all commands except WRITE\_PROTECT, OPERATION, PAGE, ON\_OFF\_CONFIG, and VOUT\_COMMAND.

40h: Disable writes to all commands except WRITE\_PROTECT, OPERATION and PAGE

80h: Disable writes to all commands except WRITE\_PROTECT

Description: The WRITE\_PROTECT command controls which commands are writeable by the PMBus host.

# 7.8.1.4.9 (15h) STORE\_USER\_ALL

 Address:
 15h

 Transaction Type:
 Send Byte

 Data Format:
 Data-less

 Paged / Phased:
 No / No

 Reset Value:
 N/A

Updates Allowed: Not recommended for on-the-fly-use, but not explicitly blocked

Supported Values: N/A

Description: The STORE\_USER\_ALL command instructs the PMBus device to copy the entire contents of the Operating Memory to the matching locations in the

non-volatile User Store memory

# 7.8.1.4.10 (16h) RESTORE\_USER\_ALL

Address: 16h

 Transaction Type:
 Send Byte / N/A

 Data Format:
 Data-less

 Paged / Phased:
 No / No

 Reset Value:
 N/A

Copyright © 2023 Texas Instruments Incorporated



Updates Allowed: Blocked During Regulation

Supported Values: N/A

Description: The RESTORE\_USER\_ALL command instructs the PMBus device to copy the entire contents of the non-volatile User Store memory to the matching

locations in the Operating Memory.

#### 7.8.1.4.11 (19h) CAPABILITY

Address: 19h
Transaction Type: Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: No / No
Reset Value: D0h
Updates Allowed: N/A

Supported Values: D4h: PEC, 1MHz, SMB\_ALERT, Supported, Linear format, AVSBus

Description: This command provides a way for the host to determine the capabilities of this PMBus device.

#### 7.8.1.4.12 (1Bh) SMBALERT\_MASK\_WORD

Address: 1Bh (with CMD byte = 79h)

Transaction Type: Block-Write-Block-Read Process Call

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly

Supported Values: One mask bit for each supported status bit

Description: SMBALERT\_MASK bits for the STATUS\_WORD (upper byte of STATUS\_BYTE) command.

#### 7.8.1.4.13 (1Bh) SMBALERT\_MASK\_VOUT

Address: 1Bh (with CMD byte = 7Ah)

Transaction Type: Write Word / Block-Write-Block-Read Process Call

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly

Supported Values: One mask bit for each supported status bit

Description: SMBALERT\_MASK bits for the STATUS\_VOUT command.

# 7.8.1.4.14 (1Bh) SMBALERT\_MASK\_IOUT

Address: 1Bh (with CMD byte = 7Bh)

Transaction Type: Write Word / Block-Write-Block-Read Process Call

Data Format: Unsigned Binary (1 byte)

 Paged / Phased:
 Yes / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-fly

Supported Values: One mask bit for each supported status bit

Description: SMBALERT\_MASK bits for the STATUS\_IOUT command.

#### 7.8.1.4.15 (1Bh) SMBALERT\_MASK\_INPUT

Address: 1Bh (with CMD byte = 7Ch)

Transaction Type: Write Word / Block-Write-Block-Read Process Call

Data Format: Unsigned Binary (1 byte)

 Paged / Phased:
 No / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-fly

Supported Values: One mask bit for each supported status bit

Description: SMBALERT\_MASK bits for the STATUS\_INPUT command.

#### 7.8.1.4.16 (1Bh) SMBALERT\_MASK\_TEMPERATURE

Address: 1Bh (with CMD byte = 7Dh)

Transaction Type: Write Word / Block-Write-Block-Read Process Call

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly

Supported Values: One mask bit for each supported status bit

SMBALERT\_MASK bits for the STATUS\_TEMPERATURE command. Description:

#### 7.8.1.4.17 (1Bh) SMBALERT\_MASK\_CML

1Bh (with CMD byte = 7Eh) Address

Transaction Type: Write Word / Block-Write-Block-Read Process Call

Unsigned Binary (1 byte)

Paged / Phased: No / No NVM Reset Value: Updates Allowed: On-the-fly

Supported Values: One mask bit for each supported status bit

Description: SMBALERT\_MASK bits for the STATUS\_CML command.

#### 7.8.1.4.18 (1Bh) SMBALERT\_MASK\_MFR

1Bh (with CMD byte = 80h)

Write Word / Block-Write-Block-Read Process Call Transaction Type:

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly

Supported Values: One mask bit for each supported status bit

Description: SMBALERT\_MASK bits for the STATUS\_MFR command.

# 7.8.1.4.19 (20h) VOUT\_MODE

Address: Transaction Type: Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No Reset Value:

Updates Allowed: Blocked during regulation

Supported Values: 16h: Linear Mode, Absolute, Exponent = -10

Description: Specifies the data format for all output voltage related commands.

#### 7.8.1.4.20 (21h) VOUT\_COMMAND

Address:

Transaction Type: Write Word / Read Word ULINEAR16 (N = -10) Data Format:

Paged / Phased: Yes / No

Reset Value: Channel A: NVM or Pinstrap depending on the setting of PIN\_DETECT\_OVERRIDE for BOOT\_CHA

Channel B: NVM only.

Updates Allowed: on-the-fly

Supported Values: 0.000 to 1.87 V, VOUT\_MAX  $\leq$  1.870 V

 $0.000 \text{ to } 3.740 \text{ V. } 1.870 < \text{VOUT MAX} \le 3.740 \text{ V}$ 0.000 to 5.500 V, VOUT\_MAX > 3.74 V

LSB = 2<sup>N</sup> per VOUT MODE

Description: Updates the output voltage target for the controller when the OPERATION command is set to "Margin None."

Product Folder Links: TPS53676

#### 7.8.1.4.21 (22h) VOUT\_TRIM

Address: 22h

Write Word / Read Word Transaction Type:



Data Format: SLINEAR16 (N = -10)

 Paged / Phased:
 Yes / No

 Reset Value:
 NVM

 Updates Allowed:
 on-the-fly

Supported Values: -125 mV to +124 mV

LSB = 2<sup>N</sup> per VOUT\_MODE

Description: Used to apply a fixed offset voltage to the output voltage command value.

#### 7.8.1.4.22 (24h) VOUT\_MAX

Address: 24h

Transaction Type: Write Word / Read Word

Data Format: ULINEAR16 (N = -10)

Paged / Phased: Yes / No
Reset Value: NVM

Initialized to 1.87 V / 3.74 V / 5.5 V when pinstrapping is used for channel A VBOOT. The next value greater than the chosen boot voltage is

selected, e.g. 1.87 V for VBOOT = 0.85 V, and 3.74 V for VBOOT = 1.9 V.

Updates Allowed: On-the-fly

Supported Values: 0.000 V to 5.500 V

LSB = 2<sup>N</sup> per VOUT\_MODE

Description: Sets an upper limit on the output voltage the unit can command regardless of any other commands or combinations.

#### 7.8.1.4.23 (25h) VOUT\_MARGIN\_HIGH

Address: 25h

Transaction Type: Write Word / Read Word

Data Format: ULINEAR16 (N = -10)

Paged / Phased: Yes / No
Reset Value: 0.000 V
Updates Allowed: On-the-fly

Supported Values: Same as VOUT\_COMMAND.  $\mathsf{LSB} = \mathsf{2^N} \ \mathsf{per} \ \mathsf{VOUT} \_ \mathsf{MODE}$ 

Description: Loads the unit with the voltage to which the output is to be changed when the OPERATION command is set to "Margin High."

# 7.8.1.4.24 (26h) VOUT\_MARGIN\_LOW

Address: 26h

Transaction Type: Write Word / Read Word

Data Format: ULINEAR16 (N = -10)

Paged / Phased: Yes / No
Reset Value: 0.000 V
Updates Allowed: On-the-fly

Supported Values: Same as VOUT\_COMMAND.

LSB = 2<sup>N</sup> per VOUT\_MODE

Description: Loads the unit with the voltage to which the output is to be changed when the OPERATION command is set to "Margin Low."

#### 7.8.1.4.25 (27h) VOUT\_TRANSITION\_RATE

Address: 27h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = -4)

Paged / Phased: Yes / No
Reset Value: Yes
Updates Allowed: On-the-fly

Supported Values: 0.3125 to 40 mV/  $\mu$  s See the *Technical Reference Manual* for all supported values.

Description: Sets the slew rate at which any output voltage changes during normal power conversion occur. The output voltage slew rate is slightly (nominally

+5%) higher when the transition is commanded through PMBus vs. AVSBus.

#### 7.8.1.4.26 (28h) VOUT\_DROOP

Address: 28h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = -7)

Submit Document Feedback

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly

Supported Values: 0.0 to 1.0 m  $\Omega$  with 7.8125  $\mu$   $\Omega$  resolution

1.0 to 2.0 m  $\Omega$  with 15.625  $\mu$   $\Omega$  resolution 2.0 to 4.0 m  $\Omega$  with 31.25  $\mu$   $\Omega$  resolution 4.0 to 8.0 m  $\Omega$  with 62.50  $\mu$   $\Omega$  resolution

Description: Sets the rate, in mV/A (m  $\Omega$ ) at which the output voltage decreases with increasing output current for use with adaptive voltage positioning. Also

referred to as the DC Load Line (DCLL).

#### 7.8.1.4.27 (29h) VOUT\_SCALE\_LOOP

Address: 29h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = -3)

Paged / Phased: Yes / No
Reset Value: NVM

Updates Allowed: Blocked during regulation

Supported Values: 1.000

0.500 (Recommended for output voltages greater than 3.000 V)

Description: Sets the scaling factor between the output voltage and the input voltage to the controller VSP, VSN pins.

#### 7.8.1.4.28 (2Bh) VOUT\_MIN

Address: 2Bh

Transaction Type: Write Word / Read Word

Data Format: ULINEAR16 (N = -10)

Paged / Phased: Yes / No Reset Value: NVM

Initialized to 0.0 V always, when pinstrapping is used for channel A boot voltage.

Updates Allowed: On-the-fly
Supported Values: 0.000 to 5.500 V

LSB = 2<sup>N</sup> per VOUT\_MODE

Description: Sets a lower limit on the output voltage the unit can command regardless of any other commands or combinations.

# 7.8.1.4.29 (33h) FREQUENCY\_SWITCH

Address: 33h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = 0)

 Paged / Phased:
 Yes / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-fly

Supported Values: 300 to 2000 kHz, 50 kHz steps to 1800 kHz, 100 kHz steps after.

Description: Sets the per-phase switching frequency for the controller.

#### 7.8.1.4.30 (34h) POWER\_MODE

CMD Address 34h

Transaction type: Write Byte /

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No

Reset Value: Based on DPS\_EN and AUTO\_DCM bits in PHASE\_SHED\_CONFIG and MISC\_OPTIONS.

Product Folder Links: TPS53676

Updates allowed: On-the-fly

00h: Maximum efficiency (auto DCM all phases, DPS enabled)
Supported values: 03h: Maximum power (FCCM all phases, DPS disabled)
04h: Mfr specific (auto DCM 1 phase, FCCM others, DPS enabled).

Description: Set the controller to different power modes.

#### 7.8.1.4.31 (35h) VIN\_ON

Address: 35h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = -2)



 Paged / Phased:
 No / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-fly

Supported Values: 4.25 to 11.50 V, in 0.25 V steps

Description: Sets the value of the input voltage, in Volts, at which the unit starts power conversion.

#### 7.8.1.4.32 (38h) IOUT\_CAL\_GAIN

Address: 38h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = -7)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-flv

Supported Values: 4.500 to 5.493 m  $\Omega$  in 7.8125  $\mu$   $\Omega$  steps

Description: Sets the ratio of the voltage at the current sense pins to the sensed current for the READ IOUT command in miliohms.

#### 7.8.1.4.33 (39h) IOUT\_CAL\_OFFSET

Address: 39h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = -3)

Paged / Phased: Yes / Yes
Reset Value: NVM
Updates Allowed: On-the-flv

Supported Values: -4.000 to +3.750 A in 125 mA steps

Description: Used to compensate for offset errors in the power stage for each individual phase, in amperes.

#### 7.8.1.4.34 (40h) VOUT\_OV\_FAULT\_LIMIT

Address: 40h

Transaction Type: Write Word / Read Word

Data Format: ULINEAR16 (N = -10)

 Paged / Phased:
 Yes / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-fly

Supported Values: (VOUT\_COMMAND + 32 mV) to (VOUT\_COMMAND + 448 mV) in 32 mV steps

 $LSB = 2^{N} per VOUT_MODE$ 

Description: Sets the value of the tracking overvoltage fault limit. Refer to MFR\_PROTECTION\_CONFIG to set the fixed overvoltage fault limit.

#### 7.8.1.4.35 (41h) VOUT\_OV\_FAULT\_RESPONSE

Address: 41h

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 00h: Ignore

80h: Latch-Off immediately, require enable cycle to recover

B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.

Description: Instructs the device on what action to take in response to an output overvoltage fault.

# 7.8.1.4.36 (42h) VOUT\_OV\_WARN\_LIMIT

Address: 42h

Transaction Type: Write Word / Read Word

Data Format: ULINEAR16 (N = -10)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly

# Instruments www.ti.com.cn

Supported Values: (VOUT\_COMMAND + 16 mV) to (VOUT\_COMMAND + 448 mV) in 8 mV steps

 $LSB = 2^{N} per VOUT_MODE$ 

Description: Sets the value of the output voltage at the sense or output pins that causes an output voltage high warning.

#### 7.8.1.4.37 (43h) VOUT UV WARN LIMIT

Address

Transaction Type: Write Word / Read Word Data Format: ULINEAR16 (N = -10)

Paged / Phased: Yes / No Reset Value: NVM Undates Allowed On-the-fly

(VOUT\_COMMAND - 16 mV) to (VOUT\_COMMAND - 448 mV) in 8 mV steps Supported Values:

LSB = 2N per VOUT MODE

Description: Sets the value of the output voltage at the sense or output pins that causes an output voltage low warning.

#### 7.8.1.4.38 (44h) VOUT\_UV\_FAULT\_LIMIT

Address: 44h

Transaction Type: Write Word / Read Word Data Format: ULINEAR16 (N = -10)

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly

(VOUT\_COMMAND - 32 mV) to (VOUT\_COMMAND - 448 mV) in 32 mV steps Supported Values:

LSB = 2<sup>N</sup> per VOUT\_MODE

Description: Sets the value of the tracking undervoltage fault limit.

