

14.2GBPS 双通道、双模线性均衡器

查询样品: [SN65LVCP1412](#)

特性

- 背板和线缆连接串行数据速率高达 **14.2Gbps** 的双通道、单向、多速率、双模线性均衡器
- 线性均衡增加了系统执行判决反馈均衡器 (**DFE**) 时的链路裕量
- 针对背板模式或者线缆模式，在具有 **1dB** 阶跃控制的 **7.1GHz** 上可实现 **18dB** 模拟均衡
- 输出线性动态范围: **1200mV**
- 带宽: **>20GHz** - 典型值
- **7.1GHz** 上, 好于 **15dB** 的回波损耗
- 支持带外 (**OOB**) 信令
- 低功耗: **2.5V VCC** 时, 每通道为 **75mW** (典型值)
- **24** 端子 **QFN** (四方扁平、无引线)
4mm x 5mm x 0.75mm; 0.5mm 端子间距

- 到 **100Ω** 差分印刷电路板 (**PCB**) 传输线路的出色阻抗匹配
- 通用输入输出接口 (**GPIO**) 或者 **I²C** 控制
- **2.5V** 和 **3.3V±5%** 单电源
- **2kV** 静电放电 (**ESD**) 人体模型 (**HBM**)
- 流经阳引脚的数据流简化了路由访问
- 小型封装尺寸节省了电路板空间

应用范围

- 电信和数据通信中的高速连接
- 针对 **10GbE, 16GFC, 10G SONET, SAS, SATA, CPRI, OBSAI, Infiniband, 10GBase-KR, 和 XFI/SFI** 的背板和线缆连接

说明

SN65LVCP1412 是一款异步、协议无关、低延迟、两通道线性均衡器，此均衡器针对高达 **14.2Gbps** 的数据速率和为背板或有源线缆应用中损耗的补偿进行了优化。SN65LVCP1412 的架构设计用于与一个特定用途集成电路 (**ASIC**) 或者一个现场可编程栅极阵列 (**FPGA**) (采用判决反馈均衡器 (**DFE**) 来实现数字均衡) 一起运行。

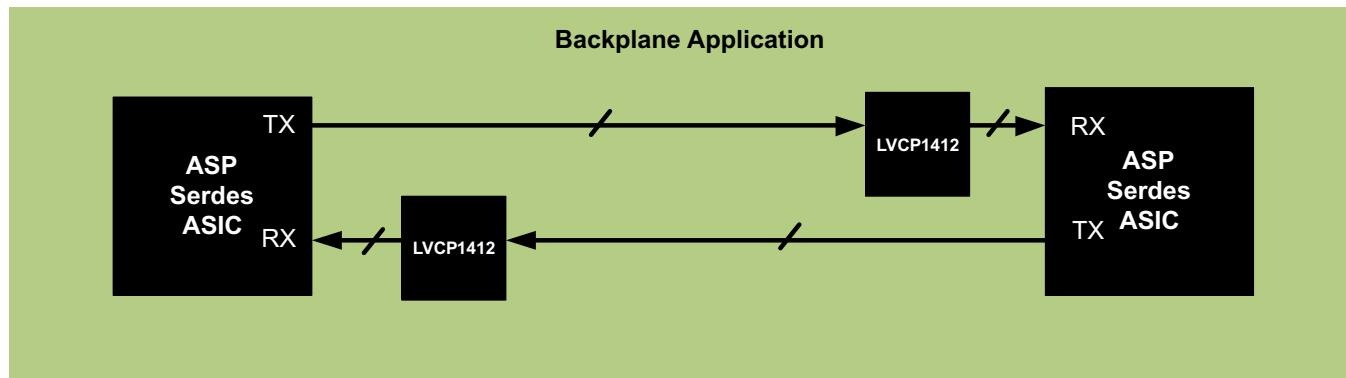
SN65LVCP1412 线性均衡器保持已发送信号的形状以确保最优 **DFE** 性能。SN65LVCP1412 在充分发挥 **DFE** 效率的同时提供了一个低功耗的解决方案。

SN65LVCP1412 可经由 **I²C** 或者 **GPIO** 接口进行配置。SN65LVCP1412 的 **I²C** 接口使得用户能够针对每个独立通道独立地控制均衡、路径增益和输出动态范围。在 **GPIO** 模式下，通过使用 **GPIO** 输入引脚，可为所有通道设置均衡、路径增益、和输出动态范围。

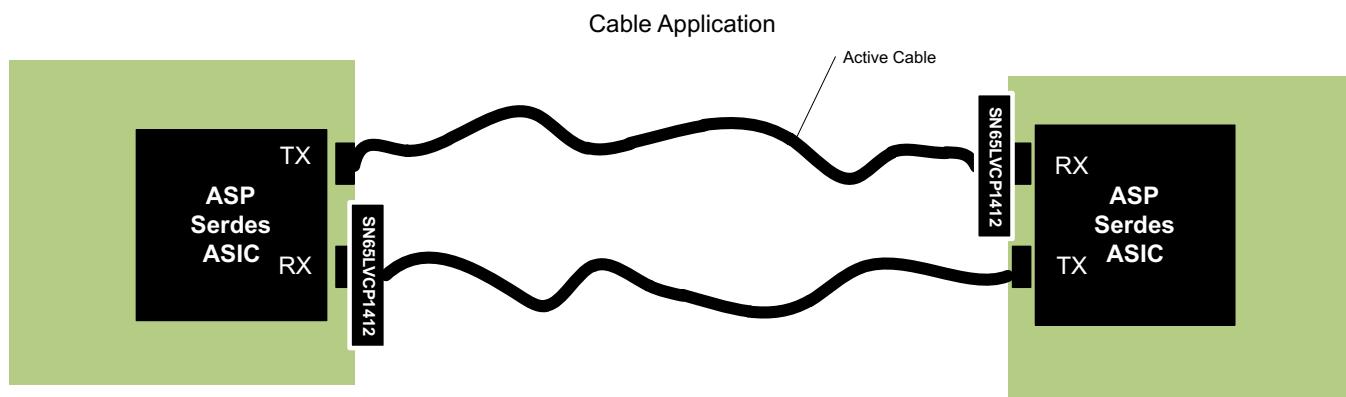
SN65LVCP1412 输出可由 **I²C** 单独禁用。

SN65LVCP1412 在一个 **2.5V** 或者 **3.3V** 单电源下运行。

SN65LVCP1412 采用 **24** 引脚 **4mm x 5mm x 0.75mm QFN** (四方扁平无引线) 无铅 **0.5mm** 焊球间距封装，额定运行温度 **-40°C** 至 **85°C**。



