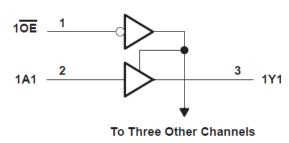


SN74AHC367

ZHCSTP9G - JUNE 1998 - REVISED JULY 2024

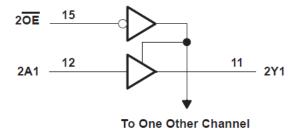

SN74AHC367 具有三态输出的六通道缓冲器和线路驱动器

1 特性

- 工作范围为 2V 至 5.5V V_{CC}
- 闩锁性能超过 100mA,符合 JESD 78 II 类规范的

2 应用

- 启用或禁用数字信号
- 控制指示灯 LED
- 通信模块和系统控制器之间的转换


3 说明

'AHC367 器件是六通道缓冲器和线路驱动器,可在 2V 至 5.5V V_{CC} 电压下运行。

封装信息

器件型号	器件型号 封装(1)		本体尺寸 ⁽³⁾
	D (SOIC , 16)	9.9mm × 6mm	9.9mm × 3.9mm
SN74AHC367	N (PDIP , 16)	19.3mm x 9.4mm	19.3mm x 6.35mm
	PW (TSSOP , 16)	5.00mm x 6.4mm	5.00mm x 4.4mm

- 如需了解更多信息,请参阅机械、封装和可订购信息。
- 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。
- 本体尺寸(长×宽)为标称值,不包括引脚。

逻辑图(正逻辑)

English Data Sheet: SCLS424

Table of Contents

1 特性	1
2 应用	
3 说明	
4 Pin Configurations and Functions	3
5 Specifications	4
5.1 Absolute Maximum Ratings	4
5.2 ESD Ratings	
5.3 Recommended Operating Conditions	
5.4 Thermal Information	<mark>5</mark>
5.5 Electrical Characteristics	<mark>5</mark>
5.6 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V	<mark>5</mark>
5.7 Switching Characteristics, V _{CC} = 5 V ± 0.5 V	6
5.8 Noise Characteristics	6
5.9 Operating Characteristics	<mark>6</mark>
6 Parameter Measurement Information	
7 Detailed Description	8
7 1 Overview	8

7.2 Functional Block Diagram	
7.3 Device Functional Modes	8
8 Application and Implementation	9
8.1 Application Information	
8.2 Typical Application	
8.3 Power Supply Recommendations	9
8.4 Layout	9
9 Device and Documentation Support	11
9.1 Documentation Support (Analog)	11
9.2 接收文档更新通知	
9.3 支持资源	
9.4 Trademarks	
9.5 静电放电警告	11
9.6 术语表	11
10 Revision History	11
11 Mechanical, Packaging, and Orderable	
Information	12

4 Pin Configurations and Functions

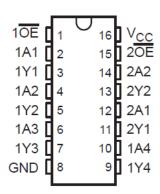


图 4-1. D, DB, DGV, N, or PW Package (Top View)

表 4-1. Pin Functions

	PIN	TYPE	DESCRIPTION
NO.	NAME	TYPE	DESCRIPTION
1	1 ŌĒ	I	Output Enable 1
2	1A1	I	1A1 Input
3	1Y1	0	1Y1 Output
4	1A2	1	1A2 Input
5	1Y2	0	1Y2 Output
6	1A3	1	1A3 Input
7	1Y3	0	1Y3 Output
8	GND	_	Ground Pin
9	1Y4	0	1Y4 Output
10	1A4	I	1A4 Input
11	2Y1	0	2Y1 Output
12	2A1	I	2A1 Input
13	2Y2	0	2Y2 Output
14	2A2	1	2A2 Input
15	2 OE	1	Output Enable 2
16	V _{CC}	_	Power Pin

Product Folder Links: SN74AHC367

English Data Sheet: SCLS424

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		- 0.5	7	V
V _I ⁽²⁾	Input voltage range		- 0.5	7	V
V _O (2)	Output voltage range		- 0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	(V _I < 0)		- 20	mA
I _{OK}	Output clamp current	(V _O < 0)		±20	mA
Io	Continuous output current	$(V_O = 0 \text{ to } V_{CC})$		±25	mA
	Continuous current through V _{CC} or GND			±75	mA
T _{stg}	Storage temperature range		- 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-Body Model (A114-A), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	Liectiostatic discharge	Charged-Device Model (C101), per JESD22-C101 ⁽²⁾	±1000]