#### 7.8.1.4.39 (45h) VOUT\_UV\_FAULT\_RESPONSE

Address 45h

Transaction Type: Write Byte / Read Byte Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly 00h: Ignore Supported Values

80h: Latch-off immediately, require enable cycle to recover.

B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time. Other combinations are possible. See the Techinical Reference Manual

Description: Instructs the device on what action to take in response to an output undervoltage fault.

# 7.8.1.4.40 (46h) IOUT\_OC\_FAULT\_LIMIT

Address

Transaction Type: Write Word / Read Word Data Format: SLINEAR11 (N = 0) Paged / Phased: Yes / Yes

NVM Reset Value: Updates Allowed: On-the-fly

Supported Values 0 to 1023 A per-page OCP in 1 A steps 17 A to 130 A per-phase OCL (shared among all phases) in 3 A steps to 80 A, 5 A steps after

Description: Sets the total page overcurrent protection threshold in amperes when written with PHASE = FFh.

Sets the per-phase overcurrent limit in amperes when written with PHASE  $\neq$  FFh

### 7.8.1.4.41 (47h) IOUT\_OC\_FAULT\_RESPONSE

Address

Write Byte / Read Byte Transaction Type: Unsigned Binary (1 byte) Data Format:

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly



Supported Values: 00h: Ignore

C0h: Latch-off immediately, require enable cycle to recover.

F8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time

Description: Instructs the device on what action to take in response to an output overcurrent fault.

#### 7.8.1.4.42 (4Ah) IOUT\_OC\_WARN\_LIMIT

Write Word / Read Word Transaction Type: SI INFAR11 (N = 0) Data Format:

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly

Supported Values: 0 to 1023 A in 1 A steps

Description: Sets the value of the output current, in amperes, that causes the over-current detector to indicate an over-current warning condition.

#### 7.8.1.4.43 (4Fh) OT FAULT LIMIT

Address: 4Fh

Transaction Type: Write Word / Read Word Data Format: SLINEAR11 (N = 0)

Yes / No Paged / Phased: Reset Value: NVM Updates Allowed: On-the-fly

Supported Values: 90°C to 160°C in 10°C steps

Description: Sets the value of the temperature limit, in degrees Celsius, that causes an over-temperature fault condition.

#### 7.8.1.4.44 (50h) OT\_FAULT\_RESPONSE

Address: 50h

Transaction Type: Write Byte / Read Byte Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly Supported Values: 00h: Ignore

80h: Latch-off immediately, require enable cycle to recover

B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.
F8h: Hysteresis. Shutdown immediately and restart when the temperature falls.

Description: Instructs the device on what action to take in response to an Over temperature Fault.

# 7.8.1.4.45 (51h) OT\_WARN\_LIMIT

Address:

Transaction Type: Write Word / Read Word Data Format: SLINEAR11 (N = 0)

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly

Supported Values: 90°C to 160°C in 10°C steps

Description: Sets the value of the temperature limit, in degrees Celsius, that causes an over-temperature warning.

# 7.8.1.4.46 (55h) VIN\_OV\_FAULT\_LIMIT

Address

Write Word / Read Word Transaction Type: SLINEAR11 (N = 0)

Paged / Phased: No / No Reset Value: NVM Updates Allowed: On-the-fly

Submit Document Feedback

0.00 to 19.00 V in 1.0 V steps Supported Values:

Description: Sets the value, in Volts, of the input voltage that causes an input overvoltage fault.

#### 7.8.1.4.47 (56h) VIN\_OV\_FAULT\_RESPONSE

Address:

Transaction Type: Write Byte / Read Byte Data Format: Unsigned Binary (1 byte)

Paged / Phased: No / No Reset Value: NVM Updates Allowed: On-the-fly Supported Values: 00h: Ignore

80h: Latch-off immediately, require enable cycle to recover

B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.

Description: Instructs the device on what action to take in response to an input overvoltage fault.

#### 7.8.1.4.48 (57h) VIN\_OV\_WARN\_LIMIT

Transaction Type: Write Word / Read Word SLINEAR11 (N = 0) Data Format:

Paged / Phased: No / No Reset Value: NVM Updates Allowed: On-the-fly

0.00 to 19.00 V in 1.0 V steps Supported Values:

Description: Sets the value, in Volts, of the input voltage that causes an input overvoltage warning.

#### 7.8.1.4.49 (58h) VIN\_UV\_WARN\_LIMIT

Address:

Transaction Type: Write Word / Read Word Data Format: SLINEAR11 (N = -2)

Paged / Phased: No / No Reset Value: NVM Updates Allowed: On-the-fly

Supported Values: 4.00 to 11.25 V in 0.25 V steps

Description: Sets the value, in Volts, of the input voltage that causes an input undervoltage warning.

#### 7.8.1.4.50 (59h) VIN\_UV\_FAULT\_LIMIT

Address: 59h

Transaction Type: Write Word / Read Word SLINEAR11 (N = -2) Data Format:

Paged / Phased: No / No NVM Reset Value: Updates Allowed: On-the-fly

Supported Values: 4.00 to 11.25 V in 0.25 V steps

Description: Sets the value, in Volts, of the input voltage that causes an input undervoltage fault.

# 7.8.1.4.51 (5Ah) VIN UV FAULT RESPONSE

Address:

Transaction Type: Write Byte / Read Byte Unsigned Binary (1 byte)

Paged / Phased: No / No Reset Value: NVM Updates Allowed: On-the-fly Supported Values:

80h: Latch-off immediately, require enable cycle to recover B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time.

Product Folder Links: TPS53676

Description: Instructs the device on what action to take in response to an input under-voltage fault.

#### 7.8.1.4.52 (5Bh) IIN\_OC\_FAULT\_LIMIT

Address: 5Bh

Transaction Type: Write Word / Read Word



SLINEAR11 (N = 0) Data Format:

No / No Paged / Phased: NVM Reset Value: Updates Allowed: On-the-fly

Supported Values: 4.0 to 128.0 A in 4 A steps

Sets the value of the input current, in Amperes, that causes an Input Overcurrent Fault. Description:

#### 7.8.1.4.53 (5Ch) IIN\_OC\_FAULT\_RESPONSE

Address

Transaction Type: Write Word / Read Word Unsigned Binary (1 byte)

Paged / Phased: No / No NVM Reset Value: Updates Allowed: On-the-fly Supported Values 00h: Ignore

C0h: Latch-off immediately, require enable cycle to recover

F8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time

Description: Instructs the device on what action to take in response to an input overcurrent fault.

#### 7.8.1.4.54 (5Dh) IIN\_OC\_WARN\_LIMIT

Address:

Write Word / Read Word Transaction Type: Data Format: SLINEAR11(N = 0)

Paged / Phased: No / No Reset Value: NVM Updates Allowed: On-the-fly

Supported Values: 4.0 to 128.0 A in 4 A steps

Description: Sets the value of the input current, in Amperes, that causes an Input Overcurrent warning.

#### 7.8.1.4.55 (60h) TON\_DELAY

Address: 60h

Transaction Type: Write Word / Read Word Data Format: SLINEAR11 (N = -1)

Paged / Phased: Yes / No NVM Reset Value: Updates Allowed: On-the-fly

Supported Values: 0.0 to 127.5 ms in 0.5 ms steps

Description: Sets the time, in milliseconds, from when a start condition is received (as programmed by the ON\_OFF\_CONFIG command) until the output voltage

#### 7.8.1.4.56 (61h) TON\_RISE

Address:

Write Word / Read Word Transaction Type: Data Format: SLINEAR11 (N = -2)

Paged / Phased: Yes / No NVM Reset Value: Updates Allowed: On-the-fly

0.00 to 31.75 ms in 0.25 ms steps Supported Values:

Note: This value used to calculate slew rate during boot only. Supported slew rates follow those of VOUT\_TRANSITION\_RATE.

Sets the desired rise time of the output voltage, which allows the device to calculate the slew rate setting during bootup. Description:

#### 7.8.1.4.57 (62h) TON\_MAX\_FAULT\_LIMIT

Address:

Write Word / Read Word Transaction Type: SLINEAR11 (N = -2) Data Format:

Paged / Phased: Yes / No Reset Value: NVM Updates Allowed: On-the-fly

Submit Document Feedback

Supported Values: 0.00 ms: function disabled.

0.00 to 31.75 ms in 0.25 ms steps

Description: Sets an upper limit, in milliseconds, on how long the unit can attempt to power up the output without reaching the undervoltage fault limit (including

droop).

#### 7.8.1.4.58 (63h) TON\_MAX\_FAULT\_RESPONSE

Address: 63h

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 00h: Ignore

80h: Latch-off immediately, require enable cycle to recover

B8h: Hiccup immediately, infinite retrials, shutdown and restart after wait time

Description: Instructs the device on what action to take in response to TON\_MAX fault.

#### 7.8.1.4.59 (64h) TOFF\_DELAY

Address: 64h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = -1)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly

Supported Values: 0.0 to 127.5 ms in 0.5 ms steps

Description: Sets the time, in milliseconds, from when a stop condition is received (as programmed by the ON\_OFF\_CONFIG command) until the unit stops

transferring energy to the output.

#### 7.8.1.4.60 (65h) TOFF\_FALL

Address: 65h

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = -2)

 Paged / Phased:
 Yes / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-fly

Supported Values: 0.00 to 31.75 ms in 0.25 ms steps

Note: This value used to calculate *slew rate* during soft-off only. Supported slew rates follow those of VOUT\_TRANSITION\_RATE.

Description: Sets the desired fall time of the output voltage, which allows the device to calculate the slew rate setting during soft-off.

#### 7.8.1.4.61 (6Bh) PIN\_OP\_WARN\_LIMIT

Address: 6Bh

Transaction Type: Write Word / Read Word

Data Format: SLINEAR11 (N = +1)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly
Supported Values: 8.0 to 2044 W

Non-uniform step size. See the Technical Reference Manual.

Description: Sets the value of the input power, in watts, that causes a warning that the input power is high.

# 7.8.1.4.62 (78h) STATUS\_BYTE

Address: 78h

Transaction Type: Write Byte / Read Byte
Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly

 ${\tt Supported \ Bits:} \qquad \qquad {\tt BUSY, OFF, VOUT\_OV, IOUT\_OC, VIN\_UV, TEMP \ CML, OTHER}$ 

Copyright © 2023 Texas Instruments Incorporated

Description: Returns one byte of information with a summary of the most critical faults.

#### 7.8.1.4.63 (79h) STATUS\_WORD

Address: 79h

Transaction Type: Write Word / Read Word

Data Format: Unsigned Binary (2 bytes)

Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly

Supported Bits: VOUT, IOUT, INPUT, MFR, PGOOD, plus the STATUS\_BYTE

Description: Returns two bytes of information with a summary of the most critical faults.

#### 7.8.1.4.64 (7Ah) STATUS\_VOUT

Address: 7Ah

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly

Supported Bits: VOUT\_OVF, VOUT\_UVW, VOUT\_UVF, VOUT\_MINMAX, TON\_MAX

Description: Returns one data byte with information about output voltage related faults and warnings.

#### 7.8.1.4.65 (7Bh) STATUS IOUT

Address: 7Bh

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly

Supported Bits: IOUT\_OCF, IOUT\_OCW, IOUT\_UCF, CUR\_SHAREF

Description: Returns one data byte with information about output current related faults and warnings.

#### 7.8.1.4.66 (7Ch) STATUS\_INPUT

Address: 7Ch

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: No / No
Reset Value: Current Status
Updates Allowed: On-the-fly

Supported Bits: VIN\_OVF, VIN\_OVW, VIN\_UVF, LOW\_VIN, IIN\_OCF, IIN\_OCW, PIN\_OPW

Description: Returns one data byte with information about input voltage/current related faults and warnings.

#### 7.8.1.4.67 (7Dh) STATUS\_TEMPERATURE

Address: 7Dh

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: Current Status
Updates Allowed: On-the-fly
Supported Bits: OTF, OTW

Description: Returns one data byte with information about temperature related faults and warnings.

### 7.8.1.4.68 (7Eh) STATUS\_CML

Address: 7Eh

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Submit Document Feedback

No / No Paged / Phased: Reset Value: Current Status Updates Allowed: On-the-fly

Supported Bits: IVC, IVD, PEC, MEM, COMM, CML\_OTHER

Description: Returns one data byte with information about communication related warnings.

#### 7.8.1.4.69 (80h) STATUS MFR SPECIFIC

Write Byte / Read Byte Transaction Type: Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No Reset Value: Current Status Updates Allowed: On-the-fly

Supported Bits: POR, EXT, VR SETTLE, PH ERR, PS FLT

Description: Returns one data byte with information about manufacturer-defined warnings and faults.

#### 7.8.1.4.70 (88h) READ\_VIN

Address:

Transaction Type: Read Word

Data Format: SLINEAR11 (variable exponent)

Paged / Phased: Yes / No Reset Value: Current Status Supported Range: 0.000 V to 18.700 V

Returns the sensed input voltage in volts. Description:

# 7.8.1.4.71 (89h) READ\_IIN

Address 89h

Transaction Type: Read Word

Data Format: SLINEAR11 (variable exponent)

Paged / Phased: Yes / No Current Status Reset Value: Supported Range: -5.0 to 100.0 A

 $(V_{CSPIN}-V_{VIN\_CSN}) \times G_{IINSHUNT} = 800 \text{ mV max}$ 

Description: Returns the sensed input current in amperes.

#### 7.8.1.4.72 (8Bh) READ\_VOUT

Transaction Type: Read Word ULINEAR16 Data Format: Paged / Phased: Yes / No Reset Value: **Current Status** 

0.00 to 3.74 V (VOUT\_SCALE\_LOOP = 1.0) 0.00 to 6.00 V (VOUT\_SCALE\_LOOP = 0.5) Supported Range:

Description: Returns the sensed output voltage in volts.

# 7.8.1.4.73 (8Ch) READ\_IOUT

8Ch Address:

Transaction Type: Read Word

Data Format: SLINEAR11 (variable exponent)

Paged / Phased: Yes / Yes Reset Value: Current Status Supported Range: Per Channel

(-10.0 to +70.0 A) × N<sub>phases</sub>× (5.0 m  $\Omega$  / IOUT\_CAL\_GAIN) +  $\Sigma$  (IOUT\_CAL\_OFFSET)<sub>Phases</sub>

(-10.0 to +70.0 A) × (5.0 m  $\Omega$  / IOUT\_CAL\_GAIN) + (IOUT\_CAL\_OFFSET)<sub>Phases</sub>

Copyright © 2023 Texas Instruments Incorporated



Description: Returns the sensed output current in amperes.

