

8 通道, 高带宽, 模拟前端

查询样片: PGA5807A

特性

- 8 通道完整模拟前端 (AFE):
 - 低噪声放大器 (LNA),可编程增益放大器 (PGA) 和可编程低通滤波器 (LPF)
 - 满通道增益: 12dB 至 30dB
 - 与输入相关的噪声: 2.1nV/√Hz
- LNA:
 - 增益: 12dB
 - 全差分
 - 宽输入共模支持: 2.1 ± 200mV
 - 最大线性输入范围: 500mV_{PP}
- PGA 增益: 0dB 至 18dB
 - 具有 3dB 增益步长
 - 可通过串口或外部引脚设定
- 最大总通道增益: 30dB
- 可编程 LPF:
 - 转角频率: 75MHz, 60MHz
- 功率(全链式):
 - 每通道 60mW
- 快速且持续的过载恢复
- 小尺寸封装: 9mm x 9mm 四方扁平无引线封装

(QFN)-64

应用范围

- 数据采集 前端
- 超声波成像

说明

PGA5807A 是一款 8 通道、高带宽、模拟前端 (AFE)。 此器件由一个 3.3V 模拟单电源供电运行。 此器件支持高带宽输入频率,每通道的总功率 60mW。 PGA5807A 包含一个低噪声放大器 (LNA),一个可编程增益放大器 (PGA) 和一个可编程低通滤波器 (LPF)。 此 LNA 有一个固定的 12dB 增益(差分放大器支持直接和电容输入耦合)并且支持 500mV_{PP}的最大线性输入范围。

此器件提供增益步长为 3dB 的 0dB 至 18dB 的增益选项。 这个 18dB PGA 增益可使用串口或外部引脚设定。 PGA5807A 集成了一个形式为 LPF 的抗混叠滤波器以减少噪声。 此器件采用极小型,9mm x 9mm 四方扁平无引线 (QFN)-64 封装,并且额定运行温度范围为 -40°C 至 +85°C。

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR
PGA5807A	QFN-64	RGC

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the device product folder at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range, unless otherwise noted. (1)

		VALUE	UNIT
Supply voltage range	AVDD	-0.3 to 3.9	V
Voltage at analog input and digital input	t	-0.3 to minimum (3.6, AVDD + 0.3)	V
Tomporatura range	Operating, T _A	-40 to +85	°C
Temperature range	Storage, T _{stg}	–55 to +150	°C
Electrostatic discharge (ESD) ratings	Human body model (HBM)	1	kV

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM MAX	UNIT
AVDD	Analog voltage supply	3.15	3.6	V
T _A	Operating temperature	-40	+85	°C
	Input common-mode voltage range	1.9	2.3	V

THERMAL INFORMATION

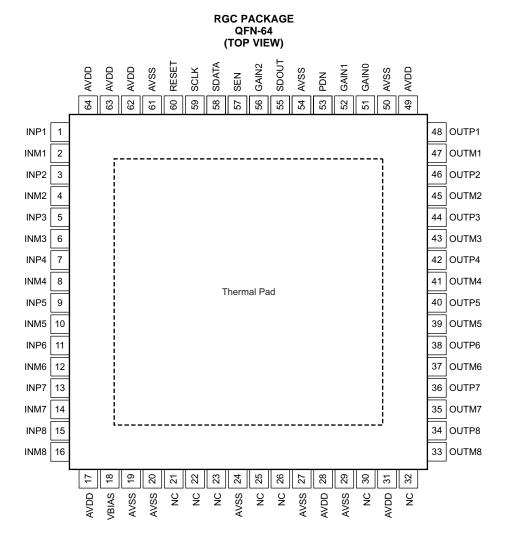
		PGA5807	
	THERMAL METRIC ⁽¹⁾	RGC (QFN)	UNITS
		64 PINS	
θ_{JA}	Junction-to-ambient thermal resistance	22.8	
θ_{JCtop}	Junction-to-case (top) thermal resistance	6.9	
θ_{JB}	Junction-to-board thermal resistance	2.4	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.1	*C/VV
ΨЈВ	Junction-to-board characterization parameter	2.4	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	0.2	

(1) 有关传统和全新热度量的更多信息,请参阅 IC 封装热度量 应用报告 (文献号: ZHCA543)。

ELECTRICAL CHARACTERISTICS

Typical values are at T_A = +25°C, AVDD = 3.3 V, input dc-coupled with a 2.1-V common-mode voltage, LNA gain = 12 dB, PGA gain = 18 dB, total channel gain = 30 dB, bandwidth = high, and V_{OUT} = -1 dBFS, unless otherwise specified. Minimum and maximum values are specified across the full temperature range of T_{MIN} = -40°C to T_{MAX} = +85°C with AVDD = 3.3 V.

