

TPS38700

ZHCSNX1A - OCTOBER 2022 - REVISED NOVEMBER 2022

TPS38700 支持 I²C 和多达 12 个通道的电源序列发生器

1 特性

TEXAS

输入电压范围: 2.2V 至 5.5V

INSTRUMENTS

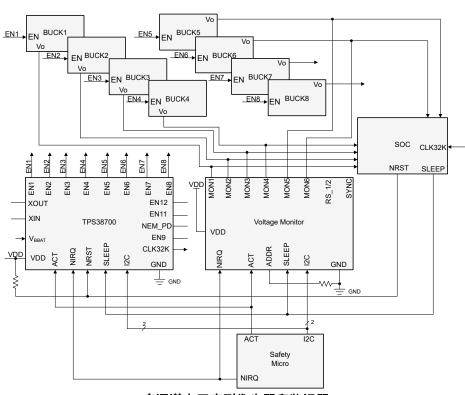
- 欠压锁定 (UVLO): 2.0V
- 低静态电流:30µA(典型值)
- 窗口看门狗 ٠
- 独立 RESET
- 独立 NIRQ •
- NVM 误差校验
 - 1位误差校正
 - 2位错误检测
- 在寄存器映射上进行 CRC 错误检查
- 备用电池
- 晶体振荡器选项
- I²C 可编程序列
- RTC 时钟报警功能 •

2 应用

- 医用机器人
- 工业机器人

3 说明

TPS38700 器件是一款集成了窗口看门狗和可编程 I²C 的多通道电压序列发生器,采用 24 引脚 4mm x 4mm VQFN 封装。


这种多通道电压序列发生器非常适合需要精确上电和/ 或断电时序的系统,并且可以与多通道电压监控器连 接。该器件默认采用预编程的 OTP 选项,但 I²C 可对 上电和断电时序控制、看门狗设置和序列时序选项(如 需要)重新编程。

得益于灵活且可编程的电压轨时序功能、低静态电流和 小尺寸等优势,该器件能够满足大多数应用要求。

器件信息

器件型号	封装 ⁽¹⁾	封装尺寸(标称值)	
TPS38700	VQFN (24)	4mm x 4mm	

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 (1)录。

多通道电压序列发生器和监视器

Table of Contents

1 特性	1
2 应用	1
3 说明	1
4 Revision History	
5 Device Comparison	3
6 Pin Configuration and Functions	
7 Specifications	6
7.1 Absolute Maximum Ratings	6
7.2 ESD Ratings	6
7.3 Recommended Operating Conditions	<mark>6</mark>
7.4 Thermal Information	7
7.5 Electrical Characteristics	7
7.6 Timing Requirements	<mark>8</mark>
7.7 Typical Characteristics	11
8 Detailed Description	
8.1 Overview	

8.2	2 Functional Block Diagram	13
8.3	3 Feature Description.	14
	Register Map Table	
	plication and Implementation	
9.1	Application Information	56
	2 Typical Application	
	Power Supply Recommendations	
9.4	Layout	60
	evice and Documentation Support	
	.1 Device Nomenclature	
10	.2 Receiving Notification of Documentation Updates.	63
10	.3 支持资源	63
	.4 Trademarks	
10	.5 Electrostatic Discharge Caution	63
	.6 术语表	
	· · · · · ·	

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

CI	hanges from Revision * (October 2022) to Revision A (November 2022)	Page
•	Updated Electrical Characteristics	7
•	Added additional variants into the Device Comparison Table	<mark>62</mark>

5 Device Comparison

图 5-1 shows the device nomenclature of the TPS38700 device. See 表 10-2 for more information regarding device ordering codes. Contact TI sales representatives or on TI's E2E forum for details and availability of other options; minimum order quantities apply.

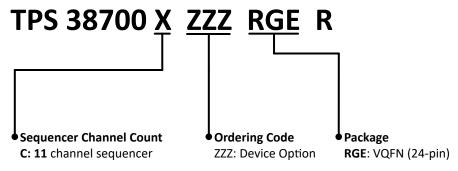
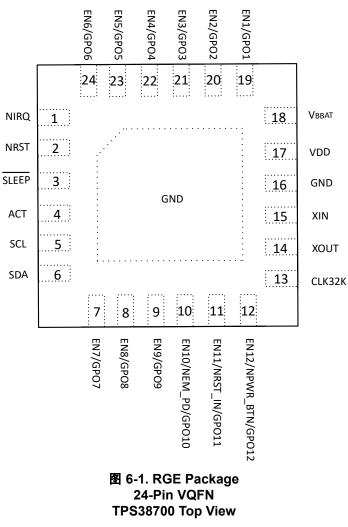



图 5-1. TPS38700 Device Nomenclature

6 Pin Configuration and Functions

表 6-1. Pin Functions

PIN TPS38700						
NO	NO. TPS38700 NAME		DESCRIPTION			
NAME 1 NIRQ						
1	NIRQ	0	Interrupt Pin (open-drain, active-low)			
2	NRST	0	Reset Pin (open-drain, active-low)			
3	SLEEP	I	Sleep Pin (Logic high exits Sleep, logic low enters Sleep)			
4	ACT	I	ACT pin (logic high starts power up SEQ, logic low starts power down SEQ)			
5	SCL	I	I2C clock pin			
6	SDA	I/O	I2C data pin			
7	EN7 / GPO7	0	Enable 7 (open-drain / push-pull) / GPO7			
8	EN8 / GPO8	0	Enable 8 (open-drain / push-pull) / GPO8			
9	EN9 / GPO9	I/O	Enable 9 (open-drain/push-pull) / GPO9			
10	EN10 / NEM_PD / GPO10	I/O	Enable 10 (open-drain / push-pull) / Emergency Power Down (open-drain) / GPO10			
11	EN11 / NRST_IN / GPO11	I/O	Enable 11 (open-drain / push-pull) / Reset In (open-drain) / GPO11			
12	EN12 / NPWR_BTN / GPO12	I/O	Enable 12 (open-drain / push-pull) / Power Button (open-drain) / GPO12			
13	CLK32K	0	32.768kHZ clock output			
14	XOUT	0	Crystal oscillator output			
15	XIN	I	Crystal oscillator input			
16	GND	-	Ground			
17	VDD	-	Power supply			
18	V _{BBAT}	-	Backup battery supply			
19	EN1 / GPO1	0	Enable 1 (open-drain / push-pull) / GPO1			
20	EN2 / GPO2	0	Enable 2 (open-drain / push-pull) / GPO2			
21	EN3 / GPO3	0	Enable 3 (open-drain / push-pull) / GPO3			
22	EN4 / GPO4	0	Enable 4 (open-drain / push-pull) / GPO4			
23	EN5 / GPO5	0	Enable 5 (open-drain / push-pull) / GPO5			
24	EN6 / GPO6	0	Enable 6 (open-drain / push-pull) / GPO6			

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Voltage	VDD, V _{BBAT}	-0.3	6	V
Voltage	NIRQ, NRST, <u>SLEEP</u> , ACT, ENx, SDA, SCL	-0.3	6	V
Voltage	NEM_PD, NRST_IN, NPWR_BTN	-0.3	6	V
Voltage	XIN, XOUT, CLK32K	-0.3	2	V
Voltage	SCL, SDA (OTP=1.2V, 1.8V)	-0.3	2.2	V
Voltage	SCL, SDA (OTP=3.3V, 5.0V)	-0.3	5.5	V
	Continuous total power dissipation	See the Thermal Information		
Temperature (2)	Operating junction temperature, T _J	-40	150	°C
Temperature ⁽²⁾	Operating free-air temperature, T _A	-40	125	°C
	Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond values listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) As a result of the low dissipated power in this device, it is assumed that $T_J = T_A$.

7.2 ESD Ratings

				VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDE	C JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC	All pins	±500	V
		Q100-011	Corner pins	±750	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification

7.3 Recommended Operating Conditions

		MIN	NOM MAX	UNIT
VDD	Supply pin voltage	2.2	5.5	V
V _{BBAT}	Battery back up	1.8	5.5	V
NIRQ, NRST, ENx, SLEEP, ACT	Pin voltage	0	5.5	V
I _{NRST,} I _{NIRQ,} I _E Nx	Pin Currents	0	±1	mA
XIN, XOUT	Crystal pins	0	2	V
CLK32K	Clock output	0	2	V
NEM_PD, NRST_IN, NPWR_BTN	Pin voltage	0	5.5	V
SCL, SDA	Pin Voltage (OTP=3.3V, 5.0V)	0	5.5	V
SCL, SDA	Pin Voltage (OTP=1.2V, 1.8V)	0	2.0	V
R _{UP}	Pull-up resistor (Open Drain configuration)	10	100	kΩ
TJ	Junction temperature (free-air temperature)	-40	125	°C

7.4 Thermal Information

		TPS38700x-Q1	
	(top) Junction-to-case (top) thermal resistance	RGE (VQFN)	UNIT
		PINS	
R _{θJA}	Junction-to-ambient thermal resistance	53.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	51.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	17.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	20.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	3.9	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

At 2.2 V \leq VDD \leq 5.5 V, NRST/NIRQ Voltage = 10 k Ω to VDD, NRST/NIRQ load = 10 pF, and over the operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at T_A = 25°C, typical conditions at VDD= 3.3 V.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Common Par	ameters					
VDD	Input supply voltage		2.2		5.5	V
V _{BBAT}	Backup battery voltage range		1.85		5.5	V
UVLO_VDDR	UVLO VDD	Rising threshold			2.2	V
UVLO_VDDF	UVLO VDD	Falling threshold/switch over to V_{BBAT}	1.90		2	V
UVLO_V _{BBAT}	UVLO Battery backup	Falling threshold			1.85	V
POR	Power ON reset voltage, all outputs guaranteed to be stable above this value	Falling threshold			1.39	V
I _{DD}	Supply current into VDD pin ACT=High, SLEEP=High, RTC=active	VDD ≤ 5.5 V, power up sequence complete		45	75	μA
I _{DD}	Supply current into VDD pin ACT=Low, SLEEP=Low, RTC=active	VDD ≤ 5.5 V ,power down sequence complete		35	60	μA
I _{BBAT}	Supply current from V _{BBAT}	V _{BBAT} ≤ 5.5 V		35	60	μA
I _{LKG_NRST}	Output leakage current (NRST)	VDD=V _{NRST} = 5.5 V			300	nA
I _{LKG_NIRQ}	Output leakage current (NIRQ)	VDD=V _{NIRQ} = 5.5 V			300	nA
ACT_L	Logic Low input				0.36	V
ACT_H	Logic high input		0.84		VDD - 0.2	V
SLEEP_L	Logic Low input				0.36	V
SLEEP_H	Logic high input		0.84		VDD - 0.2	V
SYNC_H	Input High	lo = 1mA	1.1			V
SYNC_L	Input Low	lo = 1mA			0.36	V
SYNC	Internal Pull-up			100		kΩ
ACT	Internal Pull down			100		kΩ
SLEEP	Internal Pull down			100		kΩ
	Output High	Push-Pull configuration, Io=1mA	VDD-0.2			V
ENx	Output Low	Push-Pull or Open-Drain (10 kΩ pull up)			0.1	V

7.5 Electrical Characteristics (continued)

At 2.2 V \leq VDD \leq 5.5 V, NRST/NIRQ Voltage = 10 k Ω to VDD, NRST/NIRQ load = 10 pF, and over the operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at T_A = 25°C, typical conditions at VDD= 3.3 V.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R_ENx	Enable Output resistance	Push-Pull config			200	Ω
NRST	Output Low	Open-Drain (10 kΩ pull up)			0.1	V
NIRQ	Output Low	Open-Drain (10 kΩ pull up)			0.1	V
CLK32K	Leakage test	Open-Drain,4.7 kΩ pull up to 1.8V, 10pF capacitive load			100	nA
ULNJZN	Output Low	Open-Drain, lo = -1mA, pull up to 1.8V, 10pF capacitive load			0.1	V
Ann CLK22K	Accuracy Early Boot	t < 50ms, VDD > VDDmin	-10		10	%
Acc_CLK32K	Accuracy Operating	t > 1s, VDD > VDDmin	-100		100	ppm
XTAL Fault	Crystal Frequency fault detection		-10		10	%
OSC	Internal oscillator tolerance		-5		5	%
I _{lkg(BBAT)}	Leakge current from V _{BBAT}	V _{BBAT} > 1.85V			300	nA
TSD	Thermal Shutdown			165		°C
TSD Hysterisis	Thermal Shutdown Hysteresis			25		°C
VIH_ALT	NEM_PD, NRST_IN, NPWR_BTN	Pin 10,11,12 Active Low, Open-Drain	1.1			V
VIL_ALT	NEM_PD, NRST_IN, NPWR_BTN	Pin 10,11,12 Active Low, Open-Drain			0.36	V
I2C Electrical	Specifications					
C _B	Capacitive load for SDA and SCL				400	pF
SDA, SCL	Low Threshold, OTP = 1.2 V				0.36	V
SDA, SCL	High Threshold, OTP = 1.2 V		0.84			V
SDA, SCL	Low Threshold, OTP = 1.8 V				0.54	V
SDA, SCL	High Threshold, OTP = 1.8 V		1.26			V
SDA, SCL	Low Threshold, OTP = 3.3 V				0.84	V
SDA, SCL	Low Threshold, OTP = 3.3 V		2.31			V
SDA, SCL	Low Threshold, OTP = 5V				1.5	V
SDA, SCL	High Threshold, OTP = 5V		3.5			V
SDA	Output Low with 3 mA sink current				0.2	V

7.6 Timing Requirements

At 2 V \leq VDD \leq 5.5 V, NIRQ/NRST Voltage = 10 k Ω to VDD, NIRQ/NRST load = 10 pF, and over the operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at T_A = 25°C, typical conditions at VDD = 3.3 V.

			MIN	NOM	MAX	UNIT		
Common parameters								
t _{D_ENx}	ENx toggle delay from start of time slot	From start of time slot			10	μs		
t _{D_CLK32K}	CLK32K toggle delay from start of time slot	From start of time slot			10	μs		
F_CLK32K	Frequency	Capacitive load = 12pF		32768		Hz		
D_CLK32K	Duty cycle	Capacitive load = 12pF	40	50	60	%		
Trf_CLK32 K	Rise and fall time of CLK32K (Rpullup = 4.7 k Ω)	Capacitive load = 12pF			50	ns		

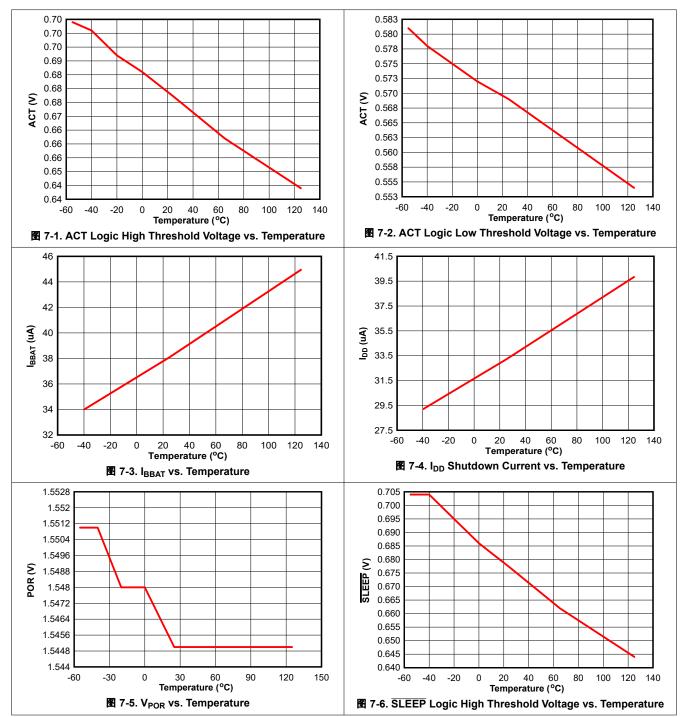
7.6 Timing Requirements (continued)

At 2 V \leq VDD \leq 5.5 V, NIRQ/NRST Voltage = 10 k Ω to VDD, NIRQ/NRST load = 10 pF, and over the operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at T_A = 25°C, typical conditions at VDD = 3.3 V.

