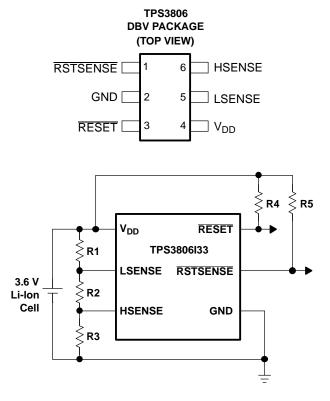


Dual Voltage Detector with Adjustable Hysteresis


FEATURES

- Dual Voltage Detector With Adjustable Hysteresis 3.3-V/Adjustable and 2-V/Adjustable
- Assured Reset at V_{DD} = 0.8 V
- Supply Current: 3 μA Typical at V_{DD} = 3.3 V
- Independent Open-Drain Reset Outputs
- Temperature Range: -40°C to +85°C
- 6-Pin SOT-23 Package

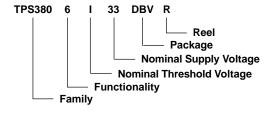
DESCRIPTION

The TPS3806 integrates two independent voltage detectors for battery voltage monitoring. During power-on, RESET and RSTSENSE are asserted when supply voltage V_{DD} or the voltage at LSENSE input become higher than 0.8 V. Thereafter, the supervisory circuit monitors VDD and LSENSE, keeping RESET and RSTSENSE active as long as V_{DD} and LSENSE remain below the threshold voltage, V_{IT}. As soon as V_{DD} or LSENSE rise above the threshold voltage V_{IT} , RESET or RSTSENSE is deasserted, respectively. The TPS3806 device has a fixed-sense threshold voltage VIT set by an internal voltage divider at V_{DD} and an adjustable second-LSENSE input. In addition, an upper voltage threshold can be set at **HSENSE** to allow wide adjustable а hysteresis window.

The devices are available in a 6-pin SOT-23 package. The TPS3806 device is characterized for operation over a temperature range of -40°C to +85°C.

Typical Operating Circuit

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

т	DEVICE	- NAME	THRESHOL	D VOLTAGE	MARKING
I _A	DEVICE	ENAME	V _{DD}	SENSE	WARKING
40°C to 195°C	TPS3806J20DBVR ⁽²⁾	TPS3806J20DBVT ⁽³⁾	1.8 V	1.207 V	PGQI
-40°C to +85°C	TPS3806I33DBVR ⁽²⁾	TPS3806I33DBVT ⁽³⁾	3 V	1.207 V	PGPI

- (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet or refer to our web site at www.ti.com.
- (2) The DBVR passive indicates tape and reel containing 3000 parts.
- (3) The DBVT passive indicates tape and reel containing 250 parts.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

	TPS3806J20, TPS3806I33	UNIT
Supply voltage, V _{DD} ⁽²⁾	7	V
All other pins ⁽²⁾	-0.3 to 7	V
Maximum low-output current, I _{OL}	5	mA
Maximum high-output current, I _{OH}	-5	mA
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{DD})	±10	mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DD})	±10	mA
Continuous total power dissipation	See Dissipation Rating Table	
Operating free-air temperature range, T _A	-40 to +85	°C
Storage temperature range, T _{stg}	-65 to +150	°C
Soldering temperature	+260	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A < 25°C	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	437 mW	3.5 mW/°C	280 mW	227 mW

⁽²⁾ All voltage values are with respect to GND. For reliable operation, the device must not be continuously operated at 7 V for more than t = 1000 h.

RECOMMENDED OPERATING CONDITIONS

	MIN	MAX	UNIT
Supply voltage, V _{DD}	1.3	6	٧
Input voltage, V _I	0	V _{DD} + 0.3	٧
Operating free-air temperature range, T _A	-40	+85	°C