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
V _{IH}	High-level input voltage	V _{CC} = 3 V	2.1		V
		V _{CC} = 5.5 V	3.85		
		V _{CC} = 2 V		0.5	
V _{IL}	Low-level input voltage	V _{CC} = 3 V		0.9	V
		V _{CC} = 5.5 V		1.65	
VI	Input voltage	·	0	5.5	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 2 V		- 50	μΑ
I _{OH}		V _{CC} = 3.3 V ± 0.3 V		- 4	mA
		V _{CC} = 5 V ± 0.5 V		- 8	MA
		V _{CC} = 2 V		50	μA
I _{OL}	Low-level output current	V _{CC} = 3.3 V ± 0.3 V		4	mA
		V _{CC} = 5 V ± 0.5 V		8	MA
A 4/ A	land the mail is a sufficient of	V _{CC} = 3.3 V ± 0.3 V		100	no/\/
∆ t/ ∆ v	Input transition rise or fall rate	V _{CC} = 5 V ± 0.5 V		20	ns/V
T _A	Operating free-air temperature		- 40	85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs.

Copyright © 2024 Texas Instruments Incorporated

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Information

		SN74AHC367						
	THERMAL METRIC(1)	D (SOIC)	DB (SSOP)	DGV (TVSOP)	N (PDIP)	PW (TSSOP)	UNIT	
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS		
R _{θ JA}	Junction-to-ambient thermal resistance	73	82	120	67	135.9	°C/W	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	, , , , , , , , , , , , , , , , , , ,	T,	_λ = 25°C		SN74AHC	367	LINUT
PARAMETER		V _{CC}	MIN	TYP	MAX	MIN	MAX	UNIT
		2 V	1.9	2		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		
V _{OH}		4.5 V	4.4	4.5		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		
		2 V			0.1		0.1	
	I _{OL} = 50 μA	3 V	,		0.1		0.1	
V _{OL}		4.5 V			0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.44	
l _i	V _I = 5.5 V or GND	0 V to 5.5 V			± 0.1		± 1	μΑ
oz	$V_{I} = V_{CC}$ or GND, $V_{O} = V_{CC}$ or GND, $\overline{OE} = V_{IH}$	5.5 V			± 0.25		± 2.5	μА
lcc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40	μA
C _i	V _I = V _{CC} or GND	5 V		3	10		10	pF
Co	V _O = V _{CC} or GND	5 V		5.1				pF

5.6 Switching Characteristics, V_{CC} = 3.3 V ± 0.3 V

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	FROM	то	LOAD	T	λ = 25°C		SN74AHC	367	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
t _{PLH}	^	Y	C _L = 15 pF		4.7 ¹	8.3 ¹	1	10	
t _{PHL}	A	T T	C _L = 15 pr		4.7 ¹	8.3 ¹	1	10	ns
t _{PZH}	ŌĒ	V	C = 45 pF		5.1 ¹	10.5 ¹	1	12.5	
t _{PZL}	OE .	Y	Y C _L = 15 pF		5.1 ¹	10.5 ¹	1	12.5	ns
t _{PHZ}	ŌĒ	Y	C = 45 pF		4 ¹	10.5 ¹	1	12.5	
t _{PLZ}	OE.	Y	C _L = 15 pF		4.91	10.51	1	12.5	ns
t _{PLH}	^	Y	0 - 50 - 5		6.1	11.8	1	13.5	
t _{PHL}	A	T T	C _L = 50 pF		6.2	11.8	1	13.5	ns
t _{PZH}	- OE Y	V	0 - 50 - 5		6.4	14	1	16	
t _{PZL}		ľ	C _L = 50 pF		6.8	14	1	16	ns
t _{PHZ}	<u> </u>	V	0 - 50 - 5		6.2	13.6	1	15.5	
t _{PLZ}	ŌĒ	Y	C _L = 50 pF		7.3	13.6	1	15.5	ns

