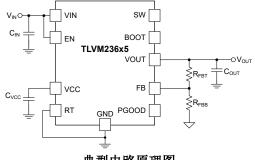


TLVM23615, TLVM23625 ZHCSRM8B - FEBRUARY 2023 - REVISED FEBRUARY 2024


TLVM236x5 采用 HotRod™ QFN 封装的 3V 至 36V 输入、1V 至 6V 输出、1.5A、 2.5A 同步降压转换器电源模块

1 特性

- 功能安全型
 - 可提供用于功能安全系统设计的文档
- 多功能同步直流/直流降压模块:
 - 集成 MOSFET、电感器、CBOOT 电容器和控制
 - 3V 至 36V 的宽输入电压范围
 - 高达 40V 的输入瞬态保护
 - 结温范围: -40°C 至 +125°C
 - 4.5mm × 3.5mm × 2mm 超模压塑料封装
 - 使用 RT 引脚可在 200kHz 至 2.2MHz 范围内调 节频率
- 在整个负载范围内具有超高效率:
 - 在 12V V_{IN}、5V V_{OUT}、 1MHz、I_{OUT} = 2.5A 时效率高于 88%
 - 在 24V V_{IN}、5V V_{OUT}、 1MHz、I_{OUT} = 2.5A 时效率高于 87%
 - 在 13.5V V_{IN} 时待机 I_O 低至 1.5μA
- 针对超低 EMI 要求进行了优化:
 - Flip-Chip On Lead (FCOL) 封装
 - 电感器和启动电容器集成
 - 符合 CISPR 11 B 类要求
- 输出电压和电流选项:
 - 可调输出电压范围为 1V 至 6V
- 设计用于可扩展电源:
 - 与以下器件引脚兼容:
 - TPSM365R6 (65V , 600mA)
- 使用 TLVM236x5 并借助 WEBENCH® Power Designer 创建定制设计方案

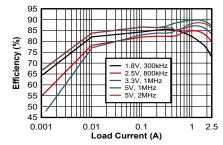
2 应用

- 工厂自动化
- 测试和测量
- 电网基础设施

典型电路原理图

3 说明

TLVM236x5 是一款 1.5A 或 2.5A、36V 输入同步直流/ 直流降压电源模块,它在易于使用的紧凑型 3.5mm × 4.5mm × 2mm 11 引脚 QFN 封装中整合了 Flip Chip On Lead (FCOL) 封装、功率 MOSFET、集成式电感 器和自举电容器。小型 HotRod™ QFN 封装技术可提 高热性能,确保可在高环境温度下工作。器件可通过电 阻反馈分压器配置为 1V 至 6V 输出。


TLVM236x5 旨在满足常开型工业应用的低待机功耗要 求。自动模式可在轻负载运行时进行频率折返,实现 1.5µA 的空载电流消耗 (在 13.5V V_{IN} 时)和高轻负载 效率。PWM 和 PFM 模式之间的无缝转换以及低 MOSFET 导通电阻可确保在整个负载范围内提供出色 的效率。

TLVM236x5 采用具有内部补偿的峰值电流模式架构. 用于维持稳定运行和超小的输入电容。RT 引脚可用于 在 200kHz 至 2.2MHz 范围内设置频率,来避开噪声敏 感频带。

器件信息

器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾
TLVM23615	RDN (QFN-FCMOD ,	3.50mm × 4.50mm
TLVM23625	11)	3.3011111 ^ 4.3011111

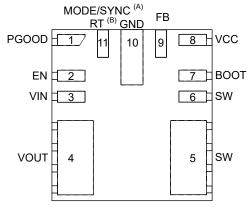
- 如需更多信息,请参阅节11。
- 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

效率与输出电流间的关系 $V_{IN} = 24V$

内容

1	特性	1
2	! 应用	1
3	3 说明	1
4	 器件比较表	3
5	5 引脚配置和功能	4
6	;规格	5
	6.1 绝对最大额定值	
	6.2 ESD 等级	<mark>5</mark>
	6.3 建议运行条件	6
	6.4 热性能信息	6
	6.5 电气特性	<mark>7</mark>
	6.6 系统特性	
	6.7 典型特性	
7	' 详细说明	
	7.1 概述	11
	7.2 功能方框图	12
	7.3 特性说明	

7.4 器件功能模式	<mark>2</mark> 1
8 应用和实施	26
8.1 应用信息	26
8.2 典型应用	<mark>27</mark>
8.3 优秀设计实践	35
8.4 电源相关建议	35
8.5 布局	35
9 器件和文档支持	38
9.1 器件支持	38
9.2 文档支持	38
9.3 支持资源	39
9.4 商标	39
9.5 静电放电警告	39
9.6 术语表	39
10 修订历史记录	39
11 机械、封装和可订购信息	


4 器件比较表

器件	可订购器件型号(1)	F _{sw}	输出电压	输出电流	外部 SYNC (MODE 配置)	展频
TLVM23615	TLVM23615RDNR	可通过 RT 电阻器调节	可调节电压 (1V至6V)	1.5A	无 (轻负载时 默认为 PFM)	否
TLVM23625	TLVM23625RDNR	可通过 RT 电阻器调节	可调节电压 (1V至6V)	2.5A	无 (轻负载时 默认为 PFM)	否

⁽¹⁾ 更多有关可订购器件型号的信息,请参阅节 9.1.3。

5 引脚配置和功能

- 引脚 11 出厂设置仅适用于固定开关频率 MODE/SYNC 型号。
- 请参阅 据件比较表,了解更多详细信息。引脚 11 已修整并经过出厂设置,仅适用于外部可调开关频率 RT 型号。

图 5-1. RDN 封装, 11 引脚 QFN-FCMOD, 顶视图 (所有型号)

表 5-1 引脚功能

	引脚	No west	NV aut
编号	考型 音号 名称		说明
1	PGOOD	А	电源正常监视器。开漏输出,如果反馈电压不在指定窗口阈值范围内,该输出将置为低电平有效。需要一个 $10k\Omega$ 至 $100k\Omega$ 的上拉电阻来上拉至合适的电压。如不使用,此引脚既可以保持悬空状态,也可以连接到 GND 。 高电平 = 电源正常,低电平 = 电源不良。当 EN = 低电平时, $PGOOD$ 引脚变为低电平。
2	EN	А	精密使能输入引脚。高电平 = 开启,低电平 = 关闭。可连接至 VIN。精密使能允许将该引脚用作可调节 UVLO。可直接连接至 VIN。通过使用一个漏极开路或集电极器件将此引脚连接到 GND,可将该模块关闭。可以在该引脚、GND 和 VIN 之间放置一个外部分压器,以创建外部 UVLO。 <i>请勿将该引脚悬空。</i>
3 VIN 输入电源电压。将输入电源连接到这些引脚。将一个或多个优质旁路电容器直接连接到J脚和 GND 靠近模块的位置。有关输入电容器放置示例,请参阅节 8.5.2。			输入电源电压。将输入电源连接到这些引脚。将一个或多个优质旁路电容器直接连接到此引脚和 GND 靠近模块的位置。有关输入电容器放置示例,请参阅节 8.5.2。
l . l		Р	输出电压。此引脚连接到内部输出电感器。将此引脚连接到输出负载,并在此引脚和 GND 之间连接外部输出电容器。
5、6 SW P 电源模块开关节点。请勿在此引脚上放置任何外部元件或连接到任何信号。必须将这些上的覆铜量保持在最小,以防止出现噪声和 EMI 问题。		电源模块开关节点。请勿在此引脚上放置任何外部元件或连接到任何信号。必须将这些引脚上的覆铜量保持在最小,以防止出现噪声和 EMI 问题。	
7	воот	Р	内部高侧驱动器电路的自举引脚。一个 100nF 自举电容器在内部从此引脚连接至模块内的 SW,以提供自举电压。
8	VCC	Р	内部 LDO 输出。用作内部控制电路的电源。不要连接至外部负载。可用作电源正常标志的逻辑电源。在该引脚和 GND 之间连接一个 1µF 优质电容器。
9	FB	А	反馈输入。对于可调输出,请将反馈电阻分压器的中点连接到此引脚。将反馈分压器的上部电阻器 (R _{FBT}) 连接到所需调节点的 VOUT。将反馈分压器的下部电阻器 (R _{FBB}) 连接至GND。使用反馈电阻分压器进行连接时,请使该 FB 布线尽可能短且尽可能小,以避免噪声耦合。有关反馈电阻器的放置,请参阅节 8.5.2。
10	GND	G	电源接地端子。连接到系统地。用短而宽的布线连接到 C _{IN} 。
11 RT A 当该器件配置为 RT 引脚变体时,可以根据 RT 和 GND 之间连接的电阻器值在 2 2.2MHz 之间调整器件中的开关频率。		当该器件配置为 RT 引脚变体时,可以根据 RT 和 GND 之间连接的电阻器值在 200kHz 至 2.2MHz 之间调整器件中的开关频率。	
			A = 模拟,P = 电源,G = 地

6 规格

6.1 绝对最大额定值

限值适用于 $T_J = -40$ °C 至 125°C (除非另有说明)。(1)

		最小值	最大值	单位
	VIN 至 GND	-0.3	40	V
	CBOOT 至 SW	-0.3	5.5	V
松) 由厅	RT 至 GND	-0.3	5.5	V
输入电压	EN 到 GND	-0.3	40	V
	FB 至 GND	-0.3	16	V
	PG 至 GND	0	20	V
	VCC 至 GND	-0.3	5.5	V
输出电压	SW 至 GND ⁽²⁾	-0.3	40	V
	VOUT 至 GND	-0.3	16	V
输入电流	PG	-	10	mA
T _J	结温	-40	125	°C
T _A	环境温度	-40	105	°C
T _{stg}	贮存温度	-55	150	°C

⁽¹⁾ 超出*绝对最大额定值*的运行可能会对器件造成永久损坏。*绝对最大额定值*并不表示器件在这些条件下或在*建议的工作条件*以外的任何 其他条件下能够正常运行。如果在*建议运行条件之外*但又在*绝对最大额定值*范围内使用,器件可能不会完全正常运行,这可能会影响器 件的可靠性、功能性和性能,并缩短器件的寿命。

6.2 ESD 等级

			值	单位
V	热中外中	人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001 标准 ⁽¹⁾	±2000	V
V _(ESD)	静电放电	充电器件模型 (CDM),符合 ANSI/ESDA/JEDEC JS-002 标准 ⁽²⁾	±1000	V

(1) JEDEC 文件 JEP155 指出: 500V HBM 可实现在标准 ESD 控制流程下安全生产

(2) JEDEC 文档 JEP157 指出: 250V CDM 能够在标准 ESD 控制流程下安全生产。

⁽²⁾ 此引脚上可能出现比 PGND 低 2V、比 VIN 高 2V 的电压,持续时间 \leq 200ns,占空比 \leq 0.01%。

6.3 建议运行条件

限值适用于 T_J = -40°C 至 125°C (除非另有说明)。

		最小值	标称值 最大值	单位
输入电压	VIN(启动后输入电压范围)	3	36	V
输出电压	输出调节范围(1)	1	6	V
输出电流	TLVM23625 IOUT ⁽²⁾	0	2.5	A
输出电流	TLVM23615 IOUT ⁽²⁾	0	1.5	A
频率	f _{SW} 由 RT 设置	200	2200	kHz
T _J	工作结温	-40	125	°C
T _A	工作环境温度	-40	105	°C

- (1) 在任何情况下,输出电压都不应降至零伏以下。
- (2) 在高开关频率或高环境温度下运行时,最大持续直流电流可能会降低。有关详细信息,请参阅典型特性部分。