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

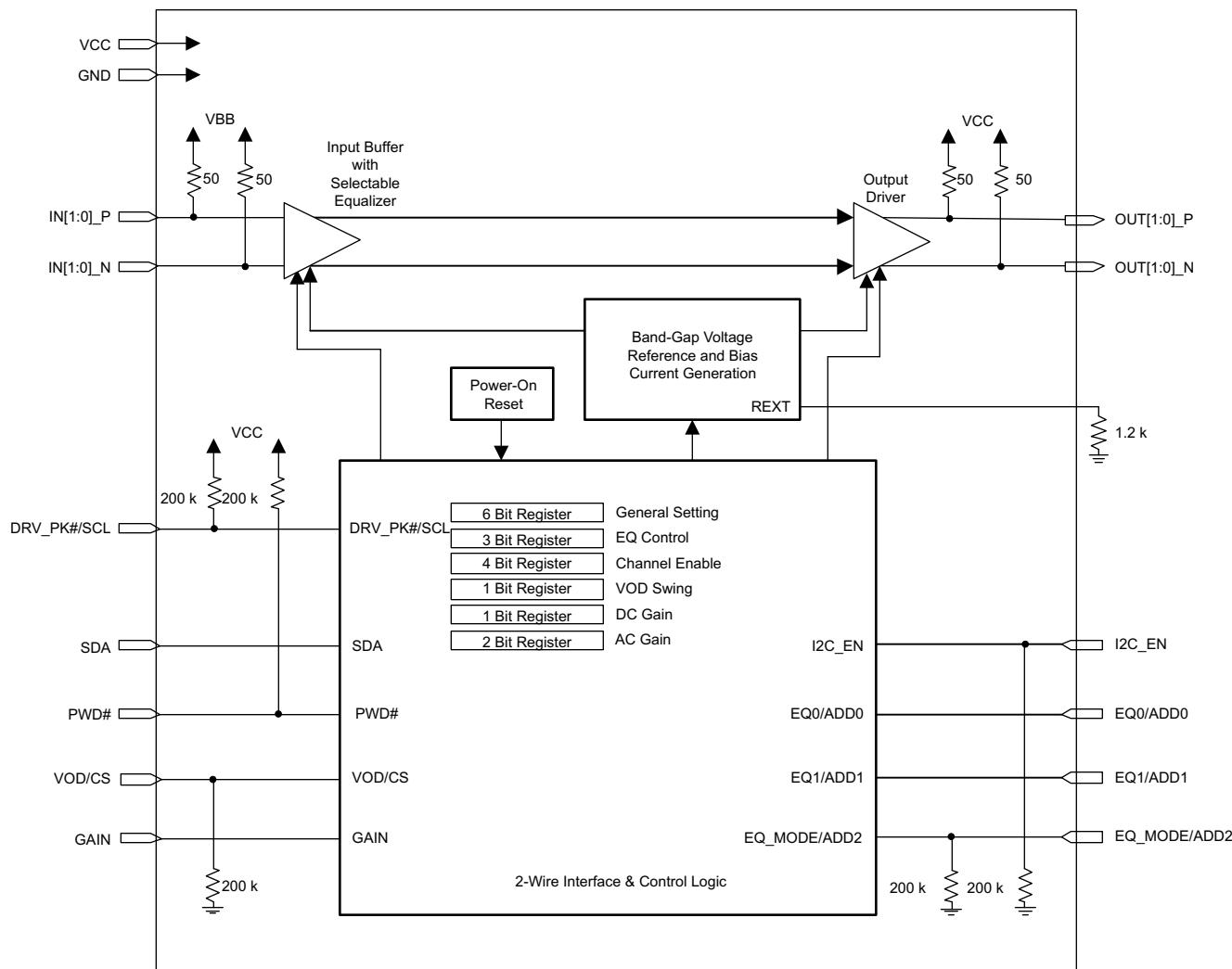

Figure 1. Typical Backplane Application – Trace Mode

Figure 2. Typical Cable Application – Cable Mode

BLOCK DIAGRAM (GPIO or I²C Mode)

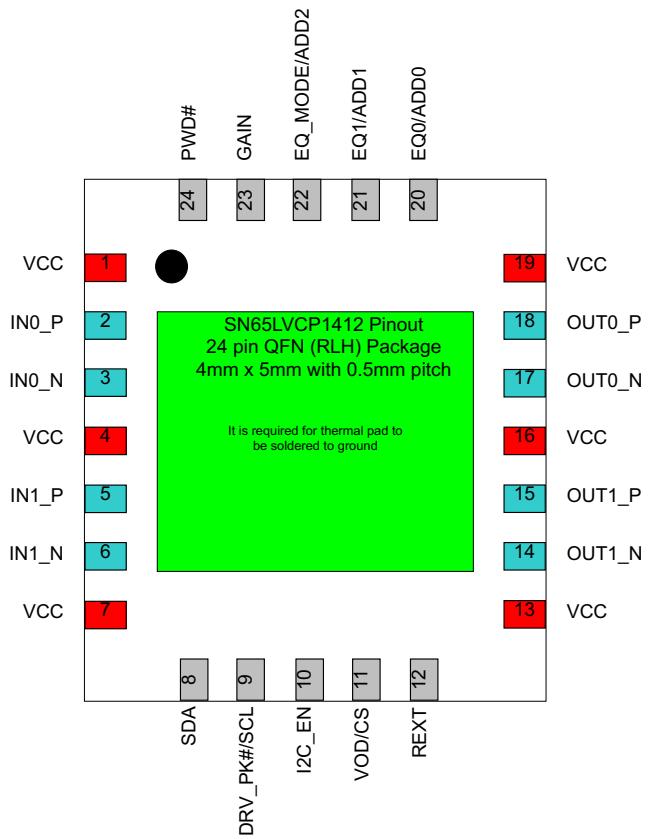

A simplified block diagram of the SN65LVCP1412 is shown in [Figure 3](#) for GPIO or I²C input control mode. This compact, low power, 14.2Gbps dual-channel dual-mode linear analog equalizer consists of two high-speed data paths and an input GPIO pin logic-control block and a two-wire interface with a control-logic block.

Figure 3. Simplified Block Diagram of the SN65LVCP1412

PACKAGE

The package pin locations and assignments are shown in [Figure 4](#). The SN65LVCP1412 is packaged in a 4mm x 5mm x 0.75mm, 24 pin, 0.5mm pitch lead-free QFN.

Figure 4. Package Drawing (Top View)

PIN DESCRIPTIONS

PINS		DIRECTION TYPE SUPPLY	DESCRIPTION
NAME	NO.	DIFFERENTIAL HIGH-SPEED I/O	
CONTROL SIGNALS			
SDA	8	Input Output, Open drain	GPIO mode No action needed I²C mode I ² C data. Connect a 10kΩ pull-up resistor externally
DRV_PK#/SCL	9	Input. (with 200kΩ pull-up)	GPIO mode HIGH: disable Driver peaking LOW: enables Driver 6dB AC peaking I²C mode I ² C clock. Connect a 10kΩ pull-up resistor externally
I2C_EN	10	Input, (with 200kΩ pull-down) 2.5V/3.3V CMOS	Configures the device operation for I ² C or GPIO mode: HIGH: enables I ² C mode LOW: enables GPIO mode

PIN DESCRIPTIONS (continued)

PINS		DIRECTION TYPE SUPPLY	DESCRIPTION																															
NAME	NO.																																	
VOD/CS	11	Input, (with 200kΩ pull-down) 2.5V/3.3V CMOS	GPIO mode HIGH: set high VOD range LOW: set low VOD range	I²C mode HIGH: acts as Chip Select LOW: disables I ² C interface																														
REXT	12	Input, Analog	External Bias Resistor: 1,200 Ω to GND																															
EQ0/ADD0	20	Input, 2.5V/3.3V CMOS - 3-state	GPIO mode Working with EQ1 to determine input EQ gain.	I²C mode ADD0 along with pins ADD1 and ADD2 comprise the three bits of I ² C slave address. ADD2:ADD1:ADD0:XXX																														
EQ1/ADD1	21	Input, 2.5V/3.3V CMOS - 3-state	GPIO mode Working with EQ0 to determine input EQ gain steps of approximately 2dB <table border="1" data-bbox="605 633 897 992"> <tr> <th>EQ1</th><th>EQ0</th><th>EQ GAIN</th></tr> <tr><td>GND</td><td>GND</td><td>000</td></tr> <tr><td>GND</td><td>HiZ</td><td>000</td></tr> <tr><td>GND</td><td>VCC</td><td>001</td></tr> <tr><td>HiZ</td><td>GND</td><td>010</td></tr> <tr><td>HiZ</td><td>HiZ</td><td>011</td></tr> <tr><td>HiZ</td><td>VCC</td><td>100</td></tr> <tr><td>VCC</td><td>GND</td><td>101</td></tr> <tr><td>VCC</td><td>HiZ</td><td>110</td></tr> <tr><td>VCC</td><td>VCC</td><td>111</td></tr> </table>	EQ1	EQ0	EQ GAIN	GND	GND	000	GND	HiZ	000	GND	VCC	001	HiZ	GND	010	HiZ	HiZ	011	HiZ	VCC	100	VCC	GND	101	VCC	HiZ	110	VCC	VCC	111	I²C mode ADD1 along with pins ADD0 and ADD2 comprise the three bits of I ² C slave address ADD2:ADD1:ADD0:XXX
EQ1	EQ0	EQ GAIN																																
GND	GND	000																																
GND	HiZ	000																																
GND	VCC	001																																
HiZ	GND	010																																
HiZ	HiZ	011																																
HiZ	VCC	100																																
VCC	GND	101																																
VCC	HiZ	110																																
VCC	VCC	111																																
EQ1 and EQ0 work with AC_GAIN and DC_GAIN to determine final EQ gain as this:																																		
<table border="1" data-bbox="605 1034 1003 1214"> <tr> <th>EQ1/ EQ0</th><th>GAIN</th><th>DC GAIN (dB)</th><th>EQ GAIN (dB)</th></tr> <tr><td>000 ~ 111</td><td>LOW</td><td>-6</td><td>1 ~ 9</td></tr> <tr><td>000 ~ 111</td><td>HiZ</td><td>-6</td><td>7 ~ 17</td></tr> <tr><td>000 ~ 111</td><td>HIGH</td><td>0</td><td>1 ~ 9</td></tr> </table>					EQ1/ EQ0	GAIN	DC GAIN (dB)	EQ GAIN (dB)	000 ~ 111	LOW	-6	1 ~ 9	000 ~ 111	HiZ	-6	7 ~ 17	000 ~ 111	HIGH	0	1 ~ 9														
EQ1/ EQ0	GAIN	DC GAIN (dB)	EQ GAIN (dB)																															
000 ~ 111	LOW	-6	1 ~ 9																															
000 ~ 111	HiZ	-6	7 ~ 17																															
000 ~ 111	HIGH	0	1 ~ 9																															
EQ_MODE/ ADD2	22	Input, (with 200kΩ pull-down), 2.5V/3.3V CMOS	GPIO mode HIGH: Trace mode LOW: Cable mode	I²C mode ADD2 along with pins ADD1 and ADD0 comprise the three bits of I ² C slave address. ADD2:ADD1:ADD0:XXX																														
GAIN	23	Input, 2.5V/3.3V CMOS - 3-state	GPIO mode Work with EQ1/EQ0 to set total EQ Gain. See table above.	I²C mode No action needed																														
PWD#	24	Input, (with 200kΩ pull-up), 2.5V/3.3V CMOS	HIGH: Normal Operation LOW: Powers down the device, inputs off and outputs disabled, resets I ² C																															
POWER SUPPLY																																		
VCC	1, 4, 7, 13, 16, 19	Power	Power supply 2.5V±5%, 3.3V±5%																															
GND Center Pad		Ground	The ground center pad is the metal contact at the bottom of the package. This pad must be connected to the GND plane. At least 9 PCB vias are recommended to minimize inductance and provide a solid ground. Refer to the package drawing (RLH-package) for the via placement.																															