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input-referred noise	!	f = 25 MHz, total channel gain = 30 dB		2.1		nV/√ Hz
	Noise figure		$R_S = 100 \Omega$, differential		6.4		dB
	Maximum linear input voltage		Total channel gain = 12 dB, differential		500		mV_{PP}
	Maximum linear out	put swing			2		V_{PP}
G _{LNA}	LNA gain				12		dB
	Maximum channel g	gain		29	30	31	dB
	PGA gain range			0		18	dB
	Gain step				3		dB
	Total output-referred	d noise	Total channel gain = 30 dB		450		μV
	Input resistance				5		kΩ
C _i	Input capacitance				3		pF
	LPF -3-dB cutoff fre	equency			75		MHz
	0 1 11		Across devices, T _A = +25°C	-1		1	dB
	Gain matching		Across channels in the same device		±0.25		dB
V _{ICR}	Input common-mode	e voltage range		1.9		2.3	V
	Output offset			-50		50	mV
V _{OCR}	Output common-mo	ode voltage			950		mV
HD2		Second	f = 25 MHz, V _{OUT} = -1 dBFS		– 55		dBc
HD3	Harmonic distortion	Third	f = 25 MHz, V _{OUT} = -1 dBFS		-50		dBc
THD	distortion	Total	f = 25 MHz, V _{OUT} = -1 dBFS		-48		dBc
IMD3	Intermodulation dist	ortion	f ₁ = 25 MHz at -7 dBFS, f ₂ = 25 MHz, 1 MHz at -7 dBFS, for all PGA gains		– 45		dBc
	Fundamental crosst	talk	f = 25 MHz, V _{OUT} = -1 dBFS		-50		dBc
		Total, per channel			60	69	mW/ch
P_D	Power dissipation	B	Partial power-down		4.2		mW/ch
		Power-down mode	Complete power-down			2.5	mW/ch
	AVDD current (3.3 V)				145		mA
	Settling time for over	erload recovery	For 12-dB higher signal than linear input		-30		ns
			Partial power-down		1		μs
	Power-up response	time	Full power-down		1		ms
DODD	Danier acceptions		f = 10 kHz, gain = 30 dB		-40		dBc
PSRR	Power-supply rejection ratio		f = 10 kHz, gain = 12 dB		-38		dBc



DIGITAL CHARACTERISTICS

Typical values are at T_A = +25°C and AVDD = 3.3 V, unless otherwise specified. Minimum and maximum values are specified across the full temperature range of T_{MIN} = -40°C to T_{MAX} = +85°C.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITA	L INPUTS/OUTPUTS					
V_{IH}	Logic high input voltage		2			V
V_{IL}	Logic low input voltage		0			V
I _{IH}	Logic high input current			200		μΑ
I _{IL}	Logic low input current			200		μΑ
Ci	Input capacitance			5		pF
V _{OH}	Logic high output voltage	SDOUT pin		AVDD		V
V _{OL}	Logic low output voltage	SDOUT pin		0		V

