SCBS647D - AUGUST 1995 - REVISED JANUARY 2001

- Member of Texas Instruments' Widebus™ Family
- State-of-the-Art Advanced Low-Voltage BiCMOS (ALB) Technology Design for 3.3-V Operation
- Schottky Diodes on All Inputs to Eliminate Overshoot and Undershoot
- Industry Standard '16244 Pinout
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout

description

The SN74ALB16244 16-bit buffer and line driver is designed for high-speed, low-voltage (3.3-V) V_{CC} operation. This device is intended to replace the conventional driver in any speed-critical path. The small propagation delay is achieved using a unity-gain amplifier on the input and feedback resistors from input to output, which allows the output to track the input with a small offset voltage.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. This device provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

DGG, DGV, OR DL PACKAGE (TOP VIEW)

	$\overline{}$	_	_	1
10E	1	\cup	48	2 <mark>OE</mark>
1Y1	2		47] 1A1
	3		46] 1A2
-	4		45	GND
	5] 1A3
-	6] 1A4
	7		42] v _{cc}
	8			2A1
	9		40	2A2
	10		39	GND
	11		38	2A3
	12		37	2A4
3Y1	13		36	3A1
3Y2	14		35] 3A2
GND (15			GND
3Y3	16			3A3
3Y4	17			3A4
v_{cc}	18		31] v _{cc}
4Y1	19		30] 4A1
	20			4A2
	21			GND
	22			4A3
	23			4 <u>A4</u>
4OE	24		25	3 <u>OE</u>
				•

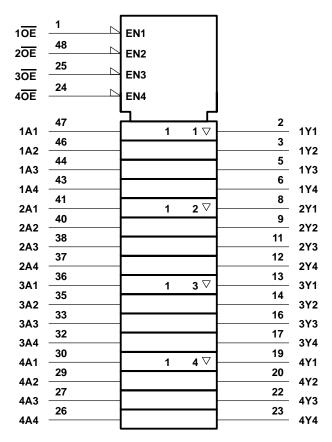
ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	SSOP – DL	Tube	SN74ALB16244DL	ALB16244
	330F - DL	Tape and reel	SN74ALB16244DLR	ALD 10244
	TSSOP – DGG	Tape and reel	SN74ALB16244DGGR	ALB16244
	TVSOP - DGV	Tape and reel	SN74ALB16244DGVR	AV244

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design quidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (each buffer)

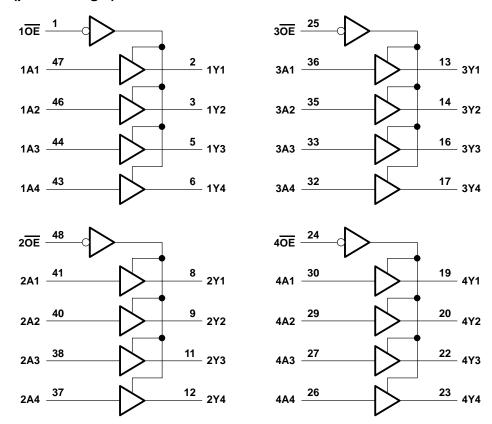
INP	JTS	OUTPUT
OE	Α	Y
L	Н	Н
L	L	L
Н	X	Z



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

TEXAS INSTRUMENTS


logic symbol†

 $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
I/O ports (see Notes 1 and 2)	
Output voltage range, VO (see Notes 1 and 2)	
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	70°C/W
DGV package	58°C/W
DL package	63°C/W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74ALB16244 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS

SCBS647D - AUGUST 1995 - REVISED JANUARY 2001

recommended operating conditions

			MIN	MAX	UNIT
Vcc	Supply voltage		3	3.6	V
I _{OH} †	High-level output current			-25	mA
l _{OL} †	Low-level output current			25	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled		5	ns/V
TA	Operating free-air temperature		-40	85	°C