Can be calibrated by IOUT\_CAL\_GAIN and IOUT\_CAL\_OFFSET.

Read with PHASE = FFh to read total page current.

Read with PHASE = 00h to read first phase (order 0) current, and so on.

#### 7.8.1.4.74 (8Dh) READ\_TEMPERATURE\_1

Address: 8Dh

Transaction Type: Read Word

Data Format: SLINEAR11 (variable exponent)

Paged / Phased: Yes / No
Reset Value: Current Status
Supported Range: -40.0°C to 150.0°C

Description: Returns the sensed power stage temperature in degrees Celsius.

#### 7.8.1.4.75 (96h) READ\_POUT

Address: 96h

Transaction Type: Read Word

Data Format: SLINEAR11 (variable exponent)

Paged / Phased: Yes / No
Reset Value: Current Status

Supported Range: Per READ\_VOUT and READ\_IOUT

Description: Returns the sensed output power in Watts.

#### 7.8.1.4.76 (97h) READ\_PIN

Address: 97h

Transaction Type: Read Word

Data Format: SLINEAR11 (variable exponent)

Paged / Phased: Yes / No
Reset Value: Current Status

Supported Range: Per READ\_VIN and READ\_IIN

Description: Returns the sensed input power in Watts.

# 7.8.1.4.77 (98h) PMBUS\_REVISION

Address: 98h

Transaction Type: Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: No / No
Reset Value: 33h
Lindates Allowed: N/A

Supported Values: 33h: PMBus 1.3, Part I and II

Description: Reads the revision of the PMBus to which the device is compatible.

#### 7.8.1.4.78 (99h) MFR\_ID

Address: 99h

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (3 bytes)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-Fly

Supported Values: 000000h to FFFFFh

Arbitrary NVM for user tracking purposes.

Description: 3 bytes of arbitrarily writeable non-volatile memory intended for manufacturer identification.

#### 7.8.1.4.79 (9Ah) MFR\_MODEL

Address: 9Ah

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (3 bytes)

Supported Values:

 Paged / Phased:
 No / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-Fly

 Supported Values:
 000000h to

000000h to FFFFFh
Arbitrary NVM for user tracking purposes.

Description: 3 bytes of arbitrarily writeable non-volatile memory intended for model identification.

#### 7.8.1.4.80 (9Bh) MFR\_REVISION

Address: 9Bh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (3 bytes)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-Fly

000000h to FFFFFh

Arbitrary NVM for user tracking purposes.

Description: 3 bytes of arbitrarily writeable non-volatile memory intended for revision identification.

#### 7.8.1.4.81 (9Dh) MFR\_DATE

Address: 9Dh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (3 bytes)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-Fly

Supported Values: 000000h to FFFFFh

Arbitrary NVM for user tracking purposes.

Description: 3 bytes of arbitrarily writeable non-volatile memory intended for date tracking.

#### 7.8.1.4.82 (ADh) IC\_DEVICE\_ID

Address: ADh
Transaction Type: Read Block

Data Format: Unsigned Binary (6 bytes)

Paged / Phased: No / No
Reset Value: 544953676000h

Updates Allowed: N/A

Supported Values: 544953676000h (TPS53676)

Description: Returns the part number of the device.

## 7.8.1.4.83 (AEh) IC\_DEVICE\_REV

Address: AEh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (2 bytes)

Paged / Phased: No / No

Reset Value: Current Device Revision

Updates Allowed: N/A

Supported Values: Set by TI during device manufacturing.

Description: Returns device revision.

#### 7.8.1.4.84 (B1h) USER\_DATA\_01 (COMPENSATION\_CONFIG)

Address: B1h

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (8 bytes)

 Paged / Phased:
 Yes / No

 Reset Value:
 NVM

 Updates Allowed:
 On-the-fly

Supported Values: See the *Technical Reference Manual* for a complete register map.

Copyright © 2023 Texas Instruments Incorporated



Description: Configures the control loop compensation parameters including AC load line, integration time constant, dynamic integration, compensating ramp, AC

gain integration gain

#### 7.8.1.4.85 (B2h) USER\_DATA\_02 (NONLINEAR\_CONFIG)

Address: B2h

Transaction Type: Write Block / Read Block

Data Format: Unsigned Binary (5 bytes)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly

Supported Values: See the *Technical Reference Manual* for a complete register map.

Description: Configures the nonlinear controller parameters including minimum on time, minimum off time, leading edge blanking time, USR and OSR thresholds.

#### 7.8.1.4.86 (B3h) USER\_DATA\_03 (PHASE\_CONFIG)

Address: B3h

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (24 bytes)

Paged / Phased: No / No Reset Value: NVM

Updates Allowed: Blocked during regulation.

Supported Values: See the *Technical Reference Manual* for a complete register map.

Description: Configures phase assignments: Assign phases to channels, phase number, and firing position.

#### 7.8.1.4.87 (B4h) USER\_DATA\_04 (DVID\_CONFIG)

Address: B4h

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (6 bytes)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: On-the-fly

Supported Values: See the Technical Reference Manual for a complete register map.

Description: Configures DVID options inclusing dynamic AC and DC load lines.

#### 7.8.1.4.88 (B7h) USER\_DATA\_07 (PHASE\_SHED\_CONFIG)

Address: B7h

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (13 bytes)

 Paged / Phased:
 Yes / No

 Reset Value:
 NVM

 Updates Allowed:
 on-the-fly

Supported Values: See the *Technical Reference Manual* for a complete register map.

Description: Configures phase add/drop functionality and thresholds.

#### 7.8.1.4.89 (B8h) USER\_DATA\_08 (AVSBUS\_CONFIG)

Address: B8h

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / No
Reset Value: NVM
Updates Allowed: on-the-fly

Supported Values: 00h: 2-wire AVSBus mode

01h: 3-wire AVSBus mode

Description: Configure 2-wire or 3-wire AVSBus mode

# 7.8.1.4.90 (BAh) USER\_DATA\_10 (ISHARE\_CONFIG)

Address: BAh

Transaction Type: Write Block / Read Block

Data Format: Unsigned Binary (1 byte)

Paged / Phased: Yes / Yes
Reset Value: NVM
Updates Allowed: on-the-fly

Supported Values: See the *Technical Reference Manual* for a complete register map.

Description: Configures the current sharing ratios for each phase for thermal balance management.

# 7.8.1.4.91 (BBh) USER\_DATA\_11 (MFR\_PROTECTION\_CONFIG)

Address: BBh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (10 bytes)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly

Supported Values: See the Technical Reference Manual for a complete register map.

Description: Configures manufacturer-specific fault features like the fixed overvoltage protection, hiccup wait time, and current share warning.

#### 7.8.1.4.92 (BDh) USER\_DATA\_13 (MFR\_CALIBRATION\_CONFIG)

Address: BDh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (15 bytes)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly

Supported Values: See the Technical Reference Manual for a complete register map.

Description: Configures telemetry calibration features including input current sensing gain/offset.

# 7.8.1.4.93 (CDh) MFR\_SPECIFIC\_CD (MULTIFUNCTION\_PIN\_CONFIG\_1)

Address: CDh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (32 bytes)

Paged / Phased: No / No
Reset Value: NVM

Updates Allowed: On-the-fly (takes effect only after power on).

Supported Values: Refer to the technical reference manual.

Description: Change the function of multifunction pins.

#### 7.8.1.4.94 (CEh) MFR\_SPECIFIC\_CD (MULTIFUNCTION\_PIN\_CONFIG\_2)

Address: CEh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (31 bytes)

Paged / Phased: No / No
Reset Value: NVM

Updates Allowed: On-the-fly (takes effect only after power on).

Supported Values: Refer to the technical reference manual.

Description: Change the function of multifunction pins.

#### 7.8.1.4.95 (CFh) SMBALERT\_MASK\_EXTENDED

Address: CFh

Transaction Type: Write Block / Read Block

Data Format: Unsigned Binary (7 bytes)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: On-the-fly

Supported Values: Refer to the technical reference manual.



SMBALERT MASK bits for STATUS\_EXTENDED bits Description:

#### 7.8.1.4.96 (D1h) READ\_VOUT\_MIN\_MAX

Address:

Write Block / Read Block Transaction Type:

Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)

Paged / Phased: Yes / No Reset Value: **Current Status** Update Rate: Same as READ VOUT.

0000 0004h: Pause logging (min and max) Logging Control:

0000 0020h: Resume logging (min and max) 0000 0100h: Reset logs (min and max)

Description: Returns maximum and minimum output voltage values logged since last reset.

#### 7.8.1.4.97 (D2h) READ\_IOUT\_MIN\_MAX

Address:

Transaction Type: Write Block / Read Block

SLINEAR11 (2 MSB for min, 2 LSB for max) Data Format:

Paged / Phased: Yes / No Reset Value: Current Status Update Rate: Same as READ\_IOUT.

0000 0004h: Pause logging (min and max) Logging Control:

0000 0020h: Resume logging (min and max) 0000 0100h: Reset logs (min and max)

Description: Returns maximum and minimum output current values logged since last reset.

#### 7.8.1.4.98 (D3h) READ\_TEMPERATURE\_MIN\_MAX)

Address: D3h

Transaction Type: Write Block / Read Block

Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)

Paged / Phased: Yes / No Reset Value: **Current Status** 

Update Rate: Same as READ\_TEMPERATURE\_1. Logging Control: 0000 0004h: Pause logging (min and max) 0000 0020h: Resume logging (min and max)

0000 0100h: Reset logs (min and max)

Description: Returns maximum and minimum temperature values logged since last reset.

#### 7.8.1.4.99 (D4h) READ\_MFR\_VOUT

Address:

Read Word Transaction Type:

Data Format: SLINEAR11 (variable exponent)

Paged / Phased: Yes / No Reset Value: Current Status Update Rate: Per READ VOUT.

0.00 to 3.74 V (VOUT\_SCALE\_LOOP = 1.0) 0.00 to 6.00 V (VOUT\_SCALE\_LOOP = 0.5) Supported Range:

Description: Returns the sensed output voltage in volts.

#### 7.8.1.4.100 (D5h) READ\_VIN\_MIN\_MAX

Address:

Write Block / Read Block Transaction Type:

Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)

Paged / Phased: Yes / No Reset Value: **Current Status** Update Rate: Same as READ VIN.

Submit Document Feedback

Logging Control: 0000 0004h: Pause logging (min and max) 0000 0020h: Resume logging (min and max) 0000 0100h: Reset logs (min and max)

Description: Returns maximum and minimum input voltage values logged since last reset

#### 7.8.1.4.101 (D6h) READ\_IIN\_MIN\_MAX

Address: D6h

Transaction Type: Write Block / Read Block

Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)

Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ\_IIN

Logging Control: 0000 0004h: Pause logging (min and max)

0000 0020h: Resume logging (min and max) 0000 0100h: Reset logs (min and max)

Description: Returns maximum and minimum input current values logged since last reset

#### 7.8.1.4.102 (D7h) READ\_PIN\_MIN\_MAX

Address: D7h

Transaction Type: Write Block / Read Block

Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)

Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ\_PIN.

Logging Control: 0000 0004h: Pause logging (min and max)

0000 0020h: Resume logging (min and max) 0000 0100h: Reset logs (min and max)

Description: Returns maximum and minimum input power values logged since last reset.

#### 7.8.1.4.103 (D8h) READ\_POUT\_MIN\_MAX

Address: D8h

Transaction Type: Write Block / Read Block

Data Format: SLINEAR11 (2 MSB for min, 2 LSB for max)

Paged / Phased: Yes / No
Reset Value: Current Status
Update Rate: Same as READ\_POUT.

Logging Control: 0000 0004h: Pause logging (min and max)

0000 0004h: Fause logging (min and max) 0000 0100h: Reset logs (min and max)

Description: Returns maximum and minimum output power values logged since last reset.

#### 7.8.1.4.104 (DAh) READ\_ALL

Address: DAh
Transaction Type: Read Block

Data Format: Unsigned Binary (14 bytes)

Paged / Phased: Yes / No
Reset Value: 0d
Updates Allowed: On-the-fly

Supported Values: Refer to the technical reference manual.

Description: Read all supported telemetry values in a single block to reduce bus utilization.

# 7.8.1.4.105 (DBh) STATUS\_ALL

Address: DBh

Transaction Type: Read Block

Data Format: Unsigned Binary (18 bytes)

 Paged / Phased:
 Yes / No

 Reset Value:
 0d

 Updates Allowed:
 On-the-fly

Supported Values: Refer to the technical reference manual.

Description: Read all supported status registers in a single block to reduce bus utilization.

Copyright © 2023 Texas Instruments Incorporated



#### 7.8.1.4.106 (DCh) STATUS\_PHASES

Address: DCh

Transaction Type: Write Word / Read Word

Data Format: Unsigned Binary (2 bytes)

Paged / Phased: Yes / Yes
Reset Value: 0d
Updates Allowed: On-the-fly

Supported Values: Refer to the technical reference manual.

Description: Identify which phases have experienced a phased fault.

#### 7.8.1.4.107 (DDh) STATUS\_EXTENDED

Address: DDh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (7 bytes)

Paged / Phased: Yes / Yes
Reset Value: 0d
Updates Allowed: On-the-fly

Supported Values: Refer to the technical reference manual.

Description: Report non-standard status information which is not captured in STATUS\_X registers or STATUS\_PHASES.

#### 7.8.1.4.108 (E0h) AVSBUS LOG

Address: E0h

Transaction Type: Read Block

Data Format: Unsigned Binary (8 bytes)

Paged / Phased: No / No
Reset Value: 0d
Updates Allowed: On-the-fly

Supported Values: Refer to the technical reference manual.

Description: Return a log of recently received AVSBus transctions with a timestamp.

# 7.8.1.4.109 (E3h) MFR\_SPECIFIC\_E3 (VR\_FAULT\_CONFIG)

Address: E3h

Transaction Type: Write Word / Read Word

Data Format: Unsigned Binary (2 bytes)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly

Supported Values: Bit 0: Set to 1b to assert VR\_FAULT# for channels A and B, 0 channel A only otherwise

Bit 1: Set to 1b to assert VRFAULT# for overcurrent faults, 0 otherwise
Bit 2: Set to 1b to assert VRFAULT# for overtemperature faults, 0 otherwise

Description: Configure the behavior of the VR\_FAULT# pin.