PIN CONFIGURATION

Table 1. PIN FUNCTIONS

NAME	NO.	FUNCTION		DESCRIPTION					
AVDD	17, 28, 31, 49, 62-64	Supply	Analog supply pin, 3.3 V						
AVSS	19, 20, 24, 27, 29, 50, 54, 61	Ground	Analog ground						
GAIN0	51	Digital input	When RESET is high, this pin is used to program the PGA gain. Refer to Table 2 for more details. Note: Use 3.3-V logic.						
GAIN1	52	Digital input	When RESET is high, this pin is used to program the PGA gain. Refer to Table 2 for more details. Note: Use 3.3-V logic.						
GAIN2	56	Digital input	When RESET is high, this pin is used to program the PGA gain. Refer to Table 2 for more details. Note: Use 3.3-V logic.						
INM1	2	Input	Complimentary analog input for channel 1						
INP1	1	Input	Analog input for channel 1						
INM2	4	Input	Complimentary analog input for channel 2						
INP2	3	Input	Analog input for channel 2						
INM3	6	Input	Complimentary analog input for channel 3						
INP3	5	Input	Analog input for channel 3						
INM4	8	Input	Complimentary analog input for channel 4						
INP4	7	Input	Analog input for channel 4						
INM5	10	Input	Complimentary analog input for channel 5	The dc input common-mode can be 2.1 V ± 200 mV.					
INP5	9	Input	Analog input for channel 5						
INM6	12	Input	Complimentary analog input for channel 6						
		•	7 7 0 1						
INP6	11	Input	Analog input for channel 6						
INM7	14	Input	Complimentary analog input for channel 7						
INP7	13	Input	Analog input for channel 7						
INM8	16	Input	Complimentary analog input for channel 8						
INP8	15	Input	Analog input for channel 8						
NC	21-23, 25, 26, 30, 32	_	Unused pins; do not connect						
OUTM1	47	Output	Complimentary output pin for channel 1						
OUTP1	48	Output	Output pin for channel 1						
OUTM2	45	Output	Complimentary output pin for channel 2						
OUTP2	46	Output	Output pin for channel 2						
OUTM3	43	Output	Complimentary output pin for channel 3						
OUTP3	44	Output	Output pin for channel 3						
OUTM4	41	Output	Complimentary output pin for channel 4						
OUTP4	42	Output	Output pin for channel 4	TI					
OUTM5	39	Output	Complimentary output pin for channel 5	The common-mode voltage is 0.95 V.					
OUTP5	40	Output	Output pin for channel 5						
OUTM6	37	Output	Complimentary output pin for channel 6						
OUTP6	38	Output	Output pin for channel 6						
OUTM7	35	Output	Complimentary output pin for channel 7						
OUTP7	36	Output	Output pin for channel 7						
OUTM8	33	Output	Complimentary output pin for channel 8						
OUTP8	34	Output	Output pin for channel 8						
PDN	53	Digital input		device with an internal 20-k Ω pull-down resistor; active high.					
RESET	60	Digital input	Logic hardware reset pin. Note: Use 3.3-V lo	ogic.					
SCLK	59	Digital input	0 1	-kΩ pull-down resistor. Note: Use 3.3-V logic.					
SDATA	58	Digital input	Serial interface data input with an internal 20 frequency for the antialias filter can be progr	0-kΩ pull-down resistor. When RESET is high, the corner rammed to a lower frequency (60 MHz) by setting this pin high.					
SDOUT	55	Digital output	Note: Use 3.3-V logic. Serial interface readout pin						
SEN	57	Digital input	·	with an internal 20-kΩ pull-up resistor; active low.					
VBIAS	18	Decap	-	capacitor or greater					
1 DII 10	10	Doodp	Bias voltage; bypass to ground with a 1-μF capacitor or greater						

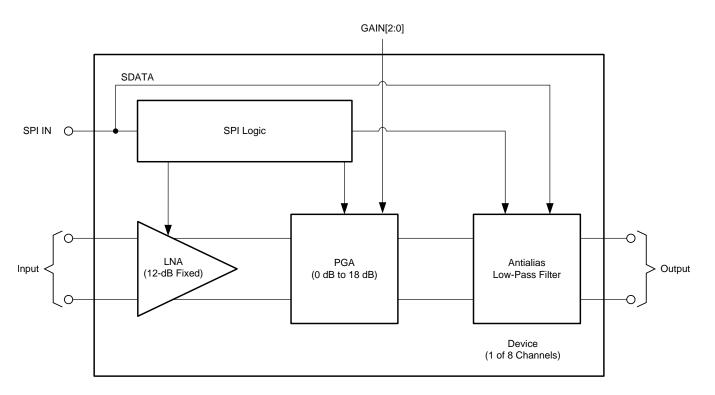


Table 2. PGA Gain Control

GAIN[2:0]	PGA_GAIN (dB)
000	18
001	15
010	12
011	9
100	6
101	3
110	0

FUNCTIONAL BLOCK DIAGRAM

TYPICAL CHARACTERISTICS

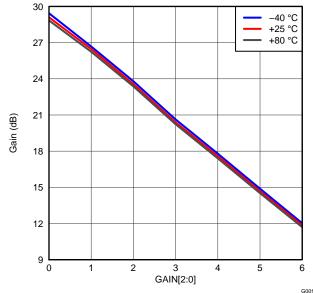


Figure 1. GAIN vs GAIN[2:0] ACROSS TEMPERATURE

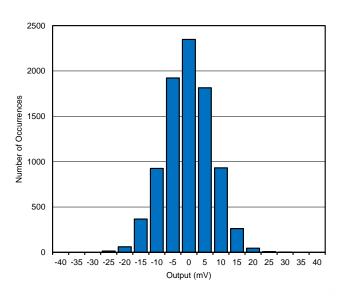


Figure 3. OUTPUT OFFSET HISTOGRAM (Gain = 30 dB)

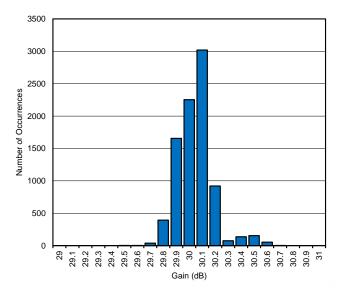


Figure 2. GAIN-MATCHING HISTOGRAM (Gain = 30 dB)