1. On products compliant to MIL-PRF-38535, this parameter is not production tested.

5.7 Switching Characteristics, V_{CC} = 5 V ± 0.5 V

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM	то	LOAD	T,			SN74AHC367		UNIT
PARAWETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNII
t _{PLH}	Α	Y	C _L = 15 pF		3.4 ¹	5.9 ¹	1	7	ns
t _{PHL}		.	OL = 13 pi		3.6 ¹	5.9 ¹	1	7	115
t _{PZH}	ŌĒ	Υ	C _L = 15 pF		3.6 ¹	7.2 ¹	1	8.5	ns
t _{PZL}	OL	'	OL = 13 pi		3.8 ¹	7.2 ¹	1	8.5	115
t _{PHZ}	ŌĒ	Y	C _L = 15 pF		2.61	7.21	0	8.5	ns
t _{PLZ}	OL	'	OL = 13 pi		2.6 ¹	7.2 ¹	0	8.5	115
t _{PLH}	Α	Y	C _L = 50 pF		4.3	7.9	1	9	ns
t _{PHL}		'	OL - 30 pi		4.5	7.9	1	9	115
t _{PZH}	OE.	OE Y C _L = 50 pF	C = 50 pE		4.6	9.2	1	10.5	ns
t _{PZL}	J OE			4.9	9.2	1	10.5	115	
t _{PHZ}	- OE	Y	C _L = 50 pF		3.4	9.2	0	10.5	ns
t _{PLZ}	J DE	•	OL - 50 PF		4.5	9.2	0	10.5	115

1. On products compliant to MIL-PRF-38535, this parameter is not production tested.

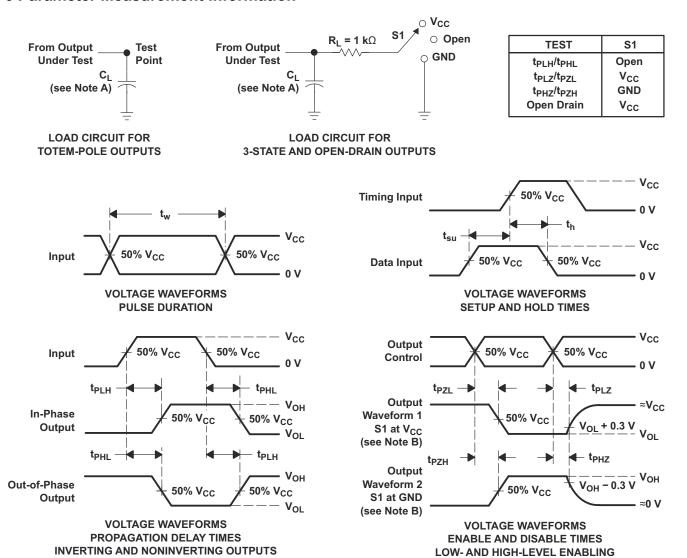
5.8 Noise Characteristics

 V_{CC} = 3.3 V, C_{L} = 50 pF, T_{A} = 25°C

	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.9		V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		- 0.8		V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		4.2		V
V _{IH(D)}	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V

5.9 Operating Characteristics

 $T_A = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load, f = 1 MHz	22.4	pF

提交文档反馈

English Data Sheet: SCLS424

6 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 $\,^{\Omega}$, t_r \leq 3 ns, t_r \leq 3 ns
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PHL} and t_{PLH} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

图 6-1. Load Circuit and Voltage Waveforms

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

7

7 Detailed Description

7.1 Overview

These devices are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The 'AHC367 devices are organized as dual 4-line and 2-line buffers/drivers with active-low output-enable ($1\overline{OE}$ and $2\overline{OE}$) inputs. When \overline{OE} is low, the device passes noninverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

7.2 Functional Block Diagram

图 7-1. Logic Diagram (Positive Logic)

7.3 Device Functional Modes

表 7-1. Function Table (Each Buffer/ Driver)

INPL	OUTPUT			
ŌĒ	ŌĒ A			
L	Н	Н		
L	L	L		
Н	X	Z		

Copyright © 2024 Texas Instruments Incorporated

8 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

In this application, three 2-input AND gates are combined to produce a 4-input AND gate function as shown in Block Diagram. The fourth gate can be used for another application in the system, or the inputs can be grounded and the channel left unused.

The SN74AHC367 is used to directly control the RESET pin of a motor controller. The controller requires four input signals to all be HIGH before being enabled, and should be disabled in the event that any one signal goes LOW. The 4-input AND gate function combines the four individual reset signals into a single active-low reset signal.

