

TPS51275B-1 具有 5V 和 3.3V LDO 的双路同步降压控制器

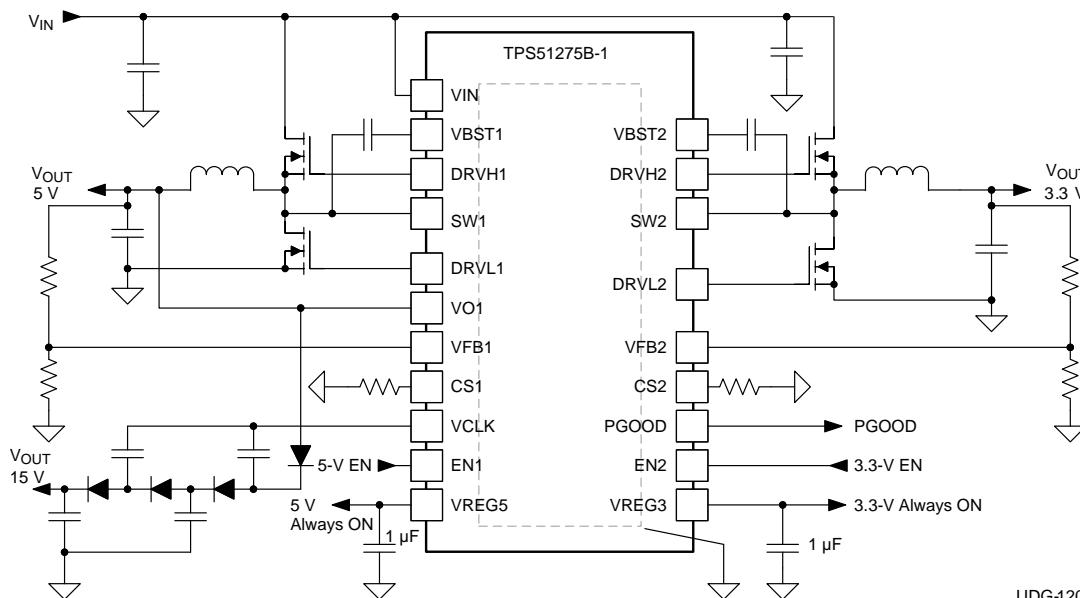
1 特性

- 输入电压范围: 5V 至 24V
- 输出电压: 5V 和 3.3V (可调范围 $\pm 10\%$)
- 内置 100mA、5V 和 3.3V 低压降稳压器 (LDO)
- 用于电荷泵的时钟输出
- $\pm 1\%$ 基准精度
- 自适应接通时间 D-CAP™ 模式控制架构, 此架构支持 300kHz 和 355kHz 频率设置
- Out-of-Audio™ (OOA) 轻负载操作
- 内部 3.2ms 电压伺服器软启动
- 低侧 $R_{DS(on)}$ 电流感测机制
- 内置输出放电功能
- 用于开关的独立使能输入
- 专用 OC 设置引脚
- 电源正常指示器
- 过压保护 (OVP)、欠压保护 (UVP) 和过流保护 (OCP)
- 非锁存欠压闭锁 (UVLO) 和过热 (OTP) 保护
- 20 引脚 3mm x 3mm 超薄型四方扁平无引线 (WQFN) (RUK) 封装

2 应用

- 笔记本电脑
- 平板电脑
- 台式机

3 说明


TPS51275B-1 器件是一款面向笔记本系统电源解决方案的经济实用型双路同步降压控制器。该器件具有 5V 和 3.3V 低压降稳压器, 只需要很少的外部元件。该器件可使用 260kHz VCLK 输出来驱动外部电荷泵, 从而为负载开关生成栅极驱动电压, 并且不会降低主转换器的效率。TPS51275B-1 兼具高效率和快速瞬态响应优势, 同时可提供组合式电源正常信号。自适应导通时间 D-CAP 控制方案可确保器件的运行方便而高效。器件的电源输入电压范围为 5V 至 24V, 并且支持 5V 和 3.3V 两种输出电压。TPS51275B-1 器件采用 20 引脚 3mm x 3mm WQFN 封装, 额定温度范围为 -40°C 至 85°C 。

器件信息⁽¹⁾

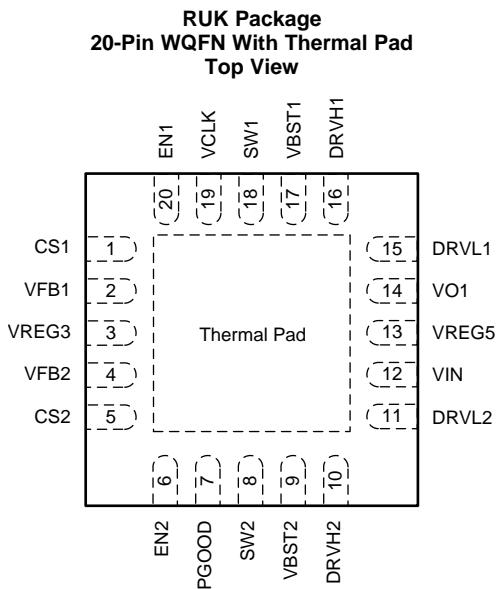
器件型号	跳跃模式	常开模式 - LDO
TPS51275B-1	OOA	VREG3 和 VREG5

(1) 如需了解所有可用封装, 请见数据表末尾的可订购产品附录。

4 典型应用图

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

English Data Sheet: [SLVSCT3](#)


目录

1	特性	1	8.2	Functional Block Diagram	11
2	应用	1	8.3	Feature Description	12
3	说明	1	8.4	Device Functional Modes	16
4	典型应用图	1	9	Application and Implementation	17
5	修订历史记录	2	9.1	Application Information	17
6	Pin Configuration and Functions	3	9.2	Typical Application	17
7	Specifications	4	10	Power Supply Recommendations	21
7.1	Absolute Maximum Ratings	4	11	Layout	21
7.2	ESD Ratings	4	11.1	Layout Guidelines	21
7.3	Recommended Operating Conditions	5	11.2	Layout Example	22
7.4	Thermal Information	5	12	器件和文档支持	22
7.5	Electrical Characteristics	5	12.1	器件支持	22
7.6	Timing Requirements	7	12.2	商标	22
7.7	Switching Characteristics	7	12.3	静电放电警告	22
7.8	Typical Characteristics	8	12.4	术语表	22
8	Detailed Description	11	13	机械、封装和可订购信息	23
8.1	Overview	11			

5 修订历史记录

日期	修订版本	注释
2015 年 3 月	*	首次发布。

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
CS1	1	O	Sets the channel 1 OCL trip level
CS2	5	O	Sets the channel 2 OCL trip level
DRVH1	16	O	High-side driver output
DRVH2	10	O	High-side driver output
DRVL1	15	O	Low-side driver output
DRVL2	11	O	Low-side driver output
EN1	20	I	Channel 1 enable
EN2	6	I	Channel 2 enable
PGOOD	7	O	Power good output flag. Open drain output. Pull up to external rail through a resistor
SW1	18	O	Switch-node connection
SW2	8	O	Switch-node connection
VBST1	17	I	Supply input for high-side MOSFET (bootstrap terminal). Connect a capacitor from this pin to the SWx pin.
VBST2	9	I	
VCLK	19	O	Clock output for charge pump
VFB1	2	I	Voltage feedback input
VFB2	4	I	
VIN	12	I	Power conversion voltage input. Apply the same voltage as drain voltage of high-side MOSFETs of channel 1 and channel 2.
VO1	14	I	Output voltage input, 5-V input for switch-over
VREG3	3	O	3.3-V LDO output
VREG5	13	O	5-V LDO output
Thermal pad	—	—	Ground (GND) terminal, solder to the ground plane

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Input voltage ⁽²⁾	VBST1, VBST2	-0.3	32	V
	VBST1, VBST2 ⁽³⁾	-0.3	6	
	SW1, SW2	-6.0	26	
	VIN	-0.3	26	
	EN1, EN2	-0.3	6	
	VFB1, VFB2	-0.3	3.6	
	VO1	-0.3	6	
Output voltage ⁽²⁾	DRVH1, DRVH2	-6.0	32	V
	DRVH1, DRVH2 ⁽³⁾	-0.3	6	
	DRVH1, DRVH2 ⁽³⁾ (pulse width < 20 ns)	-2.5	6	
	DRV1, DRV2L	-0.3	6	
	DRV1, DRV2L (pulse width < 20 ns)	-2.5	6	
	PGOOD, VCLK, VREG5	-0.3	6	
	VREG3, CS1, CS2	-0.3	3.6	
Junction temperature, T _J			150	°C
Storage temperature, T _{stg}		-55	150	°C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the network ground terminal unless otherwise noted.

(3) Voltage values are with respect to SW terminals.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply voltage	V _{IN}	5	24	V
Input voltage ⁽¹⁾	V _{BST1} , V _{BST2}	-0.1	30	V
	V _{BST1} , V _{BST2} ⁽²⁾	-0.1	5.5	
	S _{W1} , S _{W2}	-5.5	24	
	E _{N1} , E _{N2}	-0.1	5.5	
	V _{FB1} , V _{FB2}	-0.1	3.5	
	V _{O1}	-0.1	5.5	
Output voltage ⁽¹⁾	D _{RVH1} , D _{RVH2}	-5.5	30	V
	D _{RVH1} , D _{RVH2} ⁽²⁾	-0.1	5.5	
	D _{RL1} , D _{RL2}	-0.1	5.5	
	P _{GOOD} , V _{CLK} , V _{REG5}	-0.1	5.5	
	V _{REG3} , C _{S1} , C _{S2}	-0.1	3.5	
Operating free-air temperature, T _A		-40	85	°C

(1) All voltage values are with respect to the network ground terminal unless otherwise noted.

(2) Voltage values are with respect to the SW terminal.

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		RUK (WQFN) 20 PINS	UNIT
R _{θJA}	Junction-to-ambient thermal resistance	94.1	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	58.1	
R _{θJB}	Junction-to-board thermal resistance	64.3	
Ψ _{JT}	Junction-to-top characterization parameter	31.8	
Ψ _{JB}	Junction-to-board characterization parameter	58.0	
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	5.9	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).