#### 7.8.1.4.110 (E4h) SYNC CONFIG

Address: E4h

Transaction Type: Write Block / Read Block

Data Format: Unsigned Binary (6 bytes)

Paged / Phased: No / No
Reset Value: NVM

Updates Allowed: Blocked during regulation.

Supported Values: Refer to the technical reference manual.

Description: Configure phase synchronization and frequency control.

#### 7.8.1.4.111 (EDh) MFR\_SPECIFIC\_ED (MISC\_OPTIONS)

Address: EDh

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (5 bytes)

Paged / Phased: No / No
Reset Value: NVM
Updates Allowed: on-the-fly

Supported Values: See the *Technical Reference Manual* for a complete register map.

Description: Configure miscellaneous options.

#### 7.8.1.4.112 (EEh) MFR\_SPECIFIC\_EE (PIN\_DETECT\_OVERRIDE)

Address: EEh

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 byte)

Paged / Phased: No / No Reset Value: NVM

Updates Allowed: on-the-fly (pin detection occurs on POR only).

Supported Values: Set bit 0 to 0b to derive channel A VBOOT from NVM Set bit 1 to 0b to derive PMBus address from NVM.

Description: Configure whether the device follows pinstrapping or NVM settings for the parameters associated with the BOOT\_CHA and ADDR pins.

#### 7.8.1.4.113 (EFh) MFR\_SPECIFIC\_EF (SLAVE\_ADDRESS)

Address: EFh

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 bytes)

Paged / Phased: No / No

Reset Value: NVM or Pinstrap depending on the setting of PIN\_DETECT\_OVERRIDE for the ADDR pin

Updates Allowed: on-the-fly, only takes effect at power-on.

Supported Values: 00h to 7Fh (7 bit address right justified)

Description: Configure the PMBus slave address, when the PIN\_DETECT\_OVERRIDE command is configured to ignore the ADDR pinstrap detection.

Product Folder Links: TPS53676

# 7.8.1.4.114 (F0h) MFR\_SPECIFIC\_F0 (NVM\_CHECKSUM)

Address: F0h

Transaction Type: Read Word

Data Format: Unsigned Binary (2 bytes)

Paged / Phased: No / No
Reset Value: Current Status

Updates Allowed: Only following NVM Store/Restore Operations

Supported Values: 0000h to FFFFh

Description: CRC16 of the internal NVM array. This can be used to verify proper NVM programming.

#### 7.8.1.4.115 (F5h) MFR\_SPECIFIC\_F5 (USER\_NVM\_INDEX)

Address: F5h

Transaction Type: Write Byte / Read Byte

Data Format: Unsigned Binary (1 bytes)

Paged / Phased: No / No
Reset Value: 00h

Updates Allowed: On-the-fly (Auto-increments with USER\_NVM\_EXECUTE access)

Supported Values: 00h to 08h

Description: Used for batch-loading of NVM data via PMBus.

#### 7.8.1.4.116 (F6h) MFR SPECIFIC F6 (USER NVM EXECUTE)

Address: F6h

Transaction Type: Write Block / Read Block
Data Format: Unsigned Binary (32 bytes)

Paged / Phased: No / No

Reset Value: Current NVM status
Updates Allowed: On-the-fly
Supported Values: All NVM bytes

Copyright © 2023 Texas Instruments Incorporated



With USER\_NVM\_INDEX = 0, this command writes/returns 9 bytes of identifying information, plus the first 23 bytes of NVM data With USER\_NVM\_INDEX = 1 to 7, this command writes/returns the next 32 bytes of NVM data Description:

With USER\_NVM\_INDEX = 8, this command writes the last NVM data bytes, and automatically performs an NVM Store operation. Each time this command is accessed, USER\_NVM\_INDEX increments automatically.

#### 7.8.1.4.117 (FAh) NVM\_LOCK

Address:

Transaction Type: Write Word / Read Word (when locked, this command does not read back the password value).

Data Format: Unsigned Binary (2 bytes)

Paged / Phased: No / No NVM Reset Value: Updates Allowed: On-the-fly Supported Values: 0000-FFFEh

Description: NVM password. Used to lock or unlock WRITE PROTECT and MFR WRITE PROTECT commands, which in turn provide write protection.

#### 7.8.1.4.118 (FBh) MFR\_SPECIFIC\_WRITE\_PROTECT

Address: FBh

Write Word / Read Word Transaction Type: Data Format: Unsigned Binary (2 bytes)

Paged / Phased: No / No NVM Reset Value: Updates Allowed: On-the-fly

Supported Values: Refer to the Technical Reference Manual for a bit map

Description: Provides additional resolution to WRITE\_PROTECT, allowing different groups of commands to be write protected. Access to this command is

controlled by NVM\_LOCK.

Product Folder Links: TPS53676

#### 7.8.2 AVSBus Interface

The TPS53676 device is designed to be compatible with the timing and physical layer electrical characteristics of the Power Management Bus (PMBus) Specification, part III (AVSBus) revision 1.3.1 available at <a href="http://pmbus.org">http://pmbus.org</a>. AVS\_VDDIO and logic levels of 1.14 V to (VCC pin voltage, 3.6 V maximum) are supported. Clock operation up to 50 MHz is supported. TPS53676 requires approximately 14 ns (maximum) from a clock edge to a transition of the AVS\_SDATA pin, and at very high-frequency operation, it may be necessary to increase the clock high time (thich) to compensate. Refer to the *technical reference manual* for more information.

The AVSBus communication interface is similar to the *de-facto* Serial Peripheral Interface (SPI) standard with the following configuration:

- No chip select (CSO#) pin is used. AVSBus is a point-to-point protocol.
- · AVS CLK idles LOW
- AVS MDATA and AVS SDATA idle HIGH
- · A transmitter launches data on the rising edge of AVS\_CLK
- A receiver captures data on the falling edge of AVS\_CLK
- MSB transmitted first

Refer to to the PMBus specification revision 1.3.1, part III for more information.

To enable AVSBus control in the device:

- Ensure the AVSBUS EN CHA / AVSBUS EN CHB options in the MISC\_OPTIONS PMBus command are set to 1b in NVM.
- Set the value of VOUT SRC CHA / VOUT SRC CHB to 10b in NVM. This setting in itself only sets the default value of the OPERATION command bits 5:2.
- Set the OPERATION[5:2] bits to 1100b to hand-off output voltage control to the AVSBus Interface.

备注

Transferring output voltage control from PMBus to AVSBus during power conversion causes the output voltage to transition to a low value, until the host issues the next AVSBus voltage command. Internal architecture limitations determine this behavior. As a result, while output voltage control may be changed without a power cycle, TI recommends that changes between PMBus and AVSBus control occur without power conversion being active.

Copyright © 2023 Texas Instruments Incorporated

## 7.8.2.1 AVSBus transaction types

## **Supported AVSBus Commands**

The table below summarizes the AVS command transactions supported by TPS53676.

| Description                                                  | Select [3:0]                                             | Cmd Group [0]                          | Cmd Type [3:0]                | Access Cmd[1:0]                                              | Data Format [15:0]                           |
|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-------------------------------|--------------------------------------------------------------|----------------------------------------------|
| Vout<br>Set or Read the<br>voltage target                    | 0000b: Channel A<br>0001b: Channel B<br>1111b: Broadcast | 0b<br>Standard                         | 0000b<br>Voltage              | 00b: Read<br>01b: Write and hold<br>11b: Write and<br>commit | Direct Format<br>1 mV per LSB                |
| Slew Rate Set or Read the rising and falling DVID slew rates | 0000b: Channel A<br>0001b: Channel B<br>1111b: Broadcast | 0b<br>Standard                         | 0001b<br>Vout Transition Rate | 00b: Read<br>01b: Write and hold<br>11b: Write and<br>commit | Direct Format<br>1 mV / µs per LSB           |
| Current Set or Read the output current                       | 0000b: Channel A<br>0001b: Channel B                     | 0b<br>Standard                         | 00.00                         |                                                              | Direct Format<br>10 mA per LSB               |
| Temperature Set or Read the current power stage temperature  | 0000b: Channel A<br>0001b: Channel B                     | 0b<br>Standard                         | 0011b<br>Read Temperature     | 00b: Read                                                    | Direct Format<br>0.1°C per LSB               |
| Reset Reset the channel to its VBOOT                         | 0000b: Channel A<br>0001b: Channel B<br>1111b: Broadcast | 0b<br>Standard                         | 0100b<br>Voltage Reset        | 01b: Write and hold<br>11b: Write and<br>commit              | Data-less. Use 0000h in AVS_MDATA frame      |
| Power Mode                                                   |                                                          | Not su                                 | ipported - Ack and do n       | othing.                                                      |                                              |
| AVSBus Status                                                | 0000b: Channel A<br>0001b: Channel B<br>1111b: Broadcast | el B Standard Status 01b: Write and ho |                               | 01b: Write and hold<br>11b: Write and                        | See register description. Write 1b to clear. |
| AVSBus Version<br>Read                                       | 1111b: All channels                                      | 0b<br>Standard                         | 1111b<br>Version Read         | 00b: Read                                                    | 0000b<br>v1.3.1 part III                     |

Product Folder Links: TPS53676

## **AVSBus frame and sub-fields**

The figures below describe the AVSBus frame structure

## AVS\_MDATA

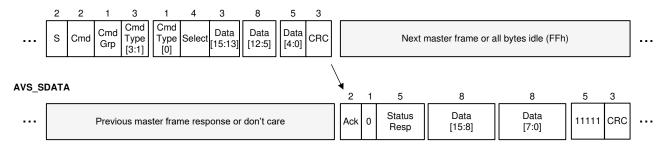



图 7-38. AVSBus frame structure

表 7-11.

| Frame index        | Field          | Length (bits) | Description                                                                                                                                                                        |
|--------------------|----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AVS_MDATA<br>31:30 | S              | 2             | Start condition<br>01b                                                                                                                                                             |
| AVS_MDATA<br>29:28 | Cmd            | 2             | Read / Write 11b: Read 01b: Write and Hold 00b: Write and Commit                                                                                                                   |
| AVS_MDATA<br>27    | Cmd Group      | 1             | 0b: AVSBus standard commands 1b: MFR Specific commands (none supported by TPS53676)                                                                                                |
| AVS_MDATA<br>26:23 | Cmd Type       | 4             | 0000b: Vout 0001b: Vout Transition Rate 0010b: Current Read 0011b: Temperature Read 0100b: Reset Vout 1110b: AVS Status 1111b: AVS Version                                         |
| AVS_MDATA<br>22:19 | Select         | 4             | 0000b: Channel A<br>0001b: Channel B<br>1111b: All channels (valid only for Status and Version commands)                                                                           |
| AVS_MDATA<br>18:3  | AVS_MDATA Data | 16            | Read Transactions: FFFFh Write Transactions: per command data format.                                                                                                              |
| AVS_MDATA<br>2:0   | AVS_MDATA CRC  | 3             | CRC of AVS_MDATA frame. Polynomial x <sup>3</sup> + x <sup>1</sup> + x <sup>0</sup>                                                                                                |
| AVS_SDATA<br>31:30 | Ack            | 2             | 00b: Good CRC, valid data 01b: Good CRC, no action taken due to resource busy. 10b: Bad CRC, no action is taken 11b: Good CRC, but invalid selector, command, data                 |
| AVS_SDATA<br>29    | Reserved       | 1             | Set to 0b always                                                                                                                                                                   |
| AVS_SDATA<br>28:24 | StatusResp     | 5             | Bit 4: 1b if Vout is settled Bit 3: 1b if any status warning bits are set Bit 2: 1b is AVSBus has control of the output Bit 1: 1b if RESET# is LOW, 0b otherwise Bit 0: Set to 0b. |
| AVS_SDATA<br>23:8  | AVS_SDATA Data | 16            | Writes: Don't care<br>Reads: Per command format                                                                                                                                    |
| AVS_SDATA<br>7:3   | Reserved       | 5             | Reserved and set to 11111b                                                                                                                                                         |
| AVS_SDATA<br>2:0   | AVS_SDATA CRC  | 3:0           | CRC of AVS_SDATA frame. Polynomial x <sup>3</sup> + x <sup>1</sup> + x <sup>0</sup>                                                                                                |



### 7.8.2.2 Example AVSBus Frames

A few example AVSBus frames frames are listed below:

## Example: Set the target voltage for channel A to 0.80 V

The AVS\_MDATA frame 40 00 19 07h corresponds to:

- Start = 01b (Valid start condition)
- Cmd = 00b (Write and commit)
- Cmd Group = 0b (AVSBus standard commands)
- Cmd Type = 0000b (Vout)
- Select = 0000b (Channel A)
- Data = 0000 0011 0010 0000b (800d = 800 mV)
- AVS\_MDATA CRC = 111b (Valid CRC for the preceeding 29 bits)

The AVS SDATA frame in response 04 FF FF FF FFh corresponds to:

- Ack = 00b (Good CRC, valid data)
- · Reserved = 0b
- StatusResp = 00100b (AVSBus has control, No status bits, Vdone=0 due to new voltage command)
- Data = 1111 1111 1111 1111b (fill with 1's for write)
- AVS\_SDATA CRC = 111b (Valid CRC for the preceeding 29 bits)

#### Example: Read the output current telemetry from channel A

The AVS\_MDATA frame 71 07 FF F9h corresponds to:

- Start = 01b (Valid start condition)
- Cmd = 11b (Read)
- Cmd Group = 0b (AVSBus standard commands)
- Cmd Type = 0010b (Vout)
- Select = 0000b (Channel A)
- Data = 1111 1111 1111 1111b (fill with 1's for read)
- AVS\_MDATA CRC = 001b (Valid CRC for the preceding 29 bits)

The AVS\_SDATA frame in response 14 10 86 F8h corresponds to:

- Ack = 00b (Good CRC, valid data)
- Reserved = 0b
- StatusResp = 10100b (Vdone=1, AVSBus has control, No status bits)
- Data = 0001 0000 1000 0110b (4230d = 42.3 A)
- AVS\_SDATA CRC = 000b (Valid CRC for the preceeding 29 bits)

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated



### 7.8.2.3 Example AVSBus number format conversions

All AVSBus transactions use the DIRECT number format.

