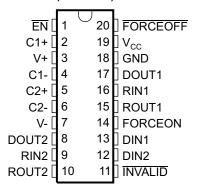
MAX3223-EP 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH \pm 15-kV ESD PROTECTION

SGLS368-SEPTEMBER 2006


FEATURES

- Controlled Baseline
 - One Assembly
 - One Test Site
 - One Fabrication Site
- Extended Temperature Performance of up to -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates up to 250 kbit/s
- Two Drivers and Two Receivers
- Low Standby Current . . . 1 μA Typical
- External Capacitors . . . 4 × 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Alternative High-Speed Pin-Compatible Device (1 Mbit/s)
 - SNx5C3223
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

DB, DW, OR PW PACKAGE (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The MAX3223 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ± 15 -kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The device operates at typical data signaling rates up to 250 kbit/s and a maximum of 30-V/ μ s driver output slew rate.

ORDERING INFORMATION

T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC - DW	Reel of 2000	MAX3223MDWREP ⁽²⁾	MAX3223M
-55°C to 125°C	SSOP - DB	Reel of 2000	MAX3223MDBREP	MB223M
	TSSOP – PW	Reel of 2000	MAX3223MPWREP ⁽²⁾	MB223M

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

(2) Product Preview

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD PROTECTION

SGLS368-SEPTEMBER 2006

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

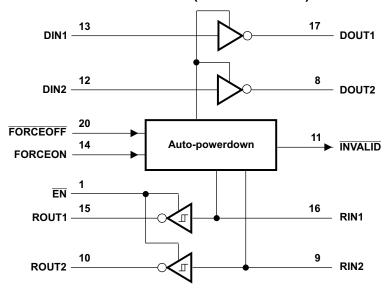
Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and $\overline{FORCEOFF}$ is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If $\overline{FORCEOFF}$ is set low and \overline{EN} is high, both drivers and receivers are shut off, and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes auto-powerdown to occur. Auto-powerdown can be disabled when FORCEON and $\overline{FORCEOFF}$ are high. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input. The $\overline{INVALID}$ output is used to notify the user if an RS-232 signal is present at any receiver input. $\overline{INVALID}$ is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s. $\overline{INVALID}$ is low (invalid data) if the receiver input voltage is between -0.3 V and 0.3 V for more than 30 μ s. See Figure 4 for receiver input levels.

FUNCTION TABLES

EACH DRIVER(1)

		INPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
X	Х	L	X	Z	Powered off
L	Н	Н	X	Н	Normal operation with
Н	Н	Н	X	L	auto-powerdown disabled
L	L	Н	Yes	Н	Normal operation with
Н	L	Н	Yes	L	auto-powerdown enabled
L	L	Н	No	Z	Powered off by
Н	L	Н	No	Z	auto-powerdown feature

(1) H = high level, L = low level, X = irrelevant, Z = high impedance


EACH RECEIVER(1)

	INPU ⁻	гs	OUTDUT
RIN	EN	VALID RIN RS-232 LEVEL	OUTPUT ROUT
L	L	X	Н
Н	L	X	L
X	Н	X	Z
Open	L	No	Н

H = high level, L = low level, X = irrelevant,
 Z = high impedance (off),
 Open = input disconnected or connected driver off

SGLS368-SEPTEMBER 2006

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.3	6	V
V+	Positive-output supply voltage range (2)		-0.3	7	V
V-	Negative-output supply voltage range (2)	gative-output supply voltage range (2)		-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
V	Input voltage range	Driver (FORCEOFF, FORCEON, EN)	-0.3	6	V
V _I		Receiver	-25	25	V
.,	Outrat valle as asses	Driver	-13.2	13.2	V
Vo	Output voltage range	Receiver (INVALID)	-0.3	V _{CC} + 0.3	V
		DB package		70	
θ_{JA}	Package thermal impedance (3)(4)	DW package		58	°C/W
		PW package		83	
T _J	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ All voltages are with respect to network GND.

Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

MAX3223-EP

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SGLS368-SEPTEMBER 2006

Recommended Operating Conditions⁽¹⁾

See Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage		V _{CC} = 3.3 V	3	3.3	3.6	V
			$V_{CC} = 5 V$	4.5	5	5.5	V
V	Driver and control	DIN, EN, FORCEOFF, FORCEON	$V_{CC} = 3.3 \text{ V}$	2			V
V_{IH}	high-level input voltage	BIN, EN, FORCEOFF, FORCEON	$V_{CC} = 5 V$	2.4			V
V _{IL}	Driver and control low-level input voltage	DIN, EN, FORCEOFF, FORCEON				0.8	V
\/	Driver and control input voltage	DIN, EN, FORCEOFF, FORCEON		0		5.5	V
VI	Receiver input voltage			-25		25	V
T_A	Operating free-air temperature			-55		125	°C

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
II	Input leakage current	EN, FORCEOFF, FORCEON				±0.01	±1	μΑ
		Auto-powerdown disabled No load, FORCEOFF and FORCEON at V _{CC}			0.3	2	mA	
I _{CC}	Supply current	Powered off	$V_{CC} = 3.3 \text{ V or 5 V},$	No load, FORCEOFF at GND		1	20	
	Capp., Carloin	Auto-powerdown enabled	T _A = 25°C	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	20	μΑ

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

MAX3223-EP 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEI WITH ±15-kV ESD PROTECTION

SGLS368-SEPTEMBER 2006

DRIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TES	T CONDITIONS	MIN ⁽²⁾	TYP(3)	MAX	UNIT
V_{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to	DOUT at $R_L = 3 \text{ k}\Omega$ to GND		5.4		V
\/	Low lovel output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to	V _{CC} = 5 V	-5	-5.4		V
V _{OL}	Low-level output voltage	GND	V _{CC} = 3.3 V	-4.9			V
I _{IH}	High-level input current	$V_I = V_{CC}$			±0.01	±1	μΑ
I _{IL}	Low-level input current	V _I at GND			±0.01	±1	μΑ
	Short circuit output ourront(4)	$V_{CC} = 3.6 \text{ V}, V_{O} = 0 \text{ V}$			±35	±60	mΛ
los	Short-circuit output current ⁽⁴⁾	$V_{CC} = 5.5 \text{ V}, V_{O} = 0 \text{ V}$			±35	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V	, $V_O = \pm 2 V$	300	10M		Ω
	Output looke as surrent	FORCEOFF = GND	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}, V_{O} = \pm 12 \text{ V}$			±25	^
I _{OZ}	Output leakage current	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, V_O = \pm 10 \text{ V}$				±25	μΑ

- Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. The minimum reading of –4.9 V at V_{CC} = 3.3 V falls outside the TIA/EIA-232 Standard. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.
- (3)
- Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONI	DITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	C _L = 1000 pF, One DOUT switching,	$R_L = 3 \text{ k}\Omega$, See Figure 1	250			kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	C _L = 150 pF to 2500 pF, See Figure 2	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$		100		ns
SR(tr)	Slew rate, transition region	V _{CC} = 3.3 V,	C _L = 150 pF to 1000 pF	6		30	V/µs
SK(II)	(see Figure 1)	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$	$C_L = 150 \text{ pF to } 2500 \text{ pF}$	4		30	V/μS

- (1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH} t_{PHL}|$ of each channel of the same device.

MAX3223-EP

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SGLS368-SEPTEMBER 2006

RECEIVER SECTION

Electrical Characteristics(1)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	V _{CC} - 0.6	V _{CC} - 0.1		٧
V_{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
\/	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.6	2.4	V
V _{IT+}	Positive-going input tilleshold voltage	V _{CC} = 5 V		1.9	2.4	V
V	Negative-going input threshold voltage	V _{CC} = 3.3 V	0.6	1.1		٧
V _{IT}	Negative-going input threshold voltage	V _{CC} = 5 V	8.0	1.4		V
V_{hys}	Input hysteresis (V _{IT+} - V _{IT-})			0.5		V
I_{OZ}	Output leakage current	$\overline{\text{EN}} = V_{\text{CC}}$	-	±0.05	±10	μΑ
r _i	Input resistance	$V_I = \pm 3 \text{ V to } \pm 16 \text{ V}$	3	5	8.3	$k\Omega$

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega, \text{ See Figure 4}$	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

MAX3223-EP 3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ± 15 -kV ESD PROTECTION