6.4 热性能信息

		TLVM23615 / TLVM23625	
	热指标 ⁽¹⁾	RDN	单位
		11 引脚	
R ₀ JA	结至环境热阻 (TLM23625EVM)	22	°C/W
R ₀ JA	结至环境热阻 (JESD 51-7)	54.1	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻	52.1	°C/W
R ₀ JB	结至电路板热阻	16.6	°C/W
Ψ_{JT}	结至顶部特性参数	8.1	°C/W
ΨЈВ	结至电路板特性参数	16.3	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标 应用报告。 此表中给出的 R_{® JA} 值仅用于与其他封装的比较,不能用于设计目的。该值是根据 JESD 51-7 计算的,并在 4 层 JEDEC 板上进行了仿真。它并不代表在实际应用中获得的性能。

6.5 电气特性

限制适用于: T_J = -40° C 至 125°C, V_{IN} = 24V、 V_{OUT} = 3.3V、 F_{SW} = 1000kHz(除非另有说明)。最小值和最大值限值是经过生产测试或设计而确定的。典型值表示最有可能达到的参数标准,仅供参考。

	参数	測试条件	最小值	典型值	最大值	单位
电源电压		'			<u>'</u>	
V _{IN}	输入电压上升阈值	启动前	3.2	3.35	3.5	V
νIN		运行后	2.45	2.7	3	V
I _{Q_VIN}	输入静态工作电流(非开关)	T _A = 25°C , V _{EN} = 3.3V , V _{FB} = 1.5V		1.2		μΑ
I _{SDN_VIN}	VIN 关断静态电流	V _{EN} = 0V , T _A = 25°C		0.3		μA
使能						
V _{EN_RISE}	EN 电压上升阈值		1.16	1.23	1.3	V
V _{EN_HYS}	EN 电压迟滞		0.275	0.353	0.404	V
V _{EN_WAKE}	EN 唤醒阈值		0.5	0.7	1	V
I _{LKG-EN}	使能引脚输入漏电流	V _{EN} = V _{IN} = 24V		10		nA
内部 LDO VO	oc .					
V _{CC}	内部 LDO VCC 输出电压	V _{FB} = 0V , I _{VCC} = 1mA	3.1	3.3	3.5	V
反馈		'	ı		,	
V _{FB}	反馈电压	T _A =25°C , I _{OUT} =0 A		1.0		V
V _{FB_ACC}	反馈电压精度	在 V _{IN} 范围内,V _{OUT} = 1V,I _{OUT} = 0A, F _{SW} = 200kHz	-1		+1	%
I _{FB}	FB 引脚的输入电流	可调配置,V _{FB} = 1.0V		10		nA
电流		1	1		,	
I _{L_HS}	高侧开关电流限制 (TLVM23625)	占空比接近 0%	4.2	4.9	5.5	Α
I _{L_LS}	低侧开关电流限制 (TLVM23625)		2.38	2.9	3.42	Α
I _{L_NEG}	负电流限制 (TLVM23625)			-2		Α
I _{PEAKMIN}	最小峰值电流限制 (TLVM23625)	自动模式		0.6		Α
I _{L_HS}	高侧开关电流限制 (TLVM23615)	占空比接近 0%	2.58	3	3.42	Α
I _{L_LS}	低侧开关电流限制 (TLVM23615)		1.44	1.75	2.06	Α
I _{L_NEG}	负电流限制 (TLVM23615)			-2		Α
I _{PEAKMIN}	最小峰值电流限制 (TLVM23615)	自动模式		0.4		Α
I _{ZC}	过零电流限值	自动模式		80		mA
V _{HICCUP}	进入断续模式之前,FB 电压与待调节 FB 电压之比	不是在软启动期间		40		%
t _W	短路等待时间(软启动前的"断续"时间)(1)		30	50	75	ms
软 启动		1	1			
t _{SS}	从第一个 SW 脉冲到 90% V _{REF} 的时间	$V_{IN} \geqslant 4.2V$	2	3.5	4.6	ms
	L		1			

6.5 电气特性 (续)

限制适用于: T_J = -40° C 至 125°C, V_{IN} = 24V、 V_{OUT} = 3.3V、 F_{SW} = 1000kHz(除非另有说明)。最小值和最大值限值是经过生产测试或设计而确定的。典型值表示最有可能达到的参数标准,仅供参考。

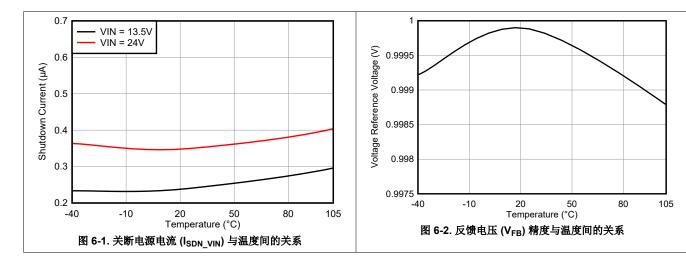
	参数	测试条件	最小值	典型值	最大值	单位
电源正常						
PG _{OV}	PG 上限阈值 - 上升	V _{OUT} 百分比设置(可调输出)	104	108	111	%
PG _{UV}	PG 阈值下限 - 下降	VOUT 百分比设置(可调输出)	89	91	94.2	%
DC	OV 的 PG 上限阈值迟滞	VOUT 百分比设置	2	2.4	2.8	%
PG _{HYS}	UV 的 PG 上限阈值迟滞	VOUT 百分比设置	2	3.3	4.6	%
V _{IN_PG_VALID}	有效 PG 输出的输入电压	$R_{PGD_PU} = 10k \Omega$, $V_{EN} = 0V$			1.5	V
V _{PG_LOW}	低电平 PG 功能输出电压	2mA 上拉至 PG 引脚,V _{EN} = 3.3V			0.4	V
V _{PG_LOW}	低电平 PG 功能输出电压	2mA 上拉至 PG 引脚,V _{EN} = 3.3V			0.4	V
t _{PG_FLT_RISE}	PG 高电平信号的延迟时间		1.35	2.5	4	ms
t _{RESET_FILTER}	PGOOD 下降沿抗尖峰脉冲延迟		25	40	75	μs
R _{PGD}	PGOOD 导通电阻	V _{EN} = 3.3V , 200uA 上拉电流			100	Ω
R _{PGD}	PGOOD 导通电阻	V _{EN} = 0 V , 200uA 上拉电流			100	Ω
开关频率			•			
f _{SYNC_RANGE}	按 SYNC (MODE/SYNC 型号)划分的开关频率范围		200		2500	kHz
f _{ADJ_RANGE}	按 R _T (R _T 型号)划分的开关频率范围		200		2200	kHz
f _{SW_RT1}	通过 R _T 进行编程的 2.2MHz 开关频率	R _{RT} = 0kΩ (RT 引脚连接到 GND)	2000	2200	2300	kHz
同步						
t _B	上升沿或下降沿后 EN 消隐 ⁽¹⁾		4		28	μs
功率级						
V _{BOOT_UVLO}	与 SW 相比 CBOOT 引脚上的电压,将关闭高侧开关			2.1		V
t _{ON_MIN}	最小 ON 脉冲宽度 ⁽¹⁾	FPWM 模式,V _{OUT} = 1V,I _{OUT} = 1A		65	75	ns
t _{ON_MAX}	最大 ON 脉冲宽度 ⁽¹⁾	压降中的 HS 超时	6	9	13	μs
t _{OFF_MIN}	最小 OFF 脉冲宽度	V _{IN} = 4V , I _{OUT} = 1A		60	85	ns

⁽¹⁾ 参数由相关参数的设计、统计分析和生产测试指定。未经生产测试。

English Data Sheet: SNVSCI2

6.6 系统特性

以下规格仅适用于具有标称元件值的典型应用电路。典型值列中的规格仅适用于 $T_J = 25^{\circ}\mathbb{C}$ 的情况。量产测试无法保证这些规格。


	参数	测试条件	最小值	典型值	最大值	单位
电源					·	
I _{IN}	稳压时的输入电源电流	V_{IN} = 24V , V_{OUT} = 3.3V(R $_{\text{FBT}}$ = 23.2k $\!\Omega)$, V_{EN} = V $_{\text{IN}}$, F $_{\text{SW}}$ = 1000kHz , I $_{\text{OUT}}$ = 0A , PFM		6.9		μА
I _{IN}	稳压时的输入电源电流	V_{IN} = 24V , V_{OUT} = 5V(R _{FBT} = 40.2k Ω) , V_{EN} = V_{IN} , F_{SW} = 1000kHz , I_{OUT} = 0A , PFM		7		μА
输出电压	¥				'	
V_{FB}	负载调节	V _{OUT} = 3.3V,V _{IN} = 24V,I _{OUT} = 0.4A 至满载 (FPWM)		3		mV
V _{FB}	线性调节	V _{OUT} = 3.3V , V _{IN} = 4V 至 36V , I _{OUT} = 2.5A		10		mV
V _{OUT}	负载瞬态	V_{OUT} = 3.3V, V_{IN} = 24V,在 2A/ μ s 下 I_{OUT} = 1A 至 2.5A, $C_{OUT(derated)}$ = 32uF		100		mV
效率						
		$V_{OUT} = 3.3V$, $V_{IN} = 12V$, $I_{OUT} = 2.5A$, $F_{SW} = 1MHz$		84		%
_	रेश्वर चेंग्र	$V_{OUT} = 3.3V$, $V_{IN} = 24 \text{ V}$, $I_{OUT} = 2.5\text{A}$, $F_{SW} = 1\text{MHz}$		83		%
η	效率	V_{OUT} = 5 V , V_{IN} = 24 V , I_{OUT} = 2.5A , F_{SW} = 1MHz		87		%
		V_{OUT} = 5 V , V_{IN} = 36 V , I_{OUT} = 2.5A , F_{SW} = 1MHz		86		%
热关断		'			<u> </u>	
T _{SDN}	热关断阈值	温度上升	158	168	186	°C
T _{HYST}	热关断迟滞			15	20	°C

提交文档反馈

6.7 典型特性

除非另有说明,否则以下条件适用: $T_A = 25^{\circ}C$, $V_{IN} = 13.5V$ 。

7详细说明

7.1 概述

TLVM236x5 是一款简单易用的同步降压直流/直流电源模块,可在 3V 到 36V 电源电压下工作。该器件用于从 5V、12V、24V 和 36V 电源轨进行降压转换。凭借集成式降压转换器、电感器和自举电容器,TLVM236x5 能够 以紧凑的解决方案尺寸提供高达 2.5A 的直流负载电流,并实现高效率和超低输入静态电流。该模块不需要控制环路补偿,可缩短设计时间并减少外部元件数量。