## Example: Encode or decode output voltage targets (unsigned, 1 mV / LSB)

Encode 1.000 V = 1.0 V × (1 LSB / 1 mV) = 1000d = 03E8h Decode 0400h =  $1024d \times (1 \text{ mV / LSB}) = 1.024 \text{ V}$ 

#### Example: Decode output current telemetry (unsigned, 10 mA / LSB)

Decode  $1043h = 4163d \times (10 \text{ mA} / \text{LSB}) = 41.63 \text{ A}$ 

## Example: Decode power stage temperature telemetry (signed, 0.1°C / LSB)

Decode 0358h =  $856d \times (0.1^{\circ}C / LSB) = 85.6^{\circ}C$ Decode FF62h =  $-158d \times (0.1^{\circ}C / LSB) = -15.8^{\circ}C$ 

## Example: Encode or decode slew rate settings (unsigned, 1 mV/µs / LSB)

The 16 bit data value for slew rate is divided into 8 bits for Rising and 8 bits for falling slew rate.

Encode Rising = Falling =  $(5 \text{ mV/}\mu\text{s} \times [1 \text{ LSB} / 1 \text{ mV/}\mu\text{s}]) = 05 \text{ 05h}$ 

Decode 0A 02h:

- Rising =  $0Ah = 10d \times (1 \text{ mV/}\mu\text{s} / LSB) = 10 \text{ mV/}\mu\text{s}$
- Falling =  $02h = 2d \times (1 \text{ mV/}\mu\text{s} / \text{LSB}) = 2 \text{ mV/}\mu\text{s}$

### 7.8.2.4 AVSBus fault and warning behavior

The TPS53676 AVSBus status register provides warning information only. During latch-off faults, and while power conversion is disabled, TPS53676 does not respond to AVSBus transactions. The AVSBus and PMBus status registers are independent. Clearing a warning condition through AVSBus does not affect the PMBus status registers.

TPS53676 supports AVS\_SDATA interrupt notification as defined in the AVSBus specification. When any warning bit sets in the AVSBus status register, the device pulls the AVS\_SDATA line low to notify the host of the warning condition. The AVS\_SDATA line remains low until the host clears the condition through through a write to the AVSBus status register.

Every AVS SDATA frame contains a 5-bit summary (StatusResp) of the current device status:

- Bit 4: VDONE 1b if the output voltage has reached its commanded target
- Bit 3: STATUS 1b if any bits in the AVS Status register are set
- Bit 2: AVS CTRL 1b AVSBus has control of the output voltage
- Bit 1: MFR\_SPEC\_1- Set to 1b if the RESET# pin function is LOW
- Bit 0: MFR\_SPEC\_0- Set to 0b always.

The TPS53676 AVSBus status register is defined as follows:

- Bit 15: VDONE set to 1b if the output voltage has reached its commanded target
- Bit 14: OCW 1b if the output overcurrent warning has been latched
- Bit 13: UVW 1b if the output undervoltage warning has been latched
- Bit 12: OTW 1b if the output overtemperature warning has been latched
- Bit 11: OPW 0b always. Not supported by TPS53676.
- Bit 10:8: Reserved 0b always.
- Bit 7: OVW 1b if the output overvoltage warning has been latched
- Bit 6: MINMAX 1b if the output min/max warning has been latched
- Bit 5: ISHARE 1b if a current share warning has been latched
- Bit 4: PHOCL 1b if a per-phase OCL warning has been latched. Note this bit requires a PMBus CLEAR FAULT and AVSBus status write to clear.
- Bit 3: VIN OVW 1b if a input overvoltage warning has been latched
- Bit 2: VIN UVW 1b if a input undervoltage warning has been latched
- Bit 1: IIN OCW 1b if a input overcurrent has been latched
- Bit 0: Reserved 0b always.

Product Folder Links: TPS53676

## 7.8.2.5 AVSBus Command Descriptions

#### 7.8.2.5.1 (0h) AVSBus Output Voltage

Cmd Type: 0000b Access: Read / Write

Data Format: Direct, 16-bits, 1 mV per LSB (unsigned)

Select: 0h: Channel A 1h: Channel B Fh: Broadcast

Reset Value: Initialized based on VOUT COMMAND from PMBus

Supported Values: Values will be clamped to the values of VOUT\_MIN and VOUT\_MAX from PMBus

Description: Get or set the current output voltage target. Reading this command returns the voltage target, and not the measured value.

#### 7.8.2.5.2 (1h) AVSBus Transition Rate

Cmd Type: 0001b Access: Read / Write

Data Format: Direct, 16 bits, 1 mV/µs per LSB (unsigned)

8 MSB bits for rising transition rate, 8 LSB bits for falling transition rate

Select: 0h: Channel A 1h: Channel B Fh: Broadcast

Reset Value: Initialized based on VOUT\_TRANSITION\_RATE from PMBus

Supported Values: 1 mV/µs to 40 mV/µs

Description: Get or set the current output slew rate. Rising and falling slew rates are independent. When commanded through AVSBus, the output voltage slew

rate is slightly slower (nominally -5%) than when commanded through PMBus.

## 7.8.2.5.3 (2h) AVSBus Output Current

Cmd Type: 0010b Access: Read

Data Format: Direct, 16 bits, 10 mA per LSB (unsigned)

Select: 0h: Channel A 1h: Channel B

Reset Value: Current status
Supported Values: 0.0 to 327.67 A (MSB bit of AVSbus is always 0b).

Description: Returns the measured output current value for the channel.

### 7.8.2.5.4 (3h) AVSBus Temperature

Cmd Type: 0011b Access: Read

Data Format: Direct, 16 bits, 0.1 °C per LSB (signed)

Select: 0h: Channel A 1h: Channel B

Reset Value: Current status
Supported Values: -40.0 to 150.0 °C

Description: Returns the measured power stage temperature for the channel.

#### 7.8.2.5.5 (4h) AVSBus Reset Voltage

Cmd Type: 0100b Access: Write

Data-less. Send 0000h in data field for AVS\_MDATA field.

Select: 0h: Channel A 1h: Channel B Fh: Broadcast

Fh: Broadcast

Reset Value: N/A
Supported Values: N/A

Description: Resets the selected channel to their VBOOT voltages, whether determined by NVM or pinstrapping.

#### 7.8.2.5.6 (5h) AVSBus Power Mode

Cmd Type: 0101b
Access: Read / Write

#### ZHCSN24A - AUGUST 2019 - REVISED MAY 2021



Data Format: Not supported.
Select: 0h: Channel A

0h: Channel A 1h: Channel B Fh: Broadcast

Reset Value: 0000h Supported Values: N/A

Description: Command is accessible, but TPS53676 takes no action based on writes.

## 7.8.2.5.7 (Eh) AVSBus Status

Cmd Type: 1110b

Access: Read / Write

Data Format: Not supported.

Select: 0h: Channel A
1h: Channel B
Fh: Broadcast

Reset Value: 0000h

Supported Values: Write 1b to clear.

Description: See AVSBus fault and warning behavior.

## 7.8.2.5.8 (Fh) AVSBus Version

Cmd Type: 1111b Access: Read

Data Format: Direct, 16 bits, unsigned binary

Select: Fh: Broadcast
Reset Value: 0000h (v1.3.1 part III)
Supported Values: Write 1b to clear.

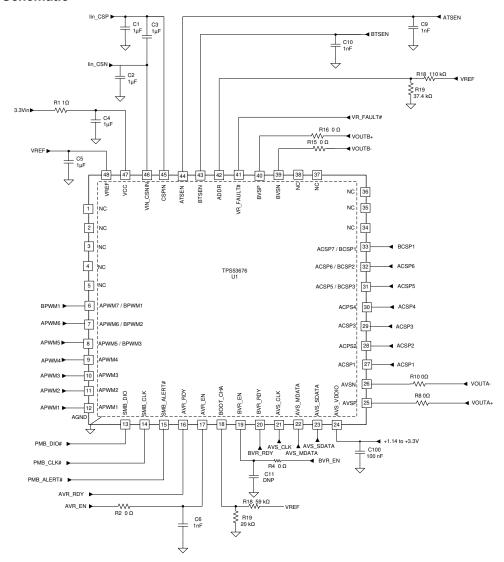
Description: Returns the supported AVSBus Version

Product Folder Links: TPS53676



# 8 Applications and Implementation

## 备注


以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

# **8.1 Application Information**

## **8.2 Typical Application**



#### 8.2.1 Schematic



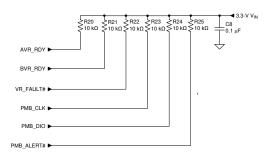



图 8-1. Controller Schematic

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

Product Folder Links: TPS53676

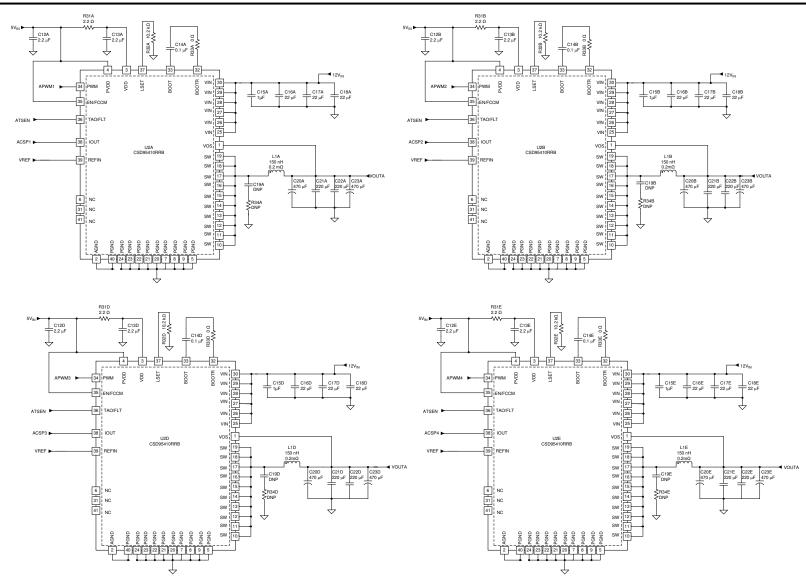



图 8-2. Powerstages Schematic (1/2)



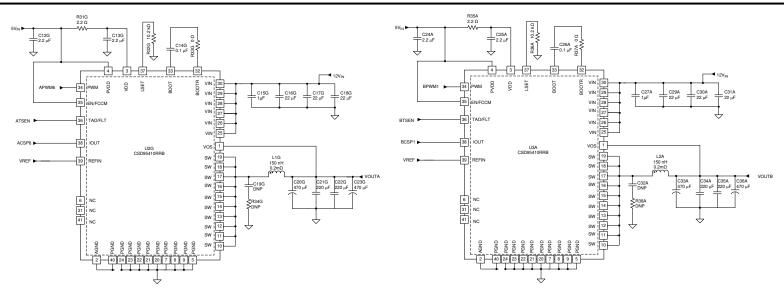
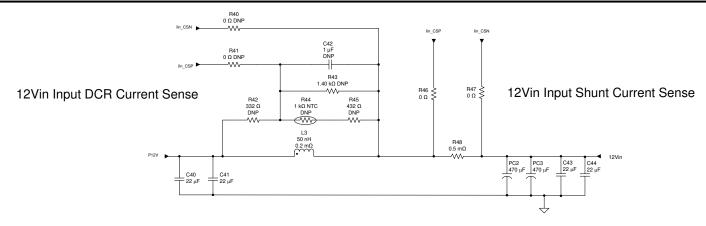
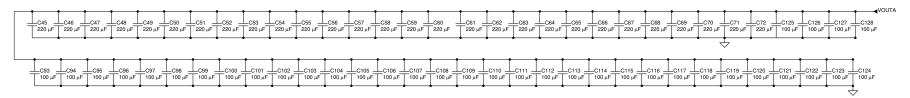





图 8-3. Powerstages Schematic (2/2)





## VOUTA: OUTPUT CAPACITORS 28x220uF(1206), 36x100uF(1206)



## VOUTB: OUTPUT CAPACITORS 2x220uF(1206), 6X100uF(1206)

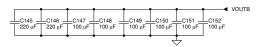



图 8-4. Ouptput Capacitors Schematic

### 8.2.2 Design Requirements

The key requirements for this design are summarized below.

表 8-1. Design Parameters

| SYMBOL                | PARAMETER                  | Channel A | Channel B |  |  |
|-----------------------|----------------------------|-----------|-----------|--|--|
| $N_{\Phi}$            | Phase Number               | 6         | 1         |  |  |
| V <sub>IN</sub>       | Operating input voltage    | 10.8 V    | to 13.2 V |  |  |
| I <sub>IN</sub>       | Input current              | 0 to 25 A |           |  |  |
| V <sub>BOOT</sub>     | Boot voltage               | 0.88 V    | 1.00 V    |  |  |
| I <sub>CC(max)</sub>  | Maximum output current     | 250 A     | 30 A      |  |  |
| I <sub>CC(TDC)</sub>  | Maximum Thermal DC current | 200 A     | 20 A      |  |  |
| I <sub>CC(STEP)</sub> | Step transient current     | 140 A     | 10 A      |  |  |
| R <sub>LL</sub>       | DC Load Line               | 0.0 m Ω   | 0.0 m Ω   |  |  |
| TON_RISE              | Output voltage rise time   | 1.25 ms   | 1.25 ms   |  |  |
| TOFF_FALL             | Output voltage fall time   | 1.25 ms   | 1.25 ms   |  |  |
| T <sub>MAX</sub>      | Maximum temperature        | 100°C     | 100°C     |  |  |
| SR <sub>FAST</sub>    | DVID slew rate             | 5 mV/ μ s | 5 mV/ μ s |  |  |
| f <sub>SW</sub>       | Switching frequency        | 500 kHz   | 500 kHz   |  |  |
| PMB <sub>ADDR</sub>   | PMBus address              | 960       | 1 / C0h   |  |  |

#### 8.2.3 Detailed Design Procedure

The following steps illustrate the key components selection for the 0.88-V / 250-A, 1-V / 30-A ASIC application.