[†] See Figures 1 and 2 for typical I/O ranges.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	PARAMETER TEST CONDITIONS		TEST CONDITIONS		MIN	TYP‡	MAX	UNIT
\/	Doto inputo	VCC = 3 V	I _I = 18 mA	I _I = 18 mA		3.6	V _{CC} -1.2	V
V _{IK} Data inputs		ACC = 2 A	I _I = -18 mA			-0.9	-1.2	V
	Control inputs	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND				±10	μΑ
			V _I = V _{CC}	OE low		0.4	0.6	mA
l _l	Data inputs	V26V	AI = ACC	OE high			25	μΑ
	Data iriputs	V _{CC} = 3.6 V	V _I = 0	OE low		-0.8	-1	mA
				OE high			-60	μΑ
lozh		$V_{CC} = 3.6 \text{ V},$	V _O = 3 V			0.6	20	μΑ
lozL		V _{CC} = 3.6 V,	V _O = 0.5 V			-0.1	-50	μΑ
ICC/bi	uffer	V _{CC} = 3.6 V,	$I_O = 0$,	$V_I = V_{CC}$ or GND		3.7	5.6	mA
ICCZ		V _{CC} = 3.6 V,	Control inputs = V _{CC} o	Control inputs = V _{CC} or GND			8.0	mA
Δlcc§	ΔI_{CC} $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$, One input at $V_{CC} - 0.6 \text{ V}$, Other inputs at V_{CC} or GND				600	μΑ		
Ci		V _I = 3 V or 0				4.5		pF
Co		$V_O = 3 V \text{ or } 0$				5.5	·	pF

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 3)

PARAMETER	FROM	то	V_{CC} = 3.3 V \pm 0.3 V			UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP‡	MAX	UNIT
^t pd	Α	Y	0.6	1.3	2	ns
^t en	ŌĒ	Υ	1.3	2.5	4.7	ns
^t dis	ŌĒ	Υ	1.8	2.8	4.2	ns

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. § This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

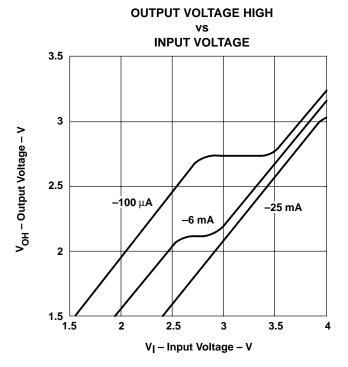


Figure 1. V_{OH} Over Recommended Free-Air Temperature Range

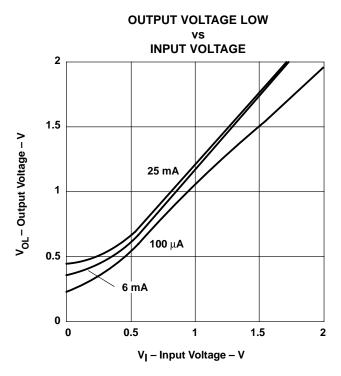
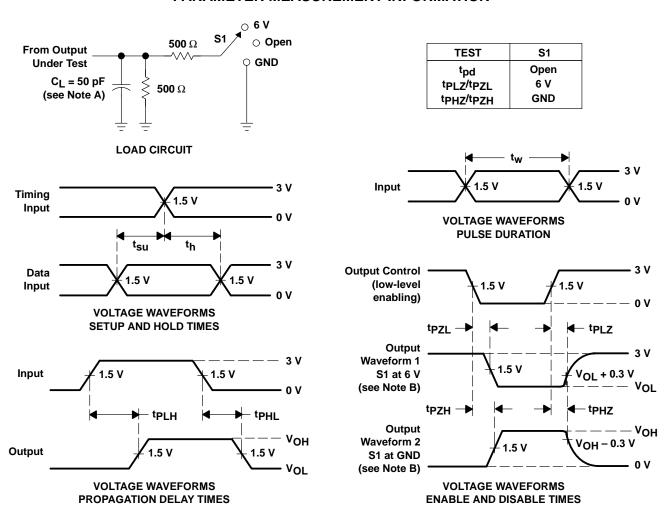



Figure 2. $V_{\mbox{\scriptsize OL}}$ Over Recommended Free-Air Temperature Range

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

11-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74ALB16244DGGR	Obsolete	Production	TSSOP (DGG) 48	-	-	Call TI	Call TI	-40 to 85	ALB16244
SN74ALB16244DL	Obsolete	Production	SSOP (DL) 48	-	-	Call TI	Call TI	-40 to 85	ALB16244
SN74ALB16244DLR	Obsolete	Production	SSOP (DL) 48	-	-	Call TI	Call TI	-40 to 85	ALB16244

⁽¹⁾ Status: For more details on status, see our product life cycle.