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		VALUES	UNIT
V_{CC}	Supply voltage range ⁽²⁾	-0.3 to 4	V
$V_{IN,DIFF}$	Differential Voltage between IN_x_P and IN_x_N	± 2.5	V
V_{IN+}, IN_-	Voltage at IN_x_P and fIN_x_N	-0.5 V to $V_{CC}+0.5$	V
V_{IO}	Voltage on Control IO pins	-0.5 V to $V_{CC}+0.5$	V
I_{IN+}, I_{IN-}	Continuous Current at high speed differential data inputs (differential)	-25 to 25	mA
I_{OUT+}, I_{OUT-}	Continuous Current at high speed differential data outputs	-25 to 25	mA
ESD	Human Body Model ⁽³⁾ (All Pins)	2.0	kV
	Charged-Device Model ⁽⁴⁾ (All Pins)	500	V
Moisture Sensitivity level		2	
Shelf Life Conditions In Moisture Barrier Bag		24 Months at <40°C and <90% Humidity	
Reflow Temperature package soldering, 4 sec		260	°C

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
- (3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
- (4) Tested in accordance with JEDEC Standard 22, Test Method C101.

THERMAL INFORMATION

THERMAL METRIC ⁽¹⁾		SN65LVCP1412	UNITS
	RLH (24 PINS)		
θ_{JA}	Junction-to-ambient thermal resistance ⁽²⁾	34.7	°C/W
θ_{JCtop}	Junction-to-case (top) thermal resistance ⁽³⁾	33.8	
θ_{JB}	Junction-to-board thermal resistance ⁽⁴⁾	12.5	
Ψ_{JT}	Junction-to-top characterization parameter ⁽⁵⁾	0.50	
Ψ_{JB}	Junction-to-board characterization parameter ⁽⁶⁾	12.5	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance ⁽⁷⁾	2.00	

- (1) 有关传统和新的热 度量的更多信息 , 请参阅 IC 封装热度量应用报告 , [SPRA953](#)。
- (2) 在 JESD51-2a 描述的环境中 , 按照 JESD51-7 的指定 , 在一个 JEDEC 标准高 K 电路板上进行仿真 , 从而获得自然 对流条件下的结至环境热阻。
- (3) 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳 (顶部) 的热阻。不存在特定的 JEDEC 标准测试 , 但 可在 ANSI SEMI 标准 G30-88 中能找到内容接近的说明。
- (4) 按照 JESD51-8 中的说明 , 通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真 , 以获得结板热阻。
- (5) 结至顶部特征参数 , Ψ_{JT} , 估算真实系统中器件的结温 , 并使用 JESD51-2a (第 6 章和第 7 章) 中 描述的程序从仿真数据中 提取出该参数以便获得 θ_{JA} 。
- (6) 结至电路板特征参数 , Ψ_{JB} , 估算真实系统中器件的结温 , 并使用 JESD51-2a (第 6 章和第 7 章) 中 描述的程序从仿真数据中 提取出该参数以便获得 θ_{JA} 。
- (7) 通过在外露 (电源) 焊盘上进行冷板测试仿真来获得 结至芯片外壳 (底部) 热阻。不存在特定的 JEDEC 标准 测试 , 但可在 ANSI SEMI 标准 G30-88 中能找到内容接近的说明。

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
dR	Operating Data Rate			14.2	Gbps
V _{CC}	Supply voltage	2.375	2.5	2.625	V
V _{CC}	Supply voltage	3.135	3.3	3.465	V
TC	Junction temperature	-10		125	°C
TB	Maximum board temperature			85	°C
CMOS DC SPECIFICATIONS					
V _{IH}	High-level input voltage	0.8×V _{CC}			V
V _{MID}	Mid-level input voltage	V _{CC} ×0.4	V _{CC} ×0.6		V
V _{IL}	Low-level input voltage	-0.5	0.2×V _{CC}		V
PSNR BG	Bandgap Circuit PSNR	20			dB

ELECTRICAL CHARACTERISTICS (VCC 2.5V ±5%)

over operating free-air temperature range. All parameters are referenced to package pins. (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
POWER CONSUMPTION					
PD _L	Device power dissipation	150	250		mW
PD _H	Device power dissipation	225	400		mW
PD _{OFF}	Device power with all 4 channels switched off	5			mW

(1) All typical values are at 25°C and with 2.5V supply unless otherwise noted.

ELECTRICAL CHARACTERISTICS (VCC 3.3V ±5%)

over operating free-air temperature range. All parameters are referenced to package pins. (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
POWER CONSUMPTION					
PD _L	Device power dissipation	225	375		mW
PD _H	Device power dissipation	330	525		mW
PD _{OFF}	Device power with all 4 channels switched off	5			mW

(1) All typical values are at 25°C and with 2.5V supply unless otherwise noted.

ELECTRICAL CHARACTERISTICS (VCC 2.5V ±5%, 3.3V ±5%)

over operating free-air temperature range. All parameters are referenced to package pins. (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
CMOS DC SPECIFICATIONS					
I _{IH}	VIN = 0.9 × V _{CC}	-40	17	40	µA
I _{IL}	VIN = 0.1 × V _{CC}	-40	17	40	µA
CML INPUTS (IN[3:0]_P, IN[3:0]_N)					
r _{IN}	INx_P to INx_N	100			Ω
V _{IN}	Gain = 0.5	1200			mV _{pp}
V _{ICM}	Internally biased	V _{CC} -0.8			V
SCD11	Input differential to common mode conversion	-20			dB
SDD11	Differential input return loss	-15			dB

(1) All typical values are at 25°C and with 2.5V and 3.3V supply unless otherwise noted.