8.2 Typical Application

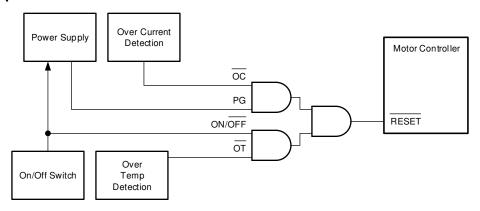


图 8-1. Typical Application Block Diagram

8.3 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- µF capacitor is recommended for this device. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. The 0.1- µF and 1- µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in the following layout example.

8.4 Layout

8.4.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices, inputs must never be left floating. In many cases, functions or parts of functions of digital logic devices are unused (for example, when only two inputs of a tripleinput AND gate are used or only 3 of the 4 buffer gates are used). Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC}, whichever makes more sense for the logic function or is more convenient.

Product Folder Links: SN74AHC367

9

8.4.2 Layout Example

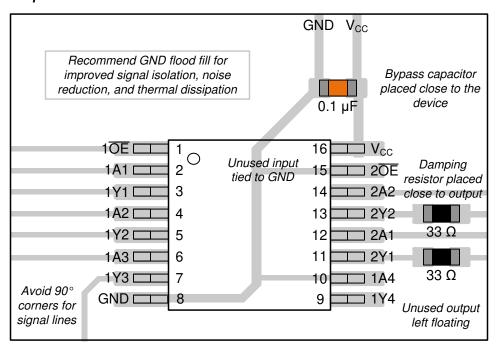


图 8-2. Example Layout for the SN74AHC367

English Data Sheet: SCLS424

9 Device and Documentation Support

9.1 Documentation Support (Analog)

9.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

表 9-1. Related Links

PARTS	PRODUCT FOLDER	PRODUCT FOLDER SAMPLE & BUY DOO		TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
SN74AHC367	Click here	Click here	Click here	Click here	Click here	

9.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.3 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

10 Revision History

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision F (November 2023) to Revision G (July 2024)

Page

Changes from Revision E (February 2002) to Revision F (November 2023)

Page

11

Product Folder Links: SN74AHC367

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

English Data Sheet: SCLS424

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

31-Oct-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/			Part marking
	(1)	(2)			(3)	Ball material	Peak reflow	Peak reflow	
						(4)	(5)		
SN74AHC367D	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	AHC367
SN74AHC367DR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC367
SN74AHC367DR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AHC367
SN74AHC367N	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74AHC367N
SN74AHC367N.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	SN74AHC367N
SN74AHC367PWR	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	HA367
SN74AHC367PWR.A	Active	Production	TSSOP (PW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HA367

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

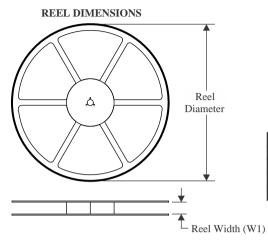
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

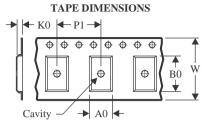
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

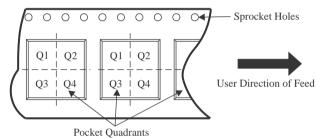
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM

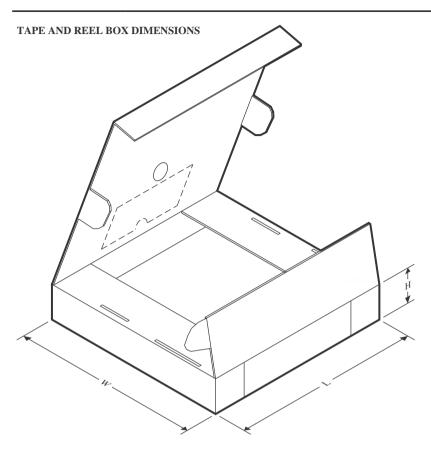

www.ti.com 31-Oct-2025

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

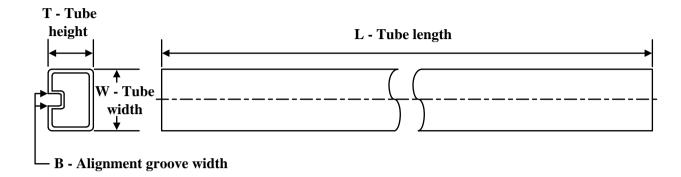
	-
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC367DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74AHC367PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 24-Jul-2025

