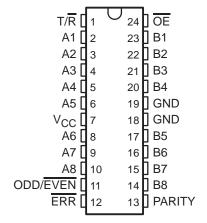
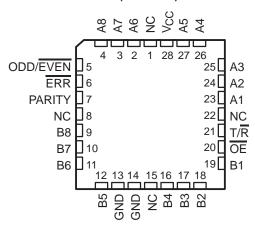
SCBS192E - JANUARY 1991 - REVISED JUNE 1997


- State-of-the-Art *EPIC-IIB™* BiCMOS Design **Significantly Reduces Power Dissipation**
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- **High-Impedance State During Power Up** and Power Down
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI})
- **Package Options Include Plastic** Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Plastic (NT) and Ceramic (JT) DIPs

description


'ABT657A The transceivers have eight noninverting buffers with parity-generator/ checker circuits and control signals. transmit/receive (T/\overline{R}) input determines the direction of data flow. When T/\overline{R} is high, data flows from the A port to the B port (transmit mode); when T/\overline{R} is low, data flows from the B port to the A port (receive mode). When the output-enable (OE) input is high, both the A and B ports are in the high-impedance state.

Odd or even parity is selected by a logic high or low level on the ODD/EVEN input. PARITY carries the parity-bit value; it is an output from the parity generator/checker in the transmit mode and an input to the parity generator/checker in the receive mode.

SN54ABT657A . . . JT PACKAGE SN74ABT657A . . . DW OR NT PACKAGE (TOP VIEW)

SN54ABT657A...FK PACKAGE (TOP VIEW)

NC - No internal connection

In the transmit mode, after the A bus is polled to determine the number of high bits, PARITY is set to the logic level that maintains the parity sense selected by the level at ODD/EVEN. For example, if ODD/EVEN is low (even parity selected) and there are five high bits on the A bus, PARITY is set to the logic high level so that an even number of the nine total bits (eight A-bus bits plus parity bit) are high.

In the receive mode, after the B bus is polled to determine the number of high bits, the error (ERR) output logic level indicates whether or not the data to be received exhibits the correct parity sense. For example, if ODD/EVEN is high (odd parity selected), PARITY is high, and there are three high bits on the B bus, ERR is low, indicating a parity error.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

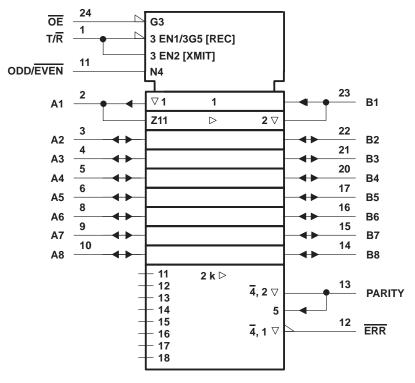
EPIC-IIB is a trademark of Texas Instruments Incorporated

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

description (continued)

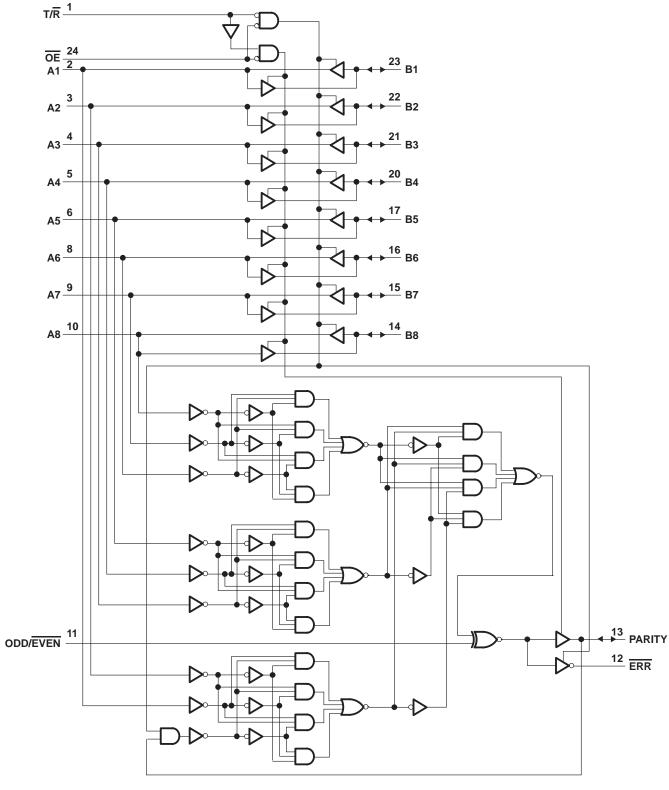
When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT657A is characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ABT657A is characterized for operation from -40° C to 85° C.