			MIN	NOM	MAX	UNIT
t _{D_ENx,y}	Delay between 2 subsequent EN in same time slot				1	μs
t _{NRST_EN}	ENx delay from NRST in Emergency Shutdown	Sequence 2 and 9	200			ns
t _{D_NRST}	NRST assertion latency from falling edge of ACT pin below VIL or falling edge of VDD pin below VDD _{min}				25	μs
t _{D_NIRQ}	Fault detection to NIRQ assertion latency				25	μs
t _{BIST}	POR to ready with BIST	including OTP load with ECC			15	ms
t _{No_BIST}	POR to ready without BIST	including OTP load with ECC			2.5	ms
BIST time					12.5	ms
t _{Startup_CLK3} 2K	Clock 32k startup from UVLO at power ON				50	ms
Freq_fault	Crystal frequency fault detection time				1	ms
I2C Timing	Characteristics	I				
f _{SCL}	Serial clock frequency ⁽¹⁾	Standard mode			100	kHz
f _{SCL}	Serial clock frequency ⁽¹⁾	Fast mode			400	kHz
f _{SCL}	Serial clock frequency ⁽¹⁾	Fast mode +			1	MHz
t _{LOW}	SCL low time ⁽¹⁾	Standard mode	4.7			μs
t _{LOW}	SCL low time ⁽¹⁾	Fast mode	1.3			μs
t _{LOW}	SCL low time ⁽¹⁾	Fast mode +	0.5			μs
t _{HIGH}	SCL high time ⁽¹⁾	Standard mode	4			μs
t _{HIGH}	SCL high time ⁽¹⁾	Fast Mode	1			μs
t _{HIGH}	SCL high time ⁽¹⁾	Fast mode +	0.26			μs
t _{SU_DAT}	Data setup time ⁽¹⁾	Standard mode	250			ns
t _{SU_DAT}	Data setup time ⁽¹⁾	Fast mode	100			ns
t _{SU_DAT}	Data setup time ⁽¹⁾	Fast mode +	50			ns
t _{HD_DAT}	Data hold time ⁽¹⁾	Standard mode	10		3450	ns
t _{HD_DAT}	Data hold time ⁽¹⁾	Fast mode	10		900	ns
t _{HD_DAT}	Data hold time ⁽¹⁾	Fast mode +	10			ns
t _{SU_STA}	Setup time for a Start or Repeated Start condition ⁽¹⁾	Standard mode	4.7			μs
t _{SU_STA}	Setup time for a Start or Repeated Start condition ⁽¹⁾	Fast mode	0.6			μs
t _{SU_STA}	Setup time for a Start or Repeated Start condition ⁽¹⁾	Fast mode +	0.26			μs
t _{HD_STA}	Hold time for a Start or Repeated Start condition ⁽¹⁾	Standard mode	4			μs
t _{HD_STA}	Hold time for a Start or Repeated Start condition ⁽¹⁾	Fast mode	0.6			μs
t _{HD_STA}	Hold time for a Start or Repeated Start condition ⁽¹⁾	Fast mode +	0.26			μs
t _{BUF}	Bus free time between a STOP and START condition ⁽¹⁾	Standard mode	4.7			μs
t _{BUF}	Bus free time between a STOP and START condition ⁽¹⁾	Fast mode	1.3			μs
t _{BUF}	Bus free time between a STOP and START condition ⁽¹⁾	Fast mode +	0.5			μs
t _{su_sто}	Setup time for a Stop condition ⁽¹⁾	Standard mode	4			μs
t _{su_sто}	Setup time for a Stop condition ⁽¹⁾	Fast mode	0.6			μs
t _{SU_STO}	Setup time for a Stop condition ⁽¹⁾	Fast mode +	0.26			μs
t _{rDA}	Rise time of SDA signal ⁽¹⁾	Standard mode			1000	
t _{rDA}	Rise time of SDA signal ⁽¹⁾	Fast mode	20		300	ns
t _{rDA}	Rise time of SDA signal ⁽¹⁾	Fast mode +			120	ns

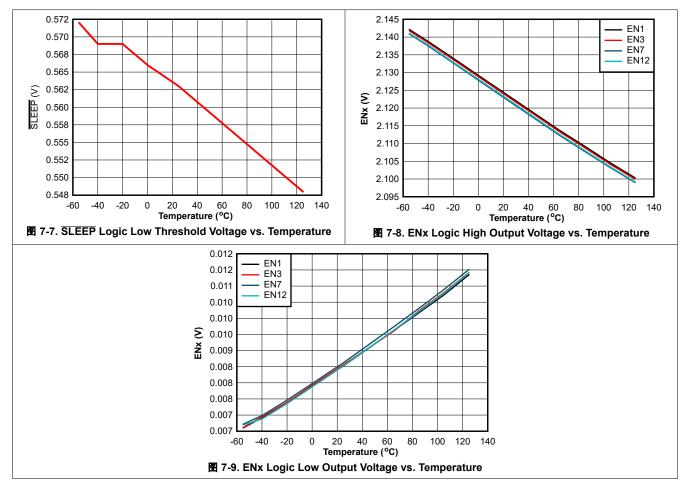
7.6 Timing Requirements (continued)

At 2 V \leq VDD \leq 5.5 V, NIRQ/NRST Voltage = 10 k Ω to VDD, NIRQ/NRST load = 10 pF, and over the operating free-air temperature range of – 40°C to 125°C, unless otherwise noted. Typical values are at T_A = 25°C, typical conditions at VDD = 3.3 V.


			MIN	NOM	MAX	UNIT
t _{fDA}	Fall time of SDA signal ⁽¹⁾	Standard mode			300	ns
t _{fDA}	Fall time of SDA signal ⁽¹⁾	Fast mode	1.4		300	ns
t _{fDA}	Fall time of SDA signal ⁽¹⁾	Fast mode +	6.5		120	ns
t _{rCL}	Rise time of SCL signal ⁽¹⁾	Standard mode			1000	ns
t _{rCL}	Rise time of SCL signal ⁽¹⁾	Fast mode	20		300	ns
t _{rCL}	Rise time of SCL signal ⁽¹⁾	Fast mode +			120	ns
t _{fCL}	Fall time of SCL signal ⁽¹⁾	Standard mode			300	ns
t _{fCL}	Fall time of SCL signal ⁽¹⁾	Fast mode	6.5		300	ns
t _{fCL}	Fall time of SCL signal ⁽¹⁾	Fast mode +	6.5		120	ns
t _{SP}	Pulse width of SCL and SDA spikes that are suppressed ⁽¹⁾	Standard mode, Fast mode and Fast mode +			50	ns

(1) Guaranteed by design

7.7 Typical Characteristics

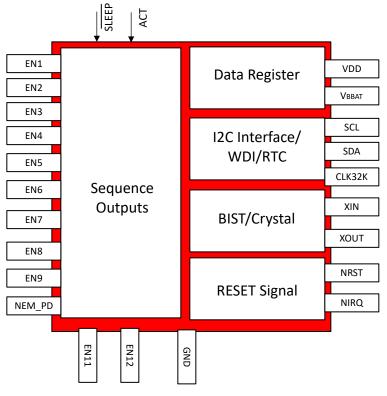

At $T_A = 25^{\circ}$ C, $V_{DD} = 3.3$ V, and $R_{PU} = 10 \text{ k}\Omega$, unless otherwise noted.

7.7 Typical Characteristics (continued)

At T_A = 25°C, V_{DD} = 3.3 V, and R_{PU} = 10 k $\Omega,$ unless otherwise noted.

8 Detailed Description

8.1 Overview


TPS38700 is a versatile part that can be configured for multiple configurations. The part can be ordered as a pure sequencer, pure GPIO expander, or combination sequencer & GPIO outputs. The outputs can be factory configured as push-pull or open-drain. Sequencing outputs can be assigned to ACT pin and/or $\overline{\text{SLEEP}}$ pin. These sequencing outputs can be factory configured for default values and subsequently changed via I²C on power-up before sending ACT pin high. The device also features a Built in Self-Test (BIST) function which runs automatically on power up.

TPS38700 features a precise Real Time Clock (RTC) CLK32K output with the aide of an external crystal (XTAL). It also has an RTC alarm feature and a window watchdog, all of which can be configured via I²C. The TPS38700 is capable of various I²C logic levels. A full featured Graphical User Interface (GUI) is available for download in the product folder. Contact a Texas Instruments representative for custom configured part queries.

TPS38700 can be configured to have up to twelve channels and has an emergency power down (NEM_PD) function that is activated once VDD falls below the UVLO threshold of the device. Once in the emergency power down sequence, the TPS38700 will either turn off or enter into Backup state. If a voltage on V_{BBAT} is present and greater than 1.85 V, then the TPS38700 will enter into Backup state and the power supply for the device will switch to V_{BBAT} .

The TPS38700 has been characterized from -40°C to +125°C.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Device State Diagram

The TPS38700 state diagrams shown in 🛽 8-2 and 🔄 8-3 show the flow of operation.

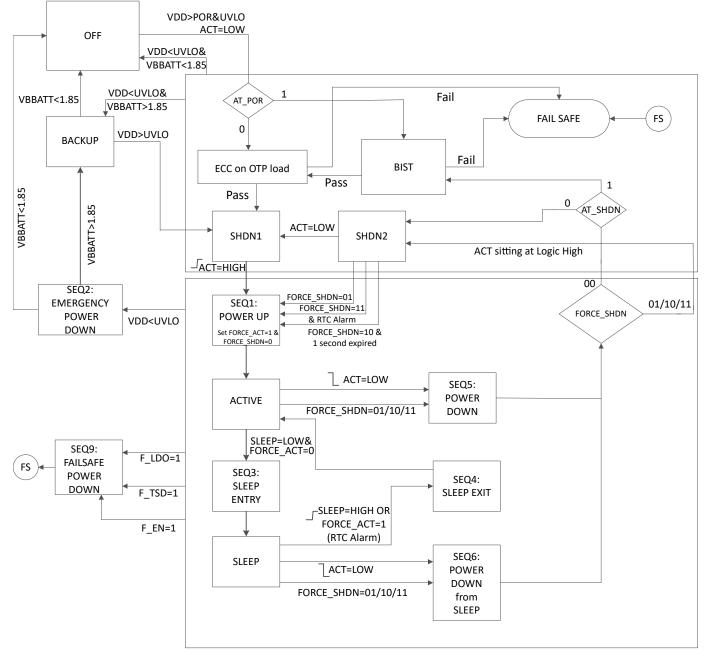


图 8-2. TPS38700 State Diagram

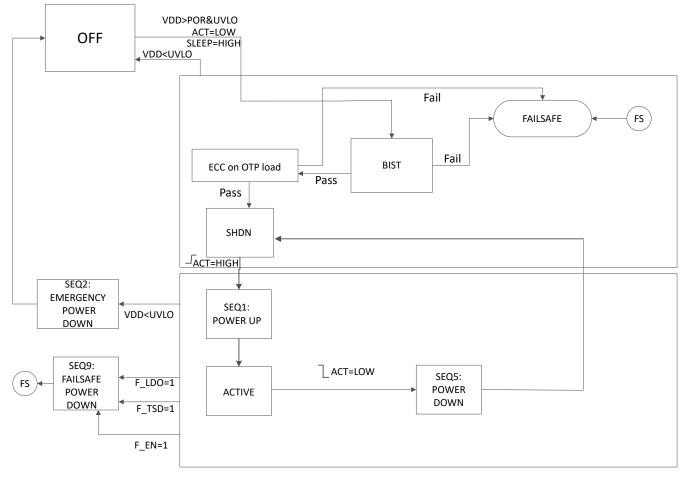


图 8-3. TPS38700 Simple Use Case

8.3.2 Built-In Self Test and Configuration Load

Built-In Self Test (BIST) is performed:

- AT POR, if TEST_CFG_AT_POR = 1
- When exiting Sequence 5 or Sequence 6, if TEST_CFG_AT_SHDN = 1 and the power down is not initiated by CTL_1. FORCE_SHDN[1:0] being set to 01b, 10b, or 11b.

Configuration load from OTP is assisted by ECC (supporting SEC-DED). This is to protect against data integrity issues and to maximize system availability.

During BIST, NIRQ is de-asserted (asserted in case of failure), NRST is held low, ENx pins are held low (including pins with alternate functions), CLK32K is held low, input pins are ignored, and the I²C block is inactive with SDA and SCL de-asserted. Once BIST is completed without failure, I²C is immediately active and the device enters SHDN1 state after loading the configuration data from OTP. If BIST fails and/or ECC reports Double-Error Detection (DED), NIRQ is asserted, the device enters the FAILSAFE state (inputs are ignored), and a best effort attempt is made to active I²C. TEST_STAT register may provide additional information on the test results.

8.3.3 CLK32K

The TPS38700 is designed to give an accurate CLK32K output and it is used internally for setting the RTC time and alarms. TPS38700 is configured to be used with a 32.768 kHz crystal oscillator. To achieve a well-defined frequency of oscillations, all crystals oscillators are tuned at specific capacitive load such as 6.5 pF, 12 pF, or 20 pF (during manufacturing stage), which becomes a part of the crystal specification. The task of a designer is to design within the crystal's specifications to achieve the correct specified frequency.

For these crystal oscillators, the need for loading capacitors are required because the capacitive load is effectively split between the output and input capacitance in a typical Pierce Oscillator scheme. These capacitors are essentially connected in series with the crystal oscillator. Therefore, if a chosen crystal oscillator has a capacitive load that is specified for 12.5 pF load, then the need for two 12.5 pF capacitors are required for proper frequency output from the crystal oscillator.

The TPS38700 is configured to be used without the need of loading capacitors, as long as the 6.5 pF version of the external crystal oscillator is selected. External crystal oscillators will typically specify their internal capacitance such as 6.5 pF, 9 pF, 12.5 pF etc. If the external crystal oscillator has load capacitance specification requirement not equal to 6.5 pF, please contact the TI factory for an OTP (one time programming) configuration for the correct external capacitor loading.

The CLK32K signal can start as late as 50 ms from when the input voltage VDD exits out of UVLO. The accuracy of CLK32K is within ± 100 ppm after one second of initial operation. If the frequency of CLK32K deviates for more than $\pm 10\%$, a fault interrupt is asserted. The accuracy of the CLK32K will also depend on the choice of external crystal oscillator and its temperature rating.

8.3.4 BACKUP State

In the BACKUP state only the battery is supplying power to the device, however the device must have gone through a VDD supplied state (and loaded configuration data) in order to enter this state. If no VDD supplied state has occurred, then the TPS38700 stays in the "OFF or Battery Installed" state, from which it will exit only with a valid VDD supply.

When in BACKUP state, the TPS38700 pins are in the following state:

- ENx = Low (de-asserted)
- CLK32K = Low (output disabled)
- NRST = Low (asserted)
- ACT and SLEEP inputs are ignored.

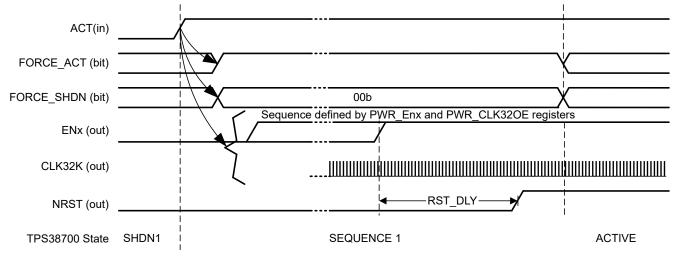
Crystal oscillator and RTC remain active with Acc_CLK32K accuracy, but the crystal oscillator fault monitor is not active. RTC_T[31:0], interrupt, and status registers are maintained and updated. Registers configuration is maintained as set before entering the BACKUP state. PROT1 and PROT2 registers are cleared. All remaining blocks are inactive.

Upon exiting from the BACKUP state, the last configuration is active and the device enters the SHDN1 state.

8.3.5 FAILSAFE State

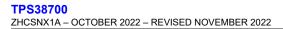
When in FAILSAFE state, ENx, CLK32K, NRST, NIRQ are all held Low, and a best effort attempt is made to keep I²C active. ACT and SLEEP inputs are ignored.

In order to exit from FAILSAFE state, VDD has to be removed. Depending on V_{BBAT} , the TPS38700 will enter BACKUP or OFF state.


8.3.6 Transitioning Sequences

The sequences of the device are described here with timing diagrams showing the main signals involved in each sequence.

8.3.6.1 Sequence 1: Power Up


When NPWR_BTN is not enabled, power-up is controlled by ACT, shown in **8** 8-4.

When ACT is high, the ENx output sequence starts and NRST is de-asserted RST_DLY[3:0] time after the last ENx. The power-up sequence is defined by PWR_ENx registers, for more information see 表 8-31.

图 8-4. Power Up with NPWR_BTN Disabled - ACT controlled

When NPWR_BTN is enabled, ACT is used as AUTO/BUTTON power-on strap option. With ACT strapped to VDD, a short push on NPWR_BTN will start the power-up sequence; with ACT strapped to GND, the power-up sequence will automatically start once VDD is valid. From SHDN2 state a short push on NPWR_BTN is always required to start the power-up sequence. See 🛛 8-5 for details. When power-up is triggered, the ENx output sequence starts and NRST is de-asserted CTL 2.RST DLY[3:0] time after the last ENx.

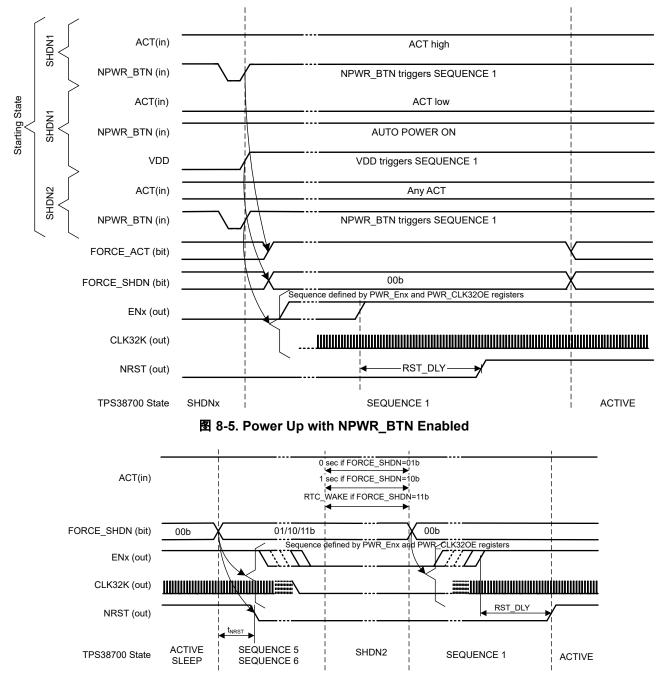
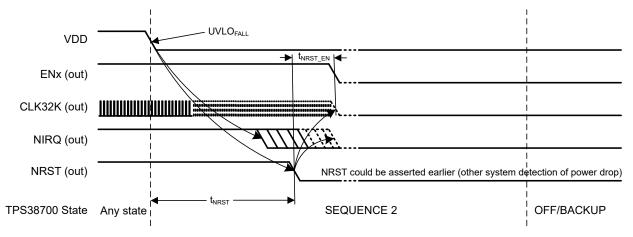



图 8-6. Power Up from SHDN2 - Software Shutdown with FORCE_SHDN ≠ 00b

8.3.6.2 Sequence 2: Emergency Power Down

In case of emergency power down (VDD drops below UVLO), a best effort approach is taken to assert NRST before pulling ENx, CLK32K, and NIRQ down.

8.3.6.3 Sequence 3: Sleep Entry

Sleep entry is controlled by SLEEP going low. This triggers the ENx pins to de-assert as per the configuration in SLP_ENx registers, 表 8-33 contains more information on SLP_ENx registers. See 图 8-8 for timing diagram details.