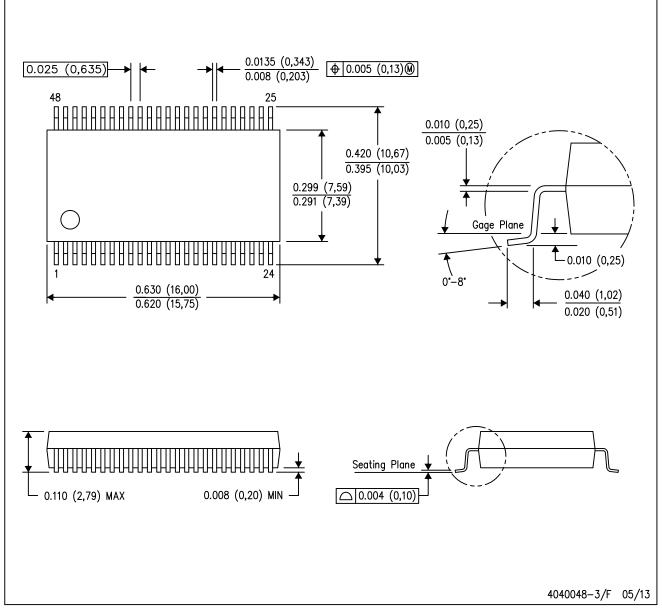
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.


⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

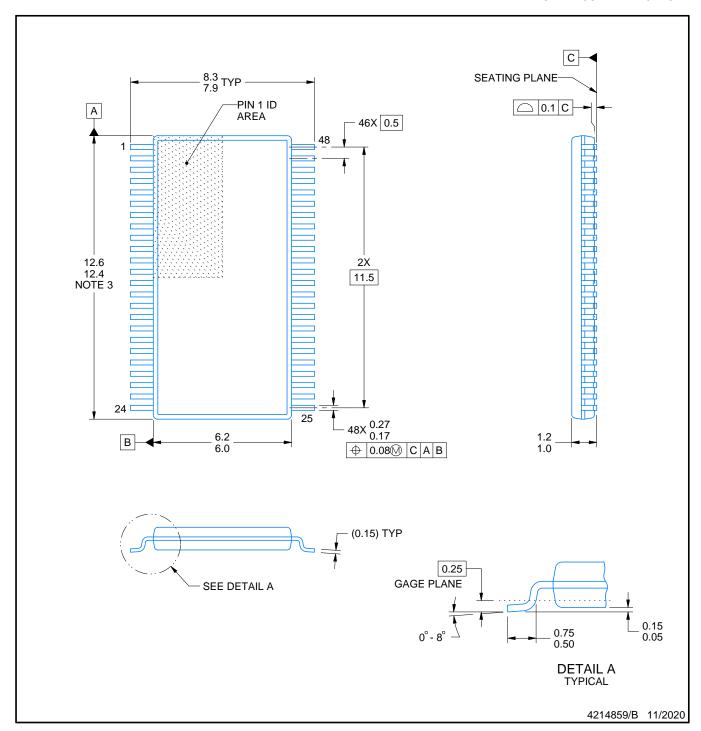
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