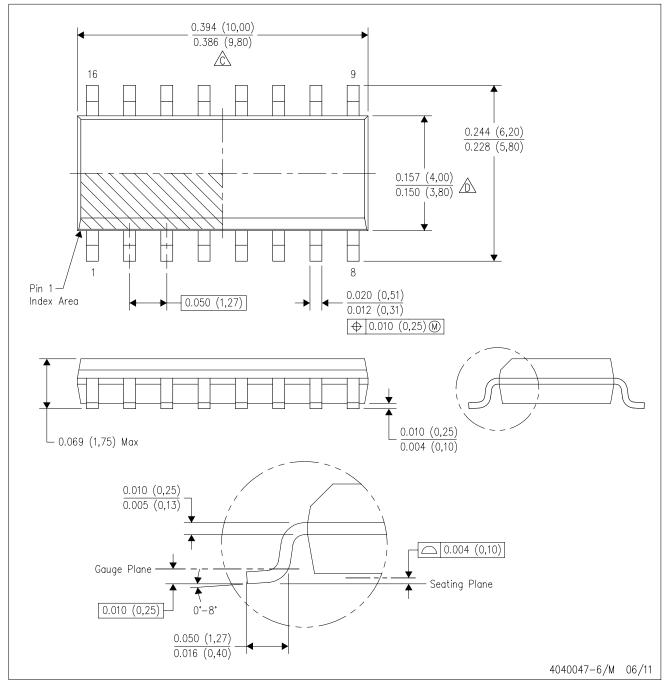

*All dimensions are nominal

Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74AHC367DR	SOIC	D	16	2500	340.5	336.1	32.0	
SN74AHC367PWR	TSSOP	PW	16	2000	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

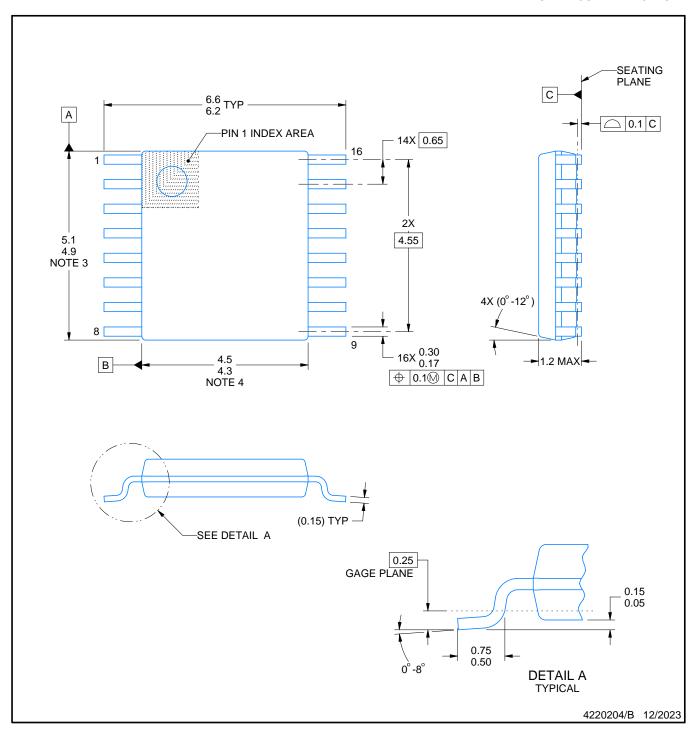


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74AHC367N	N	PDIP	16	25	506	13.97	11230	4.32
SN74AHC367N	N	PDIP	16	25	506	13.97	11230	4.32
SN74AHC367N.A	N	PDIP	16	25	506	13.97	11230	4.32
SN74AHC367N.A	N	PDIP	16	25	506	13.97	11230	4.32

D (R-PDS0-G16)