FUNCTION TABLE

			THOR TABLE			
NUMBER OF A OR B		INPL	JTS	1/0		OUTPUTS
INPUTS THAT ARE HIGH	ŌĒ	T/R	ODD/EVEN	PARITY	ERR	OUTPUT MODE
	L	Н	Н	Н	Z	Transmit
	L	Н	L	L	Z	Transmit
0, 2, 4, 6, 8	L	L	Н	Н	Н	Receive
0, 2, 4, 0, 0	L	L	Н	L	L	Receive
	L	L	L	Н	L	Receive
	L	L	L	L	Н	Receive
	L	Н	Н	L	Z	Transmit
	L	Н	L	Н	Z	Transmit
1, 3, 5, 7	L	L	Н	Н	L	Receive
1, 3, 5, 7	L	L	Н	L	Н	Receive
	L	L	L	Н	Н	Receive
	L	L	L	L	L	Receive
Don't care	Н	Χ	X	Z	Z	Z

SCBS192E - JANUARY 1991 - REVISED JUNE 1997


logic symbol†

 $[\]dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DW, JT, and NT packages.

logic diagram (positive logic)

Pin numbers shown are for the DW, JT, and NT packages.

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, VO	-0.5 V to 5.5 V
Current into any output in the low state, IO: SN54ABT657A	96 mA
SN74ABT657A	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DW package	81°C/W
NT package	67°C/W
Storage temperature range, T _{stg}	-65° C to 150° C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions (see Note 3)

			SN54AB	T657A	SN74AB	T657A	UNIT
			MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage		4.5	5.5	4.5	5.5	V
VIH	High-level input voltage		2	3	2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage		0	Vcc	0	VCC	V
ІОН	High-level output current		7.	-24		-32	mA
loL	Low-level output current		2	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	20/	5		5	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200	·	μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.