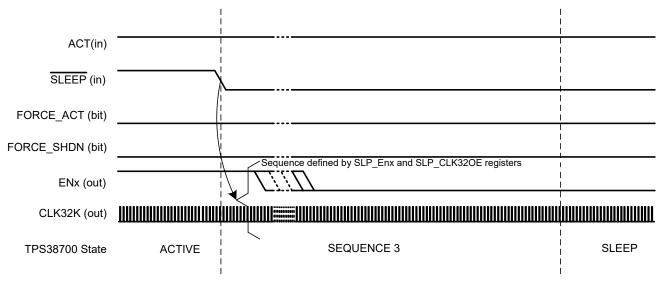


图 8-8. Sleep Entry

8.3.6.4 Sequence 4: Sleep Exit

Sleep exit is controlled by SLEEP going high or by FORCE_ACT being set to 1 by an RTC alarm. This triggers the ENx pins to assert as per the configuration in SLP_ENx registers, consult 表 8-33 for more information on SLP_ENx registers.

In case of RTC alarm wake, the host will see the interrupt and it will assert SLEEP and clear FORCE_ACT. See 图 8-9, 图 8-10, and 图 8-11 for signal details.

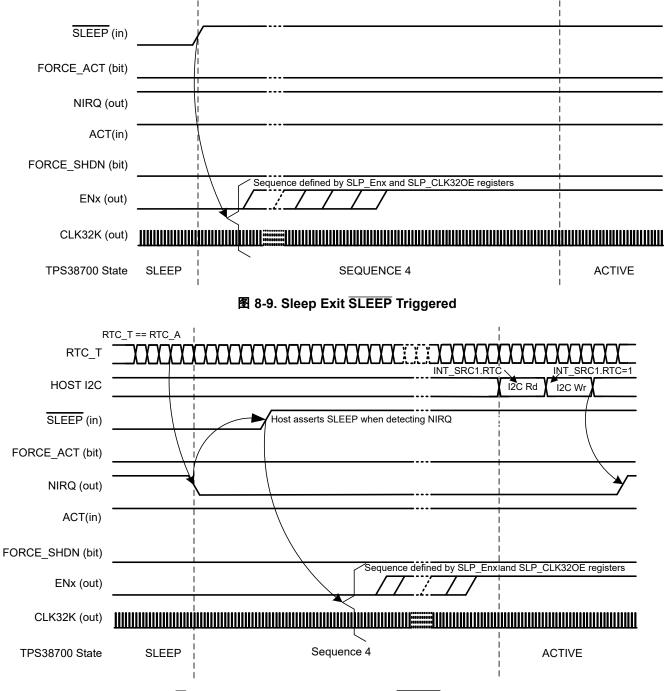


图 8-10. Sleep Exit RTC Triggered - SLEEP Sequencing

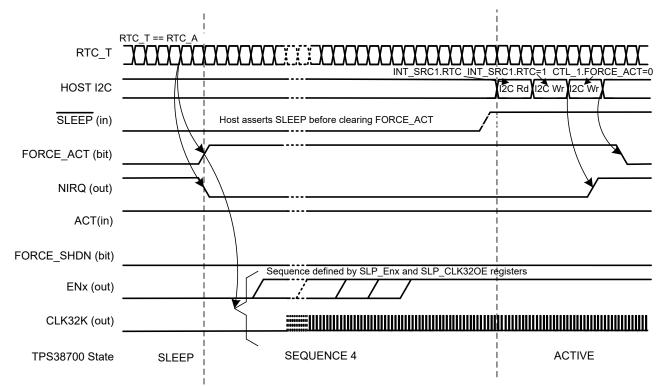


图 8-11. Sleep Exit RTC Triggered - Autonomous Sequencing

8.3.6.5 Sequence 5 & 6: Power Down from Active and Sleep States

The power-down sequence can be triggered as depicted in $\[Begin{subarray}{c} 8-12 \\ \end{subarray}$. In all cases, NRST is asserted in the first sequencing slot, while ENx are de-asserted as per the configuration in PWR_ENx registers, see $\[End{subarray}$ 8-31. In case of NPWR_BTN enabled, the "t long press" is determined as per register LP_TTSHLD shown in $\[End{subarray}$ 8-21.

Power-down from sleep differs from power-down from active as some ENx might be already de-asserted as part of the sleep entry sequence. In the power-down from sleep sequence, the remaining ENx are de-asserted as per the configuration in PWR_ENx registers.

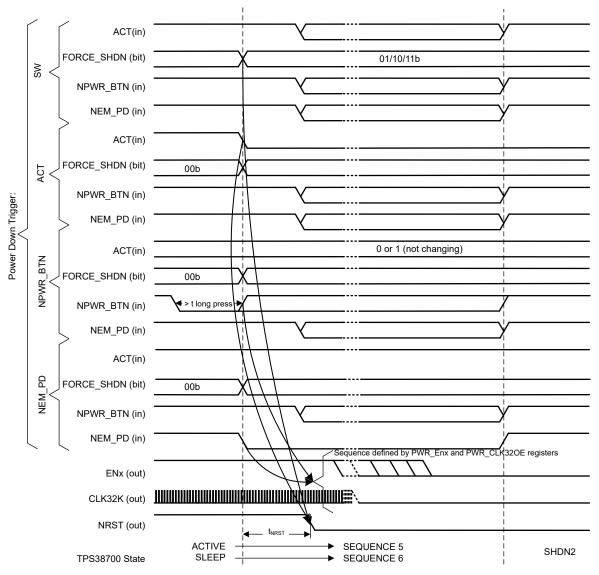


图 8-12. Power Down from Active and Sleep

8.3.6.6 Sequence 7: Sleep Exit Due to NRST_IN

If NRST_IN pin is enabled, it may be asserted while TPS38700 is in SLEEP state. To ensure proper power state synchronization with the rest of the system, TPS38700 will assert NRST while executing the Sleep exit sequence. The NRST signal is de-asserted when both RST_DLY delay time has passed since last ENx, and the NRST_IN signal is de-asserted (or the connected button is released).

It should be noted that although not depicted in the TPS38700 State Diagram, 🛚 8-2, for clarity, this sequence applies also in case of WDT-initiated reset.

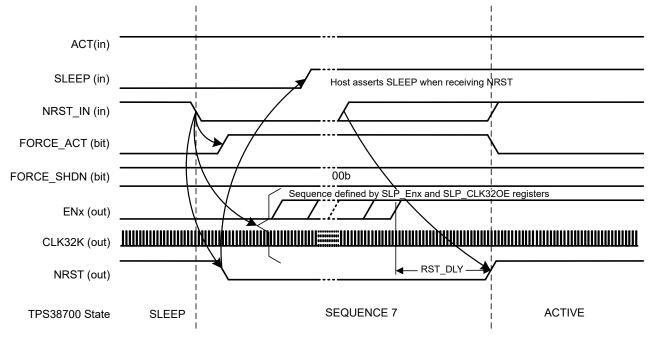
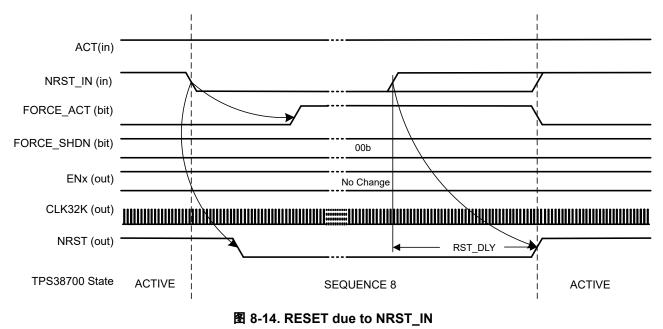



图 8-13. Sleep Exit due to NRST_IN

8.3.6.7 Sequence 8: RESET Due to NRST_IN

It is noted that although not depicted in the TPS38700 State Diagram, 8-2, for clarity, this sequence applies also in case of WDT-initiated reset.

8.3.6.8 Sequence 9: Failsafe Power Down

F_TSD and F_LDO faults will cause the TPS38700 to move to FAILSAFE State. The transition to FAILSAFE State is essentially the same as Sequence 2, with the trigger being the fault instead of the loss of VDD. A best effort approach is taken to assert NRST before pulling ENx, CLK32K, and NIRQ down.

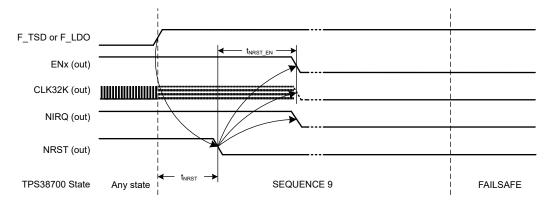


图 8-15. Failsafe Power Down

8.3.6.9 Output Sequencing

Output sequencing can be triggered by hardware or software through ACT, SLEEP, RTC wake, FORCE_SHDN, NPWR_BTN (if enabled), NEM_PD (if enabled), and NRST_IN (if enabled).

Such events start sequencing the outputs (ENx and CLK32K) according to the settings in registers 表 8-27, 表 8-30, 表 8-31, 表 8-32, 表 8-33, and 表 8-34.

In those registers, Slot 1 is the earliest slot that can be selected and it indicates that the ENx (or CLK32K) will toggle in the first time slot after the triggering event. The example timing diagram in 8 - 16 shows the time delays specified in 7 - 6.

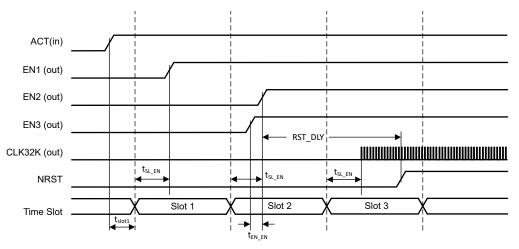


图 8-16. Output Sequencing Example

8.3.7 I²C

Refer to $\frac{1}{8}$ 8-1 for the I²C register map overview. Note that "PSEQ" refers to TPS38700 and is used enhance table readability.

	衣	8-1. I ² C Register	Categories and Ass	ociated Details	S	
TYPE	BITS	DESCRIPTION	RANGE / FUNCTION OR STATUS	WHO TOGGLES THEM?	WHO ELSE CAN WRITE TO THEM?	WHAT GETS AFFECTED DUE TO THIS BIT?
	VENDORID[7:0]	TI defined	TI defined	OTP option	None	None
OTP bits R	MODEL_REV[7:0]	TI defined	TI defined	OTP option	None	None
-	TARGET_ID[7:0]	TI defined	TI defined	OTP option	None	l ² C
	F_INTERR	Internal fault	No internal fault / Internal fault detected	Interrupt	Any of the interrupts generated; Can be cleared by writing 1	NIRQ
	EM_PD ⁽¹⁾	Emergency Power down	No emergency PD / shutdown caused by emergency PD	PSEQ	PSEQ; SOC	NRST; NIRQ
	WDT	Watchdog violation	Did not occur / occurred	Watchdog	WD; SOC	NIRQ; NRST (depends on if set in configuration register)
	F_PEC	Packet Error checking (PEC)	PEC miscompare did not occur / occurred	l ² C	I ² C; SOC	NIRQ
	RTC	RTC alarm	has not triggered / triggered	RTC	RTC; SOC	NIRQ
Interrupt info	F_EN	Enable output pin fault	No faults detected / fault detected	EN readback- PSEQ	PSEQ; SOC	NIRQ; NRST
bits RW1C	F_OSC	Crystal oscillator fault	No faults detected / fault detected	Frequency detector	Frequency detector; SOC	NIRQ
	F_NRSTIRQ	Reset or Interrupt pin fault	No faults detected / fault detected	Reset readback- PSEQ	PSEQ; SOC	NIRQ
	F_BIST	Built-In self test fault	No faults detected / fault detected	BIST	BIST; SOC	NIRQ; NRST
	F_LDO	LDO fault	No faults detected / fault detected	BIST	BIST; SOC	NIRQ; NRST
	F_TSD	Thermal shutdown fault	No faults detected / fault detected	TSD	TSD; SOC	NIRQ; NRST
	F_RT_CRC	Runtime CRC register fault	No faults detected / fault detected	CRC	SOC	NIRQ
	F_ECC_DED ECC double error deduction on OTP load		No ECC DED / ECC DED on OTP load	NVM_ECC; REG_CRC	NVM_ECC; REG_CRC; SOC	NIRQ; NRST
	F_PBSB ⁽¹⁾	NPWR_BTN short press	No short pulse / short pulse	PSEQ	PSEQ; SOC	NRST; NIRQ

	表 8-1. l ²	C Register Catego	ories and Associate	d Details (con	tinued)	
ТҮРЕ	BITS	DESCRIPTION	RANGE / FUNCTION OR STATUS	WHO TOGGLES THEM?	WHO ELSE CAN WRITE TO THEM?	WHAT GETS AFFECTED DUE TO THIS BIT?
	ST_NIRQ	Current state of NIRQ output	NIRQ asserted / not asserted	Interrupt	None	None
	ST_NRST	Current state of NRST output	NRST asserted / not asserted	Interrupt; NRSTstate change	None	None
	ST_ACTSLP	Current state of SLEEP input	SLEEP pin driven Low or High	PSEQ	None	None
	ST_ACTSHDN	Current state of ACT input	ACT pin driven Low or High	PSEQ	None	None
	ST_PSEQ[1:0]	Current state of PSEQ	SHDNx, Power Up, Power Down, Sleep, Sleep entry, Sleep exit, invalid, Active	PSEQ	None	None
	STDR1	Current drive state of EN12 to EN9	Sequencer is driving EN Low or High	PSEQ	None	None
-	STDR2	Current drive state of EN8 to EN1	Sequencer is driving EN Low or High	PSEQ	None	None
Status bits	OPEN	Watchdog Open Window	Watchdog update Window closed / open	WD	None	None
R	WDUV	Watchdog Update Violation	No violation / WD updated too early	WD	None	None
-	WDEXP	Watchdog close timer expired	WDT not expired / expired	WD	None	None
-	BIST_C	BIST state	BIST not complete or executed / BIST complete	BIST	None	None
	ECC_SEC	Status of ECC single error correction	No error correction applied / SEC applied	NVM_ECC	None	None
-	BIST_VM	Status of volatile memory test output from BIST	Volatile memory test pass / fail	REG_CRC	None	None
	BIST_NVM	Status of non-volatile memory test output from BIST	Non-Volatile memory test pass / fail	OTP covered	None	None
	BIST_L	Status of Logic test ouput from BIST	Logic test pass / fail	BIST	None	NIRQ/ NRST
-	BIST_A	Status of Analog test ouput from BIST	Analog test pass / fail	BIST	None	NIRQ/ NRST
	EN_AF[12:9]	Enable AF for EN12, EN11, EN10, EN9	Disabled/ Enabled	OTP option	None	PSEQ
	AFIO[12:9]	Select AF for EN12, EN11, EN10, EN9	GPO or NPWR_BTN / NRST_IN/ NEM_PD	OTP option	None	PSEQ
	PP_EN[12:1]	ENx pin driver configuration	Open drain/ Push-Pull	OTP option	None	Ю
OTP bits R	XTAL_LOAD	Crystal oscillator load capacitance	External/ Internal	OTP option	None	XTAL
	XTAL_EN	Crystal oscillator Enable	Crystal driver disabled/ enabled	OTP option	None	XTAL
	PP_CLK32K	CLK32K pin driver configuration	Open drain/ Push-Pull	OTP option	None	XTAL

表 8-1. I²C Register Categories and Associated Details (continued)