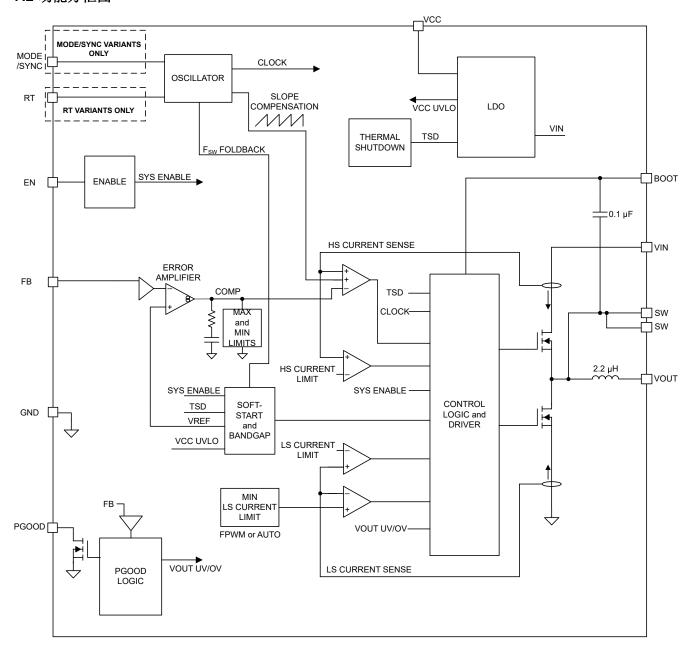
TLVM236x5 可以在各种开关频率和占空比下运行。如果最短导通时间或关断时间不支持所需的占空比,开关频率会自动降低,从而保持输出电压调节。此外,具有内置延迟释放的 PGOOD 输出可以在许多应用中省去复位监控器。

TLVM236x5 可以使用其 RT 引脚或外部时钟信号实现 200kHz 至 2.2MHz 的可编程开关频率范围,并整合了多项特定功能,可提高噪声敏感型应用中的 EMI 性能:

- 经优化的封装采用了 Flip Chip On Lead (FCOL) 技术和引脚排列设计,可实现屏蔽式开关节点布局并降低辐射 EMI。
- 时钟同步和 FPWM 模式可在整个负载电流范围内提供恒定的开关频率。
- 电感器和启动电容器集成

TLVM236x5 模块还包括固有保护功能,可满足稳健的系统要求:

- 用于电源轨时序控制和故障报告的开漏 PGOOD 指示器
- 具有迟滞功能的精密使能输入,可提供:
 - 可编程线路欠压锁定 (UVLO)
 - 远程开关功能
- 内部固定输出电压软启动,可单调启动至预偏置负载
- 具有逐周期峰值和谷值电流限制的断续过流保护
- 具有自动恢复功能的热关断


这些功能为广泛的应用提供了一个灵活且易于使用的平台。引脚排列旨在实现简单的布局,这种布局只需很少外部元件。有关布局示例,请参阅*布局*。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

7.2 功能方框图

7.3 特性说明

7.3.1 输入电压范围

TLVM236x5 模块的稳态输入电压范围为 3V 至 36V, 适用于典型 12V 至 36V 输入电源轨中的降压转换。图 7-1 中的原理图电路展示了实现基于 TLVM236x5 且采用单输入电源的降压稳压器所需的所有元件。

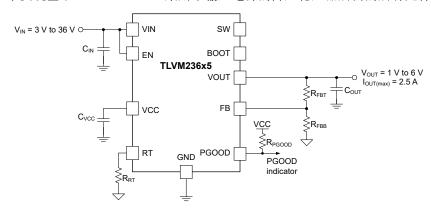


图 7-1. 输入工作电压范围为 3V 至 36V 的 TLVM236x5 原理图

请格外注意,确保 VIN 引脚上的电压在线路或负载瞬态事件期间不超过 40V 的绝对最大额定电压。如果 VIN 引脚上的电压振铃超过绝对最大额定值,则可能会损坏 IC。

7.3.2 输出电压选择

可以通过两个外部电阻器(R_{FBT} 和 R_{FBB})设置 TLVM236x5 输出电压。在 VOUT 的调节点处与 FB 引脚之间连接 R_{FBT}。在 FB 引脚与 AGND 之间连接 R_{FBB}。

TLVM236x5 的可调输出电压范围为 1.0V 至 6V。为确保电源模块调节到所需的输出电压, R_{FBT} 与 R_{FBB} 并联电阻的典型最小值为 $5k\Omega$,而典型最大值为 $10k\Omega$,如方程式 3 所示。方程式 2 和方程式 3 可用作确定 R_{FBT} 值的起点。有关各种输出电压的可接受电阻值的列表,请参阅表 7-1。

$$5 k\Omega < R_{FBT} \mid R_{FBB} \le 10 k\Omega \tag{1}$$

$$R_{\text{FBT}}[k\Omega] = R_{\text{FBB}}[k\Omega] \times \left(\frac{V_{\text{OUT}}[V]}{1 \, V} - 1\right) \tag{2}$$

$$R_{\text{FBT}} \le 10 \text{ k}\Omega \times \frac{V_{\text{OUT}}}{1 \text{ V}} \tag{3}$$

对于可调节输出选项,可能还需要一个与 R_{FBT} 并联的前馈电容器 C_{FF} 来优化瞬态响应。有关更多信息,请参阅 C_{FF} 选型。

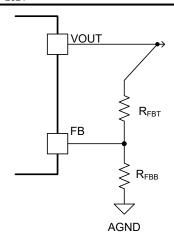


图 7-2. 为可调输出选项设置输出电压

 $R_{FBT} (k \Omega)^{(1)}$ 建议的 F_{SW} (kHz) V_{OUT} (V) C_{OUT(MIN)} (µF) (有效) 1.0 400 1.2 2 500 200 1.5 4.99 500 160 8.06 1.8 600 120 2.0 10 600 100 2.5 15 750 65 20 750 3.0 50 3.3 23.2 800 40 5.0 40.2 1000 25

表 7-1. 标准 R_{FBT} 值、建议的 F_{SW} 和最小 C_{OUT}

(1) $R_{FBB} = 10k \Omega$

7.3.3 输入电容器

需要输入电容器来限制该模块中因开关频率交流电流而导致的输入纹波电压。TI 推荐使用陶瓷电容器来在宽温度范围内提供低阻抗和高 RMS 电流等级。方程式 4 给出了输入电容器 RMS 电流。最大输入电容器 RMS 电流会出现在 D = 0.5 时,这时电容器的 RMS 电流等级必须大于输出电流的一半。

$$I_{CIN, rms} = \sqrt{D \times \left(I_{OUT}^2 \times (1 - D) + \frac{\Delta I_L^2}{12}\right)}$$
 (4)

其中

• **D = V_{OUT}/V_{IN}** 是模块占空比。

理想情况下,降压级输入电流的直流和交流分量分别由输入电压源和输入电容器提供。在忽略电感器纹波电流的情况下,输入电容器会在 D 间隔期间拉出幅值为 $(I_{OUT} - I_{IN})$ 的电流,并在 1 - D 期间灌入幅值为 I_{IN} 的电流。因此,输入电容器会传导峰-峰值幅度等于输出电流的方波电流。因此,交流纹波电压的相应容性分量为三角波形。通过与 ESR 相关纹波分量相结合,方程式 5 可以给出峰峰值纹波电压幅值。

$$\Delta V_{\rm IN} = \frac{I_{\rm OUT} \times D \times (1 - D)}{F_{\rm SW} \times C_{\rm IN}} + I_{\rm OUT} \times R_{\rm ESR}$$
 (5)

Copyright © 2024 Texas Instruments Incorporated

方程式6给出了特定负载电流所需的输入电容。

$$C_{IN} \ge \frac{D \times (1 - D) \times I_{OUT}}{F_{SW} \times (\Delta V_{IN} - R_{ESR} \times I_{OUT})}$$
(6)

其中

• △ V_{IN} 是输入纹波电压规格。

TLVM236x5 需要至少 4.7μF 的陶瓷型输入电容。仅使用具有足够电压和温度等级的高品质陶瓷型电容器。除了提供纹波电流并将开关噪声与其他电路隔开之外,陶瓷输入电容器还为电源模块提供了一个低阻抗源。具有瞬态负载要求的应用可能需要额外的电容。输入电容的电压等级必须高于最高输入电压。为了补偿陶瓷电容器的降额,TI 建议电压等级是最大输入电压的两倍或并联多个电容器。表 7-2 包含按供应商分类的首选电容器列表。

次 1-2. 1E行印制八屯行册						
供应商 ⁽¹⁾	电介质	田体型口		电容器特性		
光应用	电介质	器件型号 外壳尺寸 数		额定电压 (V)	电容 (µF) ⁽²⁾	
TDK	X7R	C3225X7R1H475K2 50AB	1210	50	4.7	
Wurth	X7R	885012209048	1210	50	4.7	
Murata X5R GRM15		GRM155R61H104M E14D	0402	50	0.1	
Chemi-Con	电解	EMVY500ADA101M HA0G	HA0	50	100	

表 7-2. 推荐的输入电容器

7.3.4 输出电容器

表 7-1 列出了 TLVM236x5 所需的最小输出电容值。使用陶瓷电容时,必须考虑直流偏置和温度变化的影响。对于陶瓷电容器,封装尺寸、电压等级和电介质材料会导致标准额定值与电容的实际有效值之间存在差异。

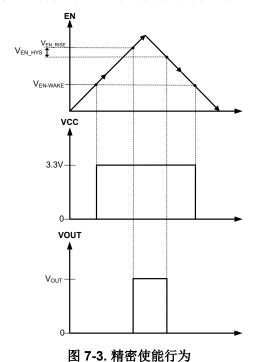
当添加高于 C_{OUT(MIN)} 的附加电容时,电容可以是陶瓷型、低 ESR 聚合物型或两者的组合。有关按供应商分类的优选输出电容器列表,请参阅表 7-3。

供应商 ⁽¹⁾	海岸で帯	器件型号	电容器特性		P 器特 性
决应问 (*)	温度系数	一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种一种	外壳尺寸	电压 (V)	电容 (µF) ⁽²⁾
TDK X7R CNA6P1X7R		CNA6P1X7R1E226M250AE	1210	25	22
TDK	X7R	CGA6P1X7R1C226 M250AC	1210	16	22
Wurth X7R 88501		885012209028	1210	25	10
Wurth	X7R	885012209014	1210	16	10

表 7-3. 推荐的输出电容器

(2) 铭牌电容值(根据施加的直流电压和温度,有效值较小)。

⁽¹⁾ 有关供应情况、材料成分、RoHS 和无铅状态以及本表中所列电容器的制造工艺要求,请咨询电容器供应商。请参阅*第三方产品免责声*


⁽²⁾ 铭牌电容值(根据施加的直流电压和温度,有效值较小)。

⁽¹⁾ 有关供应情况、材料成分、RoHS 和无铅状态以及本表中所列电容器的制造工艺要求,请咨询电容器供应商。请参阅*第三方产品免责声明*。

7.3.5 启用、启动和关断

EN 引脚电压控制着 TLVM236x5 的启动或远程关断。只要 EN 引脚电压低于 V_{EN-WAKE},器件就会保持关断状态。在 EN 引脚电压大于 V_{EN-WAKE} 的情况下,器件将进入待机模式,内部 LDO 上电以生成 VCC。随着 EN 电压进一步升高并接近 V_{EN-RISE},器件最终会开始开关,并通过软启动进入启动模式。在器件关断过程中,当 EN 输入电压测量值小于 (V_{EN-RISE} - V_{EN-HYST}) 时,稳压器停止开关并重新进入器件待机模式。如果 EN 引脚电压进一步降低至 V_{EN-WAKE} 以下,器件就会被彻底关断。如果不需要远程精密控制,则可将符合高电压标准的 EN 输入引脚直接连接到 VIN 输入引脚。不得允许 EN 输入引脚悬空。

电气特性 中列出了各种 EN 阈值参数及其值。图 7-3 显示了精密使能行为,图 7-4 显示了应用中的典型远程 EN 启动波形。EN 变为高电平后,经过大约 1 ms 的延迟后,输出电压开始通过软启动上升,并在大约 3.5ms (t_{ss}) 内达到最终值。经过大约 2.5ms (t_{PG_FLT_RISE}) 的延迟后,PGOOD 标志变为高电平。在启动期间,在软启动时间过去前,不允许器件进入 FPWM 模式。该时间是从 EN 的上升沿开始测量的。