SGLS368-SEPTEMBER 2006

AUTO-POWERDOWN SECTION

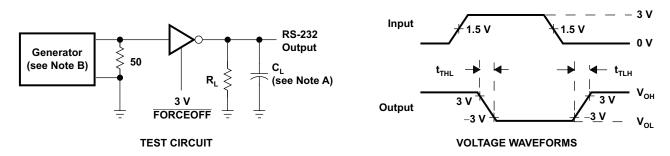
Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST (CONDITIONS	MIN	MAX	UNIT
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}	-2.7		٧
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND,	FORCEOFF = V _{CC}	-0.2	0.3	٧
V _{OH}	INVALID high-level output voltage	I _{OH} = 1 mA, FORCEOFF = V _{CC}	FORCEON = GND,	V _{CC} - 0.6		٧
V _{OL}	INVALID low-level output voltage	I _{OL} = 1.6 mA, FORCEOFF = V _{CC}	FORCEON = GND,		0.4	V

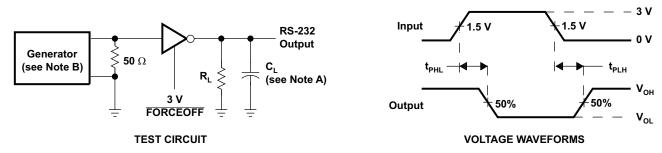
Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)


	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

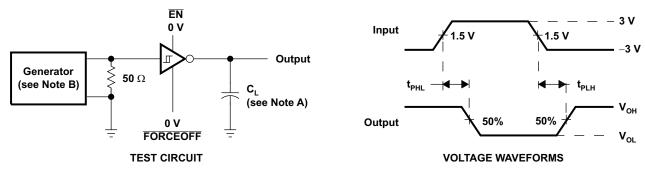
(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

WITH ±15-kV ESD PROTECTION


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

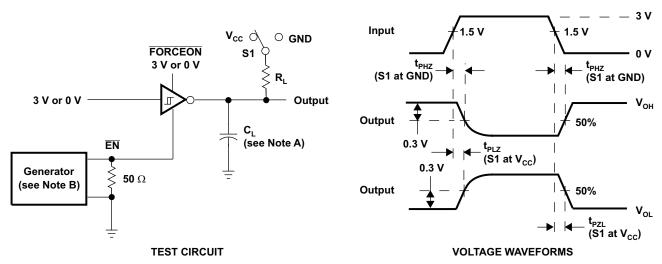
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_0 = 50 Ω , 50% duty cycle, t_r 10 ns, $t_f \le$ 10 ns.


Figure 1. Driver Slew Rate

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns.

Figure 2. Driver Pulse Skew


NOTES: A. C₁ includes probe and jig capacitance.

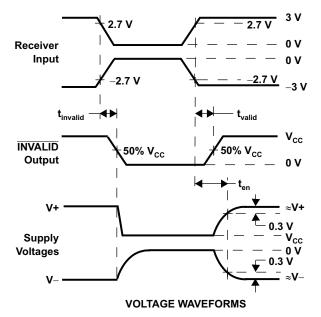
B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \ ns$, $t_i \le 10 \ ns$.

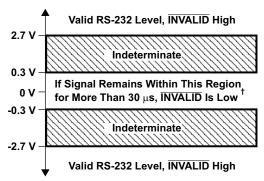
Figure 3. Receiver Propagation Delay Times

SGLS368-SEPTEMBER 2006

PARAMETER MEASUREMENT INFORMATION (continued)

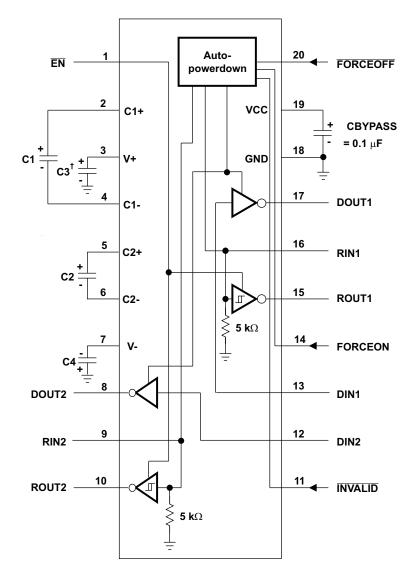
NOTES: A. C_L includes probe and jig capacitance.