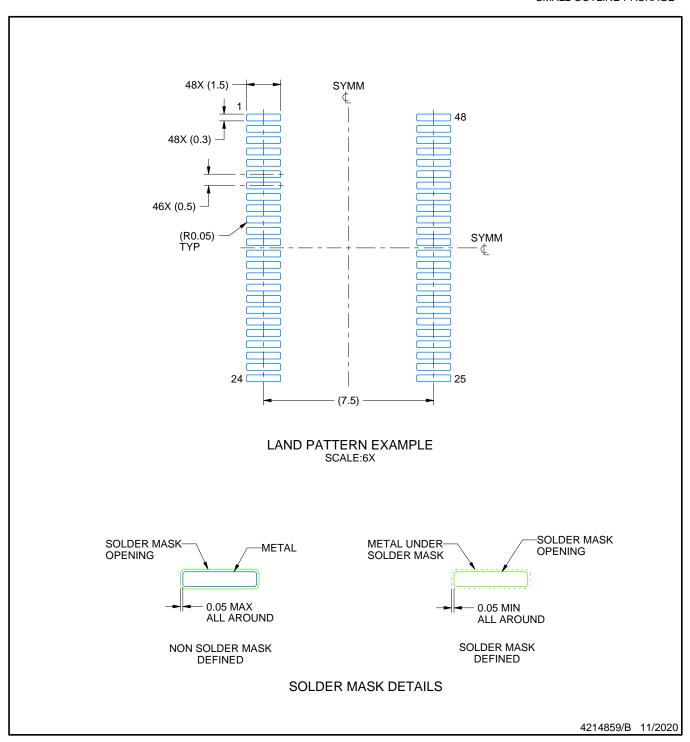
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

SMALL OUTLINE PACKAGE

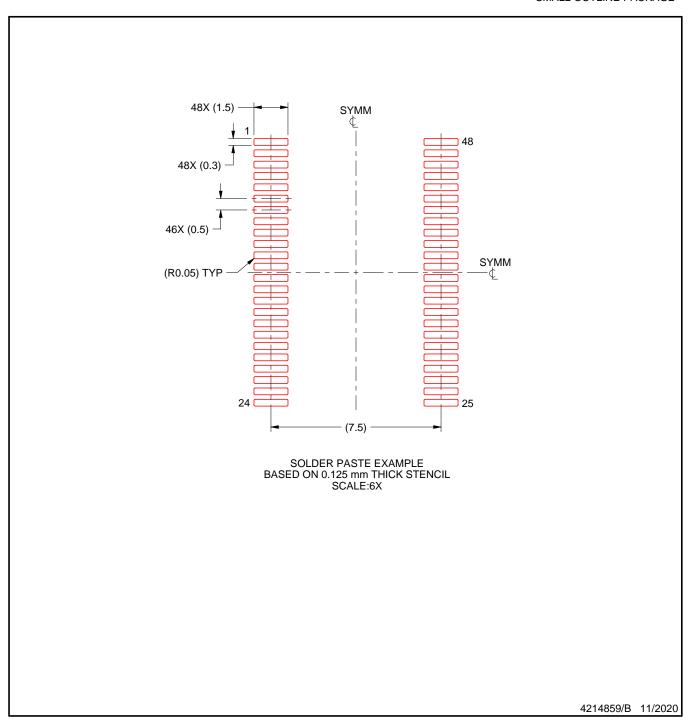
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

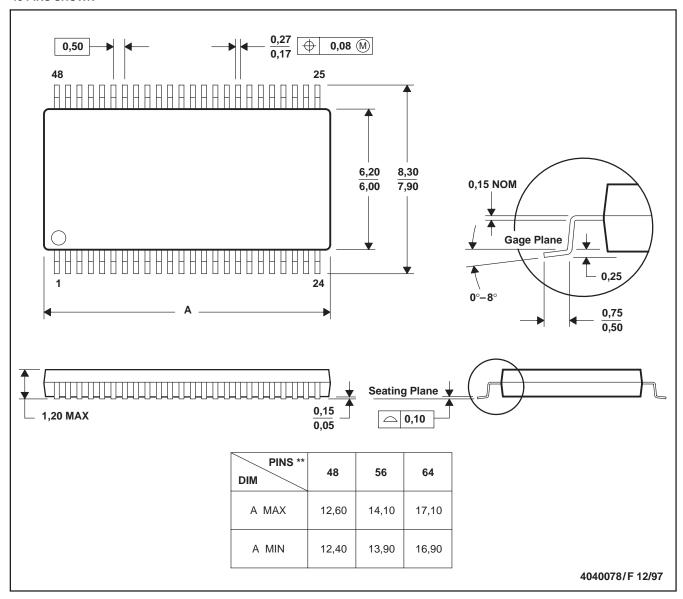


NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025