TYPE BITS DESCRIPTION RANGE / FUNCTION OR STATUS WHO TOGGLES THEM? CAN WRITE TO THEM? AFFECTED IT TO THIS BITS GPI0[12:9] General purpose input / outputs Open drain / Push-Pull SOC None PSEQ Debounce[3:0] Debounce value for AF input pins 5 ms to 80 ms SOC None PSEQ EN_DEB[12:9] Enable debounce for AF input pins Debouce disabled / enabled SOC None PSEQ LP_TIME_TSHLD[7:0] NPWR_BTN long press time threshold 100 ms to 25.6 s SOC None PSEQ		衣 8-1.1-0	C Register Catego	ories and Associate	d Details (con	unuea)	
CONTROL End [12:9] input / outputs Open drain / rusn-ruin SOC None PSEQ Debounce(3:0] Debounce value for AF input pins 5 ms to 80 ms SOC None PSEQ EN_DEB[12:9] Enable debounce for AF input pins Debouce disabled / enabled SOC None PSEQ LP_TIME_TSHLD[7:0] Press time threshold 100 ms to 25.6 s SOC None PSEQ RELOAD Reload OTP Reload or do not Reload when SEO5 / 6 is complete SOC SOC OTP Regist FORCE_INT Force PSEQ Active state SLEP pin control sexit / fourts or is ignored PSEQ SOC can chert, but ont set it. SOC can chert, but ont set it. SOC SOC in most set it. FORCE_ACT Force PSEQ Active state SLEP pin control or Force Shudown state SOC in None PSEQ RST_DLY[3:0] Reset Delay 0.1 ms to 128 ms SOC None RTC RTC_PU Autonomous Wake alarm enable Disabled / Enabled SOC None RTC RTC_PU Require PEC byte (if power up from SHDN2 to ACTIVE Disabled / Enabled	TYPE	BITS	DESCRIPTION			CAN WRITE	WHAT GETS AFFECTED DUE TO THIS BIT?
Lebounce[3:0] AF input pins 5 ms to 80 ms SOC None PSEU EN_DEB[12:9] Enable debounce for AF input pins Debouce disabled / enabled SOC None PSEQ LP_TIME_TSHLD[7:0] NPWR_BTN long press time threshold 100 ms to 25.6 s SOC None PSEQ RELOAD Reload OTP Reload or do not Reload when SEQS / 6 is complete SOC SOC OTP Regist FORCE_INT Force NIRQ low NIRQ conciled by faults / register SOC SOC SOC None PSEQ FORCE_ACT Force PSEQ Active state SLEEP pin control sext / entry or is ignored PSEQ SOC SOC None PSEQ RST_DLY[3:0] Reset Delay 0.1 ms to 128 ms SOC None PSEQ RTC_WAKE Autonomous wake alarm enable Disabled / Enabled SOC None RTC RTC_PU Apward to ACTTMORING Side / Enabled SOC None RTC RTC_PU Autonomous wake alarm enable Disabled / Enabled SOC None RTC		GPIO[12:9]		Open drain / Push-Pull	SOC	None	PSEQ
ENDERING AF input pins enabled SOC None PSEQ LP_TIME_TSHLD[7:0] nPWRE_BTN long 100 ms to 25.6 s SOC None PSEQ RELOAD Reload OTP Reload or do not Reload when SEQ5 / soc SOC SOC OTP Regist FORCE_INT Force NIRQ low NIRQ contolled by faults / register SOC SOC NRST FORCE_ACT Force PSEQ Active state SLEEP pin controls exit / entry or is ignored SOC SOC None PSEQ FORCE_SHDN[1:0] Force PSEQ Shutdown state ACT pin control of regues SOC None PSEQ RST_DLY[3:0] Reset Delay 0.1 ms to 128 ms SOC None RTC RTC_PU Autonomous wake alarm enable Disabled / Enabled SOC None RTC REQ_PEC Recive ty from SHDN2 to ACTIVE Disabled / Enabled SOC None I2C AT_POR Run BIST at POR Skip / run BIST at POR SOC None I2C AT_POR Run BIST at POR Skip / run BIST at POR SOC </td <td></td> <td>Debounce[3:0]</td> <td></td> <td>5 ms to 80 ms</td> <td>SOC</td> <td>None</td> <td>PSEQ</td>		Debounce[3:0]		5 ms to 80 ms	SOC	None	PSEQ
PSEQ None PSEQ Reload OT Reload OT Reload or do not Reload when SEQ5 6 is complete SOC SOC OTP Regist FORCE_INT Force NIRQ low NIRQ controlled by faults / register SOC SOC SOC NRST FORCE_ACT Force PSEQ Active state SLEEP pin control sexit / entry or is ignored PSEQ SOC SOC SOC NRST FORCE_SHDN[1:0] Force PSEQ Shutdown state SLEEP pin control or Force shutdown state SOC SOC SOC None PSEQ RTC_WAKE Autonomous wake alarm enable 0.1 ms to 128 ms SOC None RTC RTC_PU Autonomous RTC power up from SHDN 2 to ACTIVE Disabled / Enabled SOC None RTC REQ_PEC Requere PEC byte (if EN_PEC = 1) Missing PEC is treated as good / bad SOC None IIZC AT_POR Run BIST at POR Skip / run BIST at POR SOC None BIST AT_POR Run BIST when enting SEQ5 / 0 Default to not run BIST SOC None BIST PSEQ		EN_DEB[12:9]			SOC	None	PSEQ
RELOADReload OTPwhen SEOS / 6 is completeSOCSOCOTP RegistFORCE_INTForce NIRQ lowNIRQ contolled by faults / registerSOCSOCNRSTFORCE_ACTForce PSEQ Active stateSLEEP pin control sexit/ entry or is ignoredPSEQSOCSOC can clear it; but not set itPSEQFORCE_SHDN[1:0]Force PSEQ Shutdown stateACT pin control of Force SHD and resume ACTSOCSOC; WDTPSEQRST_DLY[3:0]Reset Delay0.1 ms to 128 msSOCNonePSEQRTC_WAKEAutonomous wate alarm enableDisabled / EnabledSOCNoneRTCRTC_PUAutonomous RTC power up from SHDN2 to ACTIVEDisabled / EnabledSOCNoneRTCREQ_PECRequire PEC byte (if encking (PEC)Missing PEC is treated as good / badSOCNone12CAT_PORRun BIST at POR exkit from checking (PEC)PEC disabled / enabledSOCNoneBISTAT_SHDNRun BIST at POR Exit mis elosts125 µs / 2.5 sSOCNonePSEQPSEQDSLOT[3:0]Power Up / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQPSEQPU[3:0][12:1]Power Down SequenceENx not mapped / ENx mappedSOCNonePSEQPSEQSLEP_EXT3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQPSEQSLEP_EXT3:0][12:1]Sleep Entry SequenceENx not mapped / ENx mapped </td <td></td> <td>LP_TIME_TSHLD[7:0]</td> <td>_ 0</td> <td>100 ms to 25.6 s</td> <td>SOC</td> <td>None</td> <td>PSEQ</td>		LP_TIME_TSHLD[7:0]	_ 0	100 ms to 25.6 s	SOC	None	PSEQ
PORCE_INI Porce NIRC Iow faults / register SOC SOC SOC NRST CONTROL RWW FORCE_ACT Force PSEQ Active state SLEEP pin controls exit/ entry or is ignored PSEQ SOC can clear it; but not set it SOC can clear it; but not set it SOC SOC can clear it; but not set it FORCE_SHDN[1:0] Force PSEQ Shutdown state ACT pin control or Force SHDM and resume ACT pin control after delay SOC None PSEQ RTC_WAKE Autonomous wake alarm enable Disabled / Enabled SOC None RTC RTC_PU Autonomous RTC power up from SHDN2 to ACTIVE Disabled / Enabled SOC None RTC REQ_PEC Require PEC byte (if EN_PEC = 1) Missing PEC is treated as good / bad SOC None JIZC AT_POR Run BIST when exiting SEQ / 6 Default to not run BIST SOC None BIST DSLOT[3:0] Power Up / Sleep Exit time slots 125 µs / 2.5 s SOC None PSEQ DSLOT[3:0] Power Up / Sleep Exit time slots 125 µs / 2.5 s SOC None PSEQ DSLOT[3:0]		RELOAD	Reload OTP	when SEQ5 / 6 is	SOC	SOC	OTP Register
CONTROL RWFORCE_ACTForce PSEQ stateSEQ Active stateSLEEP pin controls exit/ entry or is ignoredPSEQclear it: but not set itPSEQFORCE_SHDN[1:0]Force PSEQ Shutdown stateACT pin control or Force Shutdown stateSOCSOC: WDTPSEQRST_DLY[3:0]Reset Delay0.1 ms to 128 msSOCNonePSEQRTC_WAKEAutonomous wake alarm enableDisabled / EnabledSOCNoneRTCRTC_PUAutonomous wake alarm enableDisabled / EnabledSOCNoneRTCREQ_PECRequire PEC byte (iff EN_PEC = 1)Missing PEC is treated as god / badSOCNoneI2CEN_PECPacket Error checking (PEC)PEC disabled / enabledSOCNoneBISTAT_SHDNRun BIST when exittims statsDefault to not run BISTSOCNoneBISTUSLOT[3:0]Power down / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQDSLOT[3:0]Power down / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQPSEQPU[3:0][12:1]Power Down SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0]Sleep Entry SequenceENx not mapped / ENx mappedSOCNonePSEQFIG:(2)RTC_T[3:0]Sleep Entry SequenceENx not mapped / ENx mappedSOCNone <td></td> <td>FORCE_INT</td> <td>Force NIRQ low</td> <td></td> <td>SOC</td> <td>SOC</td> <td>NRST</td>		FORCE_INT	Force NIRQ low		SOC	SOC	NRST
RW FORCE_SHDN[1:0]Force PSEQ Shutdown stateACT pin control or Force SHDN and resume ACT pin control affer delaySOCSOC; WDTPSEQRST_DLY[3:0]Reset Delay0.1 ms to 128 msSOCNonePSEQRTC_WAKEAutonomous wake alarm enableDisabled / EnabledSOCNoneRTCRTC_PUAutonomous RTC power up from SHDN2 to ACTIVEDisabled / EnabledSOCNoneRTCREQ_PECRequire PEC byte (if EN_PEC = 1)Missing PEC is treated as good / badSOCNoneI2CAT_PORRun BIST at PORSkip / run BIST at PORSOCNoneBISTAT_SHDNRun BIST when exiting SECS / 6Default to not run BISTSOCNoneBISTUSLOT[3:0]Power Up / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQPSEQDSLOT[3:0]Power Up / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQPSEQPU[3:0][12:1]Power Up SequenceENx not mapped / ENX mappedSOCNonePSEQPD[3:0][12:1]Sleep Exit SequenceENx not mapped / ENX mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENX mappedSOCNonePSEQLP_EXT[3:0][12:1]Sleep ExitENx not mapped / ENX mappedSOCNonePSEQRTC_PRTC_T[3:0]Sleep Entry SequenceENx not mapped / ENX mappedSOCNonePSEQRTC_PRTC_T[3:0] </td <td>CONTROL</td> <td>FORCE_ACT</td> <td></td> <td></td> <td>PSEQ</td> <td>clear it; but</td> <td>PSEQ</td>	CONTROL	FORCE_ACT			PSEQ	clear it; but	PSEQ
RTC_WAKE Autonomous wake alarm enable Disabled / Enabled SOC None RTC RTC_PU Autonomous RTC power up from SHDN2 to ACTIVE Disabled / Enabled SOC None RTC REQ_PEC Require PEC byte (if EN_PEC = 1) Missing PEC is treated as good / bad SOC None I2C AT_POR Run BIST at POR Skip / run BIST at POR SOC None BIST AT_SHDN Run BIST when exiting SEQ5 / 6 Default to not run BIST SOC None BIST USLOT[3:0] Power down / Sleep Entry time slots 125 µs / 2.5 s SOC None PSEQ PSEQ PU[3:0][12:1] Power Dy Sequence ENx not mapped / ENx mapped SOC None PSEQ PL[3:0][12:1] Power Down Sequence ENx not mapped / ENx mapped SOC None PSEQ SLP_EXT[3:0][12:1] Sleep Exit Sequence ENx not mapped / ENx mapped SOC None PSEQ RTC [2] RTC_T[3:0] Sleep Exit Sequence ENx not mapped / ENx mapped SOC None PSEQ PSEQ		FORCE_SHDN[1:0]		SHDN and resume ACT	SOC	SOC; WDT	PSEQ
RTC_WAREalarm enableDisabled / EnabledSOCNoneRTCRTC_PUAutonomous RTC power up from SHDN2 to ACTIVEDisabled / EnabledSOCNoneRTCREQ_PECRequire PEC byte (if EN_PEC = 1)Missing PEC is treated as good / badSOCNoneI2CEN_PECPacket Error checking (PEC)PEC disabled / enabledSOCNoneI2CAT_PORRun BIST at PORSkip / run BIST at PORSOCNoneBISTAT_SHDNRun BIST when exiting SEQ5 / 6Default to not run BISTSOCNoneBISTUSLOT[3:0]Power Up / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQDSLOT[3:0]Power Up / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQPSEQPU[3:0][12:1]Power Up Sequence SequenceENx not mapped / ENx mappedSOCNonePSEQPD[3:0][12:1]Sleep Exit Sequence SequenceENx not mapped / ENx mappedSOCNonePSEQRTC.[2]RTC_T[3:0]Sleep Entry SequenceENx not mapped / ENx mappedSOCNonePSEQRTC.[2]RTC_T[3:0]Sleep Entry SequenceSOCNonePSEQRTC.[2]RTC_T[3:0]Sleep Entry SequenceSOCNonePSEQRTC.[2]RTC_T[3:0]Sleep Entry SequenceSOCNonePSEQRTC.[2]RTC_T[3:0]Sleep Entry SequenceSOCNonePSEQSUP_ENTRY[3:0]Sleep En		RST_DLY[3:0]	Reset Delay	0.1 ms to 128 ms	SOC	None	PSEQ
RTC_PUpower up from SHDN2 to ACTIVEDisabled / EnabledSOCNoneRTCREQ_PECRequire PEC byte (if EN_PEC = 1)Missing PEC is treated as good / badSOCNoneI2CEN_PECPacket Error checking (PEC)PEC disabled / enabledSOCNoneI2CAT_PORRun BIST at PORSkip / run BIST at PORSOCNoneBISTAT_SHDNRun BIST when exiting SEQS / 6Default to not run BISTSOCNoneBISTDSLOT[3:0]Power Up / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQDSLOT[3:0]Power dwn / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQPSEQPU[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQPD[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Entry SequenceENx not mapped / ENx mappedSOCNonePSEQRTC '2RTC_T[31:0]RTC time setting1 sec to 136 yearsXTAL; internal oscillatorNoneRTC		RTC_WAKE		Disabled / Enabled	SOC	None	RTC
REQ_PECEN_PEC = 1)as good / badSOCNone12CEN_PECPacket Error checking (PEC)PEC disabled / enabledSOCNone12CAT_PORRun BIST at PORSkip / run BIST at PORSOCNoneBISTAT_SHDNRun BIST when exiting SEQ5 / 6Default to not run BISTSOCNoneBISTUSLOT[3:0]Power Up / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQDSLOT[3:0]Power down / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQPSEQPU[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQPD[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQRTC [2]RTC_T[31:0]Sleep Entry SequenceENx not mapped / ENx mappedSOCNonePSEQRTC [2]RTC_T[31:0]RTC time setting1 sec to 136 yearsXTAL; internal oscillatorNoneRTC		RTC_PU	power up from	Disabled / Enabled	SOC	None	RTC
EN_PECChecking (PEC)PEC disabled / enabledSOCNone12CAT_PORRun BIST at PORSkip / run BIST at PORSOCNoneBISTAT_SHDNRun BIST when exiting SEQ5 / 6Default to not run BISTSOCNoneBISTUSLOT[3:0]Power Up / Sleep Exit time slots125 µs / 2.5 sSOCNonePSEQDSLOT[3:0]Power down / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQPSEQSSTEPSlot step multiplier250 µs / 1000 µsSOCNonePSEQPU[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQPD[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQRTC ^[2] RTC_T[31:0]RTC time setting1 sec to 136 yearsXTAL; internal oscillatorNoneRTC		REQ_PEC		5	SOC	None	12C
AT_SHDNRun BIST when exiting SEQ5 / 6Default to not run BISTSOCNoneBISTUSLOT[3:0]Power Up / Sleep Exit time slots125 μs / 2.5 sSOCNonePSEQDSLOT[3:0]Power down / Sleep Entry time slots125 μs / 2.5 sSOCNonePSEQDSLOT[3:0]Power down / Sleep Entry time slots125 μs / 2.5 sSOCNonePSEQDSLOT[3:0]Power down / Sleep Entry time slots125 μs / 2.5 sSOCNonePSEQSSTEPSlot step multiplier250 μs / 1000 μsSOCNonePSEQPU[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQPD[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_ENTRY[3:0] [12:1]Sleep Entry SequenceENx not mapped / ENx mappedSOCNonePSEQRTC ⁽²⁾ RTC_T[31:0]RTC time setting1 sec to 136 yearsXTAL; internal oscillatorNoneRTC		EN_PEC		PEC disabled / enabled	SOC	None	12C
AI_SHDNexiting SEQ5 / 6Default to not run BISTSOCNoneBISTUSLOT[3:0]Power Up / Sleep Exit time slots125 µs / 2.5 sSOCNonePSEQDSLOT[3:0]Power down / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQSSTEPSlot step multiplier250 µs / 1000 µsSOCNonePSEQPU[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQPD[3:0][12:1]Power Down SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_ENTRY[3:0]Sleep Entry SequenceENx not mapped / ENx mappedSOCNonePSEQRTC ⁽²⁾ RTC_T[31:0]RTC time setting1 sec to 136 yearsXTAL; internal oscillatorNoneRTC		AT_POR	Run BIST at POR	Skip / run BIST at POR	SOC	None	BIST
PSEQUSLOT[3:0]Exit time slots125 µs / 2.5 sSOCNonePSEQDSLOT[3:0]Power down / Sleep Entry time slots125 µs / 2.5 sSOCNonePSEQSSTEPSlot step multiplier250 µs / 1000 µsSOCNonePSEQPU[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQPD[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_ENTRY[3:0]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQRTC (2)RTC_T[31:0]RTC time setting1 sec to 136 yearsXTAL; internal oscillatorNoneRTC		AT_SHDN		Default to not run BIST	SOC	None	BIST
PSEQDSLOT[3:0]Entry time slots125 µS / 2.5 sSOCNonePSEQSSTEPSlot step multiplier250 µS / 1000 µSSOCNonePSEQPU[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQPD[3:0][12:1]Power Up SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_EXT[3:0][12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQSLP_ENTRY[3:0] [12:1]Sleep Exit SequenceENx not mapped / ENx mappedSOCNonePSEQRTC_T[31:0]RTC time setting1 sec to 136 yearsXTAL; internal oscillatorNoneRTC		USLOT[3:0]		125 µs / 2.5 s	SOC	None	PSEQ
PSEQ PU[3:0][12:1] Power Up Sequence ENx not mapped / ENx mapped SOC None PSEQ PD[3:0][12:1] Power Down Sequence ENx not mapped / ENx mapped SOC None PSEQ SLP_EXT[3:0][12:1] Sleep Exit Sequence ENx not mapped / ENx mapped SOC None PSEQ SLP_EXT[3:0][12:1] Sleep Exit Sequence ENx not mapped / ENx mapped SOC None PSEQ SLP_ENTRY[3:0] Sleep Entry Sequence ENx not mapped / ENx mapped SOC None PSEQ RTC_1[12:1] RTC time setting 1 sec to 136 years XTAL; internal oscillator None RTC		DSLOT[3:0]		125 µs / 2.5 s	SOC	None	PSEQ
PSEQ PO[3:0][12:1] Power Op Sequence mapped SOC None PSEQ PD[3:0][12:1] Power Down Sequence ENx not mapped / ENx mapped SOC None PSEQ SLP_EXT[3:0][12:1] Sleep Exit Sequence ENx not mapped / ENx mapped SOC None PSEQ SLP_ENTRY[3:0] Sleep Entry [12:1] Sleep Entry Sequence ENx not mapped / ENx mapped SOC None PSEQ RTC_1[31:0] RTC time setting 1 sec to 136 years XTAL; internal oscillator None RTC		SSTEP	Slot step multiplier	250 µs / 1000 µs	SOC	None	PSEQ
FD[3.0][12:1] Sequence mapped SOC None PSEQ SLP_EXT[3:0][12:1] Sleep Exit Sequence ENx not mapped / ENx mapped SOC None PSEQ SLP_ENTRY[3:0] Sleep Entry [12:1] Sleep Entry Sequence ENx not mapped / ENx mapped SOC None PSEQ RTC_1[31:0] RTC time setting 1 sec to 136 years XTAL; internal oscillator None RTC	PSEQ	PU[3:0][12:1]	Power Up Sequence		SOC	None	PSEQ
SLP_EXT[3:0] Sleep Ext Sequence mapped SOC None PSEQ SLP_ENTRY[3:0] Sleep Entry [12:1] Sleep Entry Sequence ENx not mapped / ENx mapped SOC None PSEQ RTC_1[31:0] RTC time setting 1 sec to 136 years XTAL; internal oscillator None RTC		PD[3:0][12:1]			SOC	None	PSEQ
Image: The second se		SLP_EXT[3:0][12:1]	Sleep Exit Sequence		SOC	None	PSEQ
RTC ⁽²⁾ RTC_T[31:0] RTC time setting 1 sec to 136 years oscillator None RTC					SOC	None	PSEQ
RTC_A[31:0] RTC alarm setting 1 sec to 136 years SOC None RTC	RTC ⁽²⁾	RTC_T[31:0]	RTC time setting	1 sec to 136 years		None	RTC
		RTC_A[31:0]	RTC alarm setting	1 sec to 136 years	SOC	None	RTC