^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

$V_{IK} \qquad V_{CC} = 4.5 \text{ V}, \qquad I_{I} = -18 \text{ mA} \qquad -1.2 \qquad -1.2 \qquad -1.2 \qquad -1.2 \qquad V_{CC} = 4.5 \text{ V}, \qquad I_{OH} = -3 \text{ mA} \qquad 2.5 \qquad 2.5 \qquad 2.5 \qquad 2.5 \qquad V_{CC} = 5 \text{ V}, \qquad I_{OH} = -3 \text{ mA} \qquad 3 \qquad $	THAL	
$V_{OH} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JNIT	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{ c c c c c c } \hline V_{CC} = 4.5 \ V & \begin{array}{ c c c c c } \hline I_{OH} = -24 \ mA & 2 & 2 \\ \hline I_{OH} = -32 \ mA & 2^* & 2 \\ \hline \hline V_{OL} & V_{CC} = 4.5 \ V & \begin{array}{ c c c c } \hline I_{OL} = 48 \ mA & 0.55 & 0.55 \\ \hline V_{hys} & 100 & m \\ \hline I_{I} & \begin{array}{ c c c } \hline Control \ inputs & V_{CC} = 0 \ to 5.5 \ V, \ V_{I} = V_{CC} \ or \ GND & \pm 1 & \pm 1 & \pm 1 \\ \hline A \ or \ B \ ports & V_{CC} = 2.1 \ V \ to 5.5 \ V, \ V_{I} = V_{CC} \ or \ GND & \pm 20 & \pm 20 \\ \hline I_{OZPU}^{\ddagger} & \begin{array}{ c c } \hline V_{CC} = 0 \ to 2.1 \ V, \ V_{O} = 0.5 \ V \ to 2.7 \ V, \\ \hline OE = X & \\ \hline I_{OZPD}^{\ddagger} & \begin{array}{ c c } \hline V_{CC} = 2.1 \ V \ to 5.5 \ V, \ V_{O} = 0.5 \ V \ to 2.7 \ V, \\ \hline OE = X & \\ \hline I_{OZ} & \begin{array}{ c c } \hline V_{CC} = 2.1 \ V \ to 5.5 \ V, \ V_{O} = 2.7 \ V, \\ \hline OE \ge 2 \ V & \\ \hline \end{array} & \begin{array}{ c c } \hline I_{OZ} & \begin{array}{ c c } \hline I_{OZ} & \begin{array}{ c c } \hline V_{CC} = 2.1 \ V \ to 5.5 \ V, \ V_{O} = 0.5 \ V, \\ \hline OE \ge 2 \ V & \\ \hline \end{array} & \begin{array}{ c c } \hline I_{OZ} & \begin{array}{ c } \hline I_{OZ} & \begin{array}{ c c $	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	
$\begin{array}{ c c c c c c c c } \hline V_{OL} & V_{CC} = 4.5 \text{ V} & \hline I_{OL} = 64 \text{ mA} & 0.55^* & 0.55 \\ \hline V_{hys} & 100 & m \\ \hline I_{I} & Control inputs & V_{CC} = 0 \text{ to } 5.5 \text{ V}, V_{I} = V_{CC} \text{ or GND} & \pm 1 & \pm 1 & \pm 1 \\ \hline A \text{ or B ports} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{I} = V_{CC} \text{ or GND} & \pm 20 & \pm 20 & \pm 20 \\ \hline I_{OZPU}^{\ddagger} & V_{CC} = 0 \text{ to } 2.1 \text{ V}, V_{O} = 0.5 \text{ V to } 2.7 \text{ V}, & \pm 50 & \pm 50 & \pm 50 \\ \hline I_{OZPD}^{\ddagger} & V_{CC} = 2.1 \text{ V to } 0, V_{O} = 0.5 \text{ V to } 2.7 \text{ V}, & \pm 50 & \pm 50 & \pm 50 \\ \hline I_{OZH}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 2.7 \text{ V}, & 10 & 10 & 10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 & -10 & -10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 & -10 & -10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 & -10 & -10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 & -10 & -10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 & -10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 & -10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 & -10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 \\ \hline I_{OZL}^{\$} & V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, V_{O} = 0.5 \text{ V}, & -10 \\ \hline I_{OZL}^{\$} & V_{CC}^{*} & V_{CC}^{*}$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	V	
$\begin{array}{ c c c c c c c c } \hline I_{I} & \frac{\text{Control inputs}}{\text{A or B ports}} & \text{V}_{CC} = 0 \text{ to } 5.5 \text{ V}, \text{V}_{I} = \text{V}_{CC} \text{ or GND} & \pm 1 & \pm 1 & \pm 1 \\ \hline & \text{A or B ports} & \text{V}_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{I} = \text{V}_{CC} \text{ or GND} & \pm 20 & \pm 20 \\ \hline & \text{IOZPU}^{\ddagger} & \frac{\text{V}_{CC}}{\text{OE}} = 0 \text{ to } 2.1 \text{ V}, \text{V}_{O} = 0.5 \text{ V to } 2.7 \text{ V}, \\ \hline & \text{IOZPD}^{\ddagger} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 0, \text{V}_{O} = 0.5 \text{ V to } 2.7 \text{ V}, \\ \hline & \text{IOZH}^{\S} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{O} = 2.7 \text{ V}, \\ \hline & \text{IOZL}^{\S} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{O} = 0.5 \text{ V}, \\ \hline & \text{IOZL}^{\S} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{O} = 0.5 \text{ V}, \\ \hline & \text{IOZ} = 0.5 \text{ V}, \text{V}_{O} = 0.5 \text{ V}, \\ \hline & \text{IOZL}^{\S} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{O} = 0.5 \text{ V}, \\ \hline & \text{OE} \geq 2 \text{ V} & -10 & -10 & -10 \\ \hline & -10 & -10 & -10 \\ \hline & \mu \end{array}$	V	
$\begin{array}{ c c c c c c c c } \hline I_{I} & \frac{\text{Control inputs}}{\text{A or B ports}} & \text{V}_{CC} = 0 \text{ to } 5.5 \text{ V}, \text{V}_{I} = \text{V}_{CC} \text{ or GND} & \pm 1 & \pm 1 & \pm 1 \\ \hline & \text{A or B ports} & \text{V}_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{I} = \text{V}_{CC} \text{ or GND} & \pm 20 & \pm 20 \\ \hline & \text{IOZPU}^{\ddagger} & \frac{\text{V}_{CC}}{\text{OE}} = 0 \text{ to } 2.1 \text{ V}, \text{V}_{O} = 0.5 \text{ V to } 2.7 \text{ V}, \\ \hline & \text{IOZPD}^{\ddagger} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 0, \text{V}_{O} = 0.5 \text{ V to } 2.7 \text{ V}, \\ \hline & \text{IOZH}^{\S} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{O} = 2.7 \text{ V}, \\ \hline & \text{IOZL}^{\S} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{O} = 0.5 \text{ V}, \\ \hline & \text{IOZL}^{\S} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{O} = 0.5 \text{ V}, \\ \hline & \text{IOZ} = 0.5 \text{ V}, \text{V}_{O} = 0.5 \text{ V}, \\ \hline & \text{IOZL}^{\S} & \frac{\text{V}_{CC}}{\text{OE}} = 2.1 \text{ V to } 5.5 \text{ V}, \text{V}_{O} = 0.5 \text{ V}, \\ \hline & \text{OE} \geq 2 \text{ V} & -10 & -10 & -10 \\ \hline & -10 & -10 & -10 \\ \hline & \mu \end{array}$	mV	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μΑ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μΑ	
OZH^{\S} $OE ≥ 2 V$	μΑ	
$\overline{OE} \ge 2 \text{ V}$	μΑ	
	μΑ	
$oxed{I_{off}}$ $oxed{V_{CC}}=0,$ $oxed{V_{I}}$ or $oxed{V_{O}}\leq4.5oxed{V}$ ±100 ±100 μ	μΑ	
ICEX $V_{CC} = 5.5 \text{ V}, V_{O} = 5.5 \text{ V}$ Outputs high 50 50 μ	μΑ	
I_{O} ¶ $V_{CC} = 5.5 \text{ V}$, $V_{O} = 2.5 \text{ V}$ $-50 -100 -200$ $-50 -200$ $-50 -200$ m	mA	
$V_{CC} = 5.5 \text{ V},$ Outputs high 250 250 μ	μΑ	
$I_{O} = 0$, Outputs low 40 40 40 m	mΑ	
$V_I = V_{CC}$ or GND Outputs disabled 250 250 250 μ	μΑ	
Data inputs VCC = 5.5 V, One input at 3.4 V,		
I Uther inputs at I I I I I I I I I I I I I I I I I I	mA	
Control inputs $V_{CC} = 5.5 \text{ V}$, One input at 3.4 V, Other inputs at V_{CC} or GND 1.5 1.5		
C_i Control inputs $V_1 = 2.5 \text{ V or } 0.5 \text{ V}$	pF	
C _{io} A or B ports V _O = 2.5 V or 0.5 V 10	pF	