#### **Inductor Selection**

Smaller inductance yields better transient performance, but leads to higher ripple current and lower efficiency. Higher inductance has the opposite effect. It is common practice to limit the ripple current to between 20%-40% of maximum per-phase current for balanced performance. In this design example, 30% of the maximum per-phase current is used for channel A.

$$\Delta I_{RIPPLE(target)} = \frac{I_{CC(MAX)}}{N_{\Phi}} \times 30\% = \frac{250A}{6phases} \times 0.3 = 12.5 A$$
 (48)

$$L_{target} = \frac{V_{OUT} \times (V_{in(max)} - V_{OUT})}{V_{in(max)} \times \Delta I_{RIPPLE(target)} \times f_{SW}} = \frac{0.88V \times (13.2V - 0.88V)}{13.2V \times 12.5A \times 500kHz} = 0.131\mu H$$
 (49)

Considering the variation and derating of the inductance and a standard inductor value of 150nH with DCR  $0.125\,\mathrm{m}\,\Omega$ , is selected. Then use 方程式 50 to re-calculate the actual output ripple.

$$I_{RIPPLE(actual)} = \frac{V_{OUT} \times (V_{in(max)} - V_{OUT})}{V_{in(max)} \times f_{SW} \times L_{actual}} = \frac{0.88V \times (13.2V - 0.88V)}{13.2V \times 500kHz \times 0.150\mu H} = 10.9A$$
 (50)

With same design procedure for channel B, a standard inductor value of 150 nH with DCR 0.125 m  $\Omega$  from ITG is chosen.

#### **Output Capacitor Selection**

Generally, consider output ripple and output voltage deviation during load transient when selecting output capacitors.

When available, follow the output capacitance recommendation for the load ASIC reference design. With TPS53676 device, it is possible to meet the load transient with lower output capacitance due to the high-speed

Product Folder Links: TPS53676

nature of DCAP+ control. Output Capacitor Recommendations is the output capacitance recommendation for the above rail specification.

| 表 | 8-2. | Output | <b>Capacitors</b> |
|---|------|--------|-------------------|
|---|------|--------|-------------------|

| Capacitor location                | Channel A                                                    | Channel B                                                  |
|-----------------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| Bulk capacitors near power stages | 12x 470 μF / 2.5V / 3m Ω ESR                                 | 2x 470 μF / 2.5V / 3m Ω ESR                                |
| Top side                          | 24x 220 μF / 4V / X5R/ 1206<br>18x 100 μF / 4V / X5R / 1206  | 4x 220 μF / 4V / X5R / 1206<br>3x 100 μF / 4V / X5R / 1206 |
| Bottom side                       | 24x 220 μF / 4V / X5R / 1206<br>18x 100 μF / 4V / X5R / 1206 | 4x 220 μF / 4V / X5R / 1206<br>3x 100 μF / 4V / X5R / 1206 |
| Total output capacitance          | 19.8 mF                                                      | 1874 µF                                                    |

## **Select Per-Phase Valley Current Limit**

The equation below shows the calculation of per-phase valley current limit based on maximum processor current, the operating phase number and per-phase current ripple  $\triangle$  I<sub>RIPPLE(actual)</sub>.

For the channel A,

$$I_{OCL} = K_{margin} \times \frac{I_{CC(max)}}{N_{\Phi}} - \frac{\Delta I_{RIPPLE}}{2} = 1.25 \times \frac{250A}{6phases} - \frac{10.9A}{2} = 46.6A$$
 (51)

Where K<sub>margin</sub> is the maximum operating margin factor. Choose 125% margin to avoid triggering current limit during load transient events. For this design, choose the 47A valley current limit for channel A.

$$I_{SAT(min)} = I_{OCL} + \Delta I_{RIPPLE} = 47A + 10.9A = 57.9A$$
 (52)

The calculation above shows the minimum saturation current for inductor. Using same design procedure, the valley current limit for channel B is selected to be 26 A.

### Set USR threshold to improve load transient performance

There are two levels of undershoot reduction (USR1, USR2) options. USR1 enables up to 3, 4, 5 or all normal phases and USR2 enables all available phases. To select the proper value, start with each USR threshold set to be disabled, and then systematically lower the threshold, enabling fast-phase-addition to meet the load transient requirement.

For this design, phase shedding is disabled. USR1 and USR2 are selected to be disabled for both channel A and channel B.

## Input Current Sensing (Shunt/ Calculated lin/ Inductor DCR)

TPS53676 has three input current sensing options: shunt current sensing, calculated input current sensing and inductor DCR current sensing. Either option may be chosen for precision input current reporting.

#### Shunt current sensing

In this design, the external shunt resistor 0.5 m $\Omega$  ± 1%, 3 W, 4026 package is selected. Once properly calibrated, Input current reporting is within the tolerance target.

#### Calculated input current sensing

TPS53676 includes an option to impute input current for situations in which the addition of a shunt or input inductor is prohibitive. Connect pins 46 (VIN\_CSNIN) and 47 (CSPIN) together, and place a minimum 1  $\mu$ F effective capacitance bypass cap from pin 46 to GND, then connect pin 46 to input supply (12 V nominally) before input inductor. Configure the calculated input current option through the NVM settings in MFR SPECIFIC ED (MISC OPTIONS).

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

### **Inductor DCR Current Sensing**

This section describes the procedure to determine an inductor DCR thermal compensation network design. The image below shows a typical DCR sensing circuit. From the equations below, when the time constant of the RC network is equal to the L/R time constant of the inductor, the capacitor voltage V<sub>C</sub> across the C<sub>SENSE</sub> capacitor can be used to obtain the inductor current. However, inductor windings have a positive temperature coefficient of approximately 3900 ppm/°C. So an NTC thermistor is used to cancel thermal variation from the inductor DCR.

The design goal is for the DCR value to be invariant with the temperature. Therefore, the voltage across sense capacitor would be only dependent on the inductor current over the temperature range of interest.

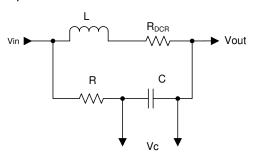



Figure 1

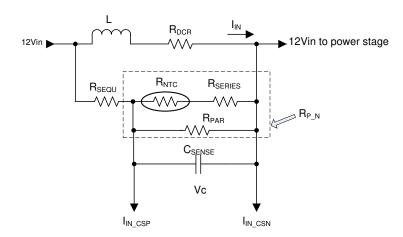



Figure 2

## 图 8-5. Input DCR Network

$$C_{SENSE} \times R_{EQ} = \frac{L}{R_{DCR}}$$
 (53)

$$I_{IN} \times R_{DCR} = V_{DCR} \tag{54}$$

The equivalent resistance of the R<sub>SEQU</sub>, R<sub>NTC</sub>, R<sub>SERIES</sub> and R<sub>PAR</sub> values is given by R<sub>EQ</sub>. Use the equations below to derive the values of R<sub>SEQU</sub>, R<sub>NTC</sub>, R<sub>SERIES</sub> and R<sub>PAR</sub>.

$$R_{EQ} = \frac{R_{P_N}}{R_{P_N} + R_{SEQU}} s \tag{55}$$

$$R_{P_{-}N} = \frac{R_{PAR} \times (R_{NTC} + R_{SERIES})}{R_{PAR} + R_{NTC} + R_{SERIES}}$$
(56)

Submit Document Feedback



$$V_{C} = V_{DCR} \times R_{EQ} = \frac{I_{IN} \times R_{DCR} \times R_{P\_N}}{R_{P\_N} + R_{SEQU}} = \beta \times I_{IN}$$
(57)

Finally the value of  $\beta$ , given in the equation below, represents the effective current sense gain after thermal compensation. This value can be used as the sense element resistance to derive the PMBus settings as described in *Input current calibration (measured)*.

$$\beta = \frac{R_{DCR} \times R_{P\_N}}{R_{P_N} + R_{SEOU}}$$
 (58)

For this design, select thermistor RNTC as 1 k $\Omega$ , 5%, 0603, B-constant is 3650k, P/N: NCP18XQ102J03B from Murata. Select C<sub>SENSE</sub> as 1  $\mu$ F X7R or better dielectric (C0G preferred).

In order to solve the value of R<sub>SEQU</sub>, R<sub>SERIES</sub> and R<sub>PAR</sub>, the  $\,\beta\,$  at three temperature points are set equal. set  $\,\beta\,$  = 0.15 m $\,\Omega\,$  equally at temperature 0 °C, 25 °C and 75 °C. With the calculation, three resistors value can be found as R<sub>SEQU</sub> = 332  $\,\Omega\,$ , R<sub>SERIES</sub> = 432  $\,\Omega\,$ , R<sub>PAR</sub> = 1.40 k $\,\Omega\,$ .

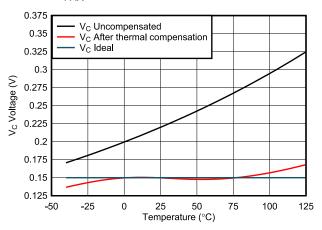



图 8-6. Inductor DCR sensing voltage over temperature

TI offers an application note and excel spreadsheet to streamline input DCR netowrk calculations. Contact your local field/sales representative to get a copy of the document.

### Loop compensation design

- 5 mΩ: Typical gain from power stage current sense
- ACLL: Programmable AC load line, provides direct output voltage feedback.
- DCLL: Programmable DC load line, provides adaptive voltage positioning
- K<sub>DIV</sub>: Fixed scalar with value of 0.5
- $\tau_{INT}$ : Programmable integration time constant, adjustable from 1 $\mu$ s to 16  $\mu$ s (scale = 1  $\mu$ s)
- $K_{INT}$ : Programmable integration gain which can be adjustable from 0.5x, 1x, 1.5x, 2x
- K<sub>AC</sub>: Programmable AC gain which is adjustable from 0.5x, 1x, 1.5x, 2x
- V<sub>RAMP</sub>: Programmable ramp voltage which is adjustable from 80 mV to 320 mV(scale = 40 mV)

For this design, the optimal loop compensation values were derived by tuning. The final valuea are listed .

表 8-3.

| PARAMETER        | Channel A | Channel B |
|------------------|-----------|-----------|
| DCLL             | 0.0 m Ω   | 0.0 m Ω   |
| ACLL             | 0.2 m Ω   | 0.5 m Ω   |
| τ INT            | 1 μs      | 7 μs      |
| K <sub>INT</sub> | 2.0       | 1.0       |
| K <sub>AC</sub>  | 1.0       | 1.0       |

Copyright © 2023 Texas Instruments Incorporated



表 8-3. (continued)

| PARAMETER  | Channel A | Channel B |
|------------|-----------|-----------|
| $V_{RAMP}$ | 320 mV    | 200 mV    |

## Select ADDR pin resistors

Based on the design requirements of PMBus address select the upper and lower ADDR pin resistors,  $R_{HA}$  and  $R_{LA}$  according to *ADDR pin decoding*.

表 8-4.

| PMBus address | R <sub>HA</sub> | R <sub>LA</sub> |  |  |
|---------------|-----------------|-----------------|--|--|
| 96d / C0h     | 110 k Ω         | 37.4 k Ω        |  |  |

## Select the boot voltage V<sub>BOOT</sub> for each channel

The boot voltage for channel A is determined by pinstrapping on the BOOT\_CHA pin. Based on BOOT\_CHA pinstrap decoding, select  $R_{HB}$  = 20.0 k  $\Omega$  and  $R_{LB}$  = 59.0 k  $\Omega$  to select 0.88 V as the channel A boot voltage.

The boot voltage for channel B is stored in NVM. Update the NVM value for VOUT\_COMMAND to 1.0 V , and store the value to non-volatile memory.

## 8.2.4 Application Performance Plots

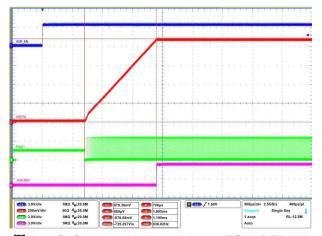



图 8-7. Soft-start channel A (0 ms TON\_DELAY)

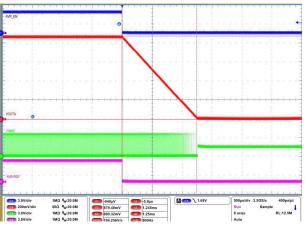



图 8-9. Soft-stop channel A (0 ms TOFF\_DELAY)

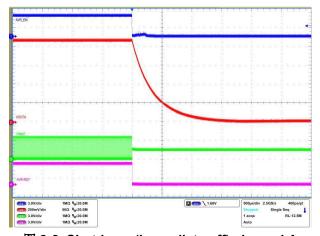



图 8-8. Shutdown (immediate off) channel A

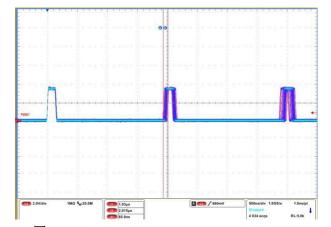



图 8-10. Steady-state PWM jitter channel A

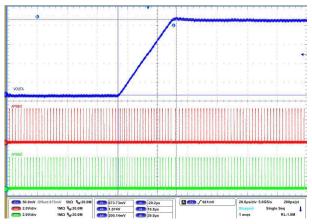
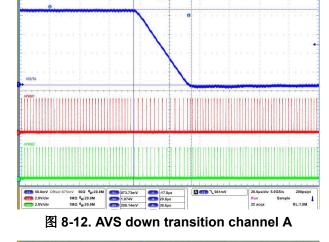




图 8-11. AVS up transition channel A



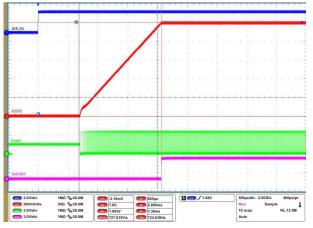



图 8-13. Soft-start Channel B (0 ms TON\_DELAY)

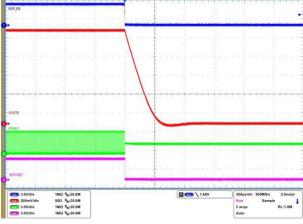



图 8-14. Shutdown (immediate off) channel B

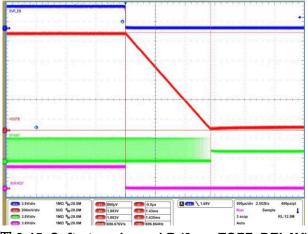



图 8-15. Soft-stop channel B (0 ms TOFF\_DELAY)

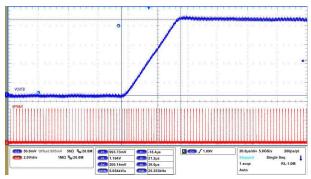



图 8-16. AVS transition up channel B



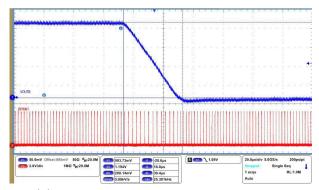



图 8-17. AVS transition down channel B

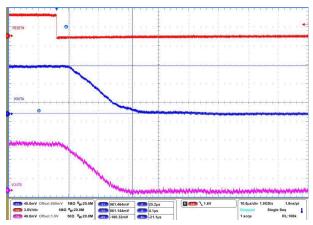



图 8-18. RESET# pin function

## 9 Power Supply Recommendations

The TPS53676 does not have strict power sequencing requirements. The VCC supply, power stage VDD 5V supply, VIN\_CSNIN and CSPIN supplies may be safely powered up independently of each other, even if the VCC supply voltage is off and low-impedance. Do not raise pull-up voltages for open-drain pins AVR\_RDY, BVR\_RDY, SMB\_ALRT#, SMB\_DIO, VR\_FAULT# before the VCC supply, or pull them to voltages above the VCC voltage during operation. Similarly, it is not recommended to pull the AVS\_VDDIO supply above VCC, or pull the AVS\_CLK, AVS\_MDATA, AVS\_SDATA pins above AVS\_VDDIO. If system sequencing requirements mandate raising the pull-up voltages for these pins prior to VCC being established, limit the pin current to 1.0 mA to avoid damage to the device.