表 8-1. I²C Register Categories and Associated Details (continued)

27

	201.1	o negister oatege	ories and Associate	a Details (con	,	
TYPE	BITS	DESCRIPTION	RANGE / FUNCTION OR STATUS	WHO TOGGLES THEM?	WHO ELSE CAN WRITE TO THEM?	WHAT GETS AFFECTED DUE TO THIS BIT?
	WDT_EN[1:0]	Watchdog configuration	Disabled / Enabled	SOC	None	WDT
	SLP_EN	Automatic disable in Sleep mode	Watchdog disabled / enabled in Sleep	SOC	None	WDT
	WDT_DLY[2:0]	Delay in number of Watchdog periods	1 or 8 WDT period	SOC	None	WDT
WDT	PDMD[1:0]	Power down mode for WDT force power down	Value written to CTL_1.FORCE_SHDN on WDT power down	SOC	None	PSEQ
	CLOSE[7:0]	WDT close window configuration	1 ms to 864 ms	SOC	None	WDT
	OPEN[7:0]	WDT open window configuration	1 ms to 864 ms	SOC	None	WDT
	KEY[7:0]	WDT key to reset	0 / 1	SOC	None	WDT
	WRK	Work set register lock	0 / 1	SOC only 1	None	Write function to those register groups
	SEQS	SEQS set register lock	0 / 1	SOC only 1	None	Write function to those register groups
	SEQP	SEQP set register lock	0 / 1	SOC only 1	None	Write function to those register groups
PROT	SEQC	SEQC set register lock	0 / 1	SOC only 1	None	Write function to those register groups
	WDT	WDT set register lock	0 / 1	SOC only 1	None	Write function to those reg groups
	RTC	RTC set register lock	0 / 1	SOC only 1	None	Write function to those reg groups
	CTL	CTL set register lock	0 / 1	SOC only 1	None	Write function to those reg groups

表 8-1. I²C Register Categories and Associated Details (continued)

(1)

Presence of fault reporting functionality dependent on part configuration. Register RTC_T must be written to before writing a value in register RTC_A. (2)

8.4 Register Map Table

表 8-2. Register Map Table

RSVD = F	Reserved											
ADDR	NAME	R/W	MSB	6	5	4	3	2	1	LSB	DEFAULT	GROUP
0x00 - 0x0	F: Vendor info ar	nd vendor	usage registers	6								
0x00	Model Rev	R		Dev	vice Model (Bits	3-7)		Ve	endor ID (Bits 0	-2)		
0x01	Revision	R	Silicor	n_Rev			OTP	_Rev				
0x02 0x0F	RSVD				Ver	ndor defined or	other IC informa	ation				
0x10 - 0x1	F: Interrupts and	Status reg	gisters									
0x10	INT_SRC1	RW1C	F_INTERNAL	EM_PD	WDT	F_PEC	RTC	F_EN	F_OSC	F_NRSTIRQ	0x00	
0x11	INT_SRC2	RW1C	F_VENDOR	RSVD	F_RT_CRC	F_BIST	F_LDO	F_TSD	F_ECC_DED	F_PBSP	0x00	
0x12	INT_VENDOR	RW1C			V	endor specific i	nternal fault flag	gs			0x00	
0x13	CTL_STAT	R	RSVD	ST_VBBAT	ST_NIRQ	ST_NRST	ST_ACTSLP	ST_ACTSHD N	ST_PS	EQ[1:0]	0x00	
0x14	EN_STDR1	R		RS	SVD		STDR_EN12	STDR_EN11	STDR_EN10	STDR_EN9	0x00	
0x15	EN_STDR2	R	STDR_EN8	STDR_EN7	STDR_EN6	STDR_EN5	STDR_EN4	STDR_EN3	STDR_EN2	STDR_EN1	0x00	
0x16	EN_STRD1	R		RS	SVD		STRD_EN12	STRD_EN11	STRD_EN10	STRD_EN9	0x00	
0x17	EN_STRD2	R	STRD_EN8	STRD_EN7	STRD_EN6	STRD_EN5	STRD_EN4	STRD_EN3	STRD_EN2	STRD_EN1	0x00	
0x18	WDT_STAT	R		RS	SVD		OPEN	RSVD	WDUV	WDEXP	0x00	
0x19	TEST_STAT	R	RSVD	BIST_C	ECC_SEC	RSVD	BIST_VM	BIST_NVM	BIST_L	BIST_A	0x00	
0x1A	LAST_RST	R	NRST_IN	WDT_RST	LP_NPWR_B TN	NEM_PD	ACTSHDN	WDT_SHDN	FORCE_	SHDN[1:0]	0x00	
0x1B 0x1F	RSVD					RS	SVD					
0x20 - 0x2	F: Configuration	registers										
0x20	EN_ALT_F	R		RS	SVD		EN_AF12	EN_AF11	EN_AF10	EN_AF9	NVM	
0x21	AF_IN_OUT	R		RS	SVD		AFIO12	AFIO11	AFIO10	AFIO9	NVM	
0x22	EN_CFG1	R		RS	SVD		PP_EN12	PP_EN11	PP_EN10	PP_EN9	NVM	
0x23	EN_CFG2	R	PP_EN8	PP_EN7	PP_EN6	PP_EN5	PP_EN4	PP_EN3	PP_EN2	PP_EN1	NVM	
0x24	CLK_CFG	R	XTAL_LOAD	XTAL_EN	RSVD	PP_CLK32K		RS	VD		NVM	
0x25	GP_OUT	R/W		RS	SVD		GPO12	GPO11	GPO10	GPO9	NVM	WRK
0x26	DEB_IN	R/W		DEBOU	NCE[3:0]		EN_DEB12	EN_DEB11	EN_DEB10	RSVD	NVM	CTL
0x27	LP_TTSHLD	R/W				LP_TIME_	TSHLD[7:0]			•	NVM	CTL
0x28	CTL_1	R/W		RS	SVD		FORCE_INT	FORCE_ACT	FORCE_	SHDN[1:0]	NVM	WRK

表 8-2. Register Map Table (continued)

RSVD = Reserved

ADDR	NAME	R/W	MSB	6	5	4	3	2	1	LSB	DEFAULT	GROUP		
0x29	CTL_2	R/W		RST_E			RTC_WAKE	RTC_PU	REQ_PEC	EN_PEC	NVM	CTL		
0x2A	TEST_CFG	R/W			RSVD			AT_SHDN	AT_PC	DR[1:0]	NCM	CTL		
0x2B	IEN_VENDOR	R/W			V	/endor specifc ir	iternal fault enab	les			NVM	CTL		
0x2C 0x2F	RSVD					R	SVD							
0x30 - 0x6	SF: Sequencing re	gisters												
0x30	SEQ_CFG	R/W				RSVD				SSTEP	NVM	SEQC		
0x31	SEQ_USLOT	R/W				TIM	IE[7:0]				NVM	SEQC		
0x32	SEQ_DSLOT	R/W				TIM	IE[7:0]				NVM	SEQC		
0x33	PWR_EN1	R/W		PU	[3:0]			PD	[3:0]		NVM	SEQP		
0x34	PWR_EN2	R/W		PU	[3:0]			PD	[3:0]		NVM	SEQP		
0x35	PWR_EN3	R/W		PU	[3:0]			PD	[3:0]		NVM	SEQP		
0x36	PWR_EN4	R/W		PU	[3:0]			PD	[3:0]		NVM	SEQP		
0x37	PWR_EN5	R/W		PU[3:0] PD[3:0] NV					PD[3:0]					
0x38	PWR_EN6	R/W		PU	[3:0]			PD	[3:0]		NVM	SEQP		
0x39	PWR_EN7	R/W		PU	[3:0]			PD	[3:0]		NVM	SEQP		
0x3A	PWR_EN8	R/W		PU	[3:0]			PD	[3:0]		NVM	SEQP		
0x3B	PWR_EN9	R/W		PU	[3:0]			PD	NVM	SEQP				
0x3C	PWR_EN10	R/W		PU	[3:0]			PD	NVM	SEQP				
0x3D	PWR_EN11	R/W		PU	[3:0]			PD	NVM	SEQP				
0x3E	PWR_EN12	R/W		PU	[3:0]			PD		NVM	SEQP			
0x3F	PWR_CLK32OE	R/W		PU	[3:0]			PD	NVM	SEQP				
0x40 0x4F	RSVD					R	SVD							
0x50 0x52	RSVD					R	SVD							
0x53	SLP_EN1	R/W		SLP_E	XIT[3:0]			SLP_EN	NVM	SEQS				
0x54	SLP_EN2	R/W		SLP_E	XIT[3:0]			SLP_EN		NVM	SEQS			
0x55	SLP_EN3	R/W		SLP_E	XIT[3:0]			NVM	SEQS					
0x56	SLP_EN4	R/W		SLP_E	XIT[3:0]			SLP_EN	NVM	SEQS				
0x57	SLP_EN5	R/W		SLP_E	XIT[3:0]			SLP_EN	TRY[3:0]		NVM	SEQS		
0x58	SLP_EN6	R/W		SLP_E	XIT[3:0]			SLP_EN	TRY[3:0]		NVM	SEQS		

表 8-2. Register Map Table (continued)

ADDR	NAME	R/W	MSB	6	5	4	3	2	1	LSB	DEFAULT	GROUP
0x59	SLP_EN7	R/W		SLP_E	XIT[3:0]			SLP_EN	TRY[3:0]		NVM	SEQS
0x5A	SLP_EN8	R/W		SLP_E	XIT[3:0]			SLP_EN	NTRY[3:0]		NVM	SEQS
0x5B	SLP_EN9	R/W		SLP_E	XIT[3:0]			SLP_EN	NTRY[3:0]		NVM	SEQS
0x5C	SLP_EN10	R/W		SLP_E	XIT[3:0]			SLP_EN	NTRY[3:0]		NVM	SEQS
0x5D	SLP_EN11	R/W		SLP_EXIT[3:0] SLP_ENTRY[3:0]					NVM	SEQS		
0x5E	SLP_EN12	R/W		SLP_EXIT[3:0] SLP_ENTRY[3:0]						NVM	SEQS	
0x5F	SLP_CLK32OE	R/W		SLP_E	XIT[3:0]			SLP_EN	NTRY[3:0]		NVM	SEQS
0x60 0x6F	RSVD					RS	SVD					
)x70 - 0x7	7F: Real Time Cloc	k (RTC) re	gisters								1	
0x70	RTC_T3	R/W				RTC_1	[31:24]				0x00	RTC
0x71	RTC_T2	R/W				RTC_1	[23:16]				0x00	RTC
0x72	RTC_T1	R/W	RTC_T[15:8]					0x00	RTC			
0x73	RTC_T0	R/W				RTC_	_T[7:0]				0x00	RTC
0x74	RTC_A3	R/W				RTC_A	\[31:24]				0xFF	RTC
0x75	RTC_A2	R/W				RTC_A	A[23:16]				0xFF	RTC
0x76	RTC_A1	R/W				RTC_	A[15:8]				0xFF	RTC
0x77	RTC_A0	R/W				RTC_	_A[7:0]				0xFF	RTC
0x78 0x7F	RSVD					RS	SVD					
)x80 - 0x8	BF: Watchdog Time	er (WDT) re	gisters									
0x80	WDT_CFG	R/W	WDTE	N[1:0]	SLP_EN		WDTDLY[2:0]		PDM	D[1:0]	0x00	WDT
0x81	WDT_CLOSE	R/W				CLOS	SE[7:0]				0x00	WDT
0x82	WDT_OPEN	R/W				OPE	N[7:0]				0x00	WDT
0x83	WDTKEY	R/W				KEY	′[7:0]				0x00	None
0x84 0x8F	RSVD			RSVD								
0x90 0xEF	Unused					Uni	used					
0xF0 - 0xl	FF: Protection regi	isters										
0xF0	PROT1	R/W	RSVD	WRK	SEQS	SEQP	SEQC	WDT	RTC	CTL	0x00	
0xF1	PROT2	R/W	RSVD	WRK	SEQS	SEQP	SEQC	WDT	RTC	CTL	0x00	

表 8-2. Register Map Table (continued)

RSVD = Reserved

ADDR	NAME	R/W	MSB	6	5	4	3	2	1	LSB	DEFAULT	GROUP
0xF2 0xF8	RSVD					R	SVD					
0xF9	I2CADDR	R	RSVD				ADDR_NVM[6:0	0]			NVM	
0xFA	DEV_CFG	R			R	SVD			SOC	_IF[1:0]	NVM	
0xFB 0xFF	RSVD					R	SVD					

8.4.1 Register Descriptions

表 8-3. INT_SRC1

Address: 0x10

Description: Interrupt Source register. If F_INTERNAL, then INT_SRC2 register provides further information.

POR Value: 0x00

Access: Read and write 1 to clear. Writing 0 has no effect; writing 1 to a bit which is already at 0 has no effect.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7	F_INTERNAL	Internal Fault (ORed value of all bits in INT_SRC2): 0 = No internal fault detected 1 = Internal fault detected. Further detail flagged in INT_SRC2. This bit is cleared by clearing the bits in INT_SRC2.
6	EM_PD	Emergency Power Down: 0 = No emergency power-down event 1 = Shutdown caused by emergency power-down (Sequence 2). Write-1-to-clear will clear the bit. The bit will be set again on next emergency power- down.
5	WDT	 0 = WDT violation did not occur (or WDT_CFG.WDTEN[1:0] = 00b). 1 = WDT violation occurred. This bit is valid only if WDT_CFG.WDTEN[1:0] is enabled. Write-1-to-clear will clear the bit. The bit will be set again on next WDT violation.
4	PEC	Packet Error Checking: 0 = PEC miscompare has not occurred (or CTL_2.EN_PEC = 0). 1 = PEC miscompare has occurred. This bit is valid only if CTL_2.EN_PEC is enabled. Write-1-to-clear will clear the bit. The bit will be set again on next PEC miscompare.
3	RTC	 0 = RTC alarm has not triggered (or alarm function is disabled). 1 = RTC alarm has triggered. This bit is invalid if the alarm function is disabled (CTL_2.RTC_WAKE and CTL_2.RTC_PU are both clear, and RTC_A[31:0] is set to 0xFFFFFFF.) Write-1-to-clear will clear the bit. The bit will be set again on next RTC alarm.
2	F_EN	Enable Output Pin Fault: 0 = No short to supply or ground detected. 1 = Short to supply or ground detected. Write-1-to-clear will clear the bit only if the fault condition is also removed.
1	F_OSC	Crystal Oscillator Fault: 0 = No fault detected on Crystal Oscillator (or CLK_CFG.XTAL_EN = 0, disabled). 1 = Fault detected on Crystal Oscillator. Write-1-to-clear will clear the bit only if the fault condition is also removed.
0	F_NRSTIRQ	Reset or Interrupt Pin Fault: 0 = No fault detected on NRST or NIRQ. 1 = Low resistance path to supply detected on either NRST or NIRQ. Write-1-to-clear will clear the bit only if the fault condition is also removed.

INT_SRC1 represents the reason that NIRQ was asserted. When the host processor receives NIRQ, it may read this register to quickly determine the source of the interrupt. If this register is clear, then TPS38700 did not assert NIRQ.

表 8-4. INT_SRC2

Address: 0x11

Description: Interrupt Source register for internal errors.

POR Value: 0x00

Access: Read and write 1 to clear. Writing 0 has no effect; writing 1 to a bit which is already at 0 has no effect.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7	F_VENDOR	 Vendor specific internal fault. Details reported in INT_VENDOR. This bit represents the ORed value of all bits in INT_VENDOR. 0 = No fault reported in INT_VENDOR 1 = Fault reported in INT_VENDOR This bit is cleared by clearing the bits in INT_VENDOR.
6	RSVD	Reserved
5	F_RT_CRC	Runtime register CRC Fault: 0 = No fault detected. 1 = Register CRC fault detected. Write-1-to-clear will clear the bit. The bit will be set again during next register CRC check if a fault is detected.
4	F_BIST	 Built-In Self Test Fault: 0 = No fault detected. 1 = BIST fault detected. Note that clearing this bit does not clear the results in TEST_STAT register. Write-1-to-clear will clear the bit. The bit will be set again during next BIST execution if a fault is detected.
3	F_LDO	LDO Fault: 0 = No LDO fault detected. 1 = LDO fault detected. If internal LDO is used, this flag is to indicate fault. If internal LDO is not used, this flag must be reserved. Write-1-to-clear will clear the bit only if the fault condition is also removed.
2	F_TSD	Thermal Shutdown: 0 = No thermal shutdown. 1 = Thermal shutdown occurred since last read. Write-1-to-clear will clear the bit only if the fault condition is also removed.
1	F_ECC_DED	 ECC Double-Error Detection on OTP configuration load: 0 = No ECC-DED on OTP load. 1 = ECC-DED on OTP load. Write-1-to-clear will clear the bit. The bit will be set again during next OTP configuration load if a fault is detected.
0	F_PBSP	NPWR_BTN Short Pulse: 0 = No short pulse on NPWR_BTN (or NPWR_BTN is not enabled). 1 = Short pulse detected on NPWR_BTN. This bit is valid only if NPWR_BTN is enabled through EN_AF12 and AFIO12 bits. Write-1-to-clear will clear the bit. The bit will be set again during next short pulse detected on NPWR_BTN.