7.5 Electrical Characteristics

over operating free-air temperature range, V_{VIN} = 12 V, V_{V_{O1}} = 5 V, V_{V_{FB1}} = V_{V_{FB2}} = 2 V, V_{E_{N1}} = V_{E_{N2}} = 3.3 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CURRENT					
I _{V_{IN1}}	V _{IN} supply current-1 T _A = 25°C, No load, V _{V_{O1}} = 0 V	860			µA
I _{V_{IN2}}	V _{IN} supply current-2 T _A = 25°C, No load	30			µA
I _{V_{O1}}	V _{O1} supply current T _A = 25°C, No load, V _{V_{FB1}} = V _{V_{FB2}} = 2.05 V	900			µA
I _{V_{IN(STBY)}}	V _{IN} stand-by current T _A = 25°C, No load, V _{V_{O1}} = 0 V, V _{E_{N1}} = V _{E_{N2}} = 0 V	180			µA
INTERNAL REFERENCE					
V _{FBx}	V _{FB} regulation voltage T _A = 25°C	1.99	2	2.01	V
		1.98	2	2.02	
VREG5 OUTPUT					
V _{V_{REG5}}	V _{REG5} output voltage T _A = 25°C, No load, V _{V_{O1}} = 0 V	4.9	5	5.1	V
		4.85	5	5.1	
		4.85	5	5.1	
		4.50	4.75	5.1	
I _{V_{REG5}}	V _{V_{O1}} = 0 V, V _{V_{REG5}} = 4.5 V, V _{V_{IN}} = 7 V	100	150		mA
R _{V_{SSW}}	5-V switch resistance T _A = 25°C, V _{V_{O1}} = 5 V, I _{V_{REG5}} = 50 mA		1.8		Ω

Electrical Characteristics (continued)

over operating free-air temperature range, $V_{VIN} = 12\text{ V}$, $V_{VO1} = 5\text{ V}$, $V_{VFB1} = V_{VFB2} = 2\text{ V}$, $V_{EN1} = V_{EN2} = 3.3\text{ V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VREG3 OUTPUT					
V _{VREG3} VREG3 output voltage	No load, $V_{VO1} = 0\text{ V}$, $T_A = 25^\circ\text{C}$	3.267	3.3	3.333	V
	$V_{VIN} > 7\text{ V}$, $V_{VO1} = 0\text{ V}$, $I_{VREG3} < 100\text{ mA}$	3.217	3.3	3.383	
	$5.5\text{ V} < V_{VIN}$, $V_{VO1} = 0\text{ V}$, $I_{VREG3} < 35\text{ mA}$	3.234	3.3	3.366	
	$0^\circ\text{C} \leq T_A \leq 85^\circ\text{C}$, $V_{VIN} > 5.5\text{ V}$, $V_{VO1} = 0\text{ V}$, $I_{VREG3} < 35\text{ mA}$	3.267	3.3	3.333	
	$0^\circ\text{C} \leq T_A \leq 85^\circ\text{C}$, $V_{VIN} > 5.5\text{ V}$, $V_{VO1} = 5\text{ V}$, $I_{VREG3} < 35\text{ mA}$	3.267	3.3	3.333	
	$V_{VIN} > 5\text{ V}$, $V_{VO1} = 0\text{ V}$, $I_{VREG3} < 35\text{ mA}$	3.217	3.3	3.366	
I _{VREG3} VREG3 current limit	$V_{VO1} = 0\text{ V}$, $V_{VREG3} = 3.0\text{ V}$, $V_{VIN} = 7\text{ V}$	100	150		mA
MOSFET DRIVERS					
R _{DRVH} DRVH resistance	Source, $(V_{VBST} - V_{DRVH}) = 0.25\text{ V}$, $(V_{VBST} - V_{SW}) = 5\text{ V}$	3	Ω	Ω	
	Sink, $(V_{DRVH} - V_{SW}) = 0.25\text{ V}$, $(V_{VBST} - V_{SW}) = 5\text{ V}$	1.9			
R _{DRVL} DRVL resistance	Source, $(V_{VREG5} - V_{DRVL}) = 0.25\text{ V}$, $V_{VREG5} = 5\text{ V}$	3	Ω	Ω	
	Sink, $V_{DRVL} = 0.25\text{ V}$, $V_{VREG5} = 5\text{ V}$	0.9			
INTERNAL BOOT STRAP SWITCH					
R _{VBST} (ON) Boost switch on-resistance	$T_A = 25^\circ\text{C}$, $I_{VBST} = 10\text{ mA}$	13	Ω	Ω	
I _{VBSTLK} VBST leakage current	$T_A = 25^\circ\text{C}$	1			
CLOCK OUTPUT					
R _{VCLK} (PU) VCLK on-resistance (pullup)	$T_A = 25^\circ\text{C}$	10	Ω	Ω	
R _{VCLK} (PD) VCLK on-resistance (pulldown)	$T_A = 25^\circ\text{C}$	10			
OUTPUT DISCHARGE					
R _{DIS1} CH1 discharge resistance	$T_A = 25^\circ\text{C}$, $V_{VO1} = 0.5\text{ V}$ $V_{EN1} = V_{EN2} = 0\text{ V}$	35	Ω	Ω	
R _{DIS2} CH2 discharge resistance	$T_A = 25^\circ\text{C}$, $V_{SW2} = 0.5\text{ V}$, $V_{EN1} = V_{EN2} = 0\text{ V}$	70			
POWER GOOD					
V _{PGTH} PG threshold	Lower (rising edge of PG-in)	92.5%	95.0%	97.5%	
	Hysteresis	5%			
	Upper (rising edge of PG-out)	107.5%	110.0%	112.5%	
	Hysteresis	5%			
I _{PGMAX} PG sink current	$V_{PGOOD} = 0.5\text{ V}$	6.5	mA	μA	
I _{PGLK} PG leakage current	$V_{PGOOD} = 5.5\text{ V}$	1			
CURRENT SENSING					
I _{CS} CS source current	$T_A = 25^\circ\text{C}$, $V_{CS} = 0.4\text{ V}$	9	10	11	μA
T _{C_{CS}} CS current temperature coefficient ⁽¹⁾	On the basis of 25°C		4500	ppm/°C	
V _{CS} CS current-limit setting range		0.2	2		
V _{ZC} Zero cross detection offset	$T_A = 25^\circ\text{C}$	-1	1	3	mV
LOGIC THRESHOLD					
V _{ENX(ON)} EN threshold high-level	SMPS on level			1.6	V
V _{ENX(OFF)} EN threshold low-level	SMPS off level		0.3	V	
I _{EN} EN input current	$V_{ENx} = 3.3\text{ V}$	-1	1		
OUTPUT OVERVOLTAGE PROTECTION					
V _{OVP} OVP trip threshold		112.5%	115.0%	117.5%	
OUTPUT UNDERRVOLTAGE PROTECTION					
V _{UVP} UVP trip threshold		55%	60%	65%	

(1) Ensured by design. Not production tested.

Electrical Characteristics (continued)

over operating free-air temperature range, $V_{VIN} = 12\text{ V}$, $V_{VO1} = 5\text{ V}$, $V_{VFB1} = V_{VFB2} = 2\text{ V}$, $V_{EN1} = V_{EN2} = 3.3\text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
UVLO						
$V_{UVLOVIN}$	VIN UVLO threshold	Wake up	4.58			V
		Hysteresis	0.5			
V_{UVLO5}	VREG5 UVLO threshold	Wake up	4.38	4.5		V
		Hysteresis	0.4			
V_{UVLO3}	VREG3 UVLO threshold	Wake up	3.15			V
		Hysteresis	0.15			
OVERTEMPERATURE PROTECTION						
T_{OTP}	OTP threshold ⁽¹⁾	Shutdown temperature	155			°C
		Hysteresis	10			

7.6 Timing Requirements

over operating free-air temperature range, $V_{VIN} = 12\text{ V}$, $V_{VO1} = 5\text{ V}$, $V_{VFB1} = V_{VFB2} = 2\text{ V}$, $V_{EN1} = V_{EN2} = 3.3\text{ V}$ (unless otherwise noted)

		MIN	NOM	MAX	UNIT	
DUTY CYCLE AND FREQUENCY CONTROL						
f_{sw1}	CH1 frequency ⁽¹⁾	$T_A = 25^\circ\text{C}$, $V_{VIN} = 20\text{ V}$	240	300	360	kHz
f_{sw2}	CH2 frequency ⁽¹⁾	$T_A = 25^\circ\text{C}$, $V_{VIN} = 20\text{ V}$	280	355	430	kHz
$t_{OFF(MIN)}$	Minimum off-time	$T_A = 25^\circ\text{C}$	200	300	500	ns
MOSFET DRIVERS						
t_D	Dead time	DRVH-off to DRVL-on	12			ns
		DRVL-off to DRVH-on	20			

(1) Ensured by design. Not production tested.

7.7 Switching Characteristics

over operating free-air temperature range, $V_{VIN} = 12\text{ V}$, $V_{VO1} = 5\text{ V}$, $V_{VFB1} = V_{VFB2} = 2\text{ V}$, $V_{EN1} = V_{EN2} = 3.3\text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
CLOCK OUTPUT						
f_{CLK}	Clock frequency	$T_A = 25^\circ\text{C}$		260		kHz
SOFT-START OPERATION						
t_{ss}	Soft-start time	From $ENx = \text{HI}$ and $V_{VREG5} > V_{UVLO5}$ to $V_{OUT} = 95\%$		3.25		ms
t_{SSRAMP}	Soft-start time (ramp-up)	$V_{OUT} = 0\%$ to $V_{OUT} = 95\%$, $V_{VREG5} = 5\text{ V}$		3.12		ms
POWER GOOD						
t_{PGDEL}	PG delay	From PG lower threshold (95% = typical) to PG flag high		1.38		ms
OUTPUT OVERVOLTAGE PROTECTION						
t_{OVPDLY}	OVP propagation delay	$T_A = 25^\circ\text{C}$		0.5		μs
OUTPUT UNDERVOLTAGE PROTECTION						
t_{UVPDLY}	UVP propagation delay			250		μs
$t_{UVPENDLY}$	UVP enable delay	From $ENx = \text{HI}$ and $V_{VREG5} > V_{UVLO5}$ to UV latch off		4.3		ms