ELECTRICAL CHARACTERISTICS (VCC 2.5V \pm 5%, 3.3V \pm 5%) (continued)

over operating free-air temperature range. All parameters are referenced to package pins. (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
CML OUTPUTS (OUT[3:0]_P, OUT[3:0]_N)					
V _{OD}	R _L = 100 Ω , V _{OD} = HIGH		1200		mV _{pp}
	R _L = 100 Ω , V _{OD} = LOW		600		mV _{pp}
V _{OS}	R _L = 100 Ω , 0 V applied at inputs		10		mV _{pp}
V _{OCM}	See Figure 5		V _{CC} -0.4		V
V _{CM,RIP}	K28.5 pattern at 14.2Gbps on all 4 channels, no interconnect loss, VOD = HIGH		10	20	mV _{RMS}
V _{OD,RIP}	K28.5 pattern at 14.2Gbps on all channels, no interconnect loss, VIN = 1200mV _{pp} .			20	mV _{pp}
V _{OC(ss)}	Change in steady-state common-mode output voltage between logic states		\pm 10		mV
t _R	Rise time ⁽²⁾	Input signal with 30ps rise time. 20% to 80%. See Figure 7	31		ps
t _F	Fall time ⁽²⁾	Input signal with 30ps fall time. 20% to 80%. See Figure 7	32		ps
SDD22	Differential output return loss	100MHz to 7.1GHz		-15	dB
SCC22	Common-mode output return loss	100MHz to 7.1GHz		-8	dB
t _{PLH}	Low-to-high propagation delay	See Figure 6	65		ps
t _{PHL}	High-to-low propagation delay		65		ps
t _{SK(O)}	Inter-Pair (lane to lane) output skew ⁽³⁾	All outputs terminated with 100 Ω , See Figure 8	3		ps
t _{SK(PP)}	Part-to-part skew ⁽⁴⁾	All outputs terminated with 100 Ω		50	ps
r _{OT}	Single ended output resistance	Single ended on-chip termination to VCC. Outputs will be AC coupled.		50	Ω
r _{OM}	Output termination mismatch at 1MHz	$\Delta r_{OM} = 2 \times \frac{rp - rn}{rp + rn} \times 100$		5	%
Ch _{iso}	Channel-to-channel isolation	Frequency at 7.1GHz	35	45	dB
OUT _{NOISE}	Output referred noise ⁽⁵⁾	10MHz to 7.1GHz. No other noise source present. VOD = LOW		400	μ VRMS
		10MHz to 7.1GHz. No other noise source present. VOD = HIGH		500	μ VRMS
EQUALIZATION					
EQ _{Gain}	At 7.1GHz input signal	Equalization Gain, EQ = MAX	15	18	dB
V _{pre}	Output pre-cursor pre-emphasis	Input signal with 3.75 pre-cursor and measure it on the output signal, Refer Figure 9 . V _{pre} = 20log(V3/V2)		3.75	dB
V _{pst}	Output post-cursor pre-emphasis	Input signal with 12dB post-cursor and measure it on the output signal, Refer Figure 9 . V _{pst} = 20log(V1/V2)		12	dB
DJ1	Residual deterministic jitter at 10.3125 Gbps	Transmit Side application Tx launch Amplitude = 0.6V _{pp} , EQ=0, ACGain and DCgain = Low and VOD = High, Trace Mode Test Channel \rightarrow 0". See Figure 11		0.016	Ulp-p
DJ2	Residual deterministic jitter at 10.3125 Gbps	Receive Side Application Tx launch Amplitude = 0.6V _{pp} , EQ=7, ACGain and VOD = High and DCgain = High, Trace Mode Test Channel \rightarrow 12" (9dB loss at 5GHz) See Figure 10		0.11	Ulp-p
DJ3	Residual Deterministic Jitter at 14.2 Gbps	Transmit Side Application Tx launch Amplitude = 0.6V _{pp} , EQ=0, ACGain and DCgain = Low and VOD = High, Trace Mode Test Channel \rightarrow 0". See Figure 11		0.041	Ulp-p
DJ4	Residual Deterministic Jitter at 14.2 Gbps	Receive Side Application Tx launch Amplitude = 0.6V _{pp} , EQ=7, ACGain and VOD = High and DCgain = High, Trace Mode Test Channel \rightarrow 8" (9dB loss at 7GHz) See Figure 10		0.13	Ulp-p

(2) Rise and Fall measurements include board and channel effects of the test environment, refer to [Figure 10](#) and [Figure 11](#)

(3) t_{SK(O)} is the magnitude of the time difference between the channels.

(4) t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

(5) All noise sources added.

PARAMETER MEASUREMENT INFORMATION

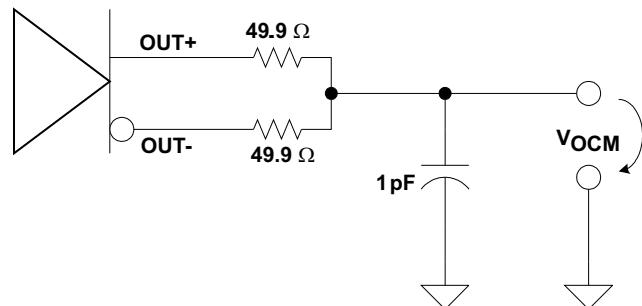


Figure 5. Common Mode Output Voltage Test Circuit

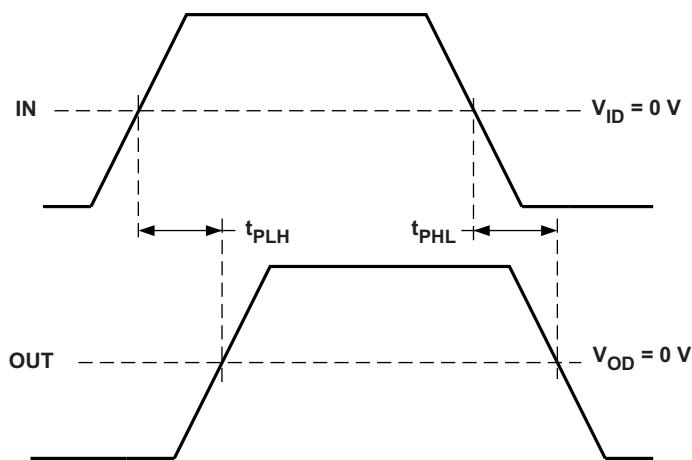
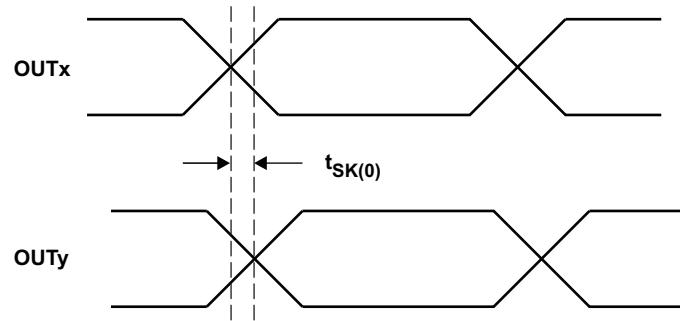
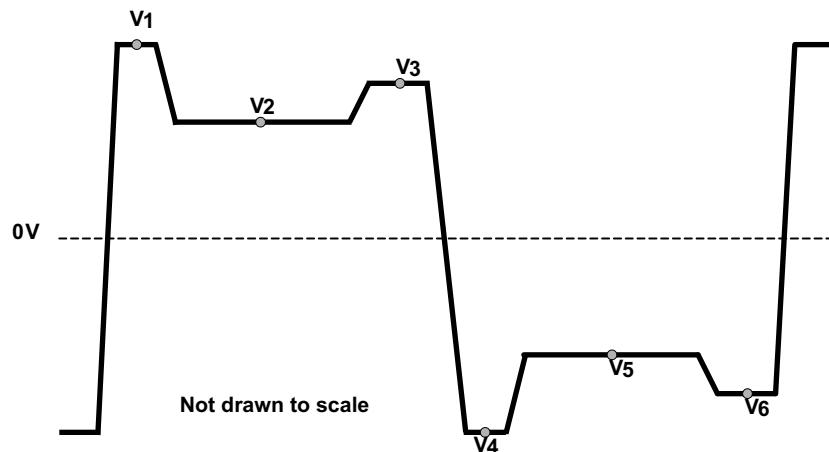
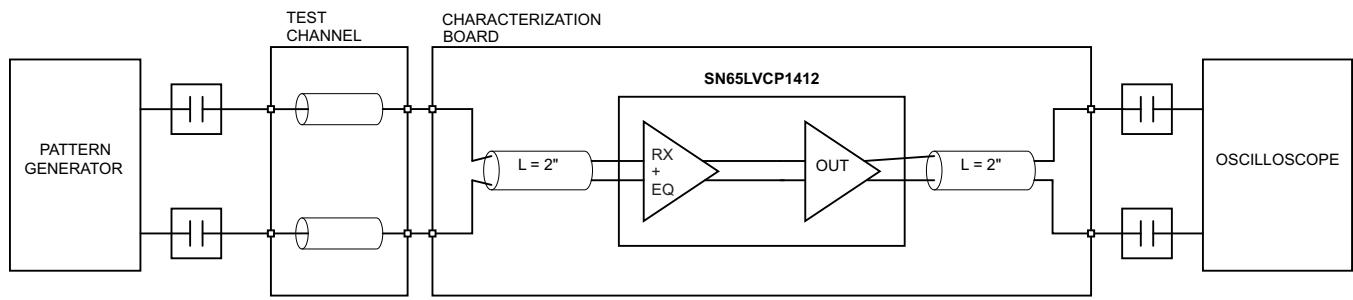