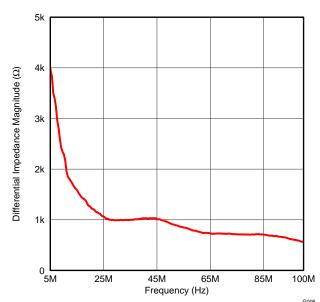
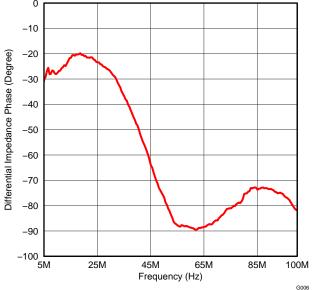



Figure 4. INPUT IMPEDANCE MAGNITUDE

TYPICAL CHARACTERISTICS (continued)

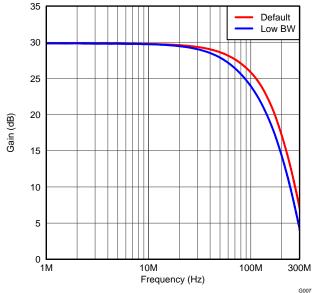
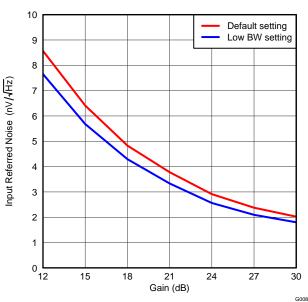



Figure 5. INPUT IMPEDANCE PHASE

Figure 6. LOW-PASS FILTER RESPONSE

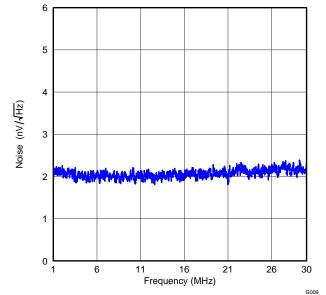


Figure 7. INPUT-REFERRED NOISE vs GAIN

Figure 8. INPUT-REFERRED NOISE vs FREQUENCY (Gain = 30 dB)

TYPICAL CHARACTERISTICS (continued)

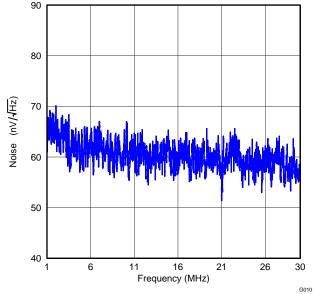


Figure 9. OUTPUT-REFERRED NOISE vs FREQUENCY (Gain = 30 dB)

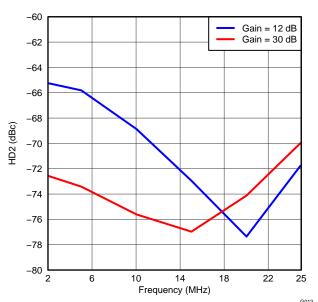


Figure 11. SECOND-HARMONIC DISTORTION vs FREQUENCY

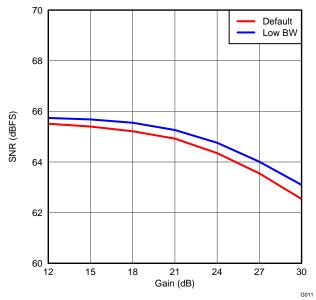


Figure 10. SIGNAL-TO-NOISE RATIO vs GAIN ACROSS BANDWIDTH MODE

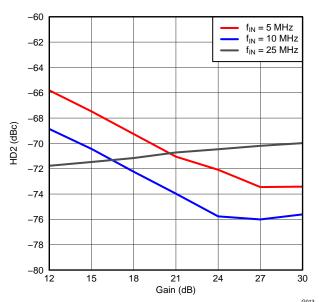
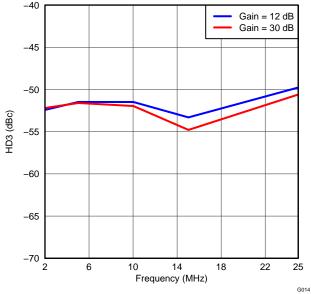



Figure 12. SECOND-HARMONIC DISTORTION vs GAIN

TYPICAL CHARACTERISTICS (continued)