The minimum pull-up resistor value for open drain pins AVR\_RDY, BVR\_RDY, SMB\_ALRT#, SMB\_DIO, VR\_FAULT# is limited by the allowable sinking current for the pin. The maximum pull-up resistor value is limited by the off-state leakage current for the pin, and the logic level of any downstream device using the pin as an input. The table below summarizes the allowable sinking current and off-state leakage for open drain IO pins.

| ————————————————————————————————————— | Open Drain Fin Current Ca | іравінту                      |  |  |  |  |  |
|---------------------------------------|---------------------------|-------------------------------|--|--|--|--|--|
|                                       | Maximum Current           |                               |  |  |  |  |  |
| Open-drain Pin                        | On-state Sinking (mA)     | Off-state leakage 1<br>( μ A) |  |  |  |  |  |
| AVR_RDY                               | 25.0                      | 1.0                           |  |  |  |  |  |
| BVR_RDY                               | 25.0                      | 1.0                           |  |  |  |  |  |
| SMB_ALRT#                             | 20.0                      | 1.0                           |  |  |  |  |  |
| SMB_DIO                               | 20.0                      | 1.0                           |  |  |  |  |  |
| VR_FAULT#                             | 20.0                      | 4.0                           |  |  |  |  |  |

表 9-1. Open Drain Pin Current Capability

## 1. $T_J = 125^{\circ}C$

For input pins ACSPx, BCSPx, AVR\_EN, BVR\_EN, SYNC, RESET#, which exceed the VCC pin value during operation, during power-on or otherwise, include a series resistor of 10.0 k  $\Omega$  or greater to limit the current into the pin.

It is safe to power-on the VDD 5V supply to TI smart power stage devices prior to TPS53676 VCC. TI smart power stage devices do not source any unsafe voltages or currents into TPS53676 ACSPx, BCSPx, ATSEN, BTSEN, APWMx, BPWMx pins when the VCC pin is not powered.

TI smart power stages (CSD95xxx) provide hysteresis current on their PWM input pins to improve noise immunity. This current is active when the power stage is powered by 5V VDD and enabled, regardless of the status of VCC. When the VCC pin of TPS53676 is unpowered, this hysteresis current flows through the PWM pins, to ESD structures in the controller, causing the PWM pin voltage to float low, out of the tri-state window. This can cause the power stage device to switch its low-side power MOSFET on. As a result, in any case where the power stage VDD 5V power supply is enabled prior to VCC, supply, TI recommends to control the power stage enable pin to be low until both supply voltages are established.

TPS53676 voltage and current protections become active when the controller VCC supply is powered. TI recommends the VCC voltage be powered first, prior to power stage 5V, or VIN\_CSNIN/CSPIN voltages. In general, TI recommends to assert the AVR\_EN/BVR\_EN pins last in the power sequence.

Other sequences are permissible, but may not be able to make use of the controller protection features. For example, if a board assembly issue causes the power input supply (e.g. nominally 12V supply) to charge the output voltage, the TPS53676 over-voltage protection can protect the load device by forcing the PWM pins low, causing the power stage devices to discharge the output voltage, but only if the VCC supply is established by the time the power input voltage rises.

Copyright © 2023 Texas Instruments Incorporated

## 10 Layout

Proper layout techniques are critical to power supply performance. The recommendations given in this document are meant to minimize risk and give the highest possibility of first pass success. Other layout designs are possible but may carry higher risk of performance issues. Contact your TI local field/sales representative for indepth guidance and layout reviews.

The driverless controller architecture makes it easy to separate noisy driver interface lines from sensitive controller signals. Because the power stage is external to the device, all gate drive and switch node traces must be local to the inductor and power stages.

#### **Controller Layout Guidelines**

- Keep minimum 800 mil distance between the controller and the closest power stage
- Ensure the controller and all power stages must share a common ground plane
- Route CSPx /VREF differentially from controller to IOUT/REFIN pin of each power stages on a quiet inner layer. Alternately, create a small VREF copper plane between controller and power stages, and embed the CSPx traces inside VREF plane.
- PWMx must be routed on a different quiet inner layer and not on the same layer next to CSPx/VREF differential pairs.

#### 备注

MOST IMPORTANT LAYOUT RECOMMENDATION: Must keep min 40mil clearance between 12Vin copper/vias/traces and sensitive analog interface lines.

## Power stage layout guidelines

- Use the recommended land and via pattern for power stage footprint
- · Make layer 2 on the PCB stack a solid ground plane
- Maximize the phase pitch between adjacent phases whenever possible to prevent any cross-coupling noise between devices (9 mm or higher is preferred)
- In cases where the phase pitch is tighter, adjust the controller phase firing order to minimize noise coupling between devices.
- The input voltage bypass capacitors require a minimum two vias per pad(for both Vin and GND)
- · Place additional GND vias along the sides of device as space allows
- For multi-phase systems, ensure that the GND pour connects all phases.
- · Connect the VOS pin feedback point to the inner edge of the inductor output pad.
- Place VDD and PVDD bypass capacitors directly next to pins on the same layer of the device.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

## Layout example

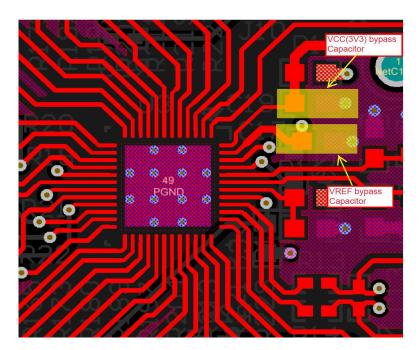



图 10-1. Controller layout example

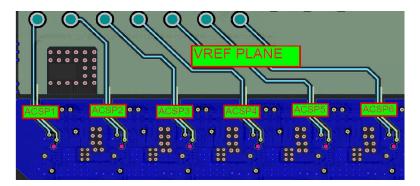



图 10-2. CSP signal routing example

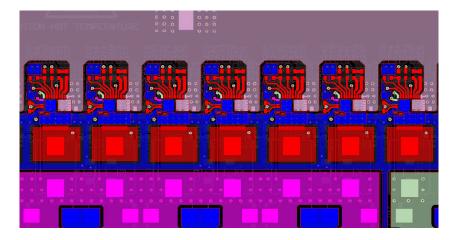



图 10-3. Power stage placement example



## 11 Device and Documentation Support

## 11.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

## 11.2 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI的《使用条款》。

#### 11.3 Trademarks

AVSBus<sup>™</sup>PMBus<sup>™</sup> are trademarks of SMIF.

NexFET<sup>™</sup>, AutoBalance<sup>™</sup>, D-CAP+<sup>™</sup>, and TI E2E<sup>™</sup> are trademarks of Texas Instruments.

所有商标均为其各自所有者的财产。

#### 11.4 静电放电警告



静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参 数更改都可能会导致器件与其发布的规格不相符。

## 11.5 术语表

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

Product Folder Links: TPS53676



# 12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback



## 12.1 Package Option Addendum

## 12.1.1 Packaging Information

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package Qty | Eco Plan (2)               | Lead/Ball Finish <sup>(4)</sup> | MSL Peak Temp (3)   | Op Temp (°C) | Device<br>Marking <sup>(5)</sup> (6) |
|------------------|------------|--------------|--------------------|------|-------------|----------------------------|---------------------------------|---------------------|--------------|--------------------------------------|
| TPS53676RSLR     | ACTIVE     | VQFN         | RSL                | 48   | 3000        | Green (RoHS & no<br>Sb/Br) | CU NIPDAU                       | Level-3-260C-168 HR | - 40 to 125  | TPS53676                             |
| TPS53676RSLT     | ACTIVE     | VQFN         | RSL                | 48   | 250         | Green (RoHS & no<br>Sb/Br) | CU NIPDAU                       | Level-3-260C-168 HR | - 40 to 125  | TPS53676                             |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PRE\_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

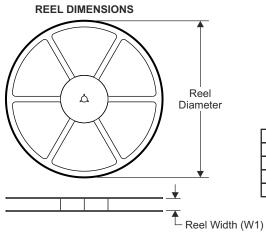
**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

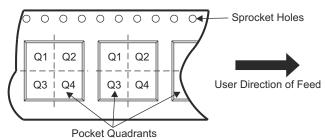
- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
- (6) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Product Folder Links: TPS53676



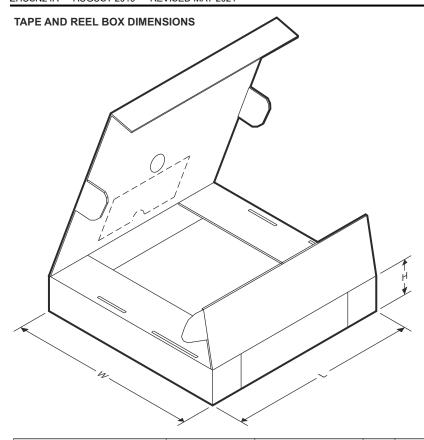

## 12.1.2 Tape and Reel Information



# TAPE DIMENSIONS KO P1 BO W Cavity A0

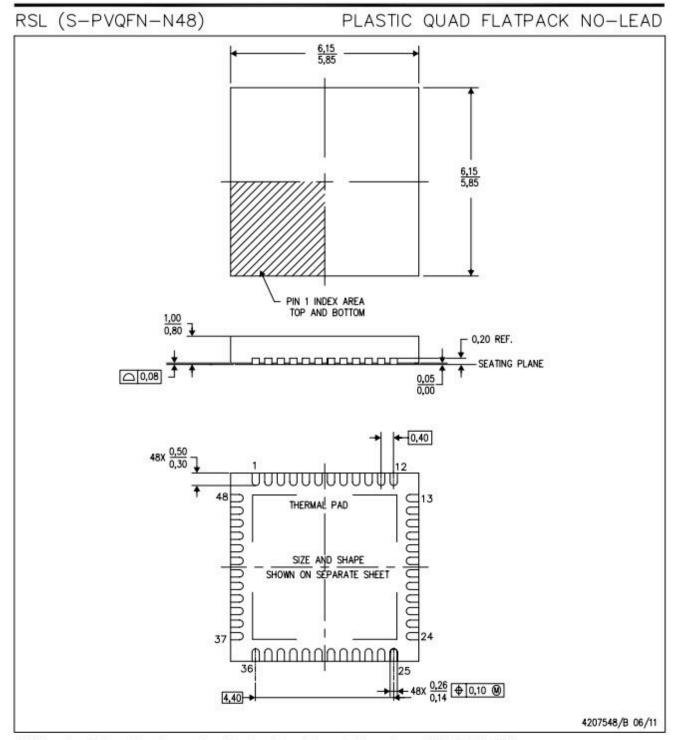
| B0 Dimension designed to   | 1.4.0                               |
|----------------------------|-------------------------------------|
|                            | accommodate the component length    |
| K0 Dimension designed to   | accommodate the component thickness |
| W Overall width of the car | rrier tape                          |
| P1 Pitch between success   | sive cavity centers                 |

## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| Device       | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPS53676RSLR | VQFN            | RSL                | 48   | 3000 | 330.0                    | 16.4                     | 6.3        | 6.3        | 1.1        | 12.0       | 16.0      | Q2               |
| TPS53676RSLT | VQFN            | RSL                | 48   | 250  | 180.0                    | 16.4                     | 6.3        | 6.3        | 1.1        | 12.0       | 16.0      | Q2               |

Copyright © 2023 Texas Instruments Incorporated


Submit Document Feedback





| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS53676RSLR | VQFN         | RSL             | 48   | 3000 | 367.0       | 367.0      | 38.0        |
| TPS53676RSLT | VQFN         | RSL             | 48   | 250  | 210.0       | 185.0      | 35.0        |



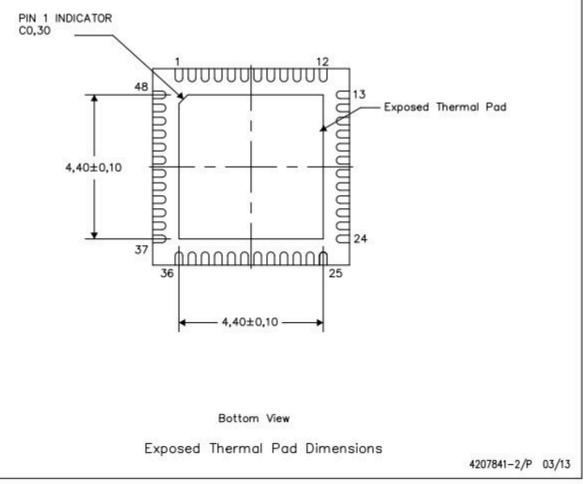


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.