Figure 6. Propagation Delay Input to Output

Figure 7. Output Rise and Fall Time

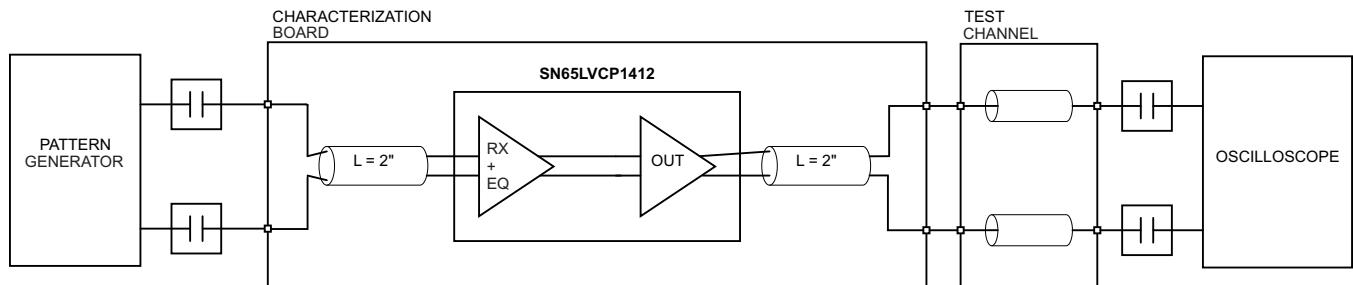

Figure 8. Output Inter-Pair Skew

Figure 9. Vpre and Vpost (The test pattern is 1111111100000000 (8-1s, 8-0s))

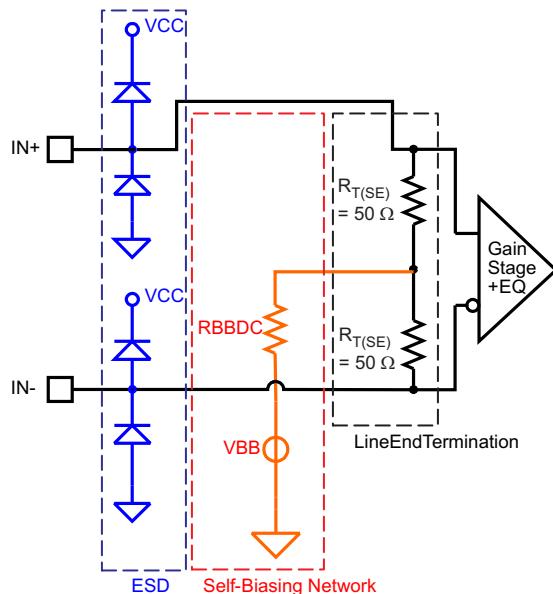


Figure 10. Receive Side Performance Test Circuit

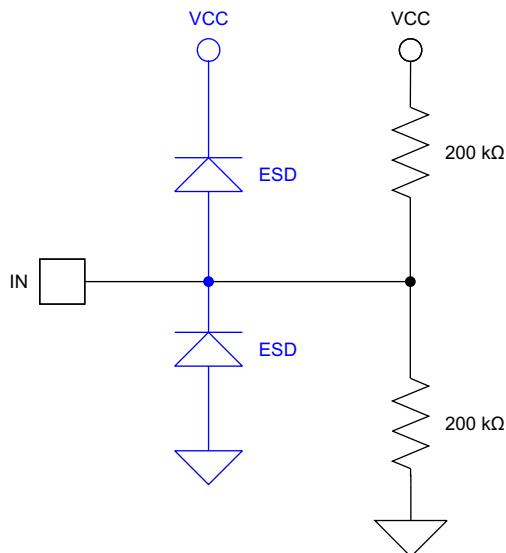


Figure 11. Transmit Side Performance Test Circuit

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

Figure 12. Equivalent Input Circuit Design

Figure 13. 3-Level Input Biasing Network

TYPICAL CHARACTERISTICS

Typical operating condition is at $V_{CC} = 2.5V$ and $T_A = 25^\circ C$, no interconnect line at the output, and with default device settings (unless otherwise noted).