表 8-5. INT_VENDOR

Address: 0x12

Description: Vendor Specific Internal Interrupt Status register.

POR Value: 0x00

Access: Read and write 1 to clear. Writing 0 has no effect; writing 1 to a bit which is already at 0 has no effect.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:0	FAULTS[7:0]	Vendor specific internal faults flags.

表 8-6. CTL_STAT

Address: 0x13

Description: TPS38700 Status register for control pins and internal state.

POR Value: 0x00

Access: Read only.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:6	RSVD	Reserved
5	ST_NIRQ	Current state of NIRQ Output: 0 = NIRQ pin asserted low by TPS38700. 1 = NIRQ pin not asserted low by TPS38700.
4	ST_NRST	Current state of NRST Output: 0 = NRST pin asserted low by TPS38700. 1 = NRST pin not asserted low by TPS38700.
3	ST_ACTSLP	Current state of \overline{SLEEP} input: 0 = \overline{SLEEP} pin driven low (Sleep) by system. 1 = \overline{SLEEP} pin driven high (Active) by system.
2	ST_ACTSHDN	Current state of ACT input: 0 = ACT pin driven low (Shutdown) by system. 1 = ACT pin driven high (Active) by system.
1:0	ST_PSEQ[1:0]	00b: SHDNx, Power Up, Power Down 01b: SLEEP, Sleep Entry, Sleep Exit 10b: Invalid combination 11b: ACTIVE

表 8-7. EN_STDR1

Address: 0x14

Description: Current drive status of Enable Pins.

POR Value: 0x00

Access: Read only.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:4	RSVD	Reserved
3:0	STDR_EN[12:9]	Current drive state of EN[X]: 0 = TPS38700 is driving EN[X] Low. 1 = TPS38700 is driving or allowing to float EN[X] High

表 8-8. EN_STDR2

Address: 0x15

Description: Current drive status of Enable Pins.

POR Value: 0x00

Access: Read only.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:0		Current drive state of EN[X]: 0 = TPS38700 is driving EN[X] Low. 1 = TPS38700 is driving or allowing to float EN[X] High

表 8-9. EN_STRD1

Address: 0x16

Description: Current read status of Enable Pins.

POR Value: 0x00

Access: Read only.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:4	RSVD	Reserved
3:0		Current read state of EN[X]: 0 = TPS38700 is reading EN[X] Low. 1 = TPS38700 is reading EN[X] High

表 8-10. EN_STRD2

Address: 0x17

Description: Current read status of Enable Pins.

POR Value: 0x00

Access: Read only.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:0	STRD_EN[8:1]	Current read state of EN[X]: 0 = TPS38700 is reading EN[X] Low. 1 = TPS38700 is reading EN[X] High

表 8-11. WDT_STAT

Address: 0x18

Description: WDT status register.

POR Value: 0x00

Access: Read only.

BIT	NAME	DESCRIPTION
7:4	RSVD	Reserved
3	OPEN	Watchdog Open Window: 0 = Watchdog update window closed. 1 = Watchdog update window open.
2	RSVD	Reserved
1	WDUV	Watchdog Update Violation. Clear on read. 0 = No violation detected. 1 = Watchdog updated too early.
0	WDEXP	Watchdog close timer expired without update to WDKEY. Clear on read. 0 = WDT Not Expired. 1 = WDT Expired.

表 8-12. TEST_STAT

Address: 0x19

Description: Internal Self-Test and ECC status register.

POR Value: 0x00

Access: Read only.

BIT	NAME	DESCRIPTION
7	RSVD	Reserved
6	BIST_C	BIST state: 0 = BIST running or not executed since last POR. Check also TEST_CFG register. 1 = BIST complete.
5	ECC_SEC	Status of ECC Single-Error Correction on OTP configuration load. 0 = no error correction applied. 1 = Single-Error Correction applied.
4	RSVD	Reserved
3	BIST_VM	Status of Volatile Memory test output from BIST. 0 = Volatile Memory test pass. 1 = Volatile Memory test fail.
2	BIST_NVM	Status of Non-Volatile Memory test output from BIST. 0 = Non-Volatile Memory test pass. 1 = Non-Volatile Memory test fail.
1	BIST_L	Status of Logic test output from BIST. 0 = Logic test pass. 1 = Logic test fail.
0	BIST_A	Status of Analog test output from BIST. 0 = Analog test pass. 1 = Analog test fail.

表 8-13. LAST_RST

Address: 0x1A

Description: Reason of last NRST assertion or shutdown. NRST assertion and shutdown occur in Sequence 2, Sequence 5, Sequence 6, Sequence 7, and Sequence 8.

The register is maintained as long as VDD and/or VBBAT is present. An emergency shutdown triggering Sequence 2 is already recorded in INT_SRC1.EM_PD register bit, so it does not need to be stored in this register. The host is expected to read this register as part of the first actions taken upon power ON.

The register is overwritten with new relevant data on next NRST assertion or shutdown.

POR Value: 0x00

Access: Read Only.

BIT	NAME	DESCRIPTION
7	NRST_IN	NRST assertion due to NRST_IN (if enabled in EN_ALT_F and AF_IN_OUT registers). 0 = Last NRST assertion was not due to NRST_IN. 1 = Last NRST assertion was due to NRST_IN.
6	WDT_RST	NRST assertion due to WDT (see also 表 8-37). 0 = Last NSRT assertion was not due to WDT. 1 = Last NSRT assertion was due to WDT.
5	RSVD	Reserved
4	NEM_PD	NRST/Shutdown due to NEM_PD (if enabled in EN_ALT_F and AF_IN_OUT registers). 0 = Last NRST/Shutdown assertion was not due to NEM_PD. 1 = Last NRST/Shutdown assertion was due to NEM_PD.
3	ACTSHDN	NRST/Shutdown due to ACT asserted Low (shutdown). 0 = Last NRST/Shutdown assertion was not due to ACT Low. 1 = Last NRST/Shutdown assertion was due to ACT Low.
2	WDT_SHDN	NRST/Shutdown due to WDT (see also 表 8-37). 0 = Last NRST/Shutdown assertion was not due to ACT/ SHDN Low. 1 = Last NRST/Shutdown assertion was due to ACT/ SHDN Low. If this bit is set, LAST_RST.FORCE_SHDN[1:0] contains WDT_CFG.PDMD[1:0] value.
1:0	FORCE_SHDN[1:0]	NRST/Shutdown due to CTL_1.FORCE_SHDN[1:0] ≠00b. Value is the same as CTL_1.FORCE_SHDN[1:0] that initiated the last NRST/Shutdown. If WDT_SHDN bit is set, this bitfield contains WDT_CFG.PDMD[1:0] value.

表 8-14. EN_ALT_F

Address: 0x20

Description: Enable Alternate Function for sequencing pins EN[12:9] (AF is selected in AF_IN_OUT register).

POR Value: Loaded from NVM

Access: Read only once loaded from NVM

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:4	RSVD	Reserved
3	EN_AF12	Enable alternate function of EN[12]: 0 = Disabled. 1 = AF Enabled (GPO12 or NPWR_BTN).
2	EN_AF11	Enable alternate function of EN[11]: 0 = Disabled. 1 = AF Enabled (GPO11 or NRST_IN).
1	EN_AF10	Enable alternate function of EN[10]: 0 = Disabled. 1 = AF Enabled (GPO10 or NEM_PD).
0	EN_AF9	Enable alternate function of EN[9]: 0 = Disabled. 1 = AF Enabled (GPO9).

The alternate function can be enabled only if the corresponding PU/ PD/ SLP_EXIT/ SLP_ENTRY registers fields are all set to 0. If any of those bit fields are non-zero, the corresponding pin is locked to EN[X] sequencing function.

表 8-15. AF_IN_OUT

Address: 0x21

Description: Select Alternate Function for sequencing pins EN[12:9] (AF is enabled in EN_ALT_F register).

POR Value: Loaded from NVM.

Access: Read only once loaded from NVM.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:4	RSVD	Reserved
3	AFIO12	Select alternate function of EN12: 0 = General Purpose Output (GPO) - GPO12. 1 = AF NPWR_BTN (power button input).
2	AFIO11	Select alternate function of EN11: 0 = GPO11. 1 = AF NRST_IN (reset input).
1	AFIO10	Select alternate function of EN10: 0 = GPO10. 1 = AF NEM_PD (emergency power-down input).
0	AFIO9	Select alternate function of EN9: 0 = GPO9. 1 = Invalid. EN9 can only be selected as GPO9 through EN_ALT_F.EN_AF9, and does not have an al- ternate function. Therefore, this bit is always read-only and should always read 0.

表 8-16. EN_CFG1

Address: 0x22

Description: Drive mode configuration for EN[12:9]

POR Value: Loaded from NVM.

Access: Read only once loaded from NVM

BIT	NAME	DESCRIPTION
7:4	RSVD	Reserved
3:0		ENx pin driver configuration: 0 = Open drain. 1 = Push pull.

表 8-17. EN_CFG2

Address: 0x23

Description: Drive mode configuration for EN[8:1].

POR Value: Loaded from NVM.

Access: Read only once loaded from NVM.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:0		ENx pin driver configuration: 0 = Open drain. 1 = Push pull.

表 8-18. CLK_CFG

Address: 0x24

Description: Oscillator configuration.

POR Value: Loaded from NVM.

Access: Read only once loaded from NVM.

BIT	NAME	DESCRIPTION
7	XTAL_LOAD	Crystal oscillator load capacitance:
		0 = external.
		1 = internal (value specified by the vendor).
6	XTAL_EN	Crystal oscillator enable:
		0 = Crystal driver disabled.
		1 = Crystal driver enabled.
5	RSVD	Reserved
4	PP_CLK32K	CLK32K pin driver configuration:
		0 = Open drain.
		1 = Push pull.
		Note that Push-Pull configuration for CLK32K output is
		optional and not a requirement.
3:0	RSVD	Reserved

表 8-19. GP_OUT

Address: 0x25

Description: Set General Purpose Output state for sequencing pins EN[12:9]. GPO is enabled through AF_IN_OUT and EN_ALT_F registers.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if CTL group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:4	RSVD	Reserved
3	GPO12	EN12 General Purpose Output. Only used when both PWR_EN12 and SLP_EN12 are clear. 0 = EN12 pin driven low. 1 = EN12 pin driven high.
2	GPO11	EN11 General Purpose Output. Only used when both PWR_EN11 and SLP_EN11 are clear. 0 = EN11 pin driven low. 1 = EN11 pin driven high.
1	GPO10	EN10 General Purpose Output. Only used when both PWR_EN10 and SLP_EN10 are clear. 0 = EN10 pin driven low. 1 = EN10 pin driven high.
0	GPO9	EN9 General Purpose Output. Only used when both PWR_EN9 and SLP_EN9 are clear. 0 = EN9 pin driven low. 1 = EN9 pin driven high.

表 8-20. DEB_IN

Address: 0x26

Description: Debounce configuration for AF input pins.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if CTL group is protected.

BIT	NAME	DESCRIPTION
7:4	DEBOUNCE[3:0]	Debounce value for AF input pins: 0000b = 5 ms 0001b = 10 ms 0010b = 15 ms 0011b = 20 ms nnnnb = 5(N+1) ms 1111b = 80 ms
3:1	EN_DEB[12:10]	Enable debounce for AF input pins: 0 = debounce disabled. 1 = debounce enabled.
0	RSVD	Reserved

表 8-21. LP_TTSHLD

Address: 0x27

Description: NPWR_BTN Long Press time threshold configuration.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if CTL group is protected.

BIT	NAME	DESCRIPTION
7:0	LP_TIME_TSHLD	If NPWR_BTN is enabled, this value, in 100 ms increments, determines the minimum duration of the NPWR_BTN pulse to be detected as "Long Press" (shorter is detected as "Short Press") 00h = 100 ms 01h = 200 ms FEh = 25.5 s FFh = 25.6 s

表 8-22. CTL_1

Address: 0x28

Description: Interrupt and State SW control.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if CTL group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:4	RSVD	Reserved
3	FORCE_INT ⁽¹⁾	Force NIRQ low: 0 = NIRQ pin controlled by INT_SRCx register faults. 1 = NIRQ pin forced low.
2	FORCE_ACT ⁽²⁾	Force TPS38700 active state: 0 (cleared only by I ² C writes) = SLEEP pin controls sleep entry/ exit. 1 (set only by HW) = SLEEP is ignored.
1:0	FORCE_SHDN[1:0]	Force TPS38700 to shutdown state. With NPWR_BTN disabled (EN_ALT_F.EN_AF12 = 0): 00b = Normal ACT pin control. 01b = Force power-down sequence, then resume normal ACT pin control immediately. 10b = Force power-down sequence, then resume normal ACT pin control after 1 second delay. 11b = Force power-down sequence, then resume normal ACT pin control when ACT = Low or when RTC alarm occurs as per configuration in registers CTL_2, RTC_T, and RTC_A. With NPWR_BTN enabled (EN_ALT_F.EN_AF12 = 1): 00b = Normal NPWR_BTN pin control. 01b = Force power-down sequence, then move to Sequence 1 immediately (proceed as if ACT = High). 10b = Force power-down sequence, then move to Sequence 1 after 1 second (proceed as if ACT = High). If NPWR_BTN is pressed before 1 second expires, then the TPS38700 will move to Sequence 1 at that time. 11b = Force power-down sequence, then move to Sequence 1 when RTC alarm occurs as per configuration in registers CTL_2, RTC_T, and RTC_A (proceed as if ACT = High). If NPWR_BTN is pressed before the RTC alarm, then the TPS38700 will move to Sequence 1 at that time.

(1) FORCE_INT is used by software for periodic check for internal or external short to VDD on NIRQ pin.

(2) FORCE_ACT is automatically set by HW when entering the Power Up sequence (SEQUENCE 1). As the TPS38700 performs the power-up sequence, ACT may be undefined. FORCE_ACT being set prevents a bad ACT level from causing a transition directly into SLEEP before the application processor has booted. I²C commands are allowed to clear this bit but not set it.

表 8-23. CTL_2

Address: 0x29

Description: Miscellaneous configuration.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if CTL group is protected.

BIT	NAME	DESCRIPTION	
7:4	RST_DLY[3:0]	Power up sequence: NRST remains a last ENx assert.	asserted until RST_DLY[3:0] after
		0000b = 0.1 ms	1000b = 1 ms
		0001b = 0.2 ms	1001b = 2 ms
		0010b = 0.4 ms	1010b = 4 ms
		0011b = 0.8 ms	1011b = 8 ms
		0100b = 1.6 ms	1100b = 16 ms
		0101b = 3.2 ms	1101b = 32 ms
		0110b = 6.4 ms	1110b = 64 ms
		0111b = 12.8 ms	1111b = 128 ms
		Power down sequence: NRST assert	ed within t _{NRST} of ACT= Low.
3	RTC_WAKE	Autonomous RTC wake alarm enable: 0 = Disabled (CTL_1.FORCE_ACT = 0 on RTC alarm). 1 = Enabled (CTL_1.FORCE_ACT = 1 on RTC alarm). If RTC_T == RTC_A, a wake event is generated which sets INT_SRC1.RTC. If this bit is enabled, then also CTL_1.FORCE_ACT is set to 1, triggerin the automatic exit from SLEEP state to ACTIVE.	
2	RTC_PU	Autonomous RTC Power Up from SHDN2 to ACTIVE: 0 = Disabled. 1 = Enabled. If RTC_T == RTC_A, a power-up event is generated.	
1	REQ_PEC	Require PEC byte (valid only if EN_PEC is 1): 0 = missing PEC byte is treated as good PEC. 1 = missing PEC byte is treated as bad PEC, triggering a fault.	
0	EN_PEC	Packet Error Checking (PEC): 0 = PEC disabled (Default). 1 = PEC Enabled. Disables support for register address auto-increment	

表 8-24. TEST_CFG

Address: 0x2A

Description: Built-In Self Test (BIST) execution configuration.

Default: Loaded from NVM (only AT_POR[1:0])

Access: Read/Write. Read-only if CTL group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:3	RSVD	Reserved
2	AT_SHDN	0 = Do not run BIST when exiting Sequence 5 or Sequence 6. 1 = Run BIST when exiting Sequence 5 or Sequence 6 if CTL_1.FORCE_SHDN[1:0] = 00b. Device ready after t_{CFG_WB} . This bit cannot be set in OTP. Always defaults to 0 when loading configuration from OTP.
1:0	AT_POR[1:0]	Run BIST at POR. Device ready after t _{CFG_WB} . 00b = Valid OTP configuration, skip BIST at POR 01b = Corrupt OTP configuration, run BIST at POR. 10b = Corrupt OTP configuration, run BIST at POR. 11b = Valid OTP configuration, run BIST at POR.

表 8-25. IEN_VENDOR

Address: 0x2B

Description: Vendor Specific Internal Interrupt Enable register.

POR Value: 0x00 or load from NVM.

Access: Read/Write. Read-only if CTL group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:0	FAULTS[7:0]	Vendor specific internal faults enables.

表 8-26. SEQ_CFG

Address: 0x30

Description: Sequencing configuration.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if SEQ group is protected.