PGOOD (1 V/DIV)

PGOOD (1 V/DIV)

VEN
EN (5 V/DIV)

2 ms/DIV

图 7-4. 使能启动 V_{IN} = 24V, V_{OUT} = 3.3V, I_{OUT} = 2.5A

通过 EN 引脚连接的外部 UVLO

在某些情况下,需要一个与器件内部提供的输入 UVLO 电平不同的输入电平。这可以使用图 7-5 中所示的电路来 实现。器件导通时的输入电压被指定为 V_{ON} , 而关断电压为 V_{OFF} 。首先, R_{ENB} 阻值在 $10k\Omega$ 至 $100k\Omega$ 的范围 内选择,然后分别使用方程式7和方程式8计算RENT和VOFF。

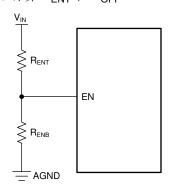


图 7-5. 外部 UVLO 应用的设置

$$R_{ENT} = \left(\frac{V_{ON}}{V_{EN_RISE}} - 1\right) \times R_{ENB}$$
 (7)

$$V_{OFF} = V_{ON} \times \left(1 - \frac{V_{EN_HYS}}{V_{EN_RISE}}\right) \tag{8}$$

其中

- V_{ON} 为 V_{IN} 导通电压。
- V_{OFF} 为 V_{IN} 关断电压。
- 请参阅电气特性表以了解其他术语。

7.3.6 开关频率 (RT)

借助 TLVM236x5 系列中带 RT 引脚的精选可订购产品,电源设计人员可在其应用中将所需的工作频率设于 200kHz 和 2.2MHz 之间。请参阅图 7-6 以确定所需开关频率所需的电阻值,或者直接从表 7-5 中进行选择。RT 引脚和

MODE/SYNC 引脚变体共用同一引脚位置。电源设计人员可以根据应用需要使用 RT 引脚变体并调整运行的开关 频率,也可以使用 MODE/SYNC 变体并与外部时钟信号同步。有关对 RT 引脚进行编程的选择,请参阅表 7-4。

表	7-4.	RT	引肽	收置

RT 输入	开关频率
VCC	1MHz
GND	2.2MHz
RT 至 GND	可根据图 7-6 调节
悬空(不推荐)	无切换

$$RT = \frac{18286}{Fsw^{1.021}}$$
 (9)

- RT 是频率设置电阻值 (kΩ)。
- F_{SW} 为开关频率 (kHz)。

Copyright © 2024 Texas Instruments Incorporated

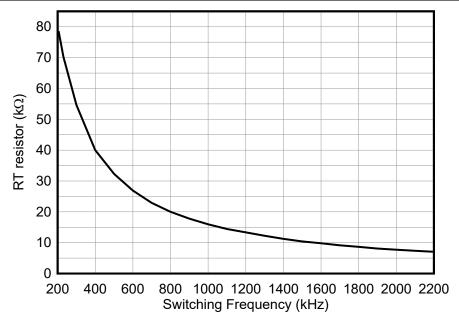


图 7-6. RT 值与频率间的关系

必须根据器件的输出电压设置选择开关频率。请参阅表 7-5,了解 R_{RT} 电阻值,以及在给定开关频率和共模输入电压下允许的输出电压范围。

		V _{IN}	= 5V	V _{IN} =	: 12V	V _{IN} = 24V V _{IN} = 36V			
F _{SW} (kHz)	R _{RT} (kΩ)	V _{OUT} 范围 (V)		V _{OUT} 范围 (V)		V _{OUT} 范围 (V)		V _{OUT} 范围 (V)	
		最小值	最大值	最小值	最大值	最小值	最大值	最小值	最大值
200	81.6	1	1.75	1	1.5	1	1.25	1	1.25
400	40.2	1	2	1	4	1	3	1.25	2.5
600	26.7	1	2.5	1	5	1.25	5	2	4
800	19.8	1	3	1	5.5	1.5	6	2.25	6
1000	15.8	1	3.5	1	6	2	6	2.5	6
1200	13.2	1	3.5	1.5	6	2.5	6	3	6
1400	11.3	1	3.5	1.5	6	3	6	3.5	6
1600	9.76	1	3.5	1.5	6	3	6	4	6
1800	8.66	1	3	1.5	6	3.5	6	5	6
2000	7.77	1	3	1.5	6	3.5	6	5.5	6
2200	7.06	1	3	1.5	6	4.5	6	6	6

表 7-5. 开关频率与输出电压间的关系 (Iour = 2.5A)

7.3.7 电源正常输出运行

电源正常输出方案包含一个开漏 N 沟道 MOSFET,需要一个外部上拉电阻连接到合适的逻辑电源。还可以根据需要通过适当的电阻器将其上拉至 V_{CC} 或 V_{OUT} 。如果不需要此功能,PGOOD 引脚可以保持开路或接地。将流入该引脚的电流限制为 $\leqslant 4mA$ 。

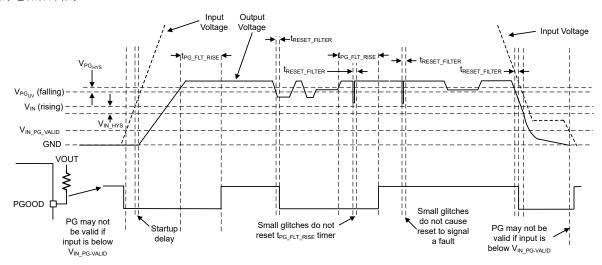


图 7-7. 电源正常运行(不包括 OV 事件)

表 7-6. PGOOD 的故障	11条件(拉牟低用半	1
------------------	------------	---

故障条件启动	故障条件结束(在此之后,必须经过 t _{PGOOD_ACT} 才能释放 PGOOD 输出)
V _{OUT} < V _{PG_{UV}} 且 t > t _{RESET_FILTER}	稳压输出电压: V _{PGuv} + V _{PG_{HYS}} < V _{OUT} < V _{PG_{OV}} - V _{PG_{HYS}}
$V_{OUT} > V_{PG_{OV}} \perp t > t_{RESET_FILTER}$	稳压输出电压
T _J > T _{SDN}	T _J < T _{SDN} -T _{HYST} 且稳压输出电压
EN < V _{EN_RISE} - V _{EN_HYS}	EN > V _{EN_RISE} 且稳压输出电压

7.3.8 内部 LDO、VCC 和 VOUT/FB 输入

TLVM236x5 使用内部 LDO 输出和 VCC 引脚提供所有内部电源。, VCC 电压轨通常可测量 3.3V 电压。启动期间, VCC 会瞬间超过正常工作电压, 然后降至正常工作电压。

7.3.9 自举电压和 V_{BOOT-UVLO} (BOOT 端子)

高侧开关驱动器电路需要高于 VIN 的偏置电压以确保 HS 开关开启。BOOT 和 SW 之间连接有一个内部 0.1 μ F 电容器,该电容器用作电荷泵,用于将 BOOT 端子上的电压升压至 (SW + VCC)。自举二极管集成在 TLVM236x5 芯片上,可更大限度地减小物理解决方案尺寸。BOOT 电压轨具有 UVLO 设置。该 UVLO 具有 V_{BOOT-UVLO} 的阈值,通常设置为 2.1V。如果 BOOT 电容器未充电到高于这个相对于 SW 引脚的电压,此器件会启动一个充电序列,在尝试打开高侧器件前打开低侧开关。

7.3.10 软启动和从压降中恢复

使用 TLVM236x5 进行设计时,必须将因对压降进行软恢复和软启动而引起的输出电压缓慢上升视为两种单独的运行条件,如图 7-8 和图 7-9 所示。软启动由以下任一条件触发:

- 为器件的 VIN 引脚供电,释放欠压锁定。
- EN 用于打开器件。
- 由于过热保护而从关断状态恢复

触发软启动后,电源模块将执行以下操作:

• 电源模块用来调节输出电压的基准缓慢斜升。最终结果是,如果输出电压先前为 0V ,则 t_{SS} 将达到所需值的 90%。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

• 工作模式设置为自动模式,为低侧 MOSFET 激活二极管仿真模式。这允许在不将输出拉低的情况下启动。即使在预偏置启动期间输出端已经存在电压,也是如此。

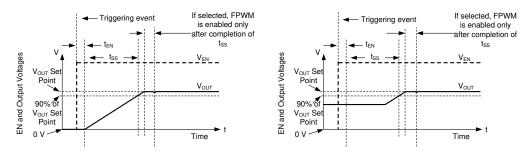


图 7-8. 带和不带预偏置电压的软启动/停止

7.3.10.1 从压降中恢复

只要输出电压下降超过几个百分点,输出电压就会缓慢升高。在本文档中,这种情况称为从压降中正常恢复,与 软启动的区别主要体现在两个方面:

- 基准电压设置为比实现当前输出电压所需的值高出大概 1%。
- 如果器件设置为 FPWM,它将在从压降中恢复期间继续在该模式下运行。如果输出电压突然被一个外部电源上拉,TLVM236x5 可在输出端下拉。请注意,正常运行期间提供的所有保护措施均可用,可防止在输出对高电压或接地短路时发生任何灾难性故障。

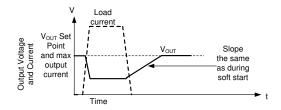


图 7-9. 从压降中恢复

无论是由于高负载还是低输入电压导致输出电压下降,一旦导致输出降至其设定点以下的条件消除,输出就会以与启动期间相同的速度爬升。图 7-9 显示了该行为的示例。

7.3.11 过流保护(断续模式)

TLVM236x5 通过使用高侧 (HS) 和低侧 (LS) MOSFET 的逐周期电流限制电路,可在过流情况下受到保护。每个开关周期都会将电流与电流限制阈值进行比较。在过流情况下,输出电压随着开关频率的降低而降低。

高侧 MOSFET 过流保护是通过典型峰值电流模式控制方案来实现的。当高侧开关在较短的消隐时间后导通时,将检测到高侧开关电流。在每个开关周期,将 HS 开关电流与固定电流设定点的最小值,或与内部误差放大器环路的输出减去斜率补偿之后的值进行比较。由于内部误差放大器环路的输出具有最大值并且斜率补偿随占空比增加,因此当占空比高于 35% 时,HS 电流限值会随着占空比的增加而减小。

当低侧开关接通时,也会检测和监控流经它的电流。与高侧器件一样,低侧器件具有由内部误差放大器环路命令的关断功能。对于低侧器件,即使振荡器正常启动一个新的开关周期,也会在电流超过此值时阻止关断。与高侧器件一样,关断电流的高低也受到限制。这称为低侧电流限值。如果超出低侧电流限值,低侧 MOSFET 将保持导通状态,高侧开关不会导通。一旦低侧电流降至此限值以下,低侧开关就会关断,并且只要自高侧器件上次导通后至少经过一个时钟周期,高侧开关就会再次导通。

Copyright © 2024 Texas Instruments Incorporated

在限流期间,如果 FB 输入上的电压因短路而降至大约 0.4V (V_{HICCUP}) 以下,该器件将进入断续模式。在该模式下,器件在 t_W (即大约 50ms) 内停止开关,然后通过软启动进行正常重启。如果短路情况仍然存在,器件将在电流限制下运行大约 5ms (典型值),然后再次关断。只要短路情况仍然存在,该循环就会重复。