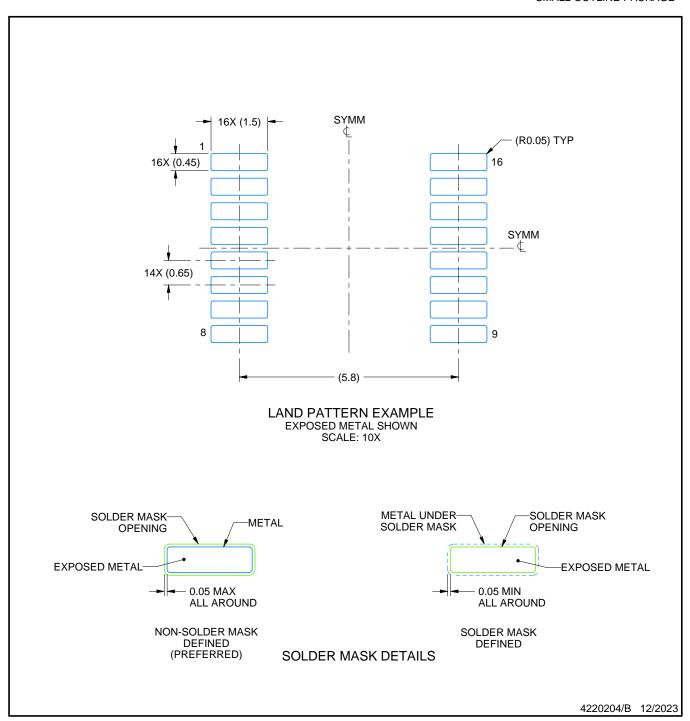
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

SMALL OUTLINE PACKAGE

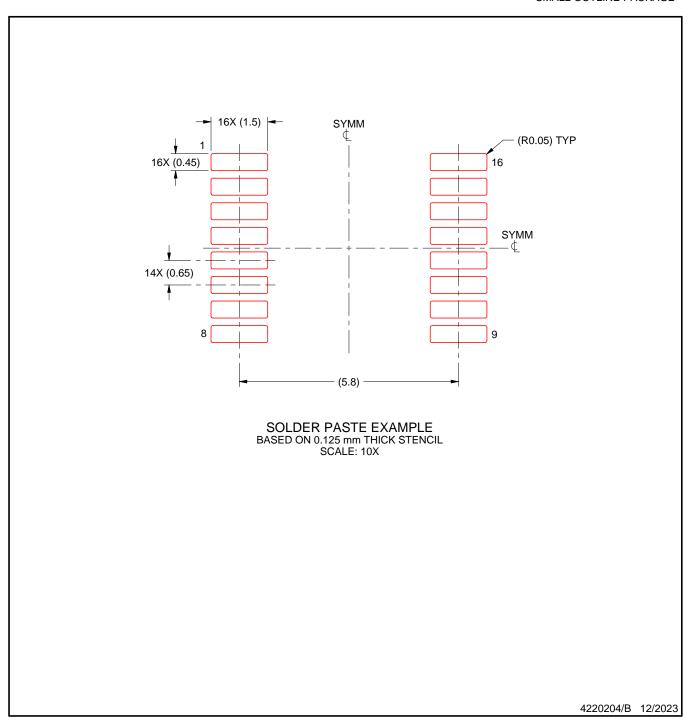
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

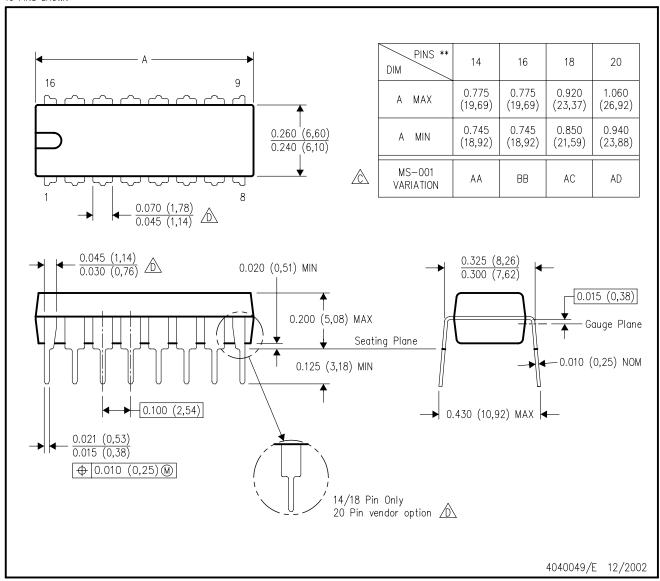


NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)


- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月