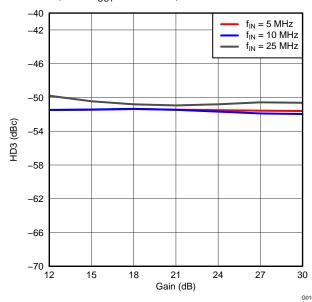
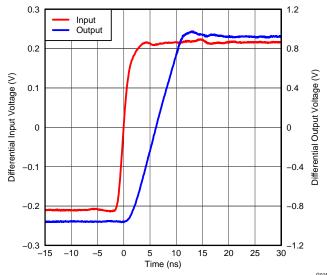



Figure 13. THIRD-HARMONIC DISTORTION vs FREQUENCY

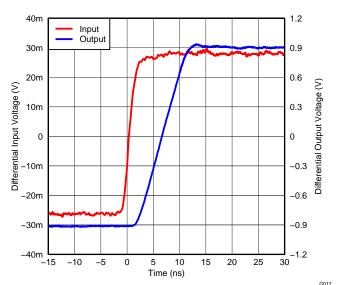


Figure 16. DIFFERENTIAL OUTPUT RESPONSE FOR AN INPUT STEP (30-dB Total Channel Gain)

TYPICAL CHARACTERISTICS (continued)

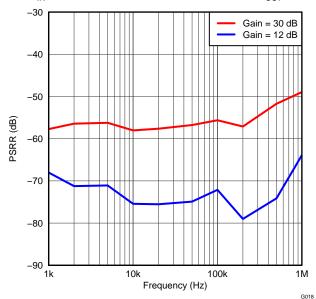


Figure 17. POWER-SUPPLY REJECTION RATIO (100-mV_{PP} Supply Noise with Different Frequencies)

SERIAL REGISTER TIMING

SERIAL REGISTER WRITE DESCRIPTION

Programming different modes can be accomplished through the serial interface formed by the SEN (serial interface enable), SCLK (serial interface clock), SDATA (serial interface data), and RESET pins. Each of these pins has a $20\text{-k}\Omega$ pull-down resistor to GND. Serially shifting bits into the device is enabled when SEN is low. SDATA serial data are latched at every SCLK rising edge when SEN is active (low). Serial data are loaded into the register at every 24th SCLK rising edge when SEN is low. If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data can be loaded in multiples of 24-bit words within a single active SEN pulse (an internal counter counts groups of 24 clocks after the SEN falling edge). The interface can function with SCLK frequencies from 20 MHz down to low speeds (of a few Hertz) and even with a non-50% duty cycle SCLK. Data are divided into two main portions to load on the addressed register: a register address (eight bits) and the actual data (16 bits). When writing to a register with unused bits, these bits should be set to '0'. Figure 18 shows a timing diagram of the write operation. Table 3 lists the serial interface timing characteristics.

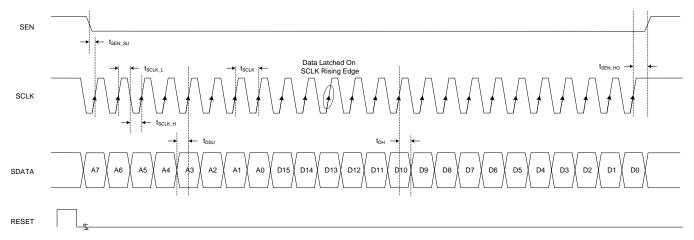


Figure 18. Serial Interface Timing Diagram

Table 3. Serial Interface Timing Characteristics⁽¹⁾

	PARAMETER	MIN	TYP	MAX	UNIT
t _{SCLK}	SCLK period	50			ns
t _{SCLK_H}	SCLK high time	20			ns
t _{SCLK_L}	SCLK low time	20			ns
t _{DSU}	Data setup time	5			ns
t _{DHO}	Data hold time	5			ns
t _{SEN_SU}	SEN falling edge to SCLK rising edge	8			ns
t _{SEN_HO}	Time between last SCLK rising edge to SEN rising edge	8			ns
t _{OUT_DV} (2)	Delay from SCLK falling edge to SDOUT valid	12	20	28	ns

⁽¹⁾ Minimum values are across the full temperature range of $T_{MIN} = -40$ °C to $T_{MAX} = +85$ °C and AVDD = 3.3 V.

⁽²⁾ See Figure 19.