7.3.12 热关断

当器件结温超过 168°C(典型值)时,热关断通过关闭内部开关来限制总功率耗散。低于 158°C(最小值)时不会触发热关断。热关断发生后,迟滞会阻止器件开关,直到结温降至约 153°C(典型值)。当结温低于 153°C(典型值)时,TLVM236x5 会尝试另一次软启动。

当 TLVM236x5 由于结温过高而关断时,继续向 VCC 供电。为了防止由于对 VCC 施加短路而导致过热,为 VCC 供电的 LDO 降低了电流限制,而器件因高结温而被禁用。LDO 在热关断期间仅提供几毫安的电流。

7.4 器件功能模式

7.4.1 关断模式

器件的 EN 引脚可提供电气开/关控制功能。当 EN 引脚电压低于 0.7V (典型值)时,电源模块没有任何输出电压,器件处于关断模式。在关断模式下,静态电流降至 250nA (典型值)。

7.4.2 待机模式

内部 LDO 的 EN 阈值低于输出 EN 阈值。当 EN 引脚电压高于 1V(最大值)且低于输出电压的精密使能阈值时,内部 LDO 将 VCC 电压稳定在 3.3V(典型值)。除非 EN 引脚上的电压超过其精密使能阈值,否则 SW 节点的内部功率 MOSFET 将保持关断状态。TLVM236x5 还采用 UVLO 保护。

7.4.3 运行模式

只要 EN 引脚高于 V_{EN_RISE} 、 V_{IN} 高于 V_{IN} (最小值),并且不存在其他故障条件,TLVM236x5 就处于运行模式。使之工作的最简单方法是将 EN 引脚连接到 V_{IN} ,这样可以在施加的输入电压超过最小 V_{IN} (最小值)时实现自启动。

根据负载电流、输入电压和输出电压,TLVM236x5 有五种工作模式:

- 连续导通模式 (CCM):负载电流大于电感器电流纹波的一半时,开关频率 (fsw) 固定
- 自动模式 轻负载运行:在 PFM 模式下, f_{SW} 会在超轻负载时降低
- FPWM 模式 轻负载运行:负载电流低于电感器电流纹波的一半时为连续导通模式 (CCM)
- 最短导通时间:在高输入电压、低输出电压下,f_{SW}会降低以保持稳压
- 压降模式:降低 f_{SW} 以更大限度地减小压降时采用该模式

7.4.3.1 CCM 模式

有关 TLVM236x5 的以下运行说明,请参阅 *功能方框图*。在 CCM 中,TLVM236x5 以变化的占空比 (D) 打开内部高侧 (HS) 和低侧 (LS) 开关,从而提供稳定的输出电压。在 HS 开关导通期间,SW 引脚电压 V_{SW} 摆动至大约 V_{IN} ,电感器电流以线性斜率增加。HS 开关由控制逻辑关闭。在 HS 开关关闭时间 t_{OFF} ,LS 开关打开。电感器电流通过 LS 开关放电,这会强制 V_{SW} 通过 LS 开关两端的压降摆动到地电位以下。降压模块转换器环路调节占空比以保持恒定的输出电压。D 由 HS 开关在开关周期内的导通时间定义:

$$D = T_{ON} / T_{SW}$$
 (10)

在忽略损耗的理想降压模块转换器中, D与输出电压成正比,与输入电压成反比:

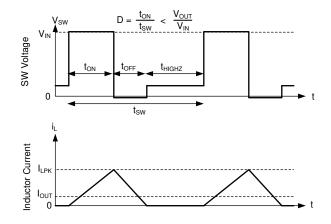
$$D = V_{OUT} / V_{IN}$$
 (11)

7.4.3.2 自动模式 - 轻负载运行

TLVM236x5 在轻负载时有两种运行模式。一种称为自动模式运行,可在重负载和高效轻负载情况下实现正常电流模式运行之间的无缝转换。另一种称为 FPWM 模式,即使在空载时也能保持满频率。TLVM236x5 以哪种模式运行取决于选择了该系列中的哪种型号。请注意,当频率与外部信号同步时,所有器件都以 FPWM 模式运行。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈


TLVM236x5 仅在自动模式下采用轻负载运行方式。轻负载运行采用两种技术来提高效率:

- 二极管仿真,支持 DCM 运行(参阅图 7-10)
- 降频 (参阅图 7-11)

请注意,虽然这两个特性相互配合来改善轻负载效率,但它们是彼此独立的。

7.4.3.2.1 二极管仿真

二极管仿真可防止反向电流通过电感器,这可能需要较低的频率来调节给定的固定峰值电感器电流。二极管仿真还会随着频率的降低而限制纹波电流。在峰值电流固定的情况下,随着输出电流降至零,频率必须降至接近零以保持稳定。

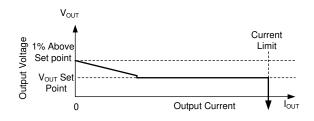

在自动模式下,一旦 SW 节点电流接近零,低侧器件就会关闭。因此,在运行二极管仿真时,一旦输出电流小于 CCM 模式中电感器纹波的一半,该器件就会以 DCM 模式运行。

图 7-10. PFM 运行

TLVM236x5 在自动模式下具有最小峰值电感器电流设置(请参阅 电气特性中的 I_{PEAKMIN})。电流在固定输入电压下降至低电平后,导通时间恒定。然后,通过调整频率来实现稳压。这种工作模式称为 PFM 模式稳压。

7.4.3.2.2 降频

只要输出电压为高电平,TLVM236x5 就会降低频率。每当内部误差放大器补偿输出 COMP (一种内部信号)为低电平并且 VOUT/FB 的稳压设定点与施加到 VOUT/FB 的电压之间存在偏差时,就会启用此功能。最终结果是,在自动模式下轻负载运行时的输出阻抗比正常工作时大。当器件完全空载时,输出电压必须大约为 1% 高电平。

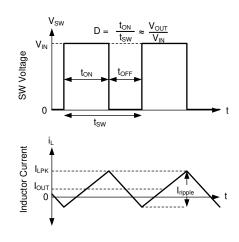

在自动模式下,一旦输出电流低于器件大概 1/10 的额定电流,输出电阻会增加,以便在降压转换器完全空载时输出电压为 1% 高电平。

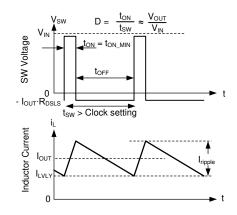
图 7-11. 自动模式下稳态输出电压与输出电流间的关系

在 PFM 模式下运行时,需要在输出电压上提供小幅的直流正偏移量来激活 PFM 检测器。PFM 中的频率越低, V_{OUT} 上所需的直流偏移量就越大。如果 V_{OUT} 上的直流偏移量不可接受,则可以在 V_{OUT} 或 FPWM 模式下使用虚拟负载来减少或消除此偏移量。

7.4.3.3 FPWM 模式 - 轻负载运行

在 FPWM 模式下,频率在输出是轻负载时保持不变。为了保持频率,允许有限的反向电流流过电感器。反向电流 受负电流限制电路的限制,有关负电流限制值,请参阅*电气特性*。

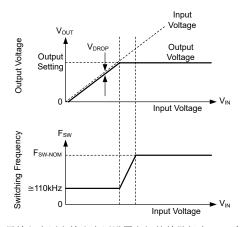
在 FPWM 模式下,即使 I_{OUT} 小于 I_{ripple} 的一半,也可实现连续导通 (CCM)。


图 7-12. FPWM 模式运行

对于所有器件,在 FPWM 模式下,如果输出电压足够高,即使在轻负载时也能实现最短导通时间,则频率降低仍然可用,从而在涉及上拉输出的故障期间实现良好的行为。

7.4.3.4 最短导通时间(高输入电压)运行

即使输入输出电压比要求导通时间小于具有给定时钟设置的芯片的最短导通时间,TLVM236x5 也会继续调节输出电压。这通过使用谷值电流控制来实现。补偿电路始终决定最大峰值电感器电流和最大谷值电感器电流。如果由于任何原因超过谷值电流,则时钟周期会延长,直到谷值电流降至补偿电路确定的值以下。如果电源模块未在电流限制下运行,则最大谷值电流设置为高于峰值电感器电流,以防止使用谷值控制,除非无法仅使用峰值电流进行调节。如果输入输出电压比过高,使得电感器电流峰值超过补偿规定的峰值命令,高侧器件也无法足够快地关断以调节输出电压。因此,补偿电路可降低峰值电流和谷值电流。一旦补偿电路选择了足够低的电流,谷值电流就会与补偿电路所要求的电流相匹配。在这些条件下,低侧器件保持导通状态,并阻止下一个时钟周期启动,直到电感器电流降至所需的谷值电流以下。由于导通时间固定为最小值,因此这种类型的运行与使用恒定导通时间(COT) 控制方案的器件的运行类似;请参阅图 7-13。

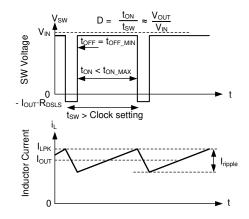


在谷值控制模式下,调节最小电感器电流,而不是峰值电感器电流。

图 7-13. 谷值电流模式运行

7.4.3.5 压降

压降运行被定义为任何需要频率下降以实现所需占空比的输入/输出电压比。在给定的时钟频率下,占空比受最短关断时间的限制。达到该限值后,如果要保持时钟频率,输出电压可能会下降,如图 7-15 所示。TLVM236x5 不允许输出电压下降,而是将高侧开关导通时间延长到时钟周期结束后,直至达到所需的峰值电感器电流。达到峰值电感器电流或经过大约 9μs 的预定最大导通时间 t_{ON-MAX} 后,时钟就可以开始一个新的周期。因此,一旦由于存在最短关断时间,所需占空比无法在所选时钟频率下实现,频率就会下降以保持稳定。如图 7-14 所示,如果输入电压足够低,即使在导通时间为 t_{ON-MAX} 时也无法调节输出电压,则输出电压会降至略低于输入电压 V_{DROP}。有关从压降中恢复的更多信息,请参阅节 7.3.10.1。



输出电压和频率与输入电压间的关系:如果输入电压和输出电压设置之间的差异很小,IC 会降低频率以保持稳压。如果输入电压过低,无法在大约 110kHz 的频率下提供所需的输出电压,则输入电压会跟踪输出电压。

图 7-14. 压降中的频率和输出电压

Product Folder Links: TLVM23615 TLVM23625

压降时的开关波形。电感器电流需要比正常时钟更长的时间才能达到所需的峰值。因此,频率会下降。该频率下降受到 t_{ON-MAX} 的限制。

图 7-15. 压降波形

8 应用和实施

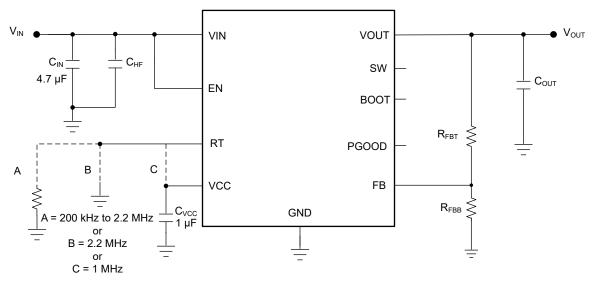
备注

以下应用部分中的信息不属于 TI 元件规格, TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

8.1 应用信息

TLVM236x5 只需很少的外部元件,即可将宽范围的电源电压转换成固定输出电压。为了加快和简化 TLVM236x5 的设计过程,WEBENCH 在线软件可用于生成完整的设计、利用迭代设计过程,以及访问综合元件数据库。下一节介绍了用于配置 TLVM236x5 电源模块的设计过程。