BIT	NAME	DESCRIPTION
7:1	RSVD	Reserved
0		Sequencing time slot step size selection for SEQ_USLOT and SEQ_DSLOT: 0 = Time slot step size t _{SSTEP} = 250 µs 1 = Time slot step size t _{SSTEP} = 1000 µs

表 8-27. SEQ_USLOT

Address: 0x31

Description: Power Up / Sleep Exit sequencing time slot configuration.

POR Value: Loaded from NVM.

Access: Read/Write. Read only if SEQ group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:0		Sets time slot between sequencing points on power-up / sleep-exit: $t_{USLOT} = SEQ_USLOT.TIME[7:0] \times t_{SSTEP} + t_{SMIN}$ with t_{SSTEP} set by SEQ_CFG.SSTEP and $t_{SMIN} = t_{SSTEP}/2$ For the case where SEQ_CFG.SSTEP = 0, refer to 表 8-28. For the case where SEQ_CFG.SSTEP = 1, refer to 表 8-29.

表 8-28. SEQ_CFG.SSTEP = 0

PARAMETER	SYMBOL	MIN (-6%)	TYPICAL	MAX (+6%)	UNIT
Slot step size	t _{SSTEP}	235	250	265	μs
Min slot time (0x00)	t _{SMIN}	117.5	125	132.5	μs
Max slot time (0xFF)	t _{SMAX}	60042.5	63875	67707.5	μs

表 8-29. SEQ_CFG.SSTEP = 1

PARAMETER	SYMBOL	MIN (-6%)	TYPICAL	MAX (+6%)	UNIT
Slot step size	t _{SSTEP}	940	1000	1060	μs
Min slot time (0x00)	t _{SMIN}	470	500	530	μs
Max slot time (0xFF)	t _{SMAX}	240170	255500	270830	μs

表 8-30. SEQ_DSLOT

Address: 0x32

Description: Power Down / Sleep Entry sequencing time slot configuration.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if SEQ group is protected.

BIT	NAME	DESCRIPTION
7:0	TIME[7:0]	Sets time slot between sequencing points on power-down / sleep-entry:
		$t_{DSLOT} = SEQ_DSLOT.TIME[7:0] \times t_{SSTEP} + t_{SMIN}$ with t_{SSTEP} set by SEQ_CFG.SSTEP and $t_{SMIN} = t_{SSTEP}/2$ See $\frac{1}{8}$ 8-27 for setting details.

表 8-31. PWR_EN[12:1]

Address: PWR_EN1 (0x33) - PWR_EN12 (0x3E) (Twelve 8-bit registers).

Description: Power Up/ Down sequence definition by assignment of EN[12:1] to one of fifteen time slots.

Slot=1 is the earliest slot that can be selected and it indicates that the ENx pin will toggle in the first SEQ_USLOT.TIME or SEQ_DSLOT.TIME after the triggering event. See # 8.3.6.9.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if SEQ group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:4	PU[3:0]	Power Up Sequence: 0 = ENx pin not mapped to sequence. ENx maintains previous state, unless entering BACKUP or FAILSAFE state (ENx is pulled low in those states). 1 = ENx pin mapped to first time slot (first up). 15 = ENx pin mapped to last time slot (last up).
3:0	PD[3:0]	Power Down Sequence: 0 = ENx pin not mapped to sequence. ENx maintains previous state, unless entering BACKUP or FAILSAFE state (ENx is pulled low in those states). 1 = ENx pin mapped to first time slot (first down). 15 = ENx pin mapped to last time slot (last down).

表 8-32. PWR_CLK32OE

Address: 0x3Fh

Description: Power Up/ Down (PU/ PD) sequence assignment of 32 kHz clock output to one of fifteen time slots.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if SEQ group is protected.

BIT	NAME	DESCRIPTION
7:4	PU[3:0]	 0 = CLK32 not mapped to PU sequence. CLK32 maintains previous state, unless entering BACKUP or FAILSAFE state (CLK32 is pulled low in those states). 1 = Enable CLK32 on first PU time slot. 15 = Enable CLK32 on last PU time slot.
3:0	PD[3:0]	 0 = CLK32 not mapped to PD sequence. CLK32 maintains previous state, unless entering BACKUP or FAILSAFE state (CLK32 is pulled low in those states). 1 = Disable CLK32 on first PD time slot. 15 = Disable CLK32 on last PD time slot.

表 8-33. SLP_EN[12:1]

Address: SLP_EN1 (0x53) - SLP_EN12 (0x5E) (Twelve 8-bit registers).

Description: Sleep Exit/Entry sequence definition by assignment of EN[12:1] to one of fifteen time slots.

Slot=1 is the earliest slot that can be selected and it indicates that the ENx pin will toggle in the first SEQ_USLOT.TIME or SEQ_DSLOT.TIME after the triggering event. See $\ddagger 8.3.6.9$.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if SEQ group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
7:4	SLP_EXIT[3:0]	Sleep Exit Sequence: 0 = ENx pin not mapped to sequence. ENx maintains previous state, unless entering BACKUP or FAILSAFE state (ENx is pulled low in those states). 1 = ENx pin mapped to first time slot (first up). 15 = ENx pin mapped to last time slot (last up).
3:0	SLP_ENTRY[3:0]	Sleep Entry Sequence: 0 = ENx pin not mapped to sequence. ENx maintains previous state, unless entering BACKUP or FAILSAFE state (ENx is pulled low in those states). 1 = ENx pin mapped to first time slot (first down). 15 = ENx pin mapped to last time slot (last down).

表 8-34. SLP_CLK32OE

Address: 0x5F

Description: Sleep Exit/Entry sequence assignment of 32 kHz clock output to one of fifteen time slots.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if SEQ group is protected.

BIT	NAME	DESCRIPTION		
7:4	SLP_EXIT[3:0]	 0 = CLK32 not mapped to Sleep Exit sequence. CLK32 maintains previous state, unless entering BACKUP or FAILSAFE state (CLK32 is pulled low in those states). 1 = Enable CLK32 on first Sleep Exit time slot. 15 = Enable CLK32 on last Sleep Exit time slot. 		
3:0	3:0 SLP_ENTRY[3:0] 0 = CLK32 not mapped to Sleep Entry seques maintains previous state, unless entering B FAILSAFE state (CLK32 is pulled low in the club to be club to b			

表 8-35. RTC_T[31:0]

Address: RTC_T[31:24] (0x70) - RTC_T[7:0] (0x73) (Four 8-bit registers).

Description: RTC time setting. Although no provision is specified to maintain data coherency across the four registers, it is expected that accessing these registers in a single transaction will guarantee data coherency. RTC_T register values should be written prior to RTC_A values.

POR Value: 0x00000000

Access: Read/Write. Read-only if RTC group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
31:24	RTC_T3	RTC Time Byte 3 Address 0x70
23:16	RTC_T2	RTC Time Byte 2 Address 0x71
15:8	RTC_T1	RTC Time Byte 1 Address 0x72
7:0	RTC_T0	RTC Time Byte 0 Address 0x73

32-bit unsigned value representing 136 years of 1 second ticks since power-on. Can be used to keep POSIX time. Must be set with correct value on each power-up

表 8-36. RTC_A[31:0]

Address: RTC_A[31:24] (0x74) - RTC_A[7:0] (0x77) (Four 8-bit registers).

Description: RTC alarm setting. Although no provision is specified to maintain data coherency across the four registers, it is expected that accessing these registers in a single transaction will guarantee data coherency.

POR Value: 0xFFFFFFF

Access: Read/Write. Read-only if RTC group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION
31:24	RTC_A3	RTC Alarm Byte 3 Address 0x74
23:16	RTC_A2	RTC Alarm Byte 2 Address 0x75
15:8	RTC_A1	RTC Alarm Byte 1 Address 0x76
7:0	RTC_A0	RTC Alarm Byte 0 Address 0x77

Assert Alarm when RTC_T[31:0]==RTC_A[31:0]. See CTL_2.RTC_WAKE and CTL_2.RTC_PU for wake events.

表 8-37. WDT_CFG

Address: 0x80

Description: WDT configuration.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if WDT group is protected.

BIT	NAME	DESCRIPTION	
7:6	WDTEN[1:0]	00b = Watchdog disabled. 01b = On successive expires, first interrupt, then reset, then power-down according to WDT_CFG.PDMD. 10b = On successive expires, first reset, then power- down according to WDT_CFG.PDMD. 11b = Power-down according to WDT_CFG.PDMD on expire.	
5	SLP_EN	Automatic disable in sleep mode: 0 = Watchdog disabled automatically in sleep mode. 1 = Watchdog enabled in sleep mode.	
4:2	4:2 WDTDLY[2:0] Delay, in number of WDT periods (WI WDT_OPEN), from de-assertion of N SHDN1 or SHDN2 states), or from va WDT_CFG.WDTEN[1:0], or from Slee WDT_CFG.SLP_EN=0), to first close 000b = 1 WDT period. 111b = 8 WDT periods.		
1:0	PDMD[1:0]	Power Down Mode for WDT force power-down. Value written to CTL_1.FORCE_SHDN[1:0] on WDT power-down event.	

表 8-38. WDT_CLOSE

Address: 0x81

Description: WDT close window configuration.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if WDT group is protected.

Back to Register Map Table.

BIT	NAME	DESCRIPTION				
7:0	CLOSE[7:0]	WDT close window duration: LSB increment value				
		1 ms (00h-1Fh)	2 ms (20h-3Fh)	4 ms (40h-FFh)		
		00h = 1 ms	00h = 1 ms 20h = 34 ms			
		01h = 2 ms 21h = 36 ms		41h = 104 ms		
		02h = 3 ms 22h = 38 ms		42h = 108 ms		
		03h = 4 ms 23h = 40 ms		43h = 112 ms		
		04h = 5 ms	24h = 42 ms	44h = 116 ms		
		1Dh = 30 ms	3Dh = 92 ms	FDh = 856 ms		
		1Eh = 31 ms	3Eh = 94 ms	FEh = 860 ms		
		1Fh = 32 ms	3Fh = 96 ms	FFh = 864 ms		

表 8-39. WDT_OPEN

Address: 0x82

Description: WDT open window configuration.

POR Value: Loaded from NVM.

Access: Read/Write. Read-only if WDT group is protected.

BIT	NAME	DESCRIPTION					
7:0	OPEN[7:0]	WDT open window dur LSB increment value	WDT open window duration: LSB increment value				
		1 ms (00h-1Fh)	2 ms (20h-3Fh)	4 ms (40h-FFh)			
		00h = 1 ms	20h = 34 ms	40h = 100 ms			
		01h = 2 ms 21h = 36 ms		41h = 104 ms			
		02h = 3 ms	22h = 38 ms	42h = 108 ms			
		03h = 4 ms	23h = 40 ms	43h = 112 ms			
		04h = 5 ms	24h = 42 ms	44h = 116 ms			
		1Dh = 30 ms	3Dh = 92 ms	FDh = 856 ms			
		1Eh = 31 ms	3Eh = 94 ms	FEh = 860 ms			
		1Fh = 32 ms	3Fh = 96 ms	FFh = 864 ms			

表 8-40. WDTKEY

Address: 0x83

Description: WDT key to reset.

POR Value: 0x00

Access: Read/Write.

BIT	NAME	DESCRIPTION
7:0	KEY[7:0]	Watchdog key register.

表 8-41. PROT1, PROT2

Address: 0xF0, 0xF1

Description: Protection selection registers. In order to write-protect a register group, the host must set the relevant bit in both registers.

POR Value: 0x00

Access: Read/Write.

For security, these registers need to have POR value=0x00 and become read-only once set until power cycle.

Once set to 1, they cannot be cleared to 0 by the host; a power cycle (VDD=0) is required to write different registers configurations.

These registers are cleared also if BIST is executed on exiting Sequence 5 or Sequence 6 (TEST_CFG.AT_SHDN=1).

Back to Register Map Table.

ВІТ	NAME	DESCRIPTION
7	RSVD	Reserved
6	WRK	0 = Working registers are writable.1 = Writes to working registers are ignored.
5	SEQS	0 = Sleep Sequence registers are writable.1 = Writes to Sleep Sequence registers are ignored.
4	SEQP	0 = Power Sequence registers are writable.1 = Writes to Power Sequence registers are ignored.
3	SEQC	0 = Sequence slot configuration registers are writable.1 = Writes to Sequence slot configuration registers are ignored.
2	WDT	0 = WDT registers are writable. 1 = Writes to WDT registers are ignored.
1	RTC	0 = RTC registers are writable. 1 = Writes to RTC registers are ignored.
0	CTL	0 = Control registers are writable.1 = Writes to control registers are ignored.

表 8-42. I2CADDR

Address: 0xF9

Description: I²C address.

POR Value: Loaded from NVM.

Access: Read-Only.

BIT	NAME	DESCRIPTION
7	RSVD	Reserved
6:0	ADDR_NVM[6:0]	I ² C target device address. Set in NVM.

9 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

Modern SOC and FPGA devices typically have multiple power rails to provide power to the different blocks within the IC. Accurate voltage level and timing requirements are common and must be met in order to ensure proper operation of these devices. By utilizing TPS38700 along with a multichannel voltage supervisor, the power up and power down sequencing requirements as well as the core voltage requirements of the target SOC or FPGA device can be met. This design focuses on meeting the timing requirements for an SOC by using the TPS38700.

9.2 Typical Application

9.2.1 Automotive Multichannel Sequencer and Monitor

A typical application for the TPS38700 is shown in 🕅 9-1. TPS38700 is used to provide the proper voltage sequencing for the target SOC device by providing enable signals to the DC/DC converters shown. These DC/DC converters are used to generate the appropriate voltage rails for the SOC. A mulitchannel voltage monitor is used to monitor the voltage rails as these rails power up and power down to ensure that the correct sequence occurs in both occasions. A safety microcontroller is also used to provide ACT, NIRQ, and I²C commands to the TPS38700 and the multichannel voltage monitor. The ACT signal from the safety microcontroller determines when the TPS38700 enters into ACTIVE or SHDN states while the NIRQ pin of the TPS38700 acts as an interrupt pin that is set when a fault has occurred. For instance, if an external device pulls the NRST pin low, then the TPS38700 will trigger an interrupt through the NIRQ pin. I²C is used to communicate the type of fault to the host microcontroller. The host microcontroller can clear the fault by writing 1 to the affected register. The power rails for the safety microcontroller are not shown in 🕅 9-1 for simplicity.

TPS38700 ZHCSNX1A – OCTOBER 2022 – REVISED NOVEMBER 2022

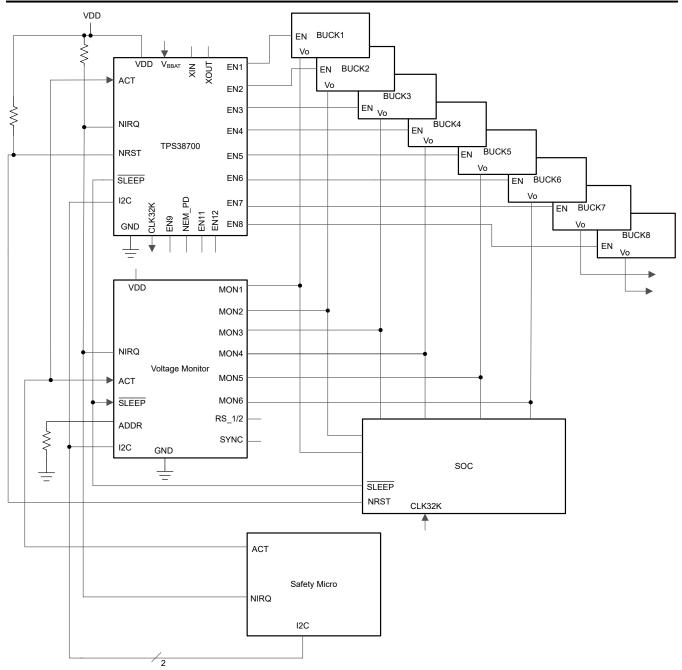


图 9-1. TPS38700 Voltage Sequencer Design Block Diagram

9.2.2 Design Requirements

- Eight different voltage rails supplied by DC/DC converters need to be properly sequenced in this design. The sequence order and timing requirements are outlined in 表 9-1 and 表 9-2.
- Emergency power down functionality is optional.
- Backup battery power supply required. This must be stepped down to a maximum value of 5.5 V in order to comply with the absolute maximum ratings of the V_{BBAT} pin.
- All detected failures in sequencing should be reported via an external hardware interrupt signal.
- All detected failures should be logged in internal registers and be accessible to an external processor via I²C.