# RSL (S-PVQFN-N48)


## PLASTIC QUAD FLATPACK NO-LEAD

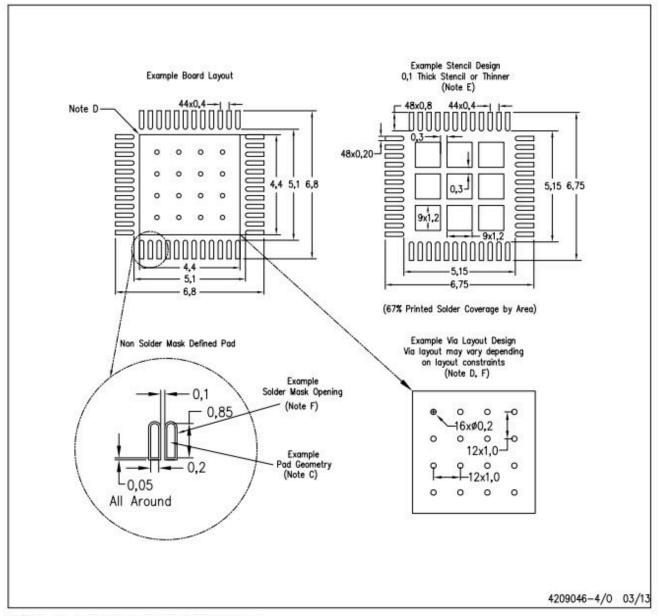
## THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



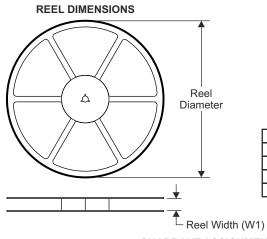

NOTE: All linear dimensions are in millimeters

Submit Document Feedback



# RSL (S-PVQFN-N48)

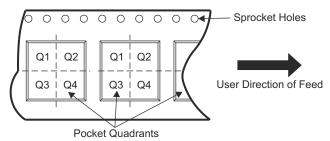
## PLASTIC QUAD FLATPACK NO-LEAD




#### NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="http://www.ti.com">http://www.ti.com</a>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

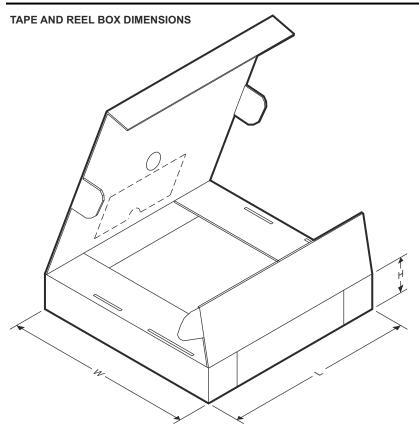



## 12.1.2 Tape and Reel Information



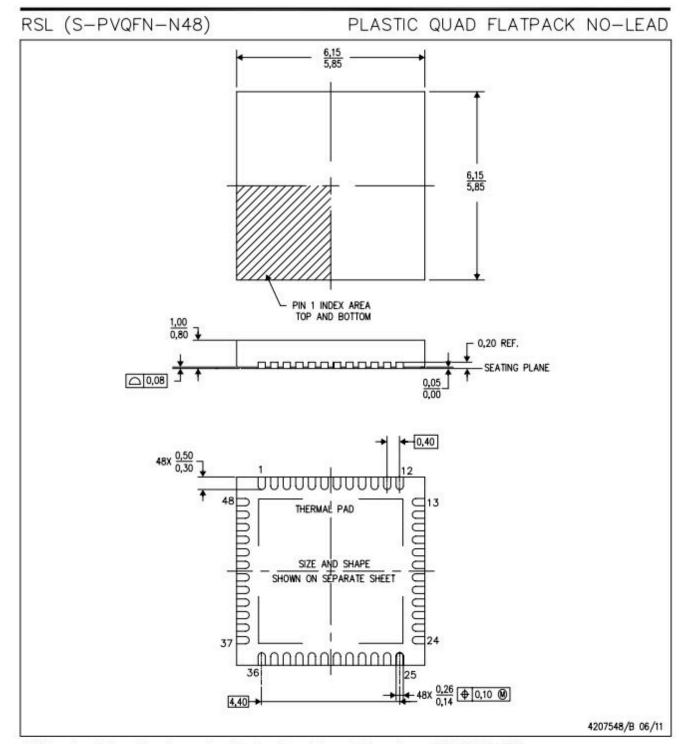
# TAPE DIMENSIONS KO P1 BO W Cavity AO

| $\Lambda$ 0 | Dimension designed to accommodate the component width     |
|-------------|-----------------------------------------------------------|
| B0          | Dimension designed to accommodate the component length    |
| K0          | Dimension designed to accommodate the component thickness |
| W           | Overall width of the carrier tape                         |
| P1          | Pitch between successive cavity centers                   |


## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



| Device       | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPS53676RSLR | VQFN            | RSL                | 48   | 3000 | 330.0                    | 16.4                     | 6.3        | 6.3        | 1.1        | 12.0       | 16.0      | Q2               |
| TPS53676RSLT | VQFN            | RSL                | 48   | 250  | 180.0                    | 16.4                     | 6.3        | 6.3        | 1.1        | 12.0       | 16.0      | Q2               |


Product Folder Links: TPS53676

Submit Document Feedback



| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS53676RSLR | VQFN         | RSL             | 48   | 3000 | 367.0       | 367.0      | 38.0        |
| TPS53676RSLT | VQFN         | RSL             | 48   | 250  | 210.0       | 185.0      | 35.0        |

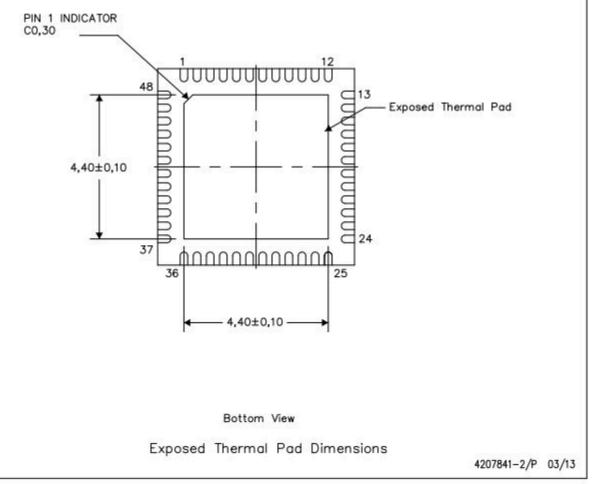




NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

# RSL (S-PVQFN-N48)

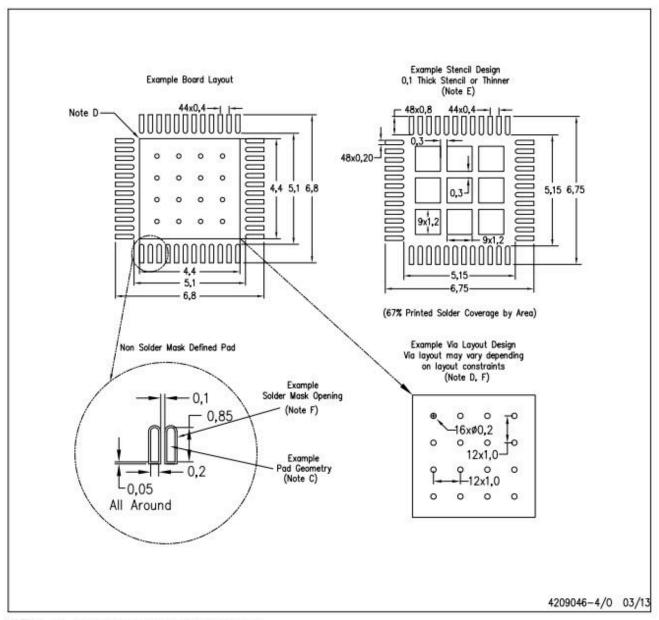

## PLASTIC QUAD FLATPACK NO-LEAD

## THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.




NOTE: All linear dimensions are in millimeters



# RSL (S-PVQFN-N48)

## PLASTIC QUAD FLATPACK NO-LEAD



#### NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="http://www.ti.com">http://www.ti.com</a>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

## 重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司 www.ti.com 31-Oct-2025

#### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins  | Package qty   Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) |
|-----------------------|--------|---------------|-----------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------|
| TPS53676RSLR          | Active | Production    | VQFN (RSL)   48 | 3000   LARGE T&R      | Yes             | Call TI   Nipdauag            | Level-3-260C-168 HR        | -40 to 125   | TPS<br>53676     |
| TPS53676RSLR.A        | Active | Production    | VQFN (RSL)   48 | 3000   LARGE T&R      | Yes             | Call TI                       | Level-3-260C-168 HR        | -40 to 125   | TPS<br>53676     |
| TPS53676RSLT          | Active | Production    | VQFN (RSL)   48 | 250   SMALL T&R       | Yes             | Call TI   Nipdauag            | Level-3-260C-168 HR        | -40 to 125   | TPS<br>53676     |
| TPS53676RSLT.A        | Active | Production    | VQFN (RSL)   48 | 250   SMALL T&R       | Yes             | NIPDAUAG                      | Level-3-260C-168 HR        | -40 to 125   | TPS<br>53676     |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

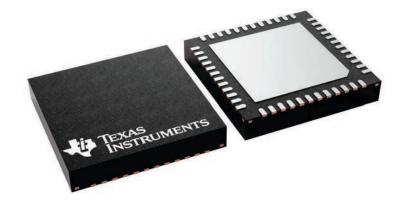
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

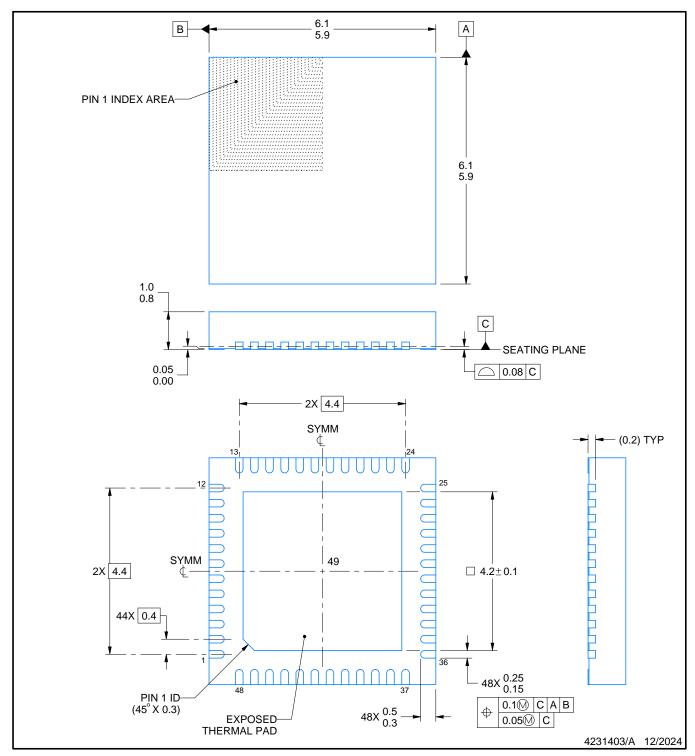
<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.




# **PACKAGE OPTION ADDENDUM**

www.ti.com 31-Oct-2025

6 x 6, 0.4 mm pitch

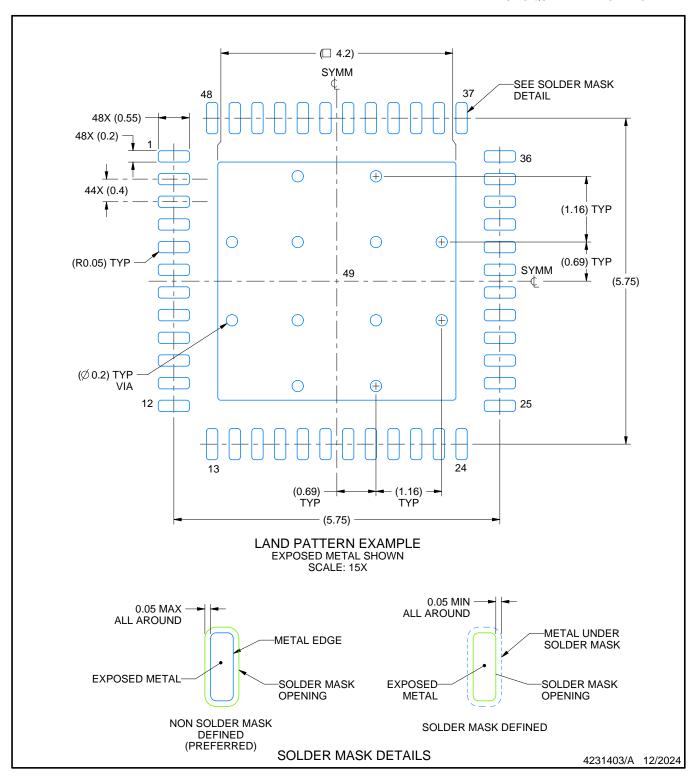

QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.





PLASTIC QUAD FLATPACK - NO LEAD

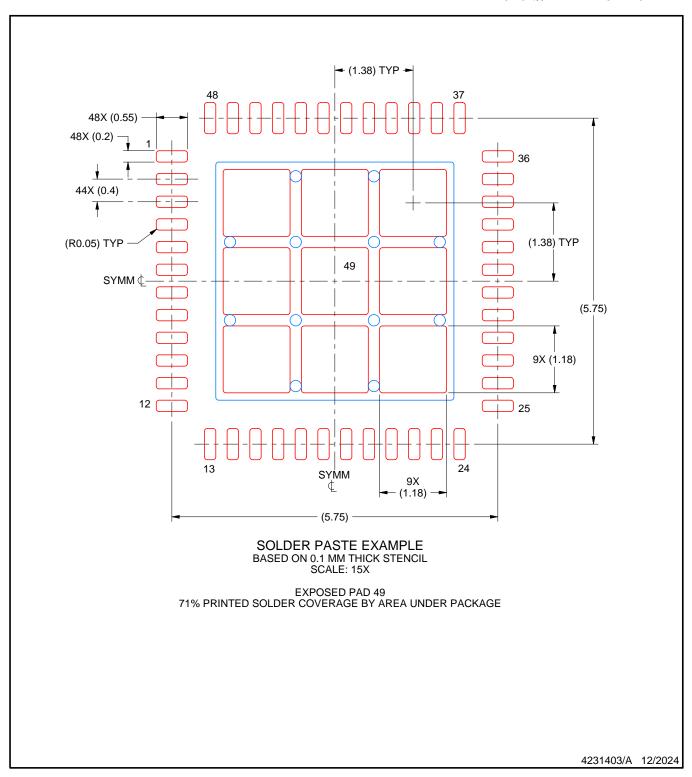



### NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
  2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



PLASTIC QUAD FLATPACK - NO LEAD




NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



# 重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月