7.8 Typical Characteristics

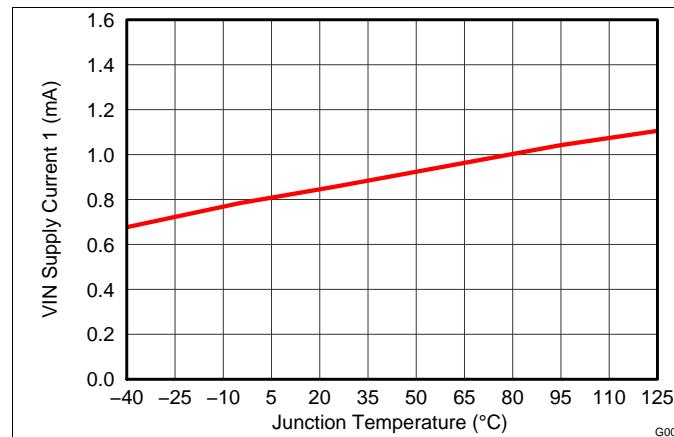


Figure 1. VIN Supply Current 1 vs Junction Temperature

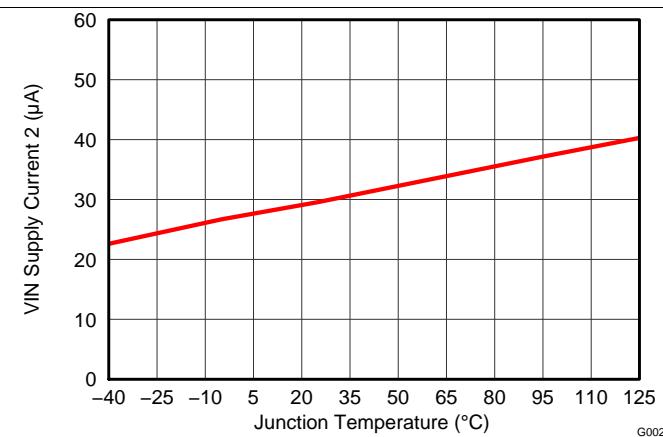


Figure 2. VIN Supply Current 2 vs Junction Temperature

Figure 3. VO1 Supply Current 1 vs Junction Temperature

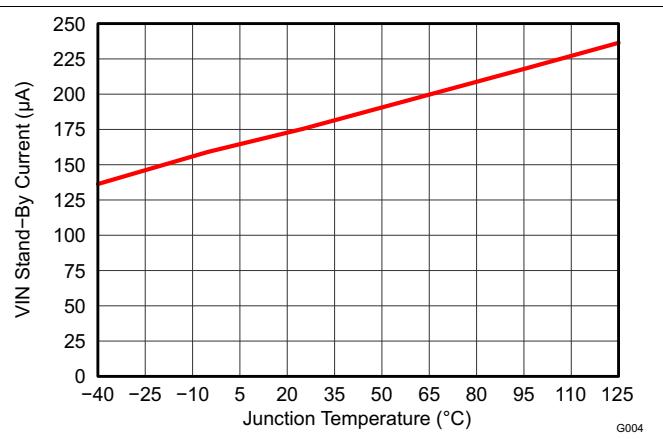


Figure 4. VIN Stand-By Current vs Junction Temperature

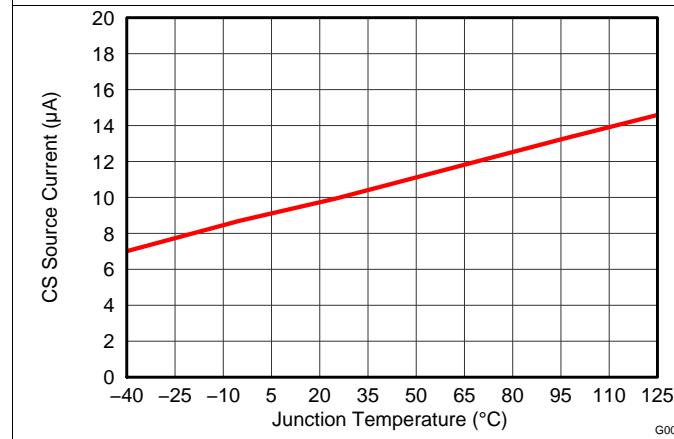


Figure 5. CS Source Current vs Junction Temperature

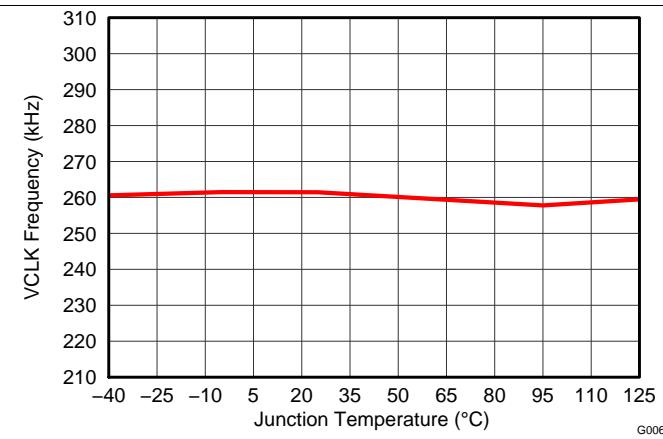
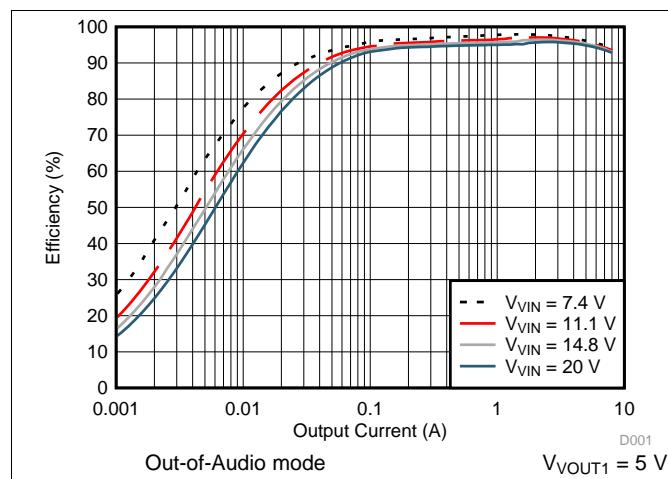
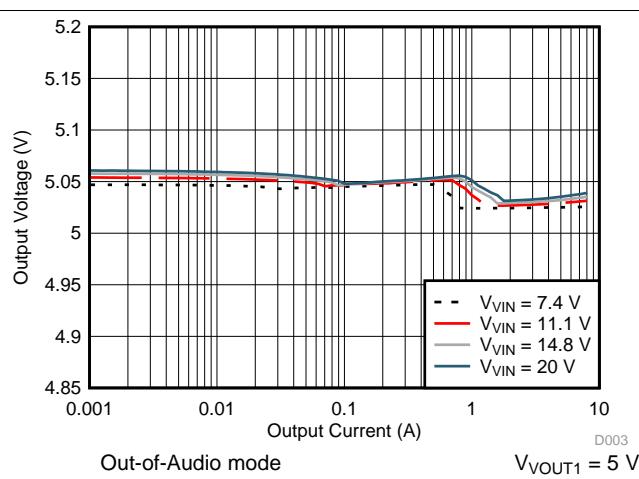
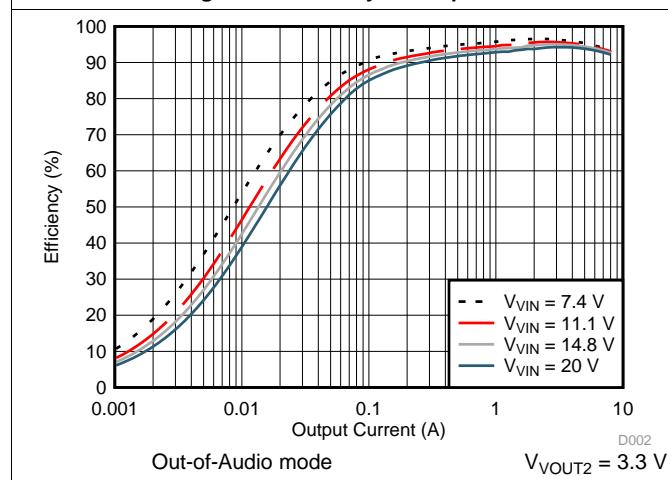
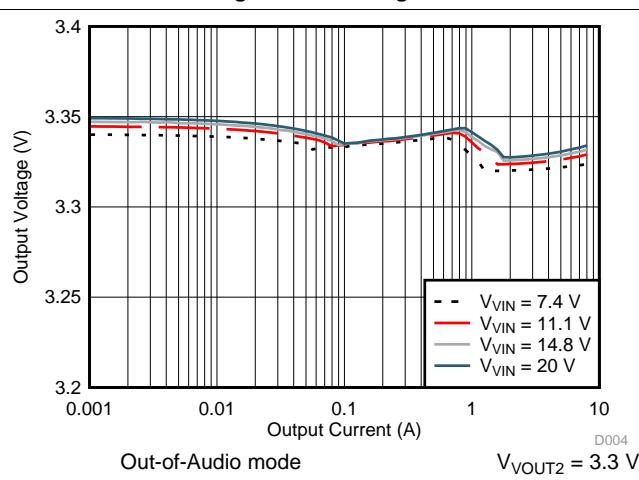
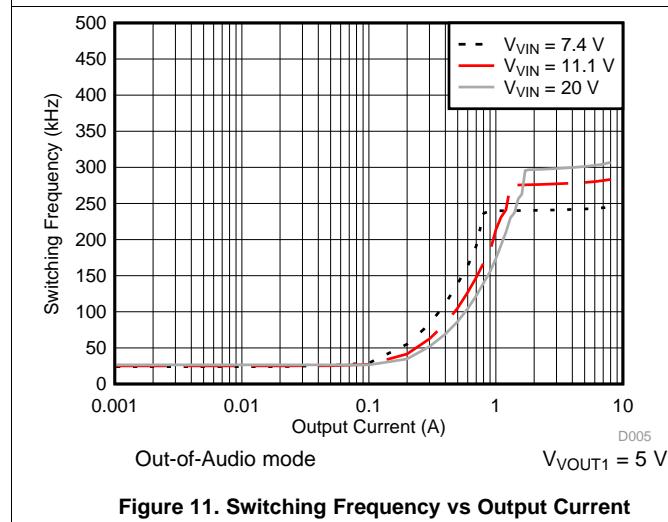
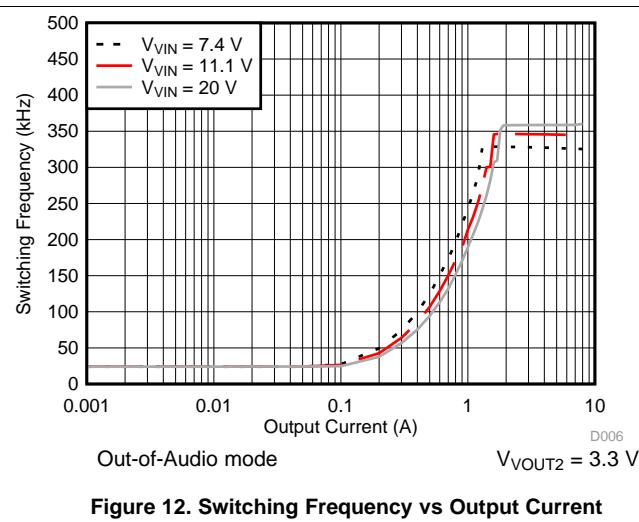




Figure 6. Clock Frequency vs Junction Temperature


Typical Characteristics (continued)


Figure 7. Efficiency vs Output Current


Figure 8. Load Regulation


Figure 9. Efficiency vs Output Current

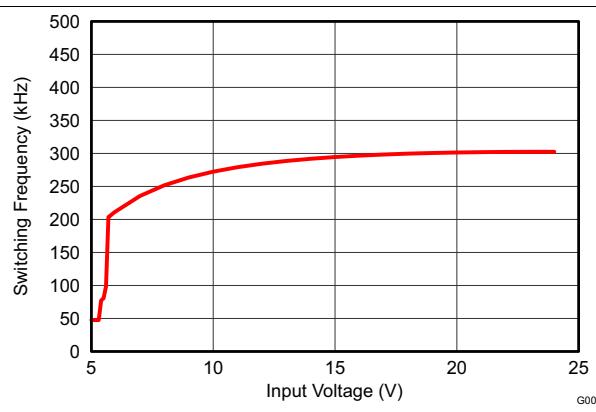
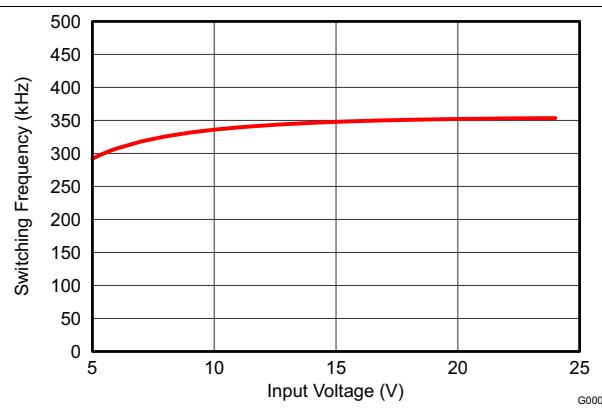