REGISTER READOUT

The device includes an option where the contents of the internal registers can be read back. This readout may be useful as a diagnostic test to verify the serial interface communication between the external controller and the AFE. First, the REGISTER READOUT ENABLE bit (bit 1, register 00h) must be set to '1'. Then, initiate a serial interface cycle specifying the register address (A[7:0]) to be read. The data bits are *don't care*. The device outputs the contents (D[15:0]) of the selected register on the SDOUT pin. SDOUT has a typical 20-ns delay (t_{OUT_DV}) from the SCLK falling edge. For a lower speed SCLK, SDOUT can be latched on the SCLK rising edge. For a higher speed SCLK (for example, with an SCLK period less than 60 ns), latching SDOUT at the next SCLK falling edge is preferable. Figure 19 shows the read operation timing diagram (timing specifications follow the same information provided in Table 3). In readout mode, REGISTER READOUT ENABLE can still be accessed through SDATA, SCLK, and SEN. To enable serial register writes, set the REGISTER READOUT ENABLE bit back to '0'.

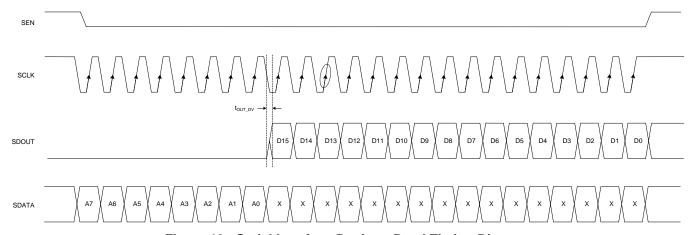


Figure 19. Serial Interface Register Read Timing Diagram

REGISTER MAP

A reset process is required at the device initialization stage. Initialization can be accomplished in one of two ways:

- 1. Through a hardware reset, by applying a positive pulse on the RESET pin, or
- 2. Through a software reset (using the serial interface), by setting the SW_RESET bit high. Setting this bit initializes the internal registers to the respective default values (all '0's) and then self-resets the SW_RESET bit low. In this case, the RESET pin can remain low (inactive).

After reset, all PGA registers are set to '0' (default). During register programming, all reserved or unlisted register bits must be set to '0'. Register settings are maintained when the device is in either partial or complete power-down mode. Table 4 lists the PGA register map.

Table	9 4. P	GA R	egister	Мар

REGISTER (Hex)	DECIMAL VALUE	Bit 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
00	0	X ⁽¹⁾	Х	х	X	Х	Х	х	х	Х	х	х	Х	х	х	REGISTER READOUT ENABLE (2)	SW_RESET
35	53	COMPLETE PDN	PARTIAL PDN	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	X	Х
3B	59	Х	Х	Х	Х	X	Х	Х	Х	LOW _ FILTER_BW	P	GA_GA	IN	Х	Х	Х	Х

⁽¹⁾ X = don't care.

⁽²⁾ Shaded cells indicate used bits.

Register Descriptions

Table 5. Register 00h

15	14	13	12	11	10	9	8
X	X	X	X	X	X	X	X
7	6	5	4	3	2	1	0
X	Х	Х	Х	Х	Х	REGISTER READOUT ENABLE	SW_RESET

Bits 15:2 Don't care

Default = 0.

Bit 1 REGISTER READOUT ENABLE

0 = Readout disabled (default)

1 = Register readout enabled at SDOUT pin

Bit 0 SW_RESET

0 = Normal operation (default)

1 = Resets the device and self-clears the bit to '0'

Table 6. Register 35h

15	14	13	12	11	10	9	8
COMPLETE PDN	PARTIAL PDN	Х	Х	Х	Х	Х	Х
7	6	5	4	3	2	1	0
X	X	Х	Х	Х	Х	Х	X

Bit 15 COMPLETE PDN

Bit 14 PARTIAL PDN

0 = Normal operation (default)1 = LNA and PGA powered down

Bits 13:0 Don't care

Default = 0.

Table 7. Register 3Bh										
15	14	13	12	11	10	9	8			
X	Х	X	Х	X	X	Х	Х			
7	6	5	4	3	2	1	0			
LOW_FILTER_ BW		PGA_GAIN		Х	Х	Х	Х			

Bits 15:8 Don't care

Default = 0.

Bit 7 LOW_FILTER_BW

0 = 75-MHz bandwidth (default)

1 = 60-MHz bandwidth

Bits 6:4 PGA_GAIN

000 = 18-dB PGA gain (default)

001 = 15-dB PGA gain 010 = 12-dB PGA gain 011 = 9-dB PGA gain 100 = 6-dB PGA gain 101 = 3-dB PGA gain 110 = 0-dB PGA gain

Bits 3:0 Don't care

Default=0.