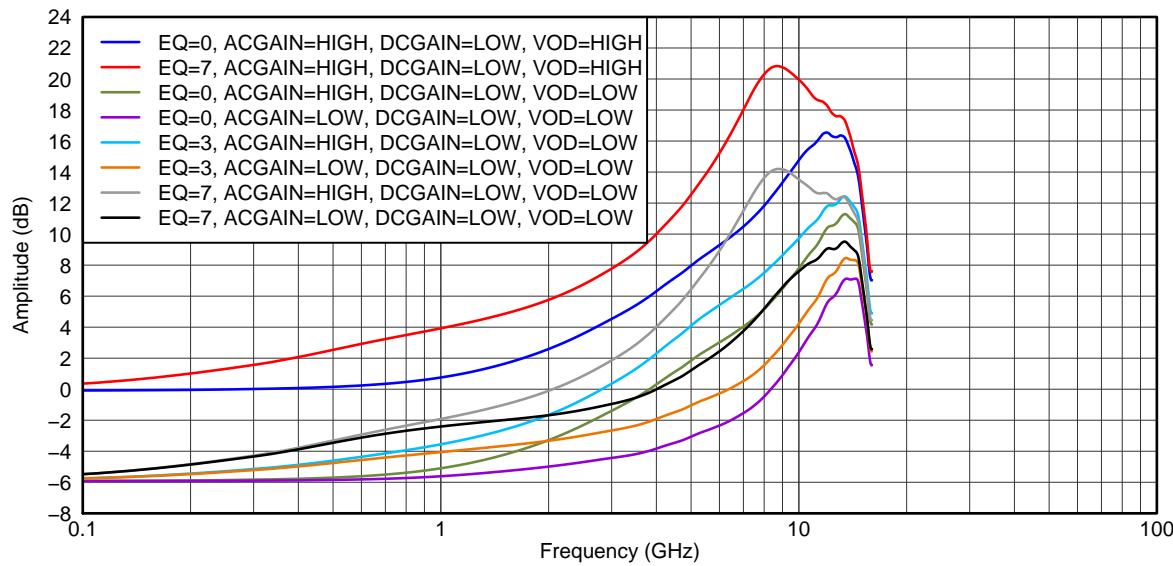


Figure 14. Typical EQ Gain Profile Curve

G001

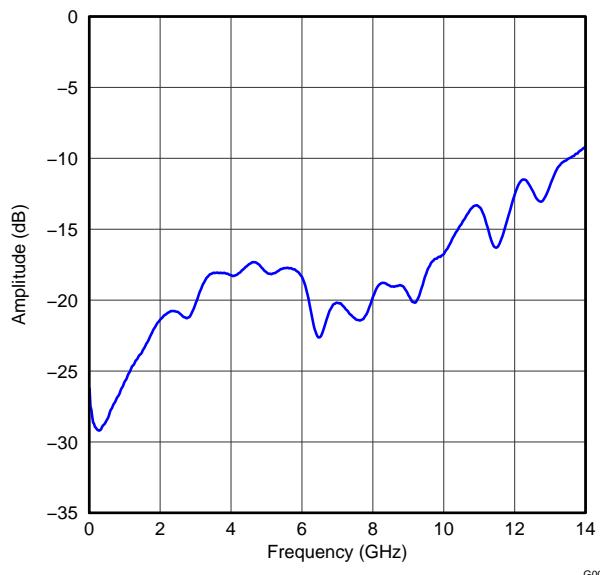


Figure 15. Differential Input Return Loss

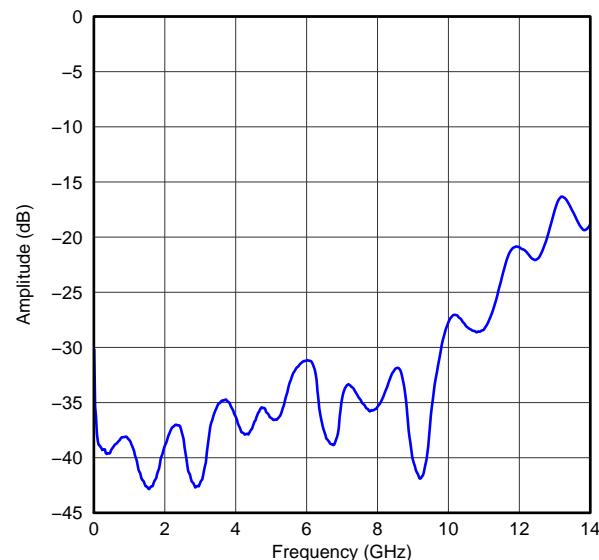
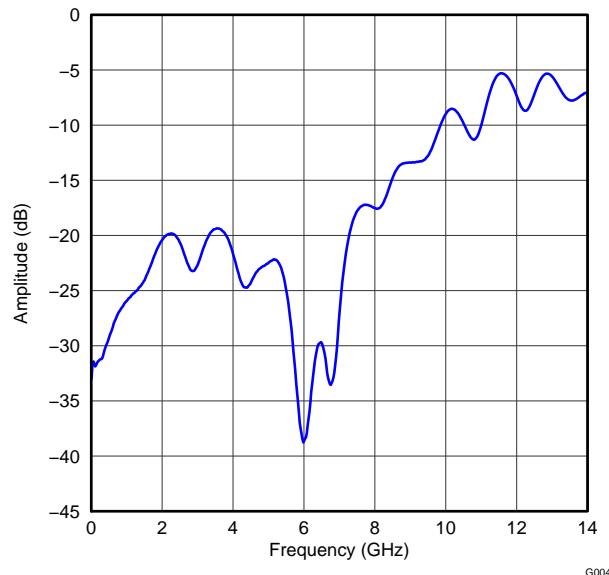
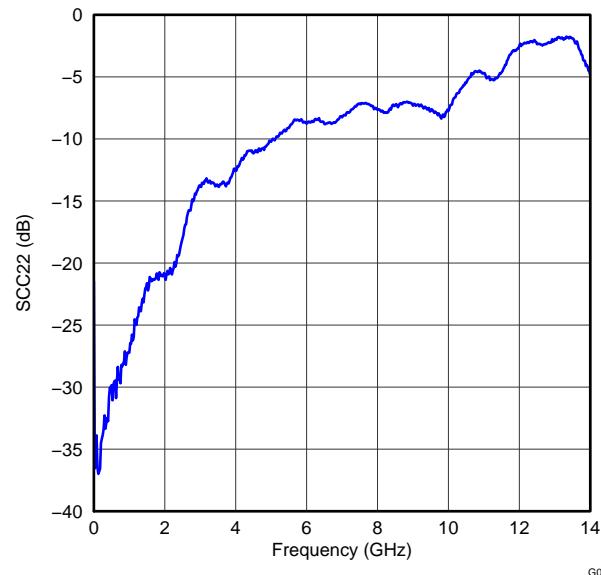



Figure 16. Differential to Common Mode Conversion

G003


TYPICAL CHARACTERISTICS (continued)

Typical operating condition is at $V_{CC} = 2.5V$ and $T_A = 25^\circ C$, no interconnect line at the output, and with default device settings (unless otherwise noted).

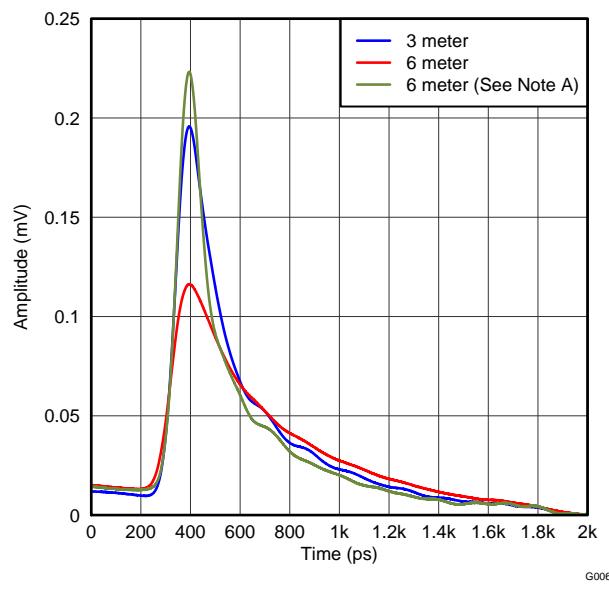
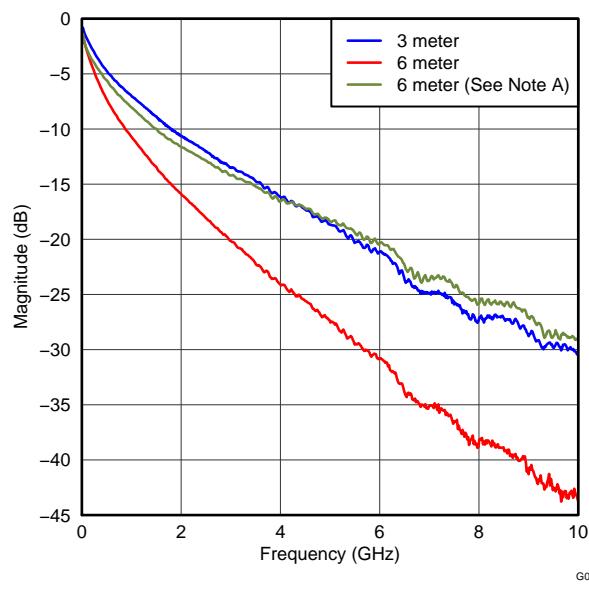

G004

Figure 17. Differential Output Return Loss

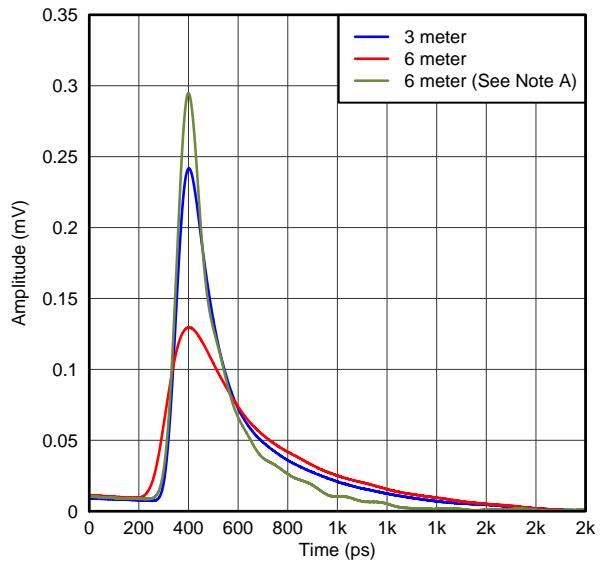
G005


Figure 18. Common Mode Output Return Loss

G006

A. With SN65LVCP1412 -> EQ = 4, VOD = High, ACGain = HiZ, DCGain = Low

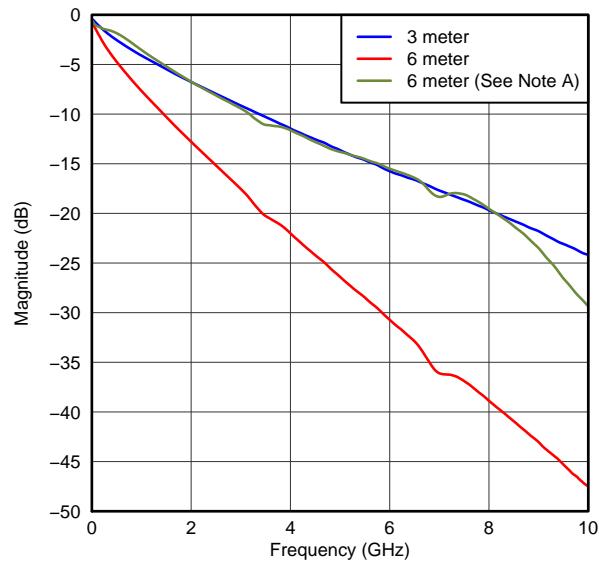
Figure 19. Cable Mode – Symbol Response


G007

A. With SN65LVCP1412 -> EQ = 4, VOD = High, ACGain = HiZ, DCGain = Low

Figure 20. Cable Mode – Frequency Domain

TYPICAL CHARACTERISTICS (continued)