^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

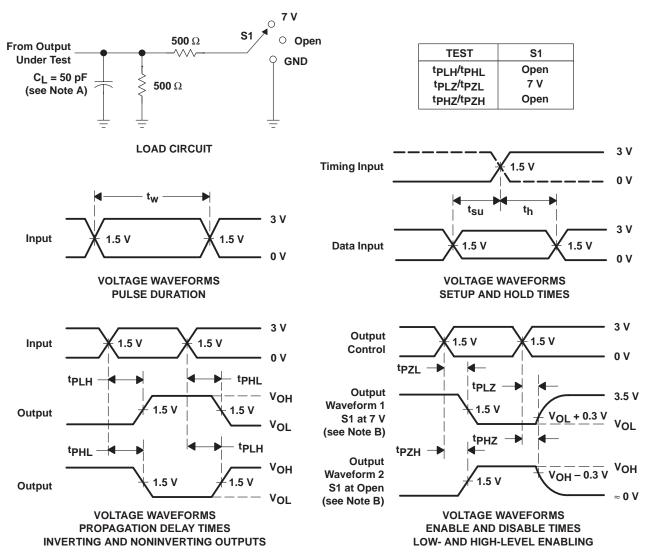
[†] All typical values are at $V_{CC} = 5 \text{ V}$.

[‡] This parameter is characterized, but not production tested.

[§] The parameters IOZH and IOZL include the input leakage current.

[¶] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

[#] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.