ELECTRICAL CHARACTERISTICS

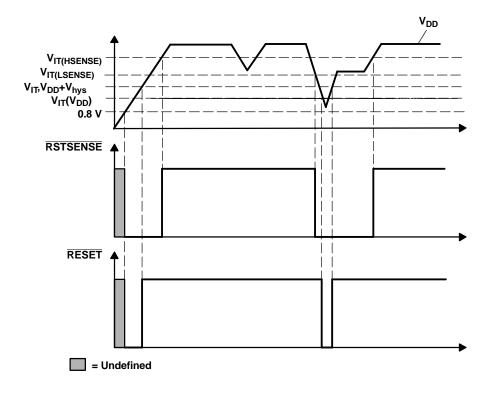
over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
			V _{DD} = 1.5 V, I _{OL} = 1 mA				
V_{OL}	Low-level output voltage		$V_{DD} = 3.3 \text{ V}, I_{OL} = 2 \text{ mA}$			0.3	V
		V _{DD} = 6 V, I _{OL} = 3 mA					
	Power-up reset voltage ⁽¹⁾		$V_{DD} \ge 0.8 \text{ V}, I_{OL} = 50 \mu\text{A}$			0.2	V
		LSENSE		1.198	1.207	1.216	
	V _{IT} Negative-going input threshold voltage ⁽²⁾	TPS3806J20	$T_A = +25^{\circ}C$	1.787	1.8	1.813	V
		TPS3806I33		2.978	3.0	3.022	
		LSENSE		1.188	1.207	1.226	
V_{IT}		TPS3806J20	$T_A = 0$ °C to +70°C	1.772	1.8	1.828	V V
		TPS3806I33		2.952	3.0	3.048	
		LSENSE		1.183	1.207	1.231	
		TPS3806J20	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.764	1.8	1.836	
		TPS3806l33		2.94	3.0	3.06	
\/	Lhyotoropio	·	1.2 V < V _{IT} < 2.5 V		60		mV
V_{hys}	Hysteresis		2.5 V < V _{IT} < 3.5 V		90		IIIV
I	Input current	LSENSE, HSENSE		-25		25	nA
I_{OH}	High-level output current		$V_{DD} = V_{IT} + 0.2 \text{ V}, V_{OH} = V_{DD}$			300	nA
	I _{DD} Supply current		V _{DD} = 3.3 V, Output unconnected		3	5	
IDD			V _{DD} = 6 V, Output unconnected		4	6	μΑ
Ci	Input capacitance		V _I = 0 V to V _{DD}		1		pF

SWITCHING CHARACTERISTICS

at R_L = 1 M Ω , C_L = 50 pF, T_A = -40°C to +85°C

PARA	METER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Propagation (delay) time,		V _{DD} to RESET delay			E	100	
^l PHL	high-to-low-level output	LSENSE to RSTSENSE delay	$V_{IH} = 1.05 \times V_{IT}$		5	100	μs
	Propagation (delay) time,	V _{DD} to RESET delay	$V_{IL} = 0.95 \times V_{IT}$		-	100	
^L PLH	low-to-high-level output	HSENSE to RSTSENSE delay			Э	100	μs

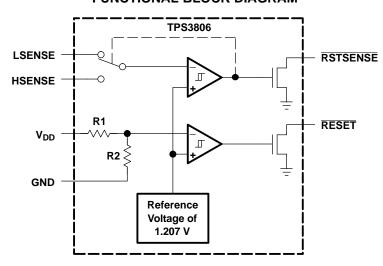

TIMING REQUIREMENTS

at R_L = 1 M Ω , C_L = 50 pF, T_A = -40°C to +85°C

PARA	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Pulse width	At V _{DD}	V - 105 x V V - 0.05 x V	E			
ι _w	Fuise width	At SENSE	$V_{IH} = 1.05 \times V_{IT}, V_{IL} = 0.95 \times V_{IT}$	5.5			μs

 ⁽¹⁾ The lowest supply voltage at which RESET becomes active. t_{r,VDD} ≥ 15 μs/V
 (2) To ensure best stability of the threshold voltage, place a bypass capacitor (ceramic, 0.1 μF) near the supply terminals.