Figure 10. Load Regulation

Figure 11. Switching Frequency vs Output Current

Figure 12. Switching Frequency vs Output Current

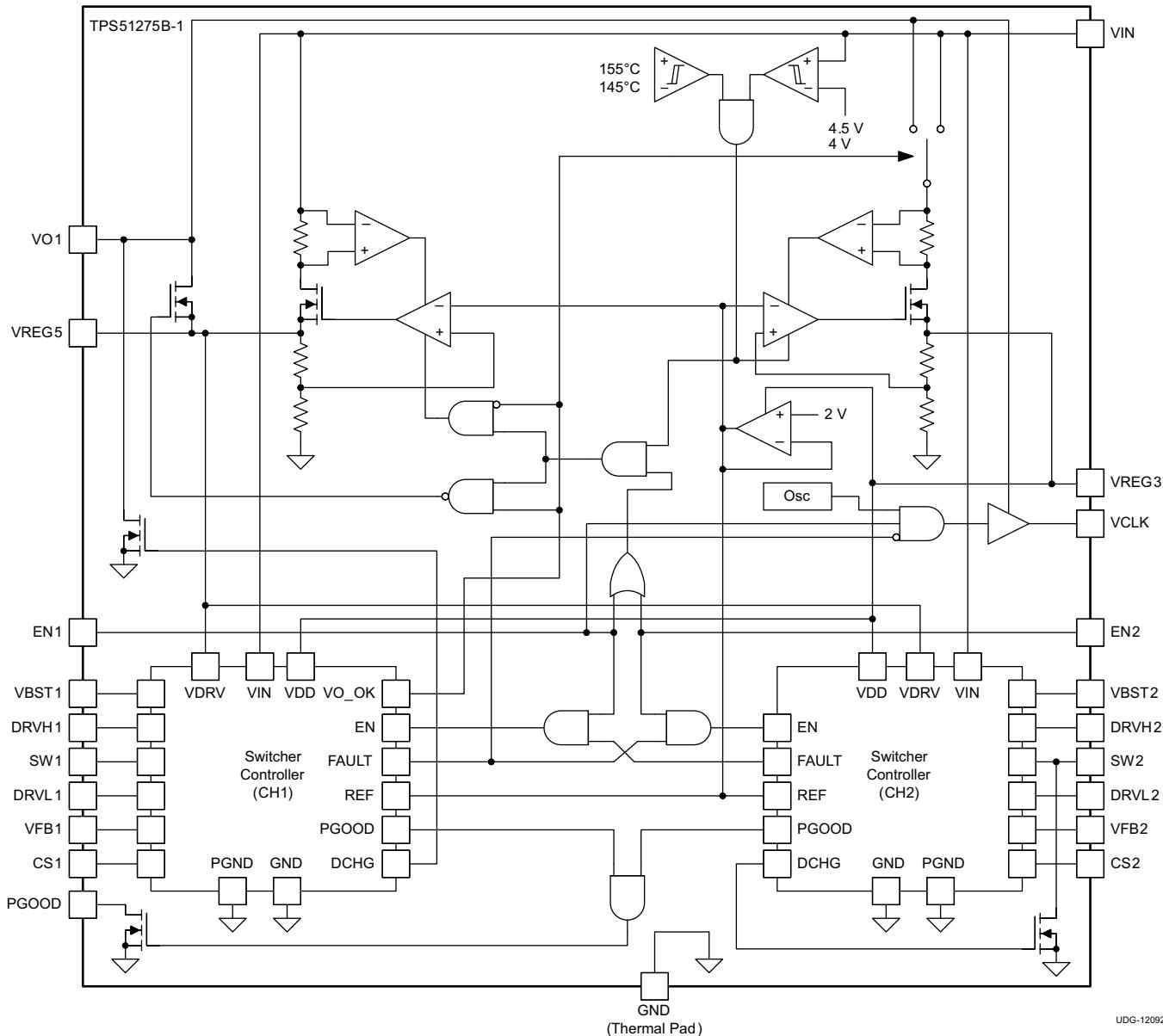
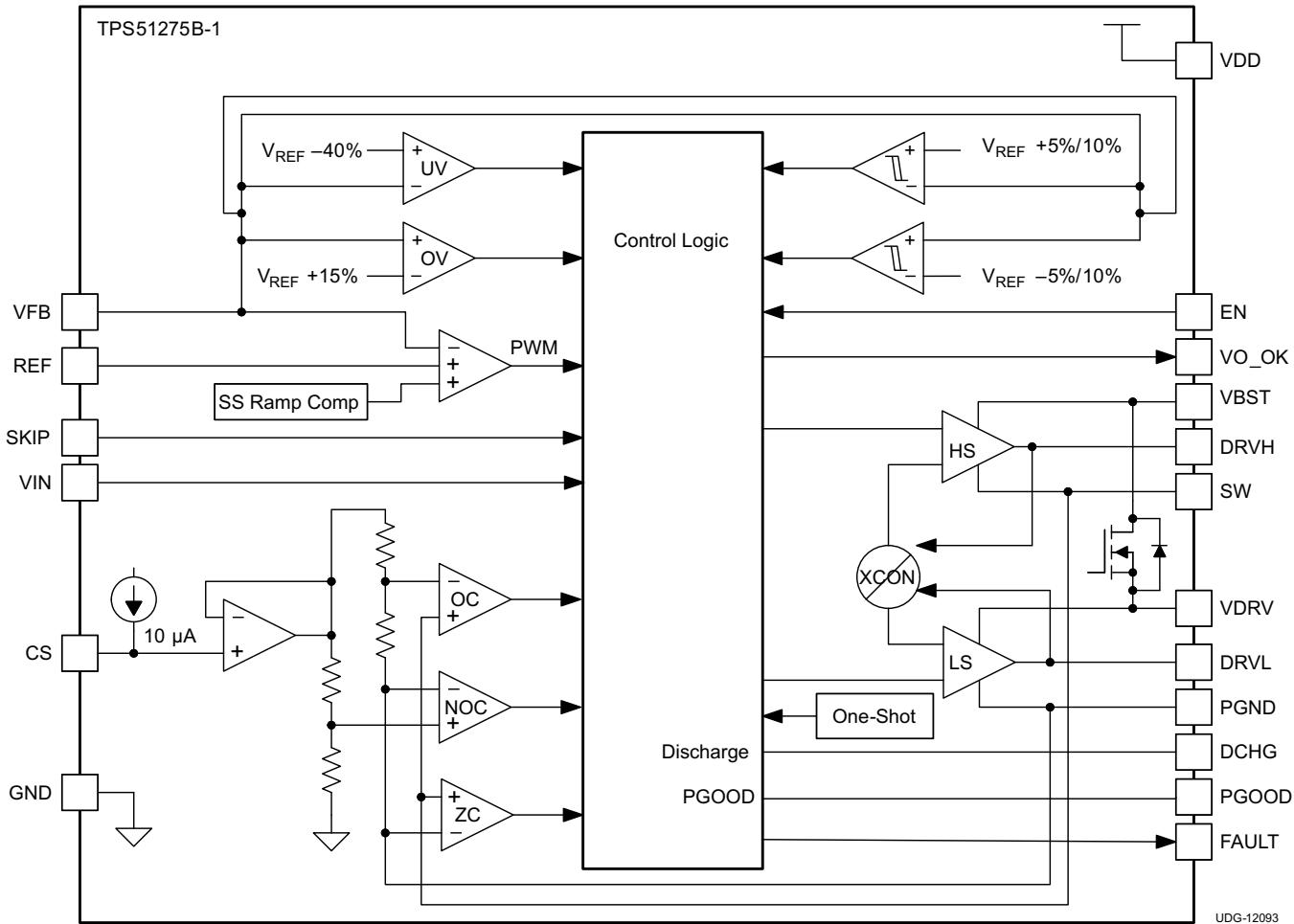

Typical Characteristics (continued)

Figure 13. Switching Frequency vs Input Voltage

Figure 14. Switching Frequency vs Input Voltage

8 Detailed Description

8.1 Overview


The TPS51275B-1 device is a cost-effective, dual-synchronous buck controller targeted for power-supply solutions for notebook and desktop computer systems. The device has 5-V and 3.3-V low-dropout regulators (LDOs) and requires few external components. With D-CAP control mode implemented, the compensation network can be removed. The fast transient response also reduces the output capacitance.

8.2 Functional Block Diagram

UDG-12092

Functional Block Diagram (continued)

Figure 15. Switcher Controller Block Diagram

8.3 Feature Description

8.3.1 PWM Operations

The main control loop of the switch-mode power supply (SMPS) is designed as an adaptive on-time pulse-width-modulation (PWM) controller. The control loop supports a proprietary D-CAP mode. D-CAP mode does not require an external compensation circuit and is suitable for low external component-count configuration when used with an appropriate amount of ESR at the output capacitors.

At the beginning of each cycle, the synchronous high-side MOSFET is turned on, or enters the ON state. After the internal, one-shot timer expires, this MOSFET is turned off, or enters the OFF state. The MOSFET is turned on again when the feedback point voltage, V_{VFB} , decreases to match the internal 2-V reference. The inductor current information is also monitored and should be below the overcurrent threshold to initiate this new cycle. By repeating the operation in this manner, the controller regulates the output voltage. The synchronous low-side (rectifying) MOSFET is turned on at the beginning of each OFF state to maintain a minimum of conduction loss. The low-side MOSFET is turned off before the high-side MOSFET turns on at next switching cycle or when inductor current information detects a zero level. When the low-side MOSFET is turned off when the inductor current detects a zero level, a seamless transition to the reduced frequency operation during light-load conditions is enabled so that high efficiency is maintained over a broad range of load current.

Feature Description (continued)

8.3.2 Adaptive On-Time and PWM Frequency Control

Because the TPS51275B-1 device does not have a dedicated oscillator for the on-board control loop. The switching cycle is controlled by the adaptive on-time circuit. The on-time is controlled to meet the target switching frequency by feed-forwarding the input and output voltage into the on-time one-shot timer. The target switching frequency is varied according to the input voltage to achieve higher duty operation for lower input voltage application. The switching frequency of CH1 (5-V output) is 300 kHz during continuous-conduction-mode (CCM) operation when $V_{VIN} = 20$ V. The CH2 (3.3-V output) is 355 kHz during CCM when $V_{VIN} = 20$ V (see [Figure 13](#) and [Figure 14](#)).

To improve load transient performance and load regulation in lower input voltage conditions, the TPS51275B-1 device can extend the on-time. The maximum on-time extension for CH1 is 4 times and for CH2 is 3 times. To maintain a reasonable inductor ripple current during on-time extension, the inductor ripple current should be set to less than half of the OCL (valley) threshold (see the [Step 2. Select the Inductor](#) section). The on-time extension function provides high duty-cycle operation and shows better DC (static) performance. AC performance is determined mostly by the output LC filter and resistive factor in the loop.