如前所述,TLVM236x5 还集成了几个可选功能来满足系统设计要求,包括精密使能端、UVLO 和 PGOOD 指示器。下面详细介绍的应用电路显示了适用于多个应用用例的 TLVM236x5 配置选项。有关更多详细信息,请参阅 TLVM23625EVM 用户指南。


备注

除非另有说明,否则以下应用信息中给出的所有电容值均指*有效*值。*有效*值定义为直流偏置和温度下的实际电容,而不是额定值或铭牌值。在整个过程中使用具有 X7R 或更好电介质的低 ESR 优质陶瓷电容器。除了正常的容差和温度影响外,所有高容值陶瓷电容器还具有大电压系数。在直流偏置下,电容会显著下降。在这方面,较大的外壳尺寸和较高的额定电压会更好。为了帮助减轻这些影响,可以并联多个电容器,以使最小*有效*电容达到所需值。这也可以降低单个电容器上的 RMS 电流要求。必须仔细研究任何电容器组的偏置和温度变化,以确保提供*有效*电容的最小值。

8.2 典型应用

图 8-1 展示了 TLVM236x5 的典型应用电路。该器件旨在各种外部元件和系统参数下正常工作。但是,内部补偿 针对特定的开关频率和输出电容进行了优化。

A. RT 引脚经出厂设置,仅适用于外部可调开关频率 RT 型号。详情请参见开关频率 (RT)。

图 8-1. 示例应用电路 (TLVM236x5)

27

English Data Sheet: SNVSCI2

8.2.1 设计要求

详细设计过程 提供了根据表 8-1 设计和选择元件的说明。

表 8-1. 详细设计参数

设计参数	示例值
输入电压	5.5V 至 36V
输出电压	5V
最大输出电流	0A 至 2.5A
开关频率	1MHz

8.2.2 详细设计过程

下面的设计过程和相应的元件选型如图 8-2 所示。



图 8-2.5V VOUT 设计示例

8.2.2.1 使用 WEBENCH® 工具创建定制设计方案

点击此处,使用 TLVM236x5 器件并借助 WEBENCH® Power Designer 创建定制设计方案。

- 1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。
- 2. 使用优化器表盘优化该设计的关键参数,如效率、占用空间和成本
- 3. 将生成的设计与德州仪器 (TI) 其他可行的解决方案进行比较。WEBENCH Power Designer 提供了定制原理 图,并罗列了实时价格和元件供货情况的物料清单。

在多数情况下,可执行以下操作:

- 运行电气仿真,观察重要波形以及电路性能
- 运行热性能仿真,了解电路板热性能
- 将定制原理图和布局方案以常用 CAD 格式导出
- 打印 PDF 格式的设计报告并与同事共享

有关 WEBENCH 工具的更多信息,请访问 www.ti.com/WEBENCH。

8.2.2.2 选择开关频率

标准输出电压的建议开关频率可在表 7-1 中找到。对于 5V 输出,建议的开关频率为 1MHz。要将开关频率设置为 1MHz,请将 RT 引脚连接到 VCC。

8.2.2.3 设置输出电压

可调输出电压通过电阻分压器在外部设置。有关如何选择反馈电阻值的更多信息,请参阅*输出电压选择*。 R_{FBB} 的建议值为 $10k\Omega$ 。有关更多信息,可以从表 7-1 中选择 R_{FBT} 值或使用方程式 12 计算该值:

$$R_{FBT}[k\Omega] = R_{FBB}[k\Omega] \times \left(\frac{V_{OUT}[V]}{1V} - 1\right)$$
(12)

对于所需的 5V 输出电压,该公式得出的值为 $40.2k\Omega$ 。为 R_{ERT} 选择最接近的可用标准值 $40.2k\Omega$ 。

8.2.2.4 输入电容器选型

TLVM236x5 需要 4.7 μ F 的最低输入电容。TI 建议并联一个额外的 0.1 μ F 电容器以改善旁路。需要使用具有足够额定电压和温度的高品质陶瓷型电容器。输入电容器的电压等级必须大于最大输入电压。此设计使用了 4.7 μ F 和 0.1 μ F、额定电压为 50V 的电容器。

通常最好在输入端使用与陶瓷并联的电解电容器。如果使用长引线或布线将输入电源连接到稳压器,情况尤其如此。该电容器的中等 ESR 有助于抑制由长电源引线引起的输入电源上的任何振铃。使用这个额外的电容器还有助于处理由具有异常高阻抗的输入电源引起的电压骤降。

请参阅表 7-2, 了解要考虑的输入电容器器件型号示例。

8.2.2.5 输出电容器选型

对于 5V 输出,TLVM236x5 需要最低 25 μ F 的有效输出电容,才能正常运行(请参阅表 7-1)。需要使用具有足够额定电压和温度的高品质陶瓷型电容器。可以添加额外的输出电容以降低纹波电压或用于具有瞬态负载要求的应用。

实际上,输出电容器对瞬态响应和环路相位裕度的影响非常大。负载瞬态测试和波特图是验证任何给定设计的理想方法,必须始终在应用投入生产之前完成。

将总输出电容的最大值限制在设计值的 10 倍左右,或 1000μF,以较小者为准。较大的输出电容值会对稳压器的启动行为以及环路稳定性产生不利影响。如果必须使用大于此处注释的值,则必须仔细研究满载启动和环路稳定性。

在此设计示例中,选择 2 个 22 μ F、16V、1210 外壳尺寸的陶瓷电容器,这些电容器在 5V 时的总有效电容约为 40 μ F。有关输出电容器选择示例,请查看表 7-3。

8.2.2.6 VCC

VCC 引脚是内部 LDO 的输出,用于为稳压器的控制电路供电。输出需要在 VCC 和 GND 之间连接一个 1μ F、 16V 陶瓷电容器,用于确保正常运行。通常,此输出不得加载任何外部电路。但是,该输出可用于为电源正常功能提供上拉电阻(请参阅 e源正常输出运行)。在这种情况下,10kΩ 至 100kΩ 范围内的值是一个不错的选择。 VCC 上的标称输出电压为 3.3V;有关限值,请参阅 e气特性。

8.2.2.7 CFF 选型

在某些情况下,可在 R_{FBT} 上使用前馈电容器,以改善负载瞬态响应或改善环路相位裕度。在使用前馈电容器进行 实验时, "使用前馈电容器优化内部补偿直流/直流转换器的瞬态响应"应用报告非常有用。

由于反馈检测电路的性质,必须限制 C_{FF} 的值,以确保在配置可调输出电压时建立所需的输出电压。必须遵循方程式 13 以确保 C_{FF} 保持在最大值之下。

$$C_{FF} < C_{OUT} \times \frac{\sqrt{V_{OUT}}}{1.2 \times 10^6}$$
 (13)

8.2.2.8 电源正常信号

对于需要电源正常信号来指示存在输出电压并处于稳压状态的应用,必须在 PGOOD 引脚和有效电压源之间使用上拉电阻器。例如,该电压源可以是 VCC 或 VOUT。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

8.2.2.9 最高环境温度

与任何功率转换器件一样,TLVM236x5 在运行时会消耗内部功率。这种功耗的影响是将电源模块的内部温度升高到环境温度以上。内部芯片和电感器温度 (T_J) 是环境温度、功率损耗以及模块的有效热阻 $R_{\theta JA}$ 和 PCB 组合的函数。TLVM236x5 的最高结温必须限制为 125°C。此限值会限制模块的最大功率耗散,从而限制负载电流。方程式14 展示了重要参数之间的关系。很容易看出,较大的环境温度 (T_A) 和较大的 $R_{\theta JA}$ 值会降低最大可用输出电流。可以使用本数据表中提供的曲线来估算电源模块效率。如果在其中某条曲线中找不到所需的运行条件,则可以使用内插来估算效率。或者,可以调整 EVM 以匹配所需的应用要求,并且可以直接测量效率。 $R_{\theta JA}$ 的正确值更难估计。最后,通过在 EVM 上进行工作台分析而生成的安全工作区曲线和模块热捕获可用于深入了解输出功率能力。可在数据表的*应用曲线* 部分中找到这些曲线。

如 *"半导体和 IC 封装热指标"应用报告* 中所述,*热性能信息* 部分中给出的值对于设计用途无效,不得用于估算应用的热性能。该表中报告的值是在实际应用中很少获得的一组特定条件下测量的。

$$I_{OUT, max} = \frac{\left(T_{J} - T_{A}\right)}{R_{\theta IA}} \times \frac{\eta}{(1 - \eta)} \times \frac{1}{VOUT}$$
(14)

其中

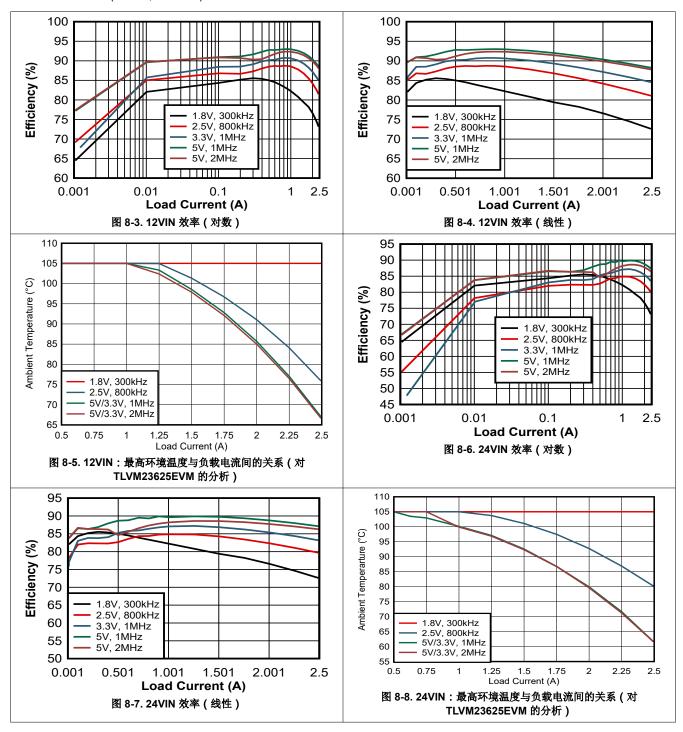
· n 是效率。

有效 $R_{\theta,JA}$ (TLVM23625EVM = 22°C/W) 是一个关键参数,取决于许多因素,例如:

- 功率耗散
- 空气温度/流量
- PCB 面积
- 铜散热器面积
- 相邻元件放置
- 封装下的散热过孔数量

上面提到的 IC 功率损耗是总功率损耗减去来自电感器直流电阻的损耗。可使用 WEBENCH 近似计算出特定运行条件和温度下的总体功率损耗。

以下资源可用作理想热 PCB 设计和针对给定应用环境估算 $R_{\theta JA}$ 的指南:

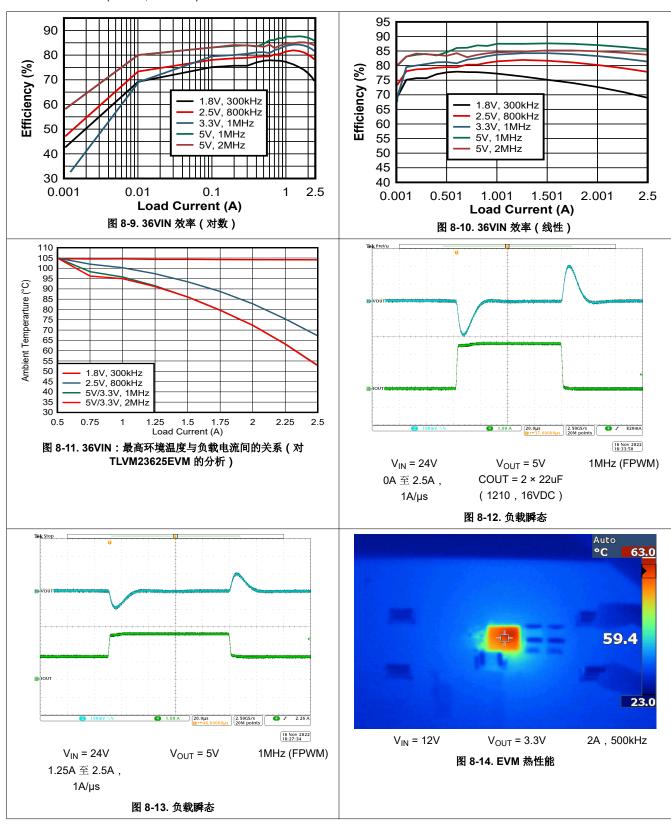

- "热设计:学会洞察先机,不做事后诸葛"应用报告
- "外露焊盘封装实现理想热阻的电路板布局布线指南"应用报告
- "半导体和IC 封装热指标"应用报告
- "使用 LM43603 和 LM43602 简化热设计"应用报告
- "PowerPAD™ 耐热增强型封装"应用报告
- "PowerPAD™ 速成" 应用报告
- "使用新的热指标"应用报告
- PCB 热量计算器

8.2.2.10 其他连接

- RT 引脚可以连接到 AGND 以实现 2.2MHz 的开关频率,也可以连接到 VCC 以实现 1MHz 的开关频率。RT 引脚和 GND 之间连接的电阻器可用于在 200kHz 和 2.2MHz 之间设置所需的工作频率。
- 对于 MODE/SYNC 引脚变体,将此引脚连接到外部时钟会强制器件进入 SYNC 操作。通过将 MODE/SYNC 引脚连接为低电平,可使器件在轻负载条件下以 PFM 模式运行。通过将 MODE/SYNC 引脚连接为高电平,可使器件进入 FPWM 模式,这样即使没有负载电流,也能以全频率运行。
- 可以在 EN 引脚上添加一个电阻分压器网络,以实现精密输入欠压锁定 (UVLO)
- 在 VCC 引脚和 PGND 之间放置一个 1uF 电容器,并使其靠近器件。
- PGOOD 引脚和有效电压源之间的上拉电阻器,用于生成电源正常信号。

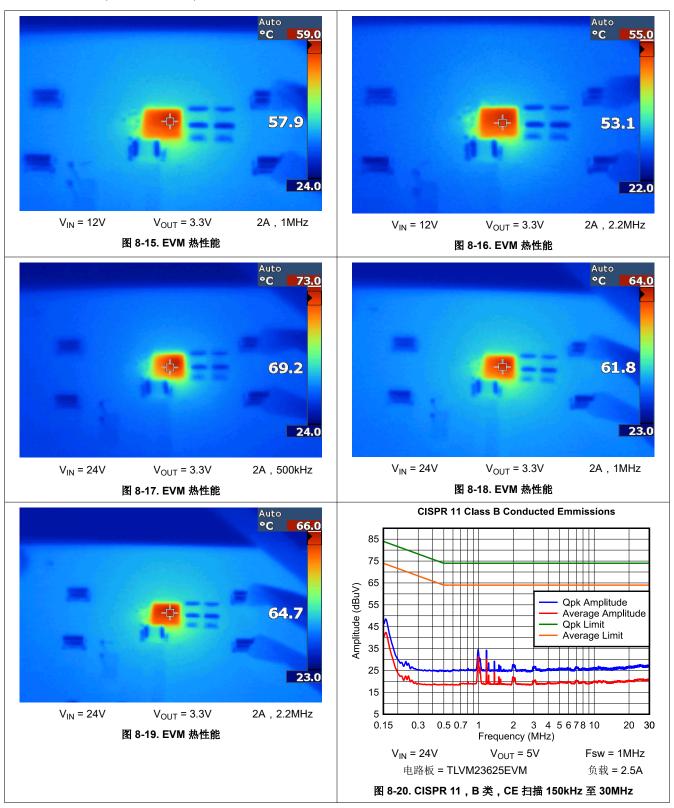
8.2.3 应用曲线

COUT = 2 × 22uF (1210 , 16VDC)

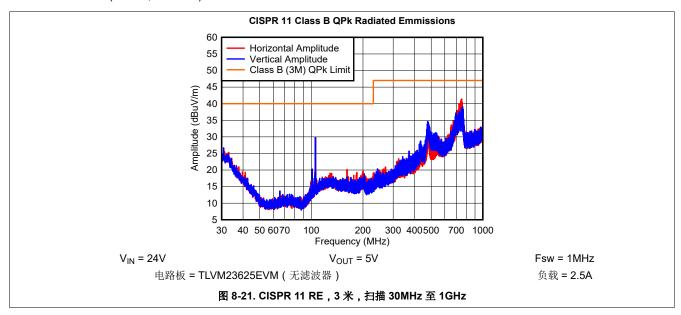

31

English Data Sheet: SNVSCI2

8.2.3 应用曲线 (续)


 $COUT = 2 \times 22uF (1210, 16VDC)$

8.2.3 应用曲线 (续)


 $COUT = 2 \times 22uF (1210, 16VDC)$

8.2.3 应用曲线 (续)

 $COUT = 2 \times 22uF (1210, 16VDC)$

8.3 优秀设计实践

- 请勿超出 绝对最大额定值。
- 请勿超出*建议运行条件*。
- 请勿超出 *ESD 等级*。
- 请勿使 EN 输入悬空。
- 不要让输出电压超过输入电压,也不要低于地电平。
- 在将设计投入生产之前,请遵循此数据表中的所有指南和建议。TI应用工程师随时乐意帮助您对设计和 PCB 布局进行评论,以帮助您的项目取得成功。

8.4 电源相关建议

TLVM236x5 降压模块设计为可在 3V 至 36V 的宽输入电压范围内工作。输入电源的特性必须符合本数据表中的 统 *对最大额定值* 和*建议运行条件*。此外,输入电源必须能够向负载稳压器电路提供所需的输入电流。可以使用方程 式 15 来估算平均输入电流。

$$I_{IN} = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times \eta} \tag{15}$$

其中

η 是效率

如果该模块通过长导线或具有大阻抗的 PCB 布线连接到输入电源,则需要特别谨慎来实现稳定的性能。输入电缆 的寄生电感和电阻可能会对该模块的运行造成不良影响。更具体地说,寄生电感与低 ESR 陶瓷输入电容器组合形 成一个欠阻尼谐振电路,这有可能在每次输入电源打开和关闭时导致不稳定和/或电压瞬变。寄生电阻会在负载瞬 变期间导致输入电压下降。如果该模块的工作电压接近最小输入电压,此下降可能导致错误的 UVLO 故障触发和 系统复位。

若要解决此类问题,最佳做法是缩短输入电源与该模块之间的距离,并将电解输入电容器与陶瓷电容器并联使 用。电解电容器的中等 ESR 有助于抑制输入谐振电路,并减少输入端的任何过冲或下冲。47µF 至 100µF 范围内 的电容通常足以提供输入并联抑制,并有助于在大负载瞬变期间保持输入电压稳定。0.1 \(\Omega\) 至 0.4 \(\Omega\) 的典型 ESR 可为大多数输入电路配置提供足够的阻尼。

8.5 布局

任何开关电源的性能都取决于 PCB 布局,同样也取决于元件选型。用户可根据下面的指南设计一个 PCB,实现 出色的电源转换性能、理想的热性能,并更大限度地减小不必要的 EMI。

8.5.1 布局指南

任何直流/直流模块的 PCB 布局对于实现设计的理想性能而言都至关重要。PCB 布局不良可能会破坏原本良好的 原理图设计的运行效果。即使模块正确调节,PCB布局不良也意味着稳健的设计无法大规模生产。此外,稳压器 的 EMI 性能在很大程度上取决于 PCB 布局。在降压转换器模块中,最关键的 PCB 功能是由一个或多个输入电容 器和电源地形成的环路,如图 8-22 所示。该环路承载大瞬态电流,在布线电感的作用下可能产生大瞬态电压。这 些不必要的瞬态电压会破坏电源模块的正常运行。因此,该环路中的布线必须宽且短,并且环路面积必须尽可能 小以降低寄生电感。*布局示例* 展示了针对 TLVM236x5 关键元件的建议布局。

- 1. 将输入电容器尽可能靠近 VIN 和 GND 端子放置。VIN 和 GND 引脚相邻,简化了输入电容的放置。
- 2. 在靠近 VCC 引脚的位置放置一个 VCC 旁路电容器。该电容器必须靠近器件放置,并使用短而宽的布线连接 到 VCC 和 GND 引脚。
- 3. 将反馈分压器尽可能靠近器件的 FB 引脚放置。将 R_{FBB}、R_{FBT} 和 C_{FF}(如果使用)在物理上靠近器件放置。 与 FB 和 GND 的连接必须短且靠近器件上的这些引脚。到 Vout 的连接可能会更长一些。但是,不得将这一 条较长的布线布置在任何可能电容耦合到稳压器反馈路径的噪声源(例如 SW 节点)附近。

Product Folder Links: TLVM23615 TLVM23625

4. 在其中一个中间层中至少使用一个接地层。该层充当噪声屏蔽层和散热路径。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

- 5. 为 VIN、 VOUT 和 GND 提供宽路径。使这些路径尽可能宽和直接可减少电源模块输入或输出路径上的任何电压降,并更大限度地提高效率。
- 6. *提供足够大的 PCB 面积,以实现适当的散热。*必须使铜面积足够大,以确保实现与最大负载电流和环境温度相称的低 $R_{\,\theta\,JA}$ 。 PCB 项层和底层必须采用 2 盎司铜,且不得小于 1 盎司。如果 PCB 设计使用多个铜层(建议),这些散热过孔也可以连接到内层散热接地层。
- 7. 用多个过孔将电源平面连接至内层。

有关其他重要指南,请参阅以下 PCB 布局资源:

- 开关电源布局指南应用报告
- Simple Switcher PCB 布局指南应用报告
- "构建电源之布局注意事项"研讨会
- 使用 LM4360x 与 LM4600x 简化低辐射 EMI 布局应用报告

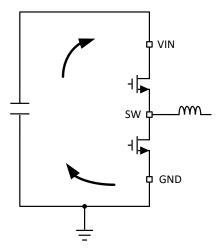


图 8-22. 具有快速边沿的电流环路

8.5.1.1 接地及散热注意事项

如前所述,TI 建议使用一个中间层作为实心接地平面。接地平面既为敏感电路和布线提供屏蔽功能,也为控制电流提供静态基准电位。使用紧挨旁路电容器的过孔,将 GND 引脚连接到接地平面。GND 布线以及 VIN 和 SW 布线应限制在接地层的一侧。接地平面另一侧的噪声要少得多;用于敏感的布线。

TI 建议在 GND 引脚附近留出充足的覆铜,以提供充分的器件散热。有关示例布局,请参阅 8-23。系统接地平面项层和底层的铜箔越厚,越利于散热。使用四层电路板,四层的铜厚(从项层开始)依次 为:2oz/1oz/1oz/2oz。具有足够铜厚度和适当布局布线的四层电路板可实现低电流传导阻抗、适当的屏蔽和较低的热阻。