Texas

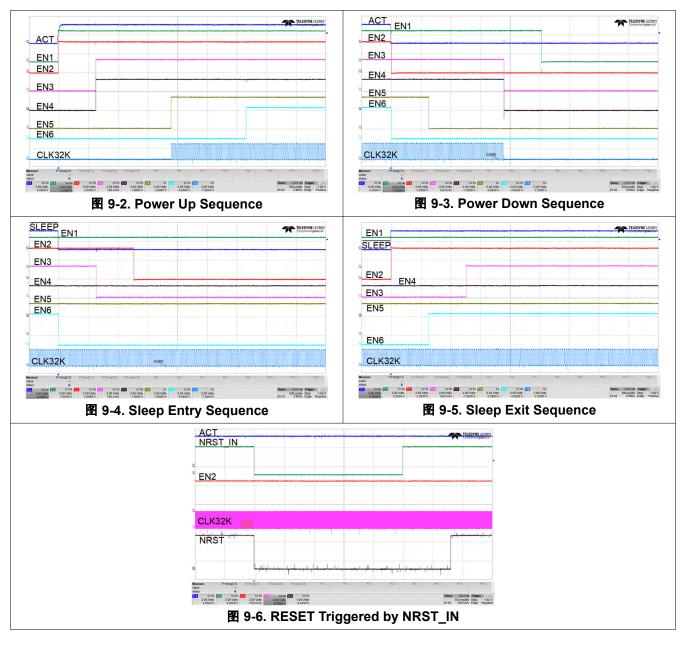
INSTRUMENTS

www.ti.com.cn

ENABLE CHANNEL	ABLE CHANNEL POWER UP SEQUENCE POSITION				TIME BETWEEN POWER UP SIGNALS (μs)	time between power DOWN SIGNALS (μs)	
EN1	1	4	625	625			
EN2	1	1	625	625			
EN3	2	3	625	625			
EN4	2	3	625	625			
EN5	3	2	625	625			
EN6	4	1	625	625			
EN7	EN7 1	N7 1 1	1	625	625		
EN8	2	3	625	625			

+ -. - -

表 9-2. Sleep Entry and Sleep Exit Sequence Requirement


ENABLE CHANNEL	SLEEP EXIT SEQUENCE POSITION	SLEEP ENTRY SEQUENCE POSITION	TIME BETWEEN SLEEP EXIT SIGNALS (µs)	TIME BETWEEN SLEEP ENTRY SIGNALS (µs)
EN1	0	0	625	625
EN2	1	3	625	625
EN3	3	2	625	625
EN4	0	0 625	625	625
EN5	0	0	625	625
EN6	2	1	625	625
EN7	1	3	625	625
EN8	3	2	625	625

9.2.3 Detailed Design Procedure

- TPS38700 device comes preprogrammed with the power up, power down, sleep entry, and sleep exit sequences shown in 表 9-1 and 表 9-2.
- NIRQ and NRST pins both require a pull up resistor in the range of 10 k Ω to 100 k Ω .
- SDA and SCL lines require pull up resistors in the range of 10 k Ω .
- The ACT pin is driven by an external safety microcontroller. When the ACT pin is driven high, the device enters into ACTIVE mode as described in 7 8.3.6.1. When the ACT pin is driven low, the device enters into SHDN mode as described in $\frac{1}{7}$ 8.3.6.5.
- The safety microcontroller is used to clear fault interrupts reported through the NIRQ interrupt pin and the INT SCR1 and INT SCR2 registers. The interrupt flags can only be cleared by the host micrcontroller with a write-1-to-clear operation; interrupt flags are not automatically cleared if the fault condition is no longer present.
- The SLEEP pin is driven by the SOC. When the SLEEP pin is driven low, the device enters into Sleep mode as shown in # 8.3.6.3. When the SLEEP pin is driven high, the device exits Sleep mode as shown in # 8.3.6.4.
- The safety microcontroller should be connected to the NEM PD input pin of the TPS38700 device in order to enable emergency power down functionality. When this pin is driven low, the TPS38700 device will enter into power down sequence. Power down due to NEM PD is shown in 8 8-12.

9.2.4 Application Curves

9.3 Power Supply Recommendations

9.3.1 Power Supply Guidelines

This device is designed to operate from an input supply with a voltage range between 2.2 V to 5.5 V. It has a 6 V absolute maximum rating on the VDD pin as well as on the V_{BBAT} pin. It is good analog practice to place a 0.1- μ F to 1- μ F capacitor between the VDD pin and the GND pin depending on the input voltage supply noise. If the voltage supply providing power to VDD is susceptible to any large voltage transients that exceed maximum specifications, additional precautions must be taken.

9.4 Layout

9.4.1 Layout Guidelines

• Place the external components as close to the device as possible. This configuration prevents parasitic errors from occurring.

- Do not use long traces for the VDD supply node. The VDD capacitor, along with parasitic inductance from the supply to the capacitor, can form an LC circuit and create ringing with peak voltages above the maximum VDD voltage.
- Do not use long traces of voltage to the sense pin. Long traces increase parasitic inductance and cause inaccurate monitoring and diagnostics.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when absolutely necessary.

9.4.2 Layout Example

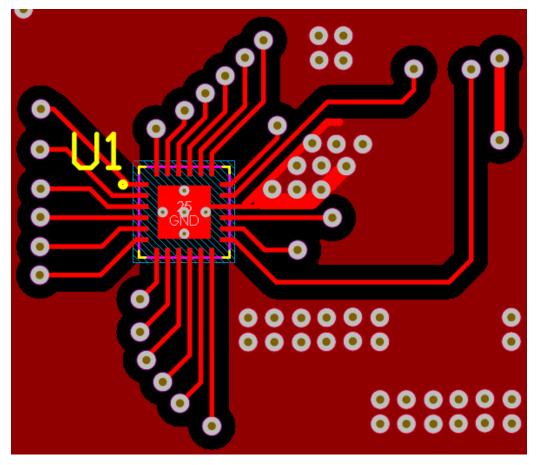


图 9-7. Recommended Layout

10 Device and Documentation Support

10.1 Device Nomenclature

 $\frac{1}{8}$ 10-1 shows how to decode the function of the device based on the device ordering code, while

 $\frac{10}{2}$ shows the sequence configuration based on the device ordering code. See $\frac{8}{5}$ 5-1 for more information regarding how to decode the device part number.

ORDERING CODE	FUNCTIONS	EN PINS DEFAULT	ALT FUNC. PINS	TIME SLOT (µsec)	I ² C ADDR.	RESET DELAY (msec)	WATCHDOG	PEC ⁽¹⁾	I ² C PULL-UP VOLTAGE (V)
TPS38700C04NRGER	Sequencer, NEM_PD	Push-Pull Low	Open-Drain	625	3C	16	Disabled	Enabled	3.3

表 10-1. Device Comparison Table

(1) For parts with PEC enabled:

a. PEC calculation is based on initializing to 0xFF.

b. In case of a PEC violation there needs to be a subsequent I^2C transaction before NIRQ is asserted.

- c. If incorrect PEC is given it will assert NIRQ.
- d. If there is an extra byte after successfully writing the correct PEC byte, NIRQ will be asserted and the write will fail.

表 10-2. Sequence	Configuration Table	

ORDERING CODE	PINS	SEQUENCE UP	SEQUENCE DOWN		
SILDERING CODE	PWR EN1	Power Up Slot 1	Power Down Slot 5		
	PWR EN2	Power Up Slot 1	Power Down Slot 1		
	PWR_EN3	Power Up Slot 2	Power Down Slot 4		
	PWR EN4	Power Up Slot 2	Power Down Slot 4		
	PWR_EN5	Power Up Slot 4	Power Down Slot 2		
	PWR_EN6	Power Up Slot 6	Power Down Slot 1		
	PWR_EN7	Power Up Slot 1	Power Down Slot 1		
	PWR_EN8	Power Up Slot 2	Power Down Slot 4		
	PWR_EN9	Power Up Slot 4	Power Down Slot 2		
04N	PWR_EN10	Power Up Slot 0	Power Down Slot 0		
	PWR_EN11	Power Up Slot 4	Power Down Slot 2		
	PWR_EN12	Power Up Slot 0	Power Down Slot 0		
	PWR_CLK32	Power Up Slot 4	Power Down Slot 4		
		Sequence Down	Sequence Up		
	SLP_EN1	Sleep Exit Slot 0	Sleep Entry Slot 0		
	SLP_EN2	Sleep Exit Slot 1	Sleep Entry Slot 3		
	SLP_EN3	Sleep Exit Slot 3	Sleep Entry Slot 2		
	SLP_EN4	Sleep Exit Slot 0	Sleep Entry Slot 0		
	SLP_EN5	Sleep Exit Slot 0	Sleep Entry Slot 0		
	SLP_EN6	Sleep Exit Slot 2	Sleep Entry Slot 1		
	SLP_EN7	Sleep Exit Slot 1	Sleep Entry Slot 3		
	SLP_EN8	Sleep Exit Slot 3	Sleep Entry Slot 2		
	SLP_EN9	Sleep Exit Slot 4	Sleep Entry Slot 1		
	SLP_EN10	Sleep Exit Slot 0	Sleep Entry Slot 0		
	SLP_EN11	Sleep Exit Slot 1	Sleep Entry Slot 1		
	SLP_EN12	Sleep Exit Slot 0	Sleep Entry Slot 0		
	SLP_CLK32	Sleep Exit Slot 0	Sleep Entry Slot 0		

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。

10.5 Electrostatic Discharge Caution

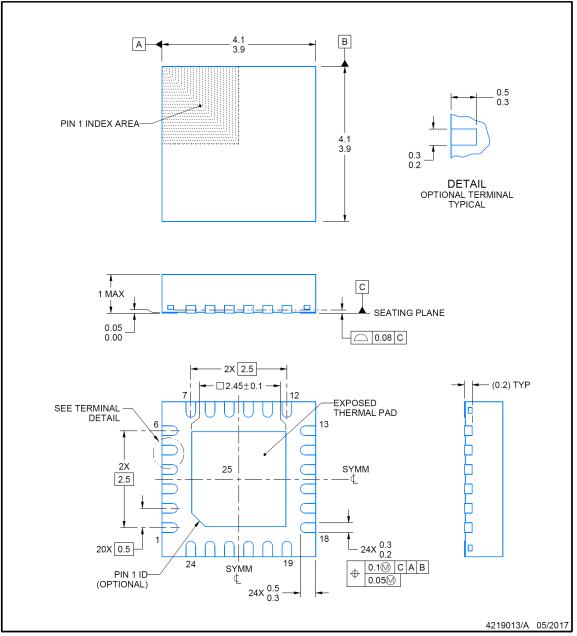
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

Mechanical, Packaging, and Orderable Information


The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

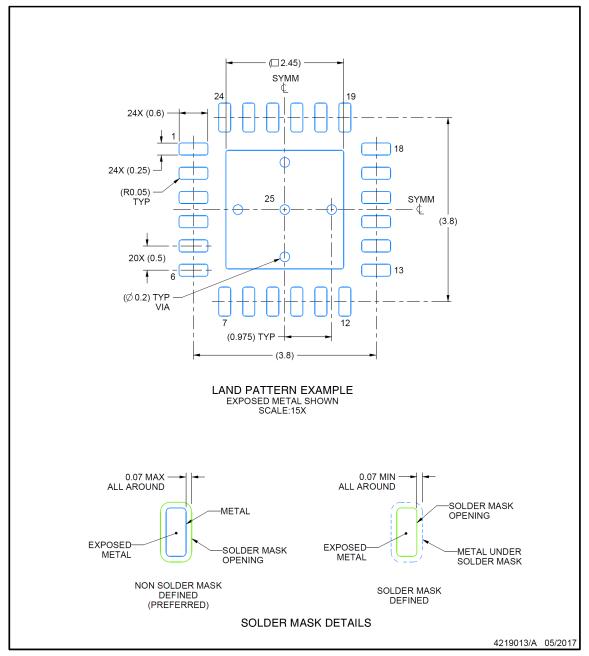
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

RGE0024B

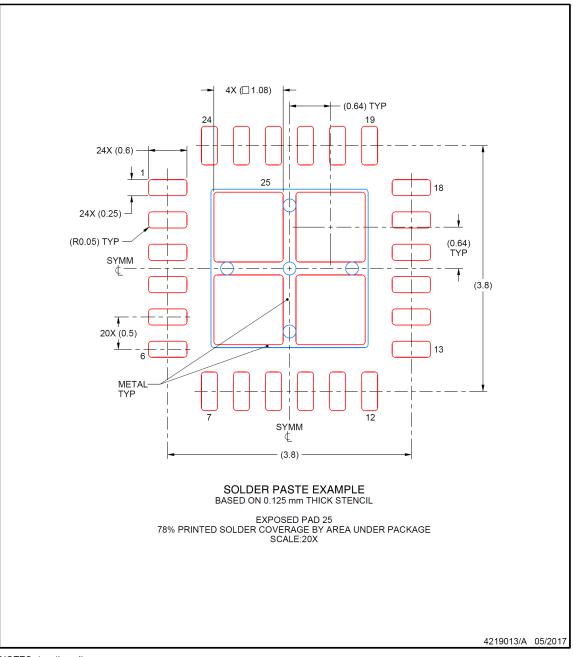
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RGE0024B

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPS38700C04NRGER	ACTIVE	VQFN	RGE	24	3000	RoHS & Green	(6) NIPDAU	Level-1-260C-UNLIM	-40 to 125	T38700C 04NA1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

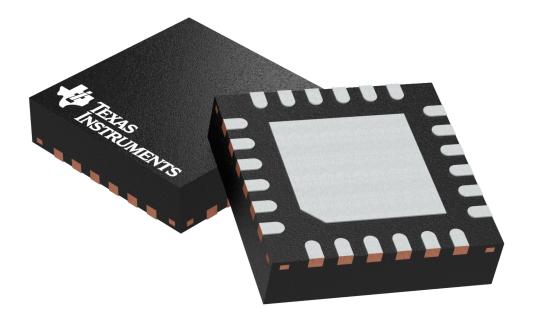
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS38700 :

• Automotive : TPS38700-Q1


NOTE: Qualified Version Definitions:

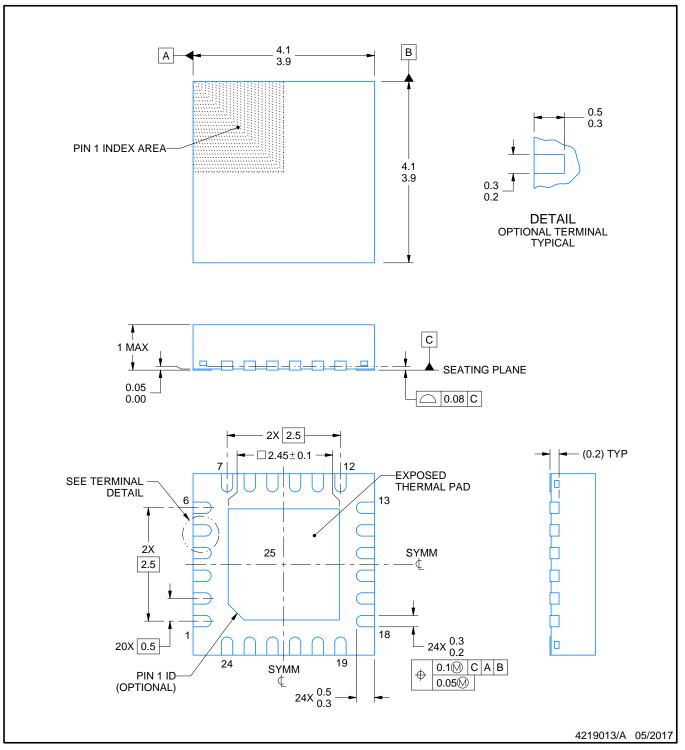
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

GENERIC PACKAGE VIEW

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

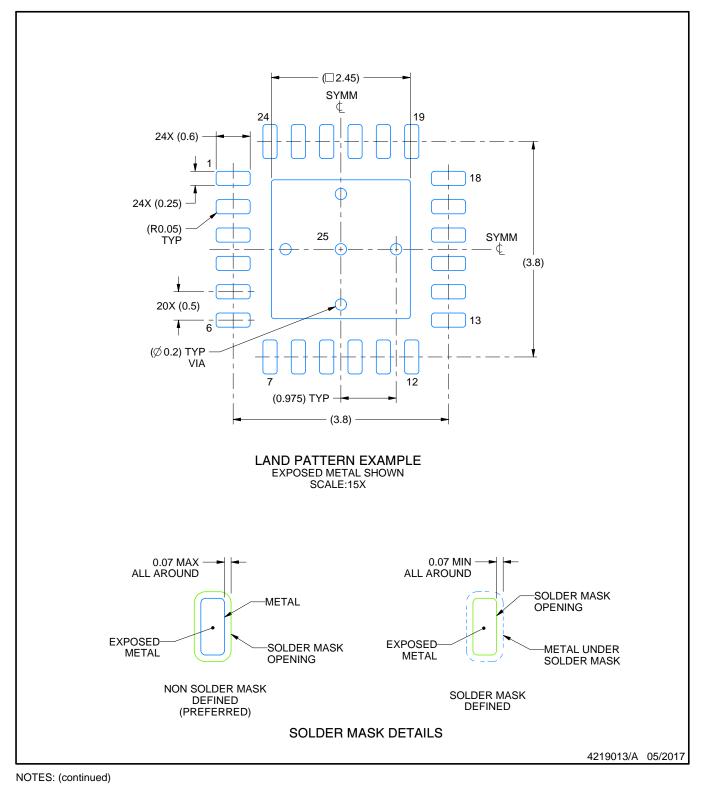


PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

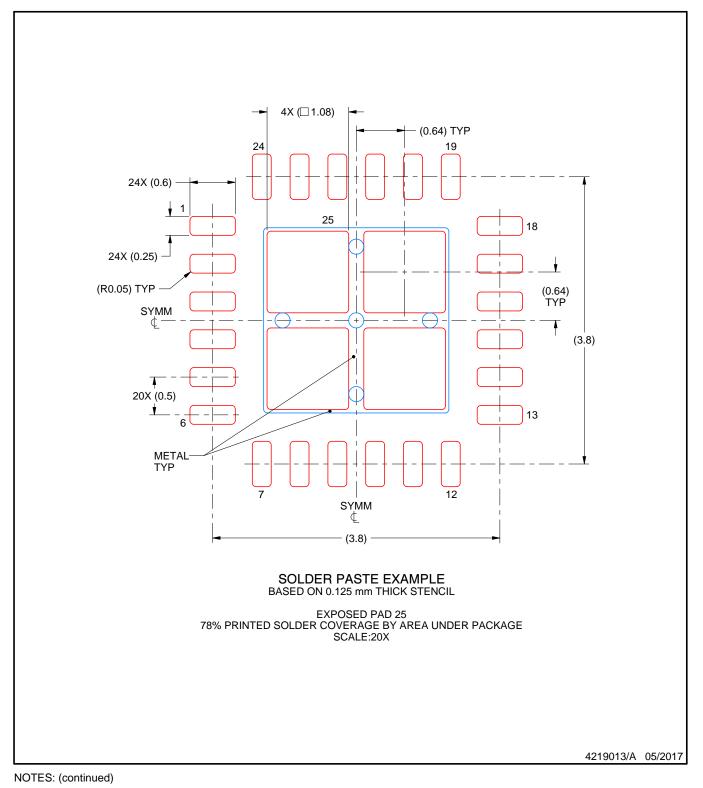

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

EXAMPLE BOARD LAYOUT

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).


5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司