Table 1. TERMINAL FUNCTIONS


TERMINAL I/O		1/0	DESCRIPTION
		1/0	DESCRIPTION
GND	2	I	Ground
HSENSE 6 I		I	Adjustable hysteresis input
LSENSE	5	I	Adjustable sense input
RESET	3	0	Active-low open drain reset output (from V _{DD})
RSTSENSE	1	0	Active-low open-drain reset output (from LSENSE)
V_{DD}	4	I	Input supply voltage and fixed sense input

FUNCTION/TRUTH TABLE

TPS3806										
VDD > VIT RESET LSENSE > VIT RSTSENSE										
0	L	0	L							
1	Н	1	Н							

FUNCTIONAL BLOCK DIAGRAM

Detailed Description

Operation

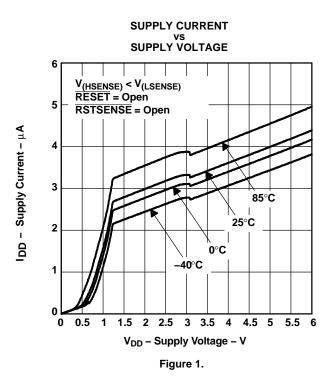
The TPS3806 is used for monitoring battery voltage and asserting $\overline{\text{RESET}}$ when a battery gets discharged below a certain threshold voltage. The battery voltage is monitored by a comparator via an external resistor divider. When the voltage at the LSENSE input drops below the internal reference voltage the $\overline{\text{RSTSENSE}}$ output pulls low. The output remains low until the battery is replaced, or recharged above a second higher trip-point, set at HSENSE. A second voltage can be monitored at V_{DD} . The independent $\overline{\text{RESET}}$ output pulls low when the voltage at V_{DD} drops below the fixed threshold voltage. Because the TPS3806 outputs are open-drain MOSFETs, most applications may require a pull-up resistor.

Programming the Threshold Voltage Levels

The low-voltage threshold at LSENSE is calculated according to Equation 1:

$$V_{(LSENSE)} = V_{ref} \left(\frac{R1 + R2 + R3}{R2 + R3} \right)$$
(1)

where $V_{ref} = 1.207 \text{ V}$


The high-voltage threshold at HSENSE is calculated as shown in Equation 2:

$$V_{(HSENSE)} = V_{ref} \left(\frac{R1 + R2 + R3}{R3} \right)$$
 (2)

where $V_{ref} = 1.207 \text{ V}$

To minimize battery current draw it is recommended to use 1-M Ω as the total resistor value $R_{(tot)}$, with $R_{(tot)} = R1 + R2 + R3$.

TYPICAL CHARACTERISTICS

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

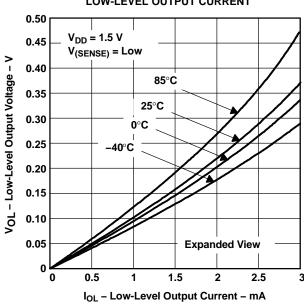
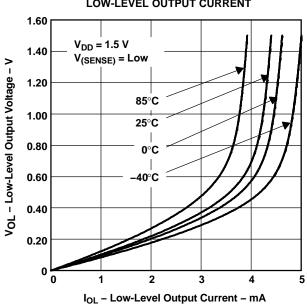



Figure 3.

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

Figure 2.

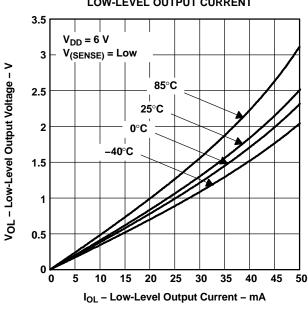


Figure 4.

TYPICAL CHARACTERISTICS (continued)

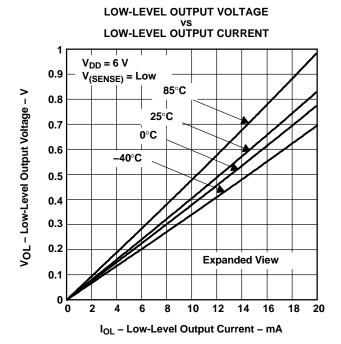


Figure 5.