8.5.2 布局示例

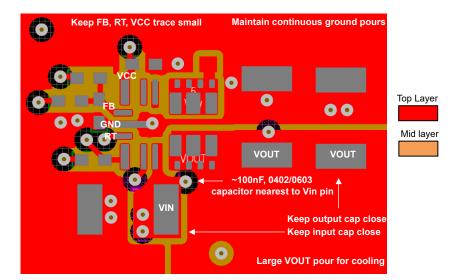


图 8-23. 示例布局

9 器件和文档支持

9.1 器件支持

9.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此 类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

9.1.2 开发支持

9.1.2.1 使用 WEBENCH® 工具创建定制设计方案

点击此处,使用 TLVM236x5 器件并借助 WEBENCH® Power Designer 创建定制设计方案。

- 1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。
- 2. 使用优化器表盘优化该设计的关键参数,如效率、占用空间和成本
- 3. 将生成的设计与德州仪器 (TI) 其他可行的解决方案进行比较。WEBENCH Power Designer 提供了定制原理 图,并罗列了实时价格和元件供货情况的物料清单。

在多数情况下,可执行以下操作:

- 运行电气仿真,观察重要波形以及电路性能
- 运行热性能仿真,了解电路板热性能
- 将定制原理图和布局方案以常用 CAD 格式导出
- 打印 PDF 格式的设计报告并与同事共享

有关 WEBENCH 工具的更多信息,请访问 www.ti.com/WEBENCH。

9.1.3 器件命名规则

图 9-1 显示了 TLVM236x5 的器件命名规则。有关每个变体的可用性,请参阅节 4。如需了解其他选项的详细信息 和供货情况,请联系 TI 销售代表或访问 TI 的 E2E 支持论坛;最低订购量适用。

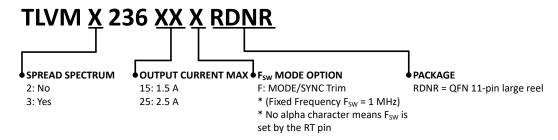


图 9-1. 器件命名规则

9.2 文档支持

9.2.1 相关文档

请参阅以下相关文档:

- 德州仪器 (TI), "热设计:学会洞察先机,不做事后诸葛"应用报告
- 德州仪器 (TI), "外露焊盘封装实现理想热阻性的电路板布局布线指南"应用报告
- "半导体和IC 封装热指标"应用报告 • 德州仪器 (TI),
- 德州仪器 (TI), "通过 LM43603 和 LM43602 简化热设计"应用报告
- 德州仪器 (TI), "PowerPAD™ 热增强型封装"应用报告
- 德州仪器 (TI), "PowerPAD™ 速成" 应用报告
- 德州仪器 (TI), "使用新的热指标"应用报告
- 德州仪器 (TI) , "开关电源布局指南" 应用报告

Copyright © 2024 Texas Instruments Incorporated

- 德州仪器 (TI), "Simple Switcher PCB 布局指南"应用报告
- 德州仪器 (TI), "构建电源-布局注意事项"研讨会
- 德州仪器 (TI), "使用 LM4360x 与 LM4600x 简化低辐射 EMI 布局"应用报告

9.3 支持资源

TI E2E[™] 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索 现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI的使用条款。

9.4 商标

HotRod[™], PowerPAD[™], and TI E2E[™] are trademarks of Texas Instruments.

WEBENCH® is a registered trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参 数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI 术语表

本术语表列出并解释了术语、首字母缩略词和定义。

10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

CI	hanges from Revision A (March 2023) to Revision B (February 2024)	Page
•	更新了 <i>效率与输出电流间的关系,V_{IN} = 24V</i> 图的 1MHz 数据	1
•	将系统特性的效率规格从 86%、84%、88% 和 86% 更改为 84%、83%、87% 和 86%删除了 V _{LDOIN} 测	试
	条件	5
•	将表 7-1 中 1V V _{OUT} 从短接更改为 R _{FBT} = 10k Ω	13
	更新了图 8-3、图 8-4、图 8-6、图 8-7、图 8-9 和图 8-10 的 1MHz 数据	
CI	hanges from Revision * (February 2023) to Revision A (March 2023)	Page
•	删除了 TLVM23615 的产品预发布说明	1

39

English Data Sheet: SNVSCI2

11 机械、封装和可订购信息

下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

40 提交文档反馈

Product Folder Links: TLVM23615 TLVM23625

www.ti.com 24-Jan-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TLVM23615RDNR	ACTIVE	QFN-FCMOD	RDN	11	3000	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 125	23615	Samples
TLVM23625RDNR	ACTIVE	QFN-FCMOD	RDN	11	3000	RoHS & Green	SN	Level-3-260C-168 HR	-40 to 125	23625	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

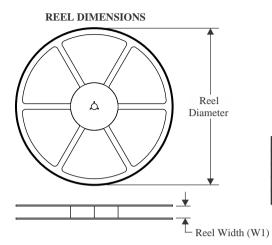
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

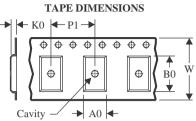
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

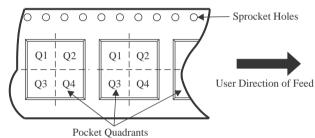
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



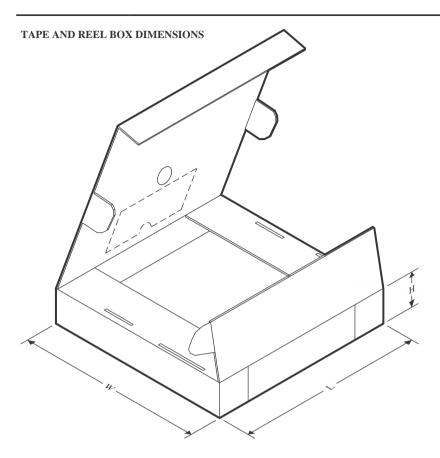

PACKAGE OPTION ADDENDUM

www.ti.com 24-Jan-2024

www.ti.com 24-Jan-2024

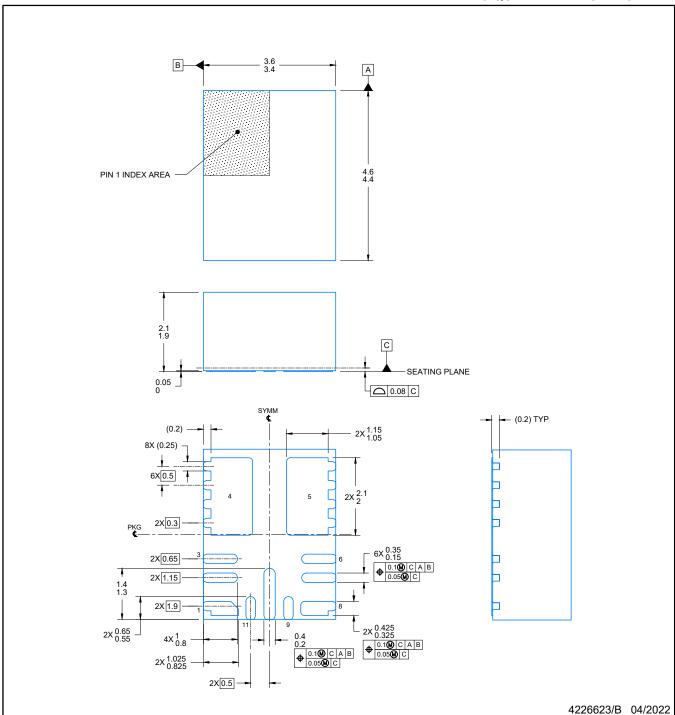

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

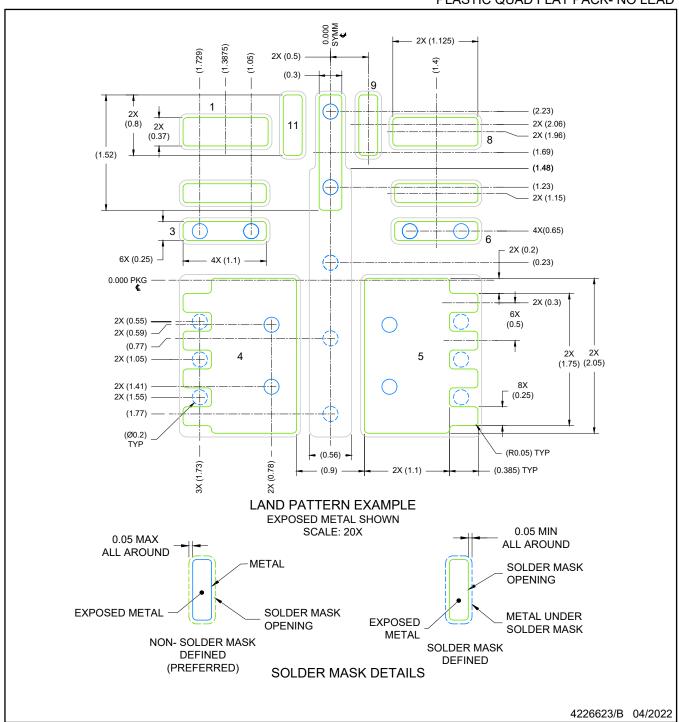
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	` ,	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLVM23615RDNR	QFN- FCMOD	RDN	11	3000	330.0	17.6	3.8	4.8	2.3	8.0	12.0	Q1
TLVM23625RDNR	QFN- FCMOD	RDN	11	3000	330.0	17.6	3.8	4.8	2.3	8.0	12.0	Q1


www.ti.com 24-Jan-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLVM23615RDNR	QFN-FCMOD	RDN	11	3000	336.0	336.0	48.0
TLVM23625RDNR	QFN-FCMOD	RDN	11	3000	336.0	336.0	48.0

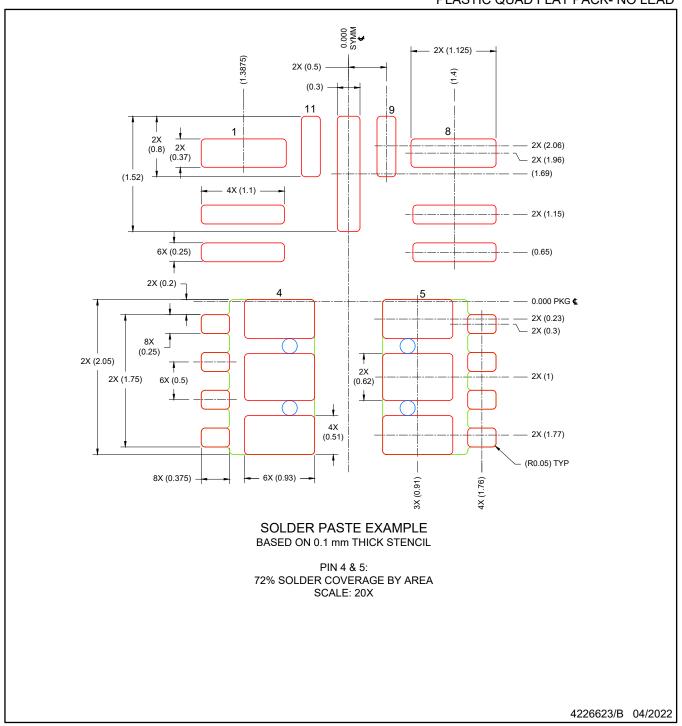
PLASTIC QUAD FLAT PACK- NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLAT PACK- NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLAT PACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司