8.3.3 Light-Load Condition in Out-of-Audio Operation

The TPS51275B-1 device automatically reduces switching frequency during light-load conditions to maintain high efficiency. This reduction of frequency is achieved smoothly and without an increase in output voltage ripple. A more detailed description of this operation follows. As the output current decreases from a heavy-load condition, the inductor current is also reduced and eventually approaches valley zero current, which is the boundary between continuous conduction mode and discontinuous conduction mode (DCM). The rectifying MOSFET is turned off when this zero inductor current is detected. As the load current further decreases, the converter runs in DCM and requires a longer and longer time to discharge the output capacitor to the level that requires the next ON cycle. The ON time is maintained the same as that in the heavy-load condition. In reverse, when the output current increases from light load to heavy load, the switching frequency increases to the preset value as the inductor current reaches to the continuous conduction. Use [Equation 1](#) to calculate the transition load point to the light load operation $I_{OUT(LL)}$ (for example the threshold between continuous and discontinuous conduction mode).

$$I_{OUT(LL)} = \frac{1}{2 \times L \times f_{SW}} \times \frac{(V_{VIN} - V_{OUT}) \times V_{OUT}}{V_{VIN}}$$

where

- f_{sw} is the PWM switching frequency

(1)

The switching frequency versus the output current during light-load conditions is a function of the inductance (L), input voltage (V_{VIN}) and output voltage (V_{OUT}), but it decreases almost proportional to the output current from the $I_{OUT(LL)}$. As the load current continues to decrease, the switching frequency can decrease into the acoustic audible frequency range. To prevent this from happening, Out-of-Audio (OOA) light-load mode is implemented.

During Out-of-Audio operation, the OOA control circuit monitors the states of both the high-side and low-side MOSFETs and forces them switching if both MOSFETs are off for more than 40 μ s. When both high-side and low-side MOSFETs are off for 40 μ s during a light-load condition, the operation mode is changed to forced CCM (FCCM). This mode change initiates one cycle of turning on both the low-side MOSFET and the high-side MOSFET. Then, both MOSFETs remain turned off waiting for another 40 μ s.

8.3.4 Enable and Power Good

The VREG3 and VREG5 pins are always-on regulators, when the input voltage is beyond the UVLO threshold it turns ON. The VCLK signal initiates when the EN1 pin enters the ON state. [Table 1](#) lists the enable states.

Table 1. Enabling and PGOOD State

EN1	EN2	VREG5	VREG3	CH1 (5 V _{OUT})	CH2 (3.3 V _{OUT})	VCLK	PGOOD
OFF	OFF	ON	ON	OFF	OFF	OFF	Low
ON	OFF	ON	ON	ON	OFF	ON	Low
OFF	ON	ON	ON	OFF	ON	OFF	Low
ON	ON	ON	ON	ON	ON	ON	High

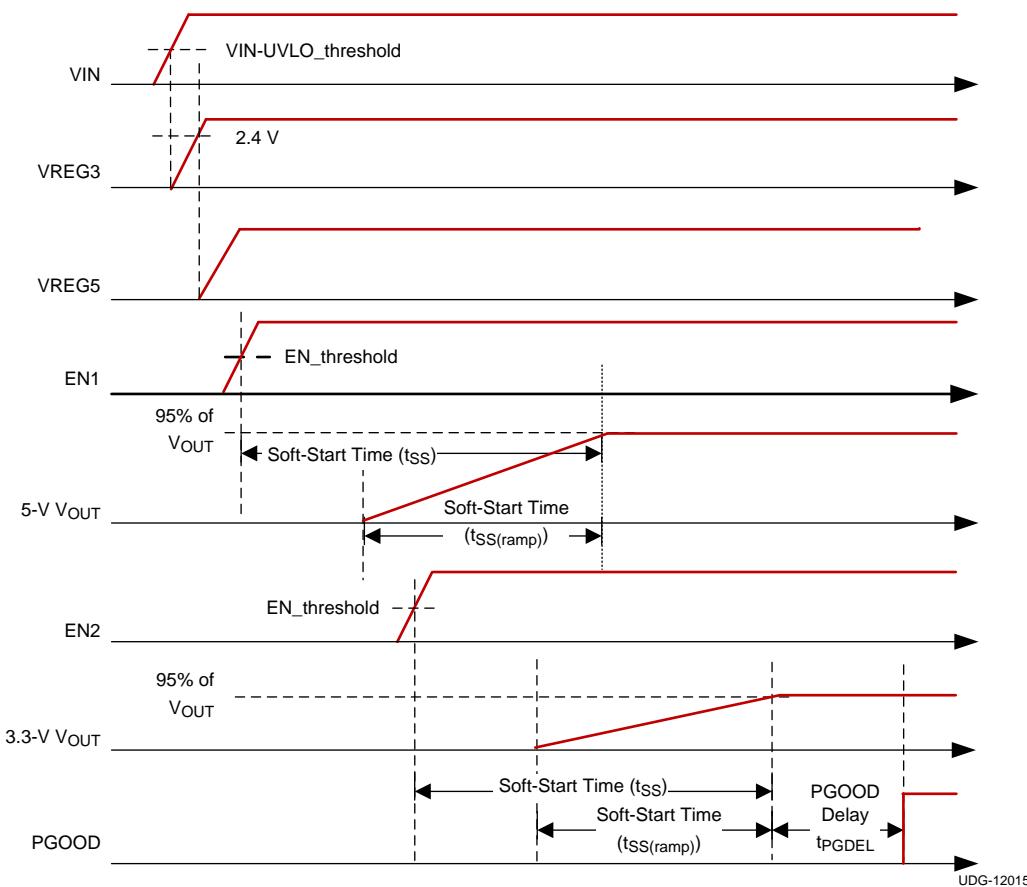


Figure 16. Timing Diagram

8.3.5 Soft-Start and Discharge

The TPS51275B-1 device operates an internal, 3.2-ms, voltage servo soft-start for each channel. When the EN_x pin becomes higher than the enable threshold voltage, an internal DAC begins ramping up the reference voltage to the PWM comparator. Smooth control of the output voltage is maintained during startup. When the EN_x pin becomes lower than the lower level of threshold voltage, the TPS51275B-1 device discharges the outputs using internal MOSFETs through VO1 (CH1) and SW2 (CH2).

8.3.6 VREG5 and VREG3 Linear Regulators

The two sets of 100-mA standby linear regulators output 5 V and 3.3 V, respectively. The VREG5 pin provides the current for the gate drivers. The VREG3 pin functions as the main power supply for the analog circuitry of the device. Both the VREG5 and VREG3 regulators are always-ON LDOs (see Table 1).

To stabilize regulators, add ceramic capacitors with a value of 1 μ F or larger (X5R grade or better) placed close to the VREG5 and VREG3 pins.

The VREG5 pin switchover function is asserted when the following three conditions are present:

- CH1 internal PGOOD is high
- CH1 is not in overcurrent-limit (OCL) condition
- VO1 voltage is higher than VREG5-1V

In this switchover condition the following three things occur:

- The internal 5-V LDO regulator is shut off
- The VREG5 output is connected to VO1 by internal switchover MOSFET
- VREG3 input pass is changed from VIN to VO1

8.3.7 VCLK for Charge Pump

The 260-kHz VCLK signal can be used in the charge pump circuit. The VCLK signal becomes available when the EN1 pin is in the ON state. The VCLK driver is driven by the VO1 voltage. In a design that does not require VCLK output, leave the VCLK pin open.

8.3.8 Overcurrent Protection

The TPS51275B-1 device has cycle-by-cycle overcurrent limiting control. The inductor current is monitored during the OFF state and the controller maintains the OFF state during the inductor current is larger than the overcurrent trip level. To provide both good accuracy and a cost effective solution, the TPS51275B-1 device supports temperature-compensated MOSFET $R_{DS(on)}$ sensing. Connect the CSx pin to ground (GND) through the CS voltage setting resistor, R_{CS} . The CSx pin sources CS current (I_{CS}) which is 10 μ A typically at room temperature, and the CSx terminal voltage ($V_{CS} = R_{CS} \times I_{CS}$) should be in the range of 0.2 to 2 V over all operation temperatures. The trip level is set to the OCL trip voltage (V_{TRIP}) as shown in [Equation 2](#).

$$V_{TRIP} = \frac{R_{CS} \times I_{CS}}{8} + 1 \text{ mV} \quad (2)$$

The inductor current is monitored by the voltage between the GND and the SWx pin so that SWx pin is connected to the drain terminal of the low-side MOSFET properly. The CS pin current has a 4500 ppm/ $^{\circ}\text{C}$ temperature slope to compensate the temperature dependency of the $R_{DS(on)}$. GND is used as the positive current sensing node so that GND should be connected to the source terminal of the low-side MOSFET.

As the comparison is done during the OFF state, V_{TRIP} sets the valley level of the inductor current. Thus, the load current at the overcurrent threshold, I_{OCP} , can be calculated as shown in [Equation 3](#).

$$I_{OCP} = \frac{V_{TRIP}}{R_{DS(on)}} + \frac{I_{IND(\text{ripple})}}{2} = \frac{V_{TRIP}}{R_{DS(on)}} + \frac{1}{2 \times L \times f_{SW}} \times \frac{(V_{VIN} - V_{OUT}) \times V_{OUT}}{V_{VIN}} \quad (3)$$

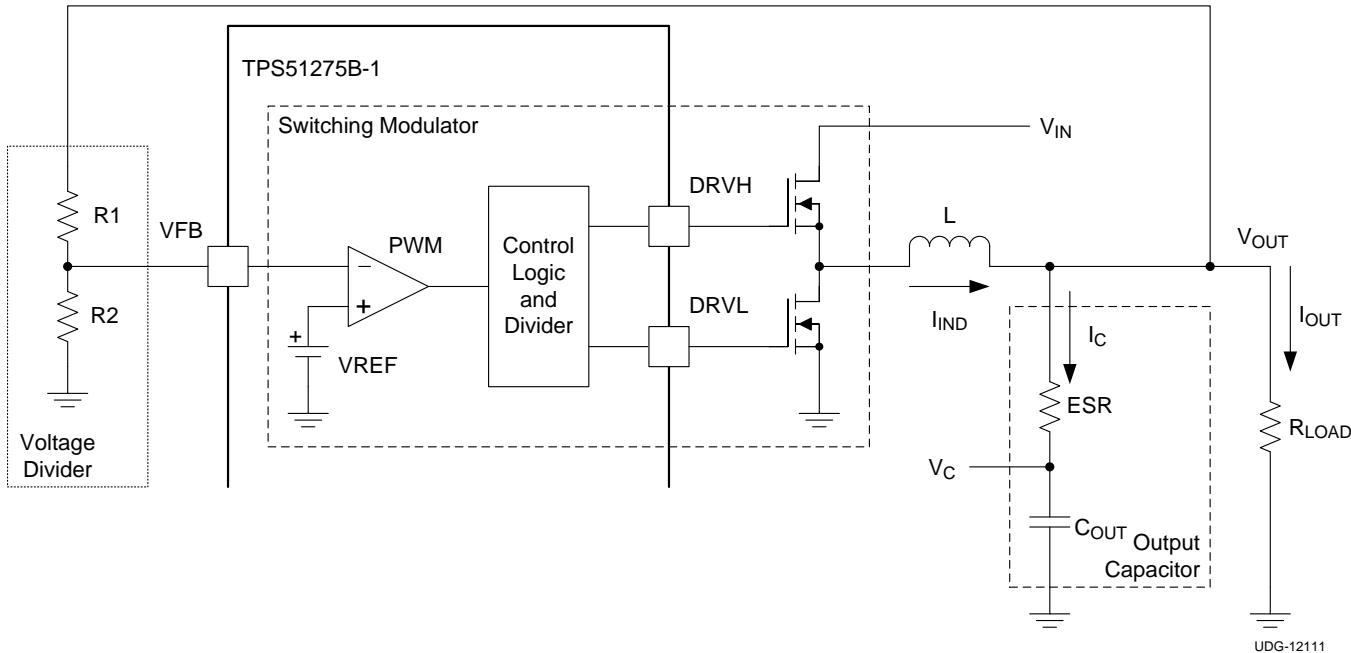
In an overcurrent condition, the current to the load exceeds the current to the output capacitor and therefore the output voltage tends to fall down. Eventually, the output voltage ends up crossing the undervoltage protection threshold and both channels shut down.