NORMALIZED INPUT THRESHOLD VOLTAGE vs FREE-AIR TEMPERATURE AT VDD

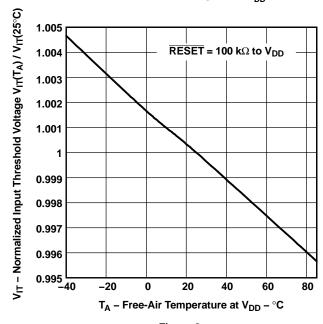
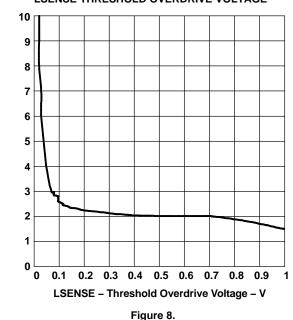



Figure 6.

MINIMUM PULSE DURATION AT LSENSE VS LSENSE THRESHOLD OVERDRIVE VOLTAGE

 t_w – Minimum Pulse Duration at LSENSE – μs

igui e o.

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(0)
TPS3806l33DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGPI
TPS3806I33DBVR.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGPI
TPS3806I33DBVR1G4	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGPI
TPS3806I33DBVR1G4.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGPI
TPS3806I33DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGPI
TPS3806I33DBVT.B	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGPI
TPS3806J20DBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGQI
TPS3806J20DBVR.B	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGQI
TPS3806J20DBVT	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGQI
TPS3806J20DBVT.B	Active	Production	SOT-23 (DBV) 6	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGQI

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

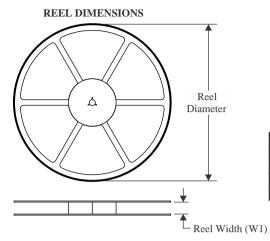
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

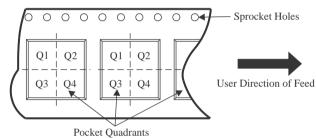
www.ti.com 11-Nov-2025


and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

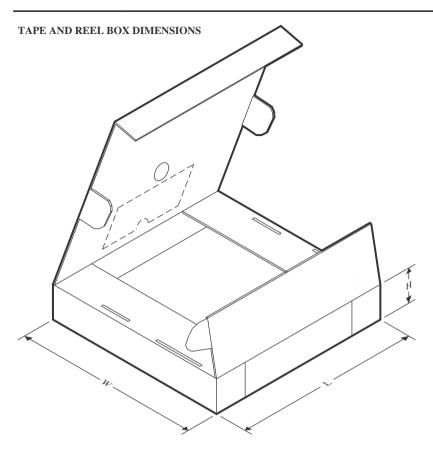
PACKAGE MATERIALS INFORMATION

www.ti.com 20-Jun-2025


TAPE AND REEL INFORMATION

	-
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

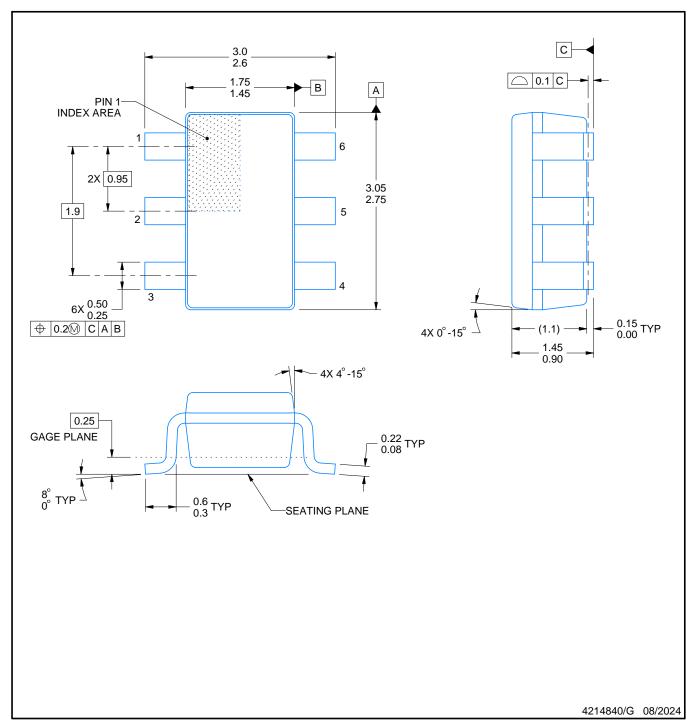
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3806I33DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS3806l33DBVR1G4	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS3806I33DBVT	SOT-23	DBV	6	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS3806I33DBVT	SOT-23	DBV	6	250	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TPS3806J20DBVR	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS3806J20DBVT	SOT-23	DBV	6	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3