APPLICATION INFORMATION

THEORY OF OPERATION

The PGA5807A is a programmable gain amplifier (PGA) for applications with input frequencies up to 25 MHz. The device includes a low-noise amplifier (LNA) with a fixed gain, followed by a PGA and an antialiasing filter to reduce noise. The LNA is a fully-differential amplifier with a 12-dB fixed gain and can support a 500-mV_{PP} maximum linear differential input swing. The PGA is implemented as an attenuator followed by a fixed-gain amplifier with 18-dB gain. The attenuator can provide attenuation from 0 dB to -18 dB in 3-dB steps. The attenuator can be controlled by the GAIN[2:0] pins or by using register 3Bh (bits 6 to 4). The antialiasing filter is combined with the fixed-gain amplifier. The filter has one active pole and a passive pole for a combined bandwidth of 75 MHz. For low-frequency applications, bandwidth can be reduced to 60 MHz where better noise can be achieved. The device can be programmed in this mode either by using the SDATA pin while RESET is high or by using bit 7 of register 3Bh. This device can directly drive ADCs such as the ADS5296.

Low-Noise Amplifier (LNA)

In most data-acquisition systems, an LNA is required at the front-end to obtain good noise performance. The PGA5807A has a fully-differential LNA with a 12-dB fixed gain. The LNA input-referred noise is 1.9 nV/ $\sqrt{\text{Hz}}$, and supports a differential 500-mV_{PP} input swing. The LNA input can be applied either directly or through an accoupling capacitor. Internally, the LNA input is connected to a 2.1-V common-mode voltage via a large resistor (8 k Ω). For direct input coupling, the LNA supports an input common-mode range from 1.9 V to 2.3 V. The LNA input circuits are shown in Figure 20.

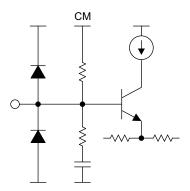


Figure 20. INP and INM Equivalent Circuits of LNA Inputs

Instruments

ZHCSBT8 – OCTOBER 2013 www.ti.com.cn

Programmable Gain Amplifier (PGA) and Filter

The LNA output is transmitted to a PGA with a programmable gain from 0 dB to 18 dB in 3-dB steps. This gain can either be controlled through a serial interface or through pins, as explained in the *Serial Register Write Description* section. The PGA is implemented as a programmable attenuator and as a fixed-gain amplifier with an 18-dB gain. This architecture helps achieve the same bandwidth across different gain settings. The attenuator provides programmable attenuation from 0 dB to 18 dB.

The attenuator architecture is shown in Figure 21. There are six shunt resistors that can be connected or disconnected to achieve programmable attenuation. The network provides 0-dB attenuation when no shunt resistors are connected. When the first shunt resistor (RS_1) is turned on, an attenuation of 3 dB is obtained. For achieving 6-dB attenuation, both RS_1 and RS_2 are turned on. Similarly, by turning on additional resistors, greater attenuation can be achieved; by turning on all resistors, an effective 18-dB attenuation is achieved.

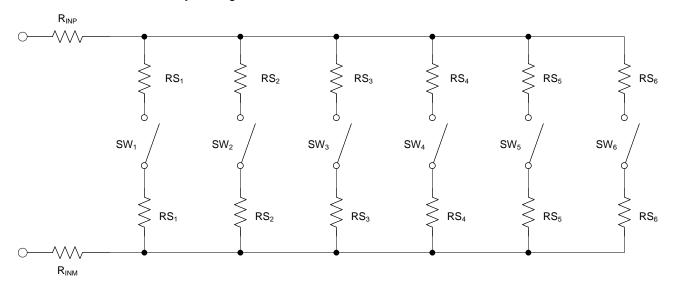


Figure 21. Programmable Attenuator

The attenuator is followed by a 18-dB fixed-gain amplifier. The amplifier is implemented as a voltage-to-current (V-to-I) converter followed by a current-to-voltage (I-to-V) converter. The I-to-V bandwidth is limited so that it functions as an LPF and is followed by a passive filter, as shown in Figure 22. Both the active and passive filters provide an antialiasing filter action, which helps reduce noise when the PGA output is sampled by an ADC. The architecture of the passive filter is selected to reduce the glitches that can occur when the PGA5807A output is sampled by an ADC. For example, the PGA5807A can be directly connected to ADC devices (such as the ADS5295 or ADS5296) without any external components between the ADC and PGA5807A. Figure 23 shows an example of the PGA5807A connected directly to the ADS5296.