8.3.9 Output Overvoltage and Undervoltage Protection

The TPS51275B-1 device asserts the overvoltage protection (OVP) when the VFBx voltage reaches the OVP-trip threshold level. When an OVP event is detected, the controller changes the output target voltage to 0 V which usually turns off the DRVHx pin and forces the DRVLx pin to turn on. When the inductor current begins to flow through the low-side MOSFET and reaches the negative OCL, the DRVLx pin is turned off and the DRVHx pin is turned on. After the on-time expires, the DRVHx pin is turned off and the DRVLx pin is turned on again. This action minimizes the output node undershoot because of LC resonance. When the VFBx pin reaches 0 V, the driver output is latched as the DRVHx pin turns off, the DRVLx pin turns on. The undervoltage protection (UVP) latch is set when the VFBx voltage remains lower than UVP trip threshold voltage for 250 μ s or longer. In this fault condition, the controller latches the DRVHx and DRVLx pins low and discharges the outputs. The UVP detection function is enabled after 4.3 ms of SMPS operation to ensure startup.

8.3.10 Undervoltage Lockout Protection

The TPS51275B-1 device has undervoltage lockout (UVLO) protection at the VIN, VREG5, and VREG3 pins. When each voltage is lower than the respective UVLO threshold voltage, both SMPSs are shut-off. The UNVLO is a non-latch protection.


8.3.11 Over-Temperature Protection (OTP)

The TPS51275B-1 device features an internal temperature monitor. If the temperature exceeds the threshold value (typically 155 $^{\circ}\text{C}$), the TPS51275B-1 device, including the regulators, shuts off. The OTP is a non-latch protection.

8.4 Device Functional Modes

8.4.1 D-CAP Mode

From small-signal loop analysis, a buck converter using D-CAP mode can be simplified as shown in [Figure 17](#).

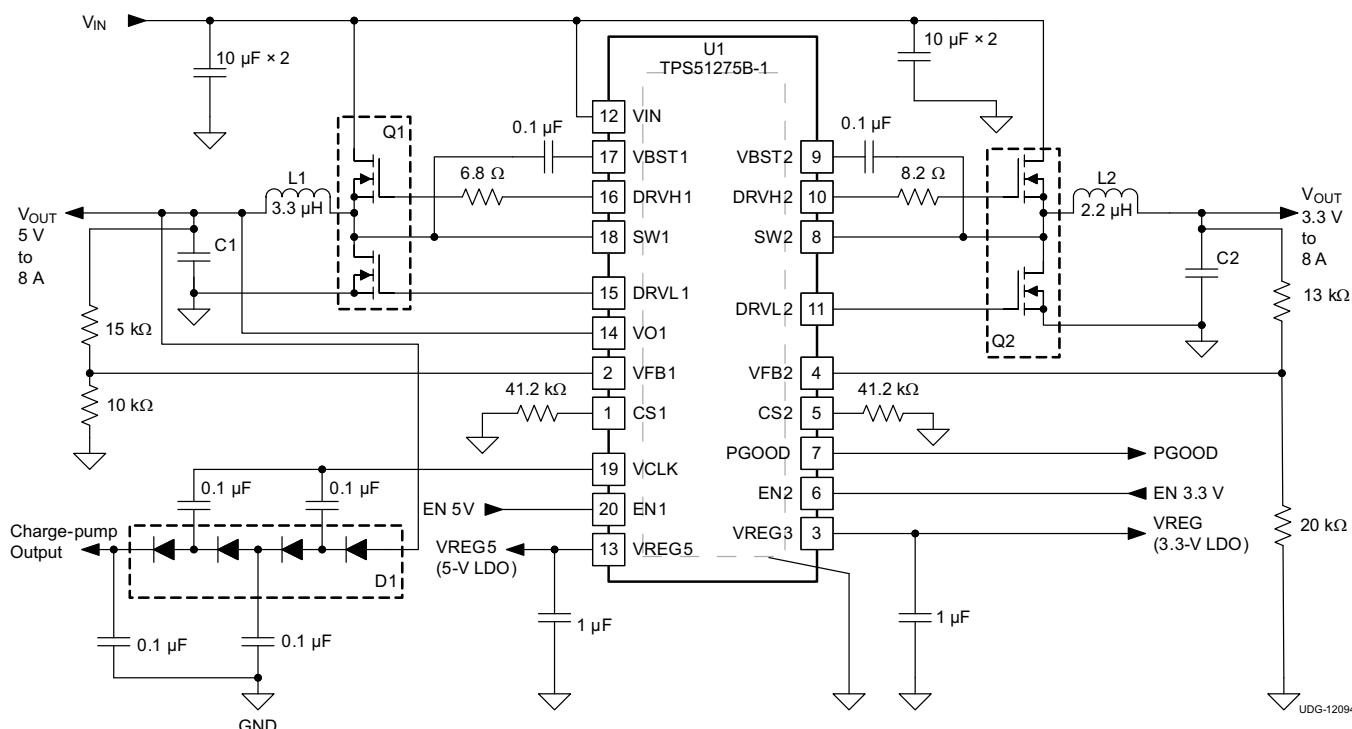
Figure 17. Simplifying the Modulator

The output voltage is compared with the internal reference voltage after the divider resistors, R1 and R2. The PWM comparator determines the timing to turn on the high-side MOSFET. The gain and speed of the comparator is high enough to keep the voltage at the beginning of each ON cycle substantially constant. For the loop stability, the 0-dB frequency, f_0 , defined in [Equation 4](#) must be lower than 1/4 of the switching frequency.

$$f_0 = \frac{1}{2\pi \times \text{ESR} \times C_{\text{OUT}}} \leq \frac{f_{\text{SW}}}{4} \quad (4)$$

As f_0 is determined solely by the output capacitor characteristics, the loop stability during D-CAP mode is determined by the capacitor chemistry. For example, specialty polymer capacitors have output capacitance in the order of several hundred micro-Farads and ESR in range of 10 mΩ. These capacitors yield an f_0 value on the order of 100 kHz or less and the loop is stable. However, ceramic capacitors have f_0 at more than 700 kHz, which is not suitable for this operational mode.

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS51275B-1 device is typically used as a dual-synchronous buck controller, which converts an input voltage ranging from 5 to 24 V, to output voltage of 5 V and 3.3 V (respectively). The device is targeted for power-supply solutions for notebook and desktop computer systems.

9.2 Typical Application

Figure 18. Detailed Application Schematic

9.2.1 Design Requirements

For this design example, use the parameters listed in [Table 2](#).

Table 2. Design Parameters

PARAMETER	VALUE
Input voltage range	5.5 to 24 V
Channel 1 output voltage	5 V
Channel 1 output current	8 A
Channel 2 output voltage	3.3 V
Channel 2 output current	8 A

9.2.2 Detailed Design Procedure

9.2.2.1 External Components Selection

The external components selection is relatively simple for a design using D-CAP mode. [Table 3](#) lists the key external components that are recommended for this application design (see [Figure 18](#)).

Table 3. Key External Components

REFERENCE DESIGNATOR	FUNCTION	MANUFACTURER	PART NUMBER
L1	Output Inductor (5 V _{OUT})	Alps	GLMC3R303A
L2	Output Inductor (3.3 V _{OUT})	Alps	GLMC2R203A
C1	Output Capacitor (5 V _{OUT})	SANYO	6TPE220MAZB × 2
C2	Output Capacitor (3.3 V _{OUT})	SANYO	6TPE220MAZB × 2
Q1	MOSFET (5 V _{OUT})	TI	CSD87330Q3D
Q2	MOSFET (3.3 V _{OUT})	TI	CSD87330Q3D

9.2.2.1.1 Step 1. Determine the Value of R1 and R2

The recommended value of R2 is between 10 kΩ and 20 kΩ. Use [Equation 5](#) to calculate the value of R1.

$$R_1 = \frac{(V_{OUT} - 0.5 \times V_{RIPPLE} - 2)}{2} \times R_2 \quad (5)$$

9.2.2.1.2 Step 2. Select the Inductor

The inductance value should be determined to give the ripple current of approximately ½ to ¼ of maximum output current and less than half of OCL (valley) threshold. A larger ripple current increases the output ripple voltage, improves signal-to-noise ratio, and helps ensure stable operation.

$$L = \frac{1}{I_{IND(ripple)} \times f_{SW}} \times \frac{(V_{VIN(max)} - V_{OUT}) \times V_{OUT}}{V_{VIN(max)}} = \frac{2}{I_{OUT(max)} \times f_{SW}} \times \frac{(V_{VIN(max)} - V_{OUT}) \times V_{OUT}}{V_{VIN(max)}} \quad (6)$$

The calculated inductance for channel1 and channel2 is 3.3 μH and 2 μH, respectively. For this design, select the inductance values of 3.3 μH and 2.2 μH for these two channels.

The inductor must also have low DCR to achieve good efficiency, as well as enough room above the peak inductor current before saturation. Use [Equation 7](#) to calculate the peak inductor current.

$$I_{IND(peak)} = \frac{V_{TRIP}}{R_{DS(on)}} + \frac{1}{L \times f_{SW}} \times \frac{(V_{VIN(max)} - V_{OUT}) \times V_{OUT}}{V_{VIN(max)}} \quad (7)$$

9.2.2.1.3 Step 3. Select Output Capacitors

Organic semiconductor capacitors or specialty polymer capacitors are recommended. Determine the ESR to meet the required ripple voltage. Use [Equation 8](#) to quickly calculate the ESR.

$$ESR = \frac{V_{OUT} \times 20 \text{ mV} \times (1-D)}{2 \text{ V} \times I_{IND(ripple)}} = \frac{20 \text{ mV} \times L \times f_{SW}}{2 \text{ V}} \quad (8)$$

where

- D as the duty-cycle factor
- the required output ripple voltage slope is approximately 20 mV per t_{SW} (switching period) in terms of the VFBx pin

The calculated minimum-required ESR for channel1 and channel2 is 9.9 mΩ and 7.8 mΩ, respectively. For this design, use two 220-μF, 35-mΩ polymer capacitors in parallel for each channel. The equivalent ESR is 17.5 mΩ which meets the minimum ESR requirement. Using a value of 440 μF for the output capacitor and 17.5 mΩ of ESR, the resulting value of the 0-dB frequency, f_0 (see [Equation 4](#)), is approximately 21 kHz which is much less than $f_{SW} / 4$ for both channels.