Typical operating condition is at $V_{CC} = 2.5V$ and $T_A = 25^\circ C$, no interconnect line at the output, and with default device settings (unless otherwise noted).

G008

A. With SN65LVCP1412 -> EQ = 7, VOD = High, ACGain = High, DCGain = Low

Figure 21. Trace Mode – Symbol Response

G009

A. With SN65LVCP1412 -> EQ = 7, VOD = High, ACGain = High, DCGain = Low

Figure 22. Trace Mode - Frequency Domain

Table 1. Control Settings Descriptions

MODE	DCGAIN	ACGAIN<1:0>	EQ<2:0>	DC GAIN (dB)	EQ GAIN (dB)	APPLICATION
0	0	00	000 to 111	-6	1 to 9	Short Input Trace; Large Input Swing
0	0	11	000 to 111	-6	7 to 17	Long Input Trace; Large Input Swing
0	1	01	000 to 111	0	1 to 9	Short Input Trace; Small Input Swing
0	1	11	000 to 111	0	2 to 10	Short Input Trace; Small Input Swing
1	0	00	000 to 111	-6	1 to 9	Short Input Cable; Large Input Swing
1	0	11	000 to 111	-6	7 to 17	Long Input Cable; Large Input Swing
1	1	01	000 to 111	0	1 to 9	Short Input Cable; Small Input Swing
1	1	11	000 to 111	0	2 to 10	Short Input Cable; Small Input Swing

Table 2. Control Settings Descriptions

GAIN	DC GAIN	ACGAIN<1:0>
Low	0	00
HighZ	0	11
High	1	01

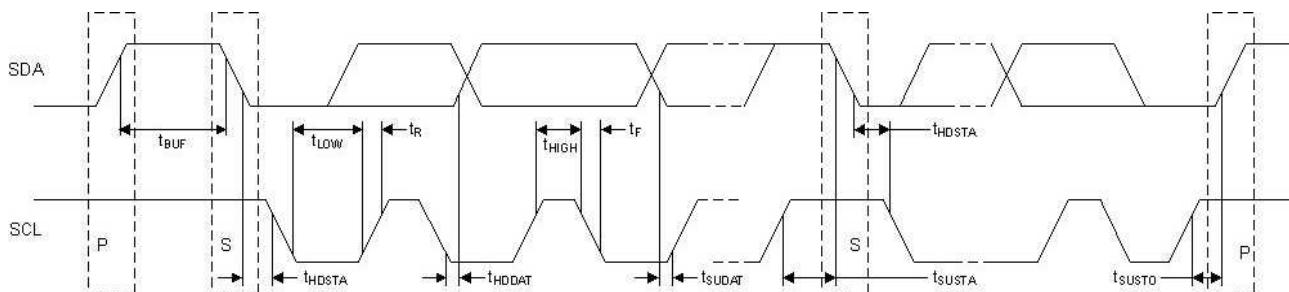
TWO-WIRE SERIAL INTERFACE AND CONTROL LOGIC

The SN65LVCP1412 uses a 2-wire serial interface for digital control. The two circuit inputs, SDA and SCL, are driven, respectively, by the serial data and serial clock from a microcontroller, for example. The SDA and SCK pins require external $10\text{k}\Omega$ pull-ups to VCC.

The 2-wire interface allows write access to the internal memory map to modify control registers and read access to read out control and status signals. The SN65LVCP1412 is a slave device only which means that it cannot initiate a transmission itself; it always relies on the availability of the SCK signal for the duration of the transmission. The master device provides the clock signal as well as the START and STOP commands. The protocol for a data transmission is as follows:

1. START command
2. 7 bit slave address (0000ADD[2:0]) followed by an eighth bit which is the data direction bit (R/W). A zero indicates a WRITE and a 1 indicates a READ. The ADD[2:0] address bits change with the status of the ADD2, ADD1, and ADD0 device pins, respectively. If the pins are left floating or pulled down, the 7 bit slave address is 0000000.
3. 8 bit register address
4. 8 bit register data word
5. STOP command

Regarding timing, the SN65LVCP1412 is I²C compatible. The typical timing is shown in [Figure 9](#) and a complete data transfer is shown in [Figure 10](#). Parameters for [Figure 9](#) are defined in [Table 3](#).


Bus Idle: Both SDA and SCL lines remain HIGH

Start Data Transfer: A change in the state of the SDA line, from HIGH to LOW, while the SCL line is HIGH, defines a START condition (S). Each data transfer is initiated with a START condition.

Stop Data Transfer: A change in the state of the SDA line from LOW to HIGH while the SCL line is HIGH defines a STOP condition (P). Each data transfer is terminated with a STOP condition; however, if the master still wishes to communicate on the bus, it can generate a repeated START condition and address another slave without first generating a STOP condition.

Data Transfer: The number of data bytes transferred between a START and a STOP condition is not limited and is determined by the master device. The receiver acknowledges the transfer of data.

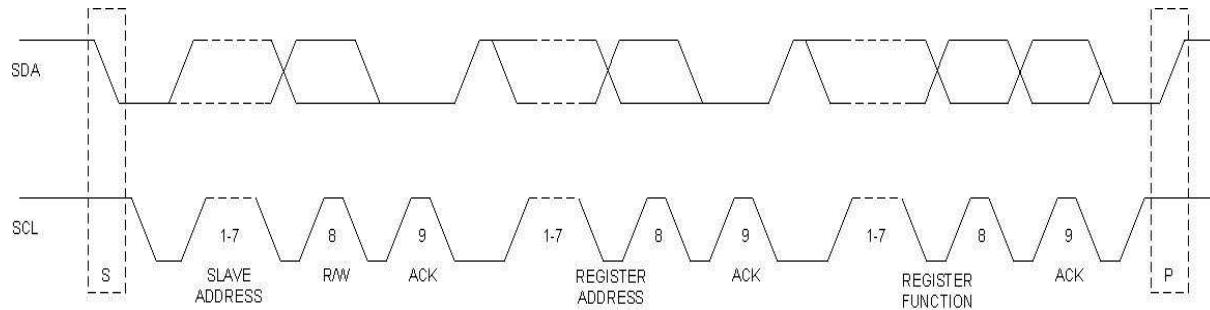

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Setup and hold times must be taken into account. When a slave-receiver doesn't acknowledge the slave address, the data line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer. If the slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any more data bytes, the master must abort the transfer. This is indicated by the slave generating the not acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition.

Figure 23. Two-wire Serial Interface Timing Diagram

Table 3. Two-Wire Serial Interface Timing Diagram Definitions

SYMBOL	PARAMETER	MIN	MAX	UNIT
f_{SCL}	SCL clock frequency		400	kHz
t_{BUF}	Bus free time between START and STOP conditions	1.3		μ s
t_{HDSTA}	Hold time after repeated START condition. After this period, the first clock pulse is generated	0.6		μ s
t_{LOW}	Low period of the SCL clock	1.3		μ s
t_{HIGH}	High period of the SCL clock	0.6		μ s
t_{SUSTA}	Setup time for a repeated START condition	0.6		μ s
t_{HDDAT}	Data HOLD time	0		μ s
t_{SUDAT}	Data setup time	100		ns
t_R	Rise time of both SDA and SCL signals		300	ns
t_F	Fall time of both SDA and SCL signals		300	ns
t_{SUSTO}	Setup time for STOP condition	0.6		μ s

Figure 24. Two-wire Serial Interface Data Transfer

REGISTER MAPPING

The register mapping for read/write register addresses 0 (0x00) through 22 (0x18) are shown in [Table 4](#). [Table 5](#) describes the circuit functionality based on the register settings.