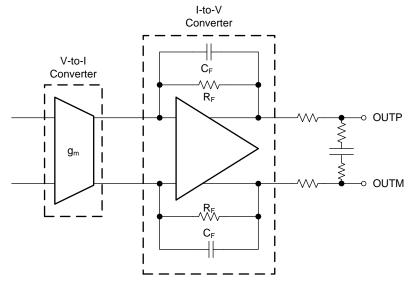


Figure 22. Antialias Filter

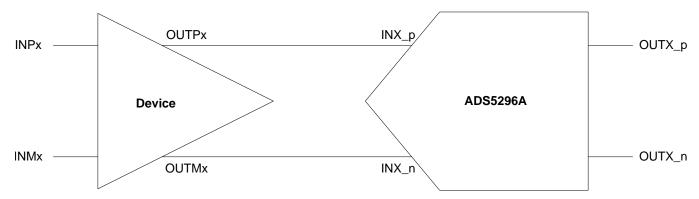


Figure 23. PGA Connected to an ADC

DEVICE CONFIGURATION USING SERIAL INTERFACE OR PARALLEL PINS

Different device modes (such as channel gain and bandwidth) can be programmed by either using the serial interface or external pins. The device can be configured via the serial interface only when the device RESET pin is pulsed and remains low. In this configuration, device gain can be programmed through register 3Bh (bits 6 to 4) and bandwidth can be programmed by register 3Bh (bit 7). When the RESET pin is connected to 3.3 V or is pulled high, the serial interface is unable to control the device. In this configuration, the GAIN[2:0] pins can be used to control gain and the SDATA pin can be used to control bandwidth.

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
PGA5807ARGCR	Active	Production	VQFN (RGC) 64	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	PGA5807
PGA5807ARGCR.B	Active	Production	VQFN (RGC) 64	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	PGA5807
PGA5807ARGCT	Active	Production	VQFN (RGC) 64	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	PGA5807
PGA5807ARGCT.B	Active	Production	VQFN (RGC) 64	250 SMALL T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 85	PGA5807

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

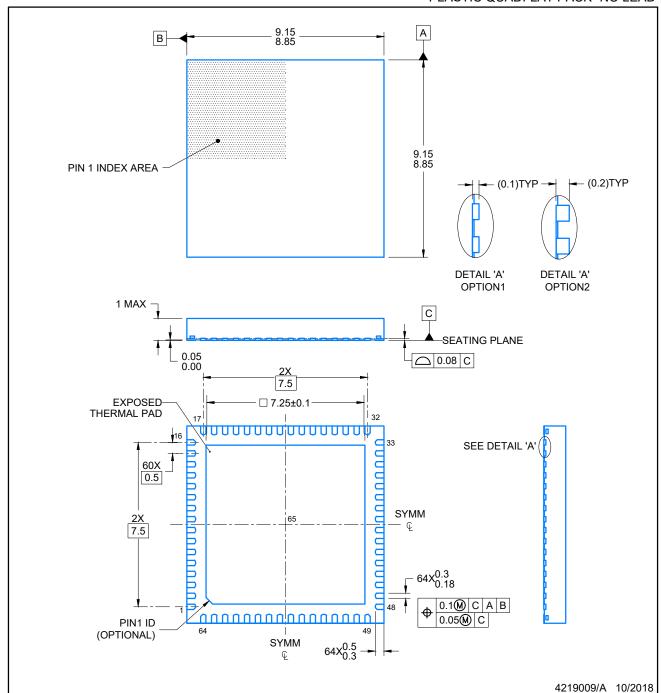
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

9 x 9, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224597/A

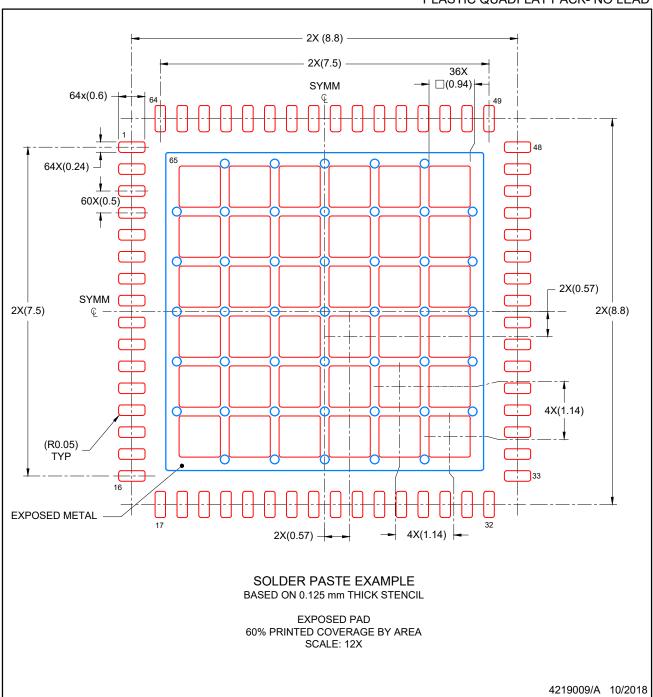
PLASTIC QUADFLAT PACK- NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUADFLAT PACK- NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUADFLAT PACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月