B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.


Figure 4. Receiver Enable and Disable Times

PARAMETER MEASUREMENT INFORMATION (continued)

[†] Auto-powerdown disables drivers and reduces supply current to 1 μA.


NOTES: A. C, includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 5 kbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns.

Figure 5. INVALID Propagation Delay Times and Supply Enabling Time

SGLS368-SEPTEMBER 2006

APPLICATION INFORMATION

 † C3 can be connected to $\rm V_{\rm CC}$ or GND. NOTES: A. Resistor values shown are nominal.

B. Non polarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V_{CC} vs CAPACITOR VALUES

v_{cc}	C1	C2, C3, C4			
$3.3~V\pm0.3~V \\ 5~V\pm0.5~V \\ 3~V~to~5.5~V$	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF			

Figure 6. Typical Operating Circuit and Capacitor Values

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
MAX3223MDBREP	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	MB3223M
MAX3223MDBREP.A	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	MB3223M
V62/06635-01XE	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	MB3223M

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MAX3223-EP:

Catalog: MAX3223

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

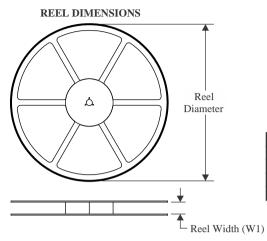
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

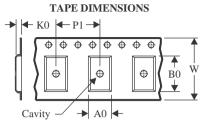
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

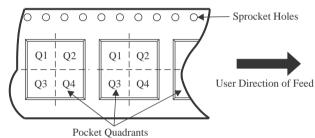
www.ti.com 11-Nov-2025


NOTE: Qualified Version Definitions:


 $_{\bullet}$ Catalog - TI's standard catalog product

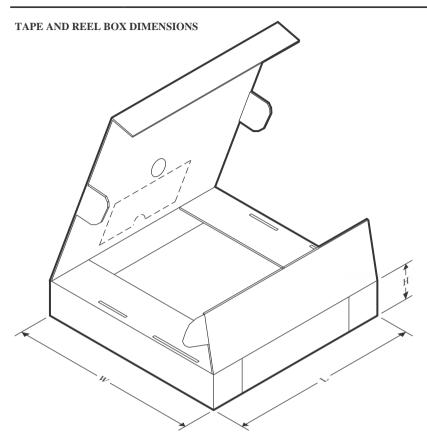
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

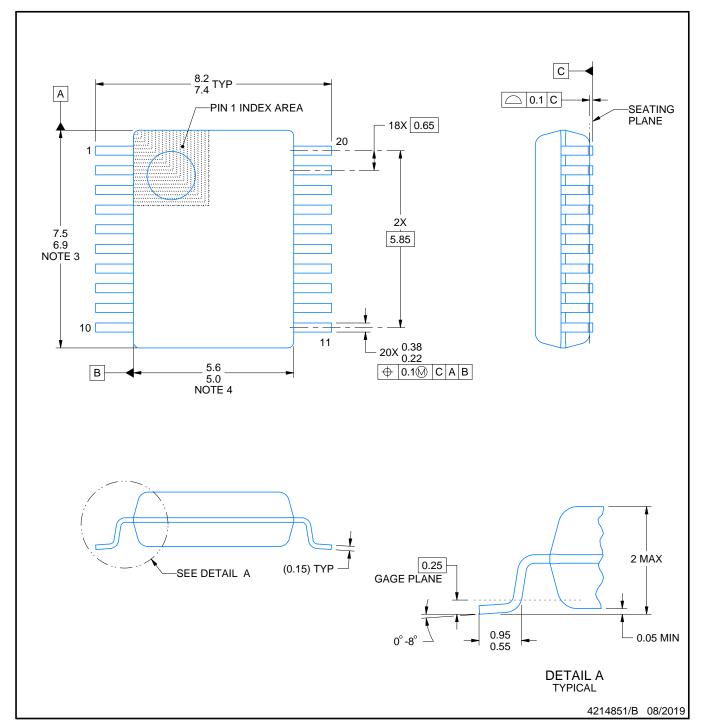


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX3223MDBREP	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