Table 4. SN65LVCP1412 Register Mapping Information

Register 0x00 (General Device Settings) R/W							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD	PWRDOWN	SYNC_01	RSVD	SYNC_ALL	EQ_MODE		RSVD
Register 0x01 (Channel Enable) R/W							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
					LN_EN_CH1	LN_EN_CH0	
Register 0x05 (Channel 0 Control Settings) R/W							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD	EQ2	EQ1	EQ0	VOD_CTRL	DC_GAIN	AC_GAIN1	AC_GAIN0
Register 0x06 (Channel 0 Enable Settings) R/W							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
					DRV_PEAK	EQ_EN	DRV_EN
Register 0x08 (Channel 1 Control Settings) R/W							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD	EQ2	EQ1	EQ0	VOD_CTRL	DC_GAIN	AC_GAIN1	AC_GAIN0
Register 0x09 (Channel 1 Enable Settings) R/W							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
					DRV_PEAK	EQ_EN	DRV_EN
Register 0x0F Read Only							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
Register 0x11 R/W							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
	RSVD						
Register 0x12 R/W							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
RSVD							

Table 5. SN65LVCP1412 Register Description

REGISTER	BIT	SYMBOL	FUNCTION	DEFAULT
0x00	7	RSVD	Fot TI use only	00000000
	6	PWRDOWN	Power down the device: 0 = Normal operation 1 = Powerdown	
	5	SYNC_01	All settings from channel 1 will be used for channel 0 and 1: 0 = channel 0 tracking channel 1 settings 1 = no tracking tracking	
	4	RSVD	For TI use only	
	3	SYNC_ALL	All settings from channel 1 will be used on all channels: 0 = all channels tracking channel 1 1 = no channel tracking Overwrites SYNC_01	
	2	EQ_MD	Set EQ Mode: 0 = Cable Mode 1 = Trace Mode	
	1			
	0	RSVD	For TI use only	

Table 5. SN65LVCP1412 Register Description (continued)

REGISTER	BIT	SYMBOL	FUNCTION	DEFAULT	
0x01	7			00000000	
	6				
	5				
	4				
	3				
	2	LN_EN_CH1	Channel 1 Enable: 0 = Enable 1 = Disable		
	1	LN_EN_CH0	Channel 0 Enable: 0 = Enable 1 = Disable		
	0				
0x05 0x08	7	RSVD		00000000	
	6	EQ2	Equalizer Adjustment Setting 000 = Minimum equalization setting 111 = Maximum equalization setting		
	5	EQ1			
	4	EQ0			
	3	VOD_CTRL	Channel [x] VOD control: 0 = low VOD range 1 = high VOD range		
	2	DC_GAIN_CTRL	Channel [x] EQ DC Gain: 0 = set EQ DC Gain to 0.5x 1 = set EQ DC Gain to 1x		
	1	AC_GAIN_CTRL1	AC Gain Control: 00 = Low 01 = HiZ 11 = High		
	0	AC_GAIN_CTRL0			
0x06 0x09	7			00000000	
	6				
	5				
	4				
	3				
	2	DRV_PEAK	Channel [x] Driver Peaking: 0 = disables driver Peaking 1 = enables driver 6db AC Peaking		
	1	EQ_EN	Channel [x] EQ stage enable: 0 = Enable 1 = Disable		
	0	DRV_EN	Channel [x] Driver stage enable: 0 = Enable 1 = Disable		
0x0F	7	RSVD	For TI use only	00110000	
	6	RSVD	For TI use only		
	5	RSVD	For TI use only		
	4	RSVD	For TI use only		
	3	RSVD	For TI use only		
	2	RSVD	For TI use only		
	1	RSVD	For TI use only		
	0	RSVD	For TI use only		

Table 5. SN65LVCP1412 Register Description (continued)

REGISTER	BIT	SYMBOL	FUNCTION	DEFAULT
0x11	7			00000000
	6	RSVD	For TI use only	
	5			
	4			
	3			
	2			
	1			
	0			
0x12	7	RSVD	For TI use only	00000000
	6			
	5			
	4			
	3			
	2			
	1			
	0			

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN65LVCP1412RLHR	Obsolete	Production	WQFN (RLH) 24	-	-	Call TI	Call TI	-40 to 85	LVCP 1412
SN65LVCP1412RLHT	Obsolete	Production	WQFN (RLH) 24	-	-	Call TI	Call TI	-40 to 85	LVCP 1412

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

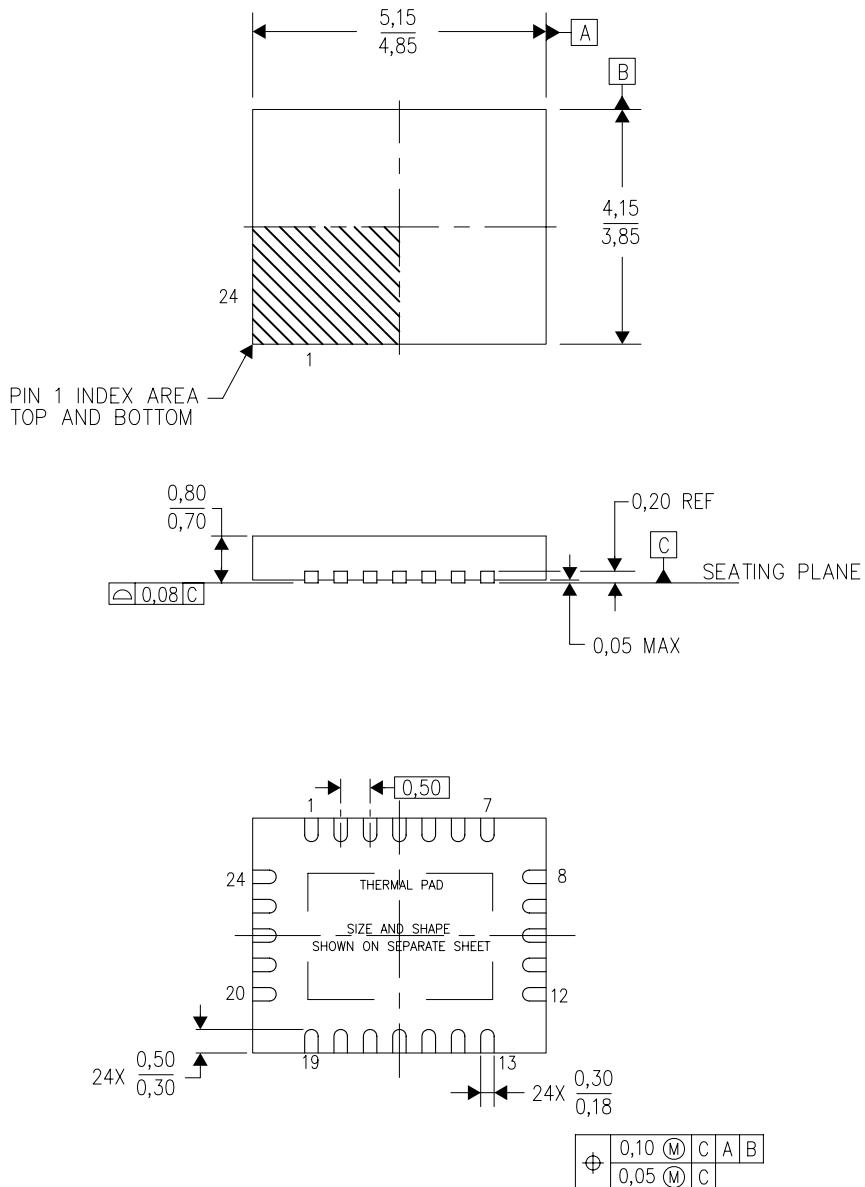
⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

RLH (R-PWQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

4212455/A 01/12

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月