www.ti.com 20-Jun-2025



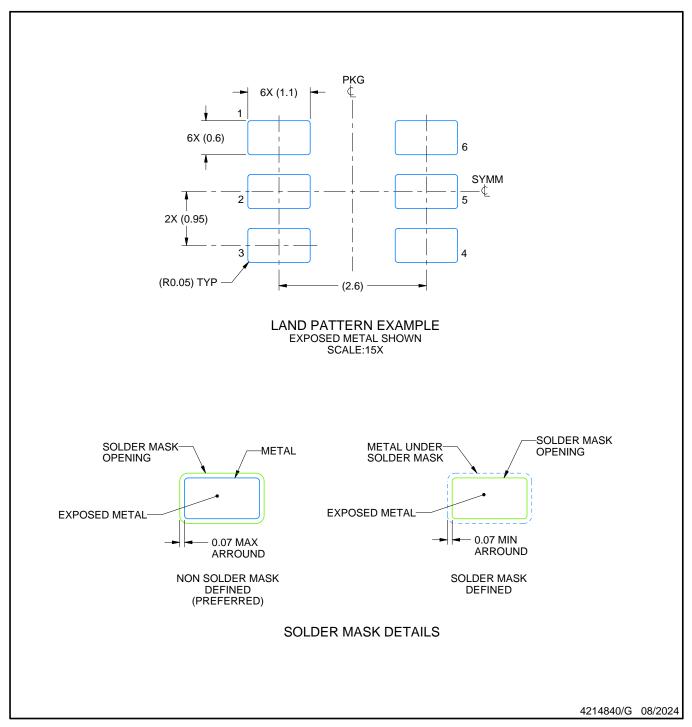
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3806I33DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
TPS3806l33DBVR1G4	SOT-23	DBV	6	3000	180.0	180.0	18.0
TPS3806I33DBVT	SOT-23	DBV	6	250	180.0	180.0	18.0
TPS3806I33DBVT	SOT-23	DBV	6	250	200.0	183.0	25.0
TPS3806J20DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
TPS3806J20DBVT	SOT-23	DBV	6	250	180.0	180.0	18.0

SMALL OUTLINE TRANSISTOR

NOTES:

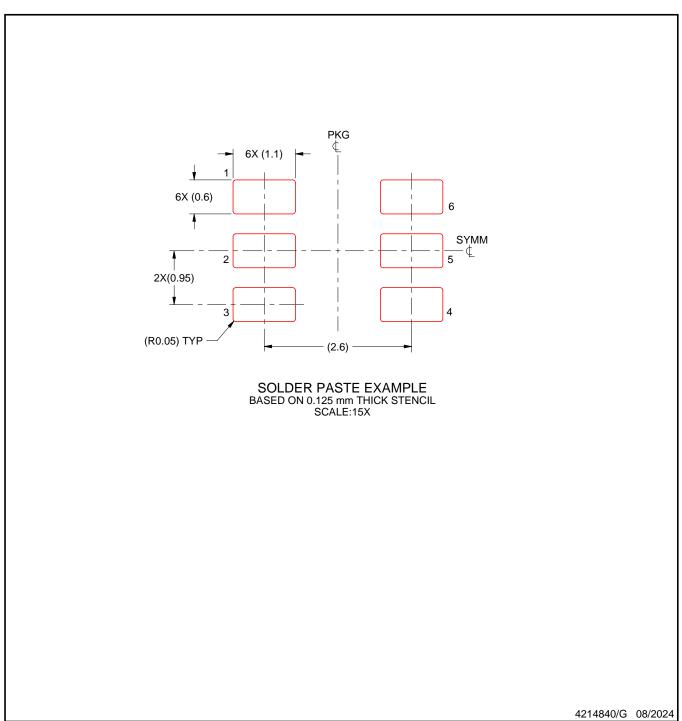
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025