SCBS192E - JANUARY 1991 - REVISED JUNE 1997

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	۷ ₀ ۲ _/	C = 5 V \ = 25°C	/, ;	SN54AB	T657A	SN74AB	T657A	UNIT
	(1141 01)	(0011 01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	A or B	B or A	1	3.2	4.2	1	5	1	4.6	ns
^t PHL	AOIB	BOIA	1	2.8	3.8	1	4.5	1	4.3	115
^t PLH	А	PARITY	1.8	4.8	6.3	1.8	8.5	1.8	8.1	ns
t _{PHL}	A	PARITI	2.3	4.9	6.4	2.3	8.1	2.3	7.7	115
^t PLH	ODD (EVEN	DADITY FDD	1.1	3.3	4.2	1.1	5.3	1.1	4.9	ns
t _{PHL}	ODD/EVEN	PARITY, ERR	1.3	3.4	4.5	1.3	5.1	1.3	4.9	116
^t PLH	В		1.6	4.7	6.5	1.6	8.4	1.6	7.9	ns
t _{PHL}	Ь	ERR	2.1	4.9	6.9	2.1	8	2.1	7.8	115
^t PLH	PARITY	ERR	2	4.8	6.3	2	8.1	2	7.7	ns
^t PHL	FANITI	EKK	2.1	4.9	6.7	2.1	8	2.1	7.5	115
^t PZH	ŌĒ	A D DADITY	1.4	4	5.4	1.4	6.8	1.4	6.5	ns
t _{PZL}	OE	A, B, PARITY	1.7	4.1	5.8	1.7	6.7	1.7	6.5	115
^t PZH	ŌĒ		1.8	4.1	5.4	1.8	6.9	1.8	6.6	ns
^t PZL	OE .	ERR	3.3	6.2	7.6	3.3	9.7	3.3	9.2	115
^t PHZ	ŌĒ	A, B, PARITY, or	2.4	4.2	5.6	2.4	6.3	2.4	6.2	ns
t _{PLZ}	OE .	ERR	1.8	4.2	6.2	1.8	8.9	1.8	7.8	115

SCBS192E - JANUARY 1991 - REVISED JUNE 1997

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2.5 \text{ ns.}$
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
SN74ABT657ADBR	Active	Production	SSOP (DB) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB657A
31174AD1037ADDIX	Active	1 TOUGGETOTT	3301 (DB) 24	2000 LANGE TWI	163	NII DAO	Level-1-200C-OINLIIVI	-40 10 03	ABOSTA
SN74ABT657ADBR.B	Active	Production	SSOP (DB) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AB657A
SN74ABT657ADW	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT657A
SN74ABT657ADW.B	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT657A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

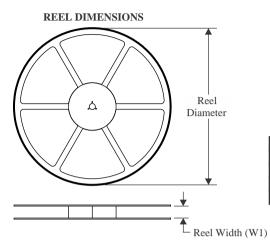
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

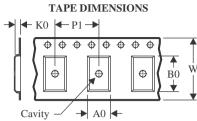
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

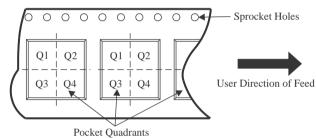
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

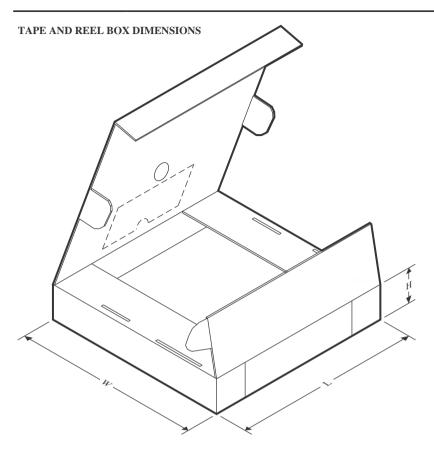
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

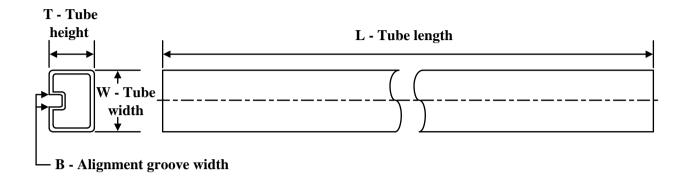


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABT657ADBR	SSOP	DB	24	2000	330.0	16.4	8.2	8.8	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74ABT657ADBR	SSOP	DB	24	2000	353.0	353.0	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74ABT657ADW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74ABT657ADW.B	DW	SOIC	24	25	506.98	12.7	4826	6.6

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025