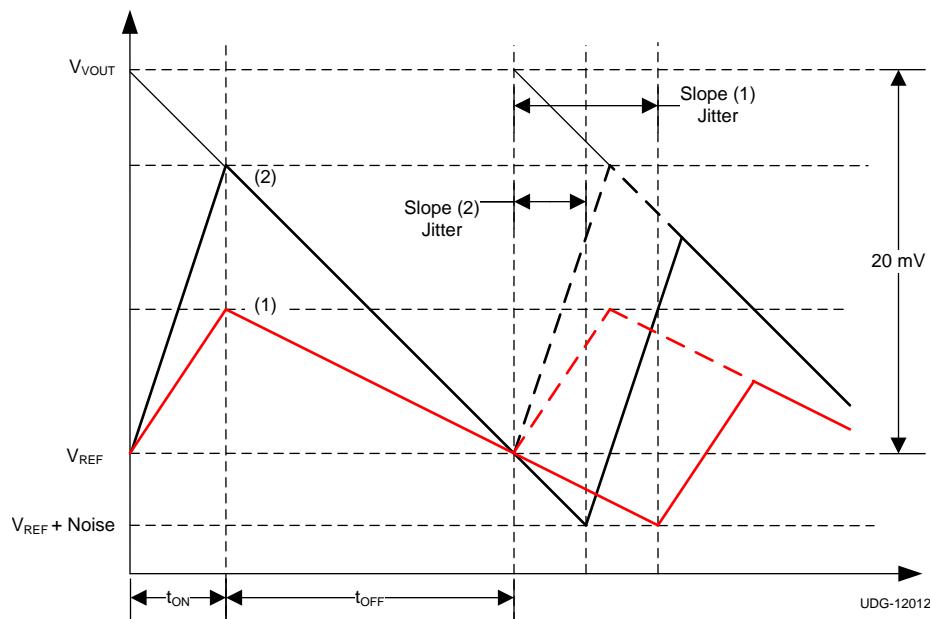
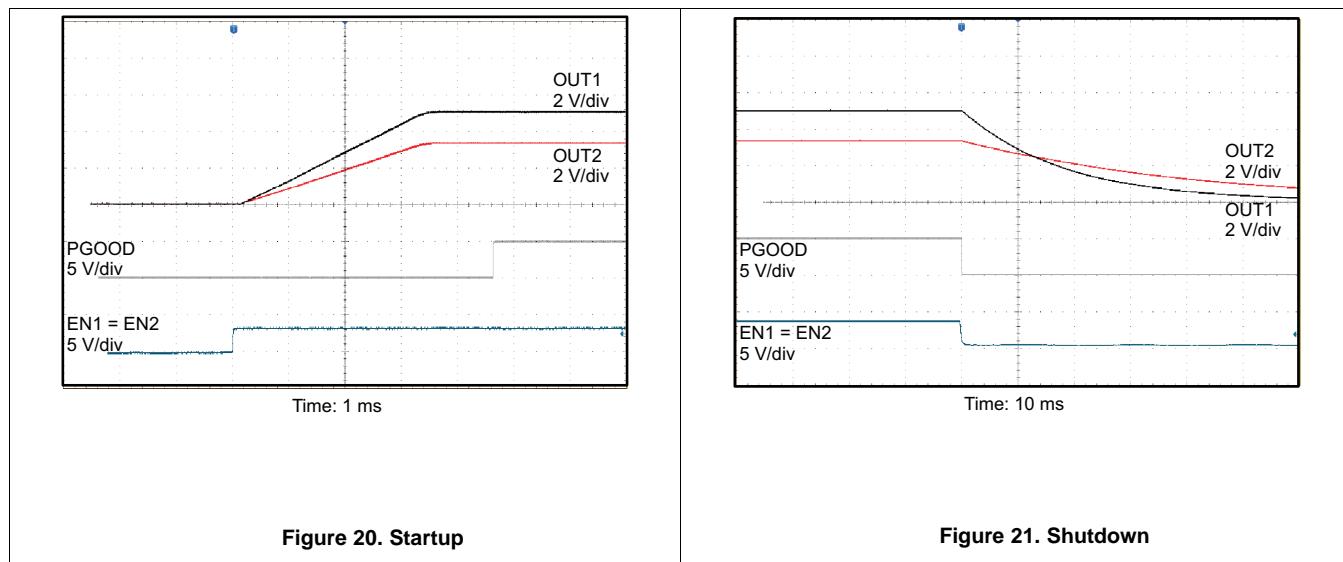
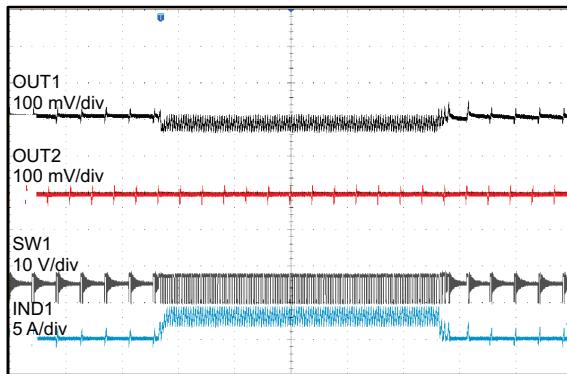
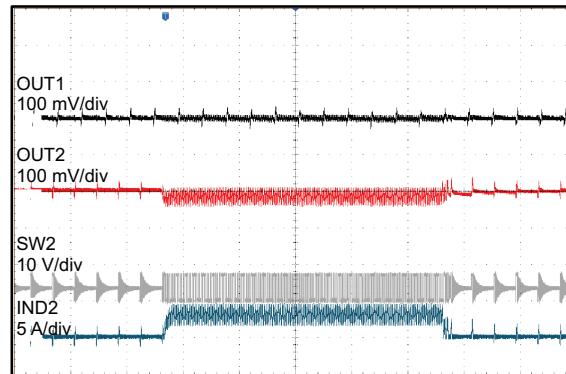




Figure 19. Ripple Voltage Slope and Jitter Performance


9.2.3 Application Curves

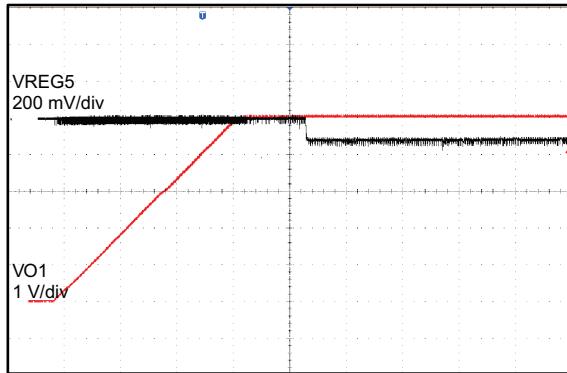

Time: 100 μ s
 $I_{OUT1} = 0$ to 3 A $I_{OUT2} = 0$ A $V_{VIN} = 7.4$ V

Figure 22. 5-V Load Transient

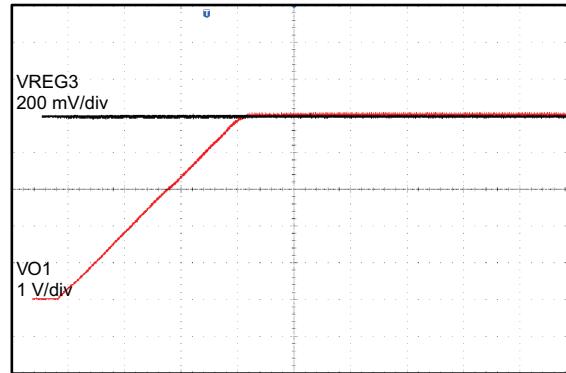

Time: 100 μ s
 $I_{OUT1} = 0$ A $I_{OUT2} = 0$ to 3 A $V_{VIN} = 7.4$ V

Figure 23. 3.3-V Load Transient

Time: 100 ms

Figure 24. 5-V Switch Over

Time: 100 ms

Figure 25. 3.3-V Switch Over

10 Power Supply Recommendations

The TPS51275B-1 device is designed to operate with an input supply-voltage range of 5 to 24 V. Ensure that the power-supply voltage in this range.

11 Layout

11.1 Layout Guidelines

Good layout is essential for stable power-supply operation. Follow these guidelines for an efficient PCB layout.

11.1.1 Placement

- Place voltage setting resistors close to the device pins.
- Place bypass capacitors for the VREG5 and VREG3 regulators close to the device pins.

11.1.2 Routing (Sensitive Analog Portion)

- Use small copper space for the VFBx pins. Short and narrow traces are available to avoid noise coupling.
- Connect the VFB resistor trace to the positive node of the output capacitor. Routing the inner layer away from power traces is recommended.
- Use short and wide trace from the VFB resistor to vias to GND (internal GND plane).

11.1.3 Routing (Power portion)

- Use wider and shorter traces of the DRVLx pin for the low-side gate drivers to reduce stray inductance.
- Use the parallel traces of the SWx and DRVHx pins for the high-side MOSFET gate drive in a same layer or on adjoin layers, and keep these traces away from the DRVLx pin.
- Use wider and shorter traces between the source terminal of the high-side MOSFET and the drain terminal of the low-side MOSFET
- The thermal pad is the GND terminal of this device. Five or more vias with 0.33-mm (13-mils) diameter connected from the thermal pad to the internal GND plane should be used to have strong GND connection and help heat dissipation.

11.2 Layout Example



Figure 26. TPS51275B-Q1 Layout Example

12 器件和文档支持

12.1 器件支持

12.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息，不能构成与此类产品或服务或保修的适用性有关的认可，不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

12.2 商标

D-CAP, Out-of-Audio™ are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

12.3 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

12.4 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

13 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本, 请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPS51275B-1RUKR	Active	Production	WQFN (RUK) 20	3000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	1275B1
TPS51275B-1RUKR.A	Active	Production	WQFN (RUK) 20	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	1275B1
TPS51275B-1RUKT	Active	Production	WQFN (RUK) 20	250 SMALL T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	1275B1
TPS51275B-1RUKT.A	Active	Production	WQFN (RUK) 20	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	1275B1

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

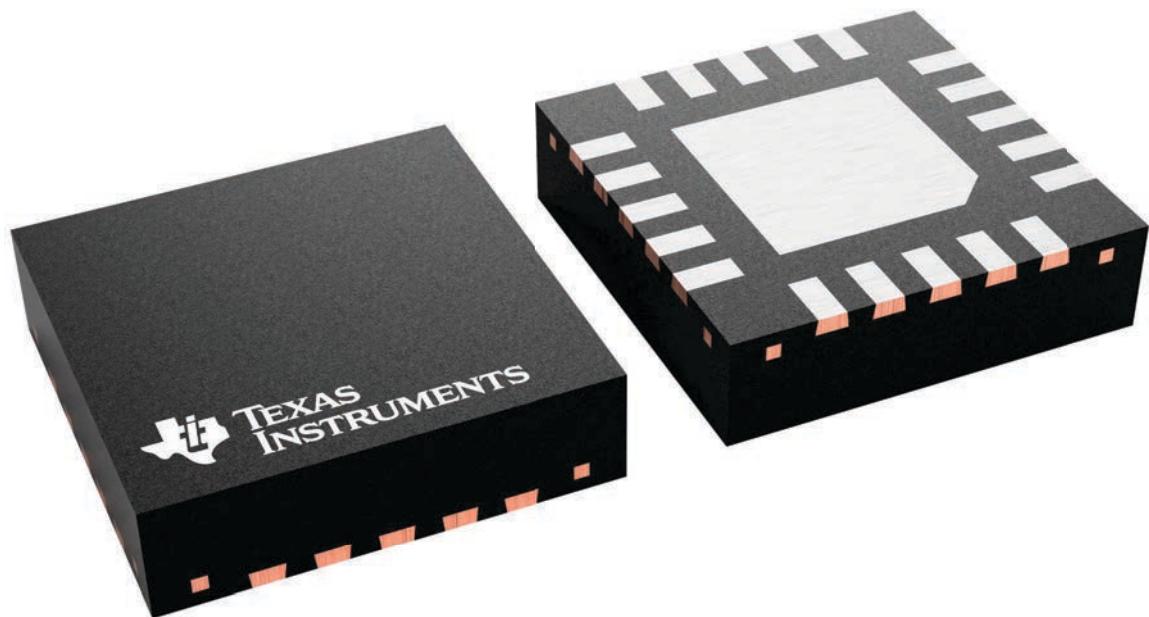
⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GENERIC PACKAGE VIEW


RUK 20

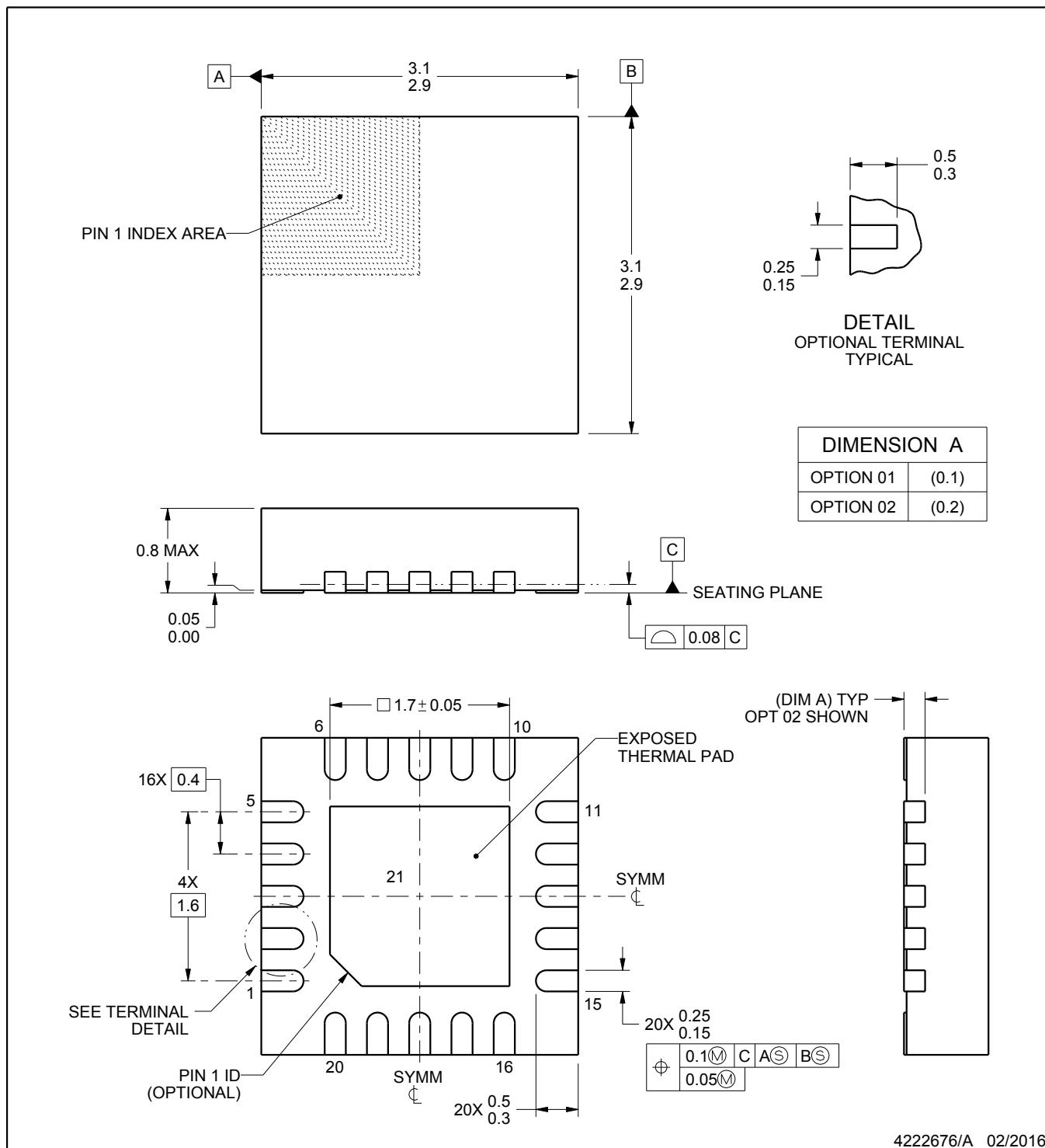
WQFN - 0.8 mm max height

3 x 3, 0.4 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4229651/A


PACKAGE OUTLINE

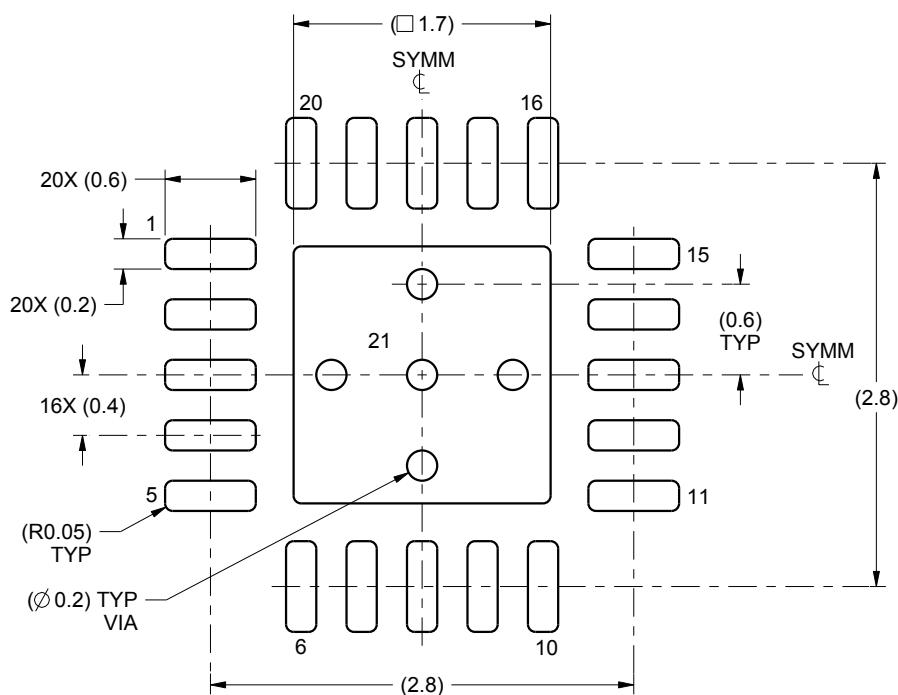
RUK0020B

WQFN - 0.8 mm max height

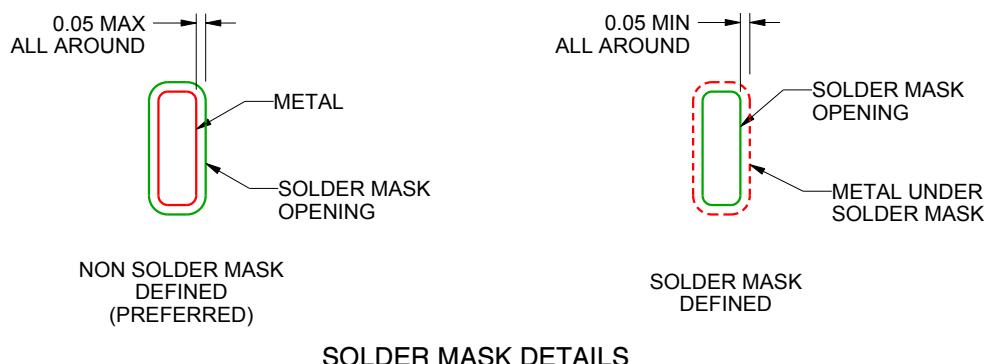
PLASTIC QUAD FLATPACK - NO LEAD

4222676/A 02/2016

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT


RUK0020B

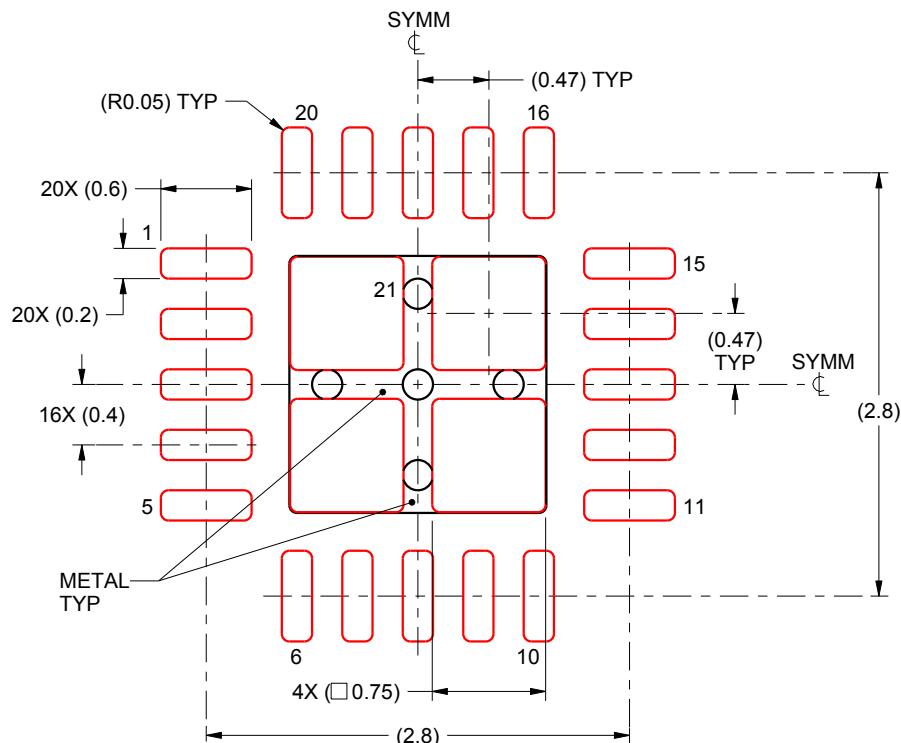
WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

LAND PATTERN EXAMPLE

4222676/A 02/2016

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

RUK0020B

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

SOLDER PASTE EXAMPLE BASED ON 0.1 mm THICK STENCIL

EXPOSED PAD 21:
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE
SCALE:20X

4222676/A 02/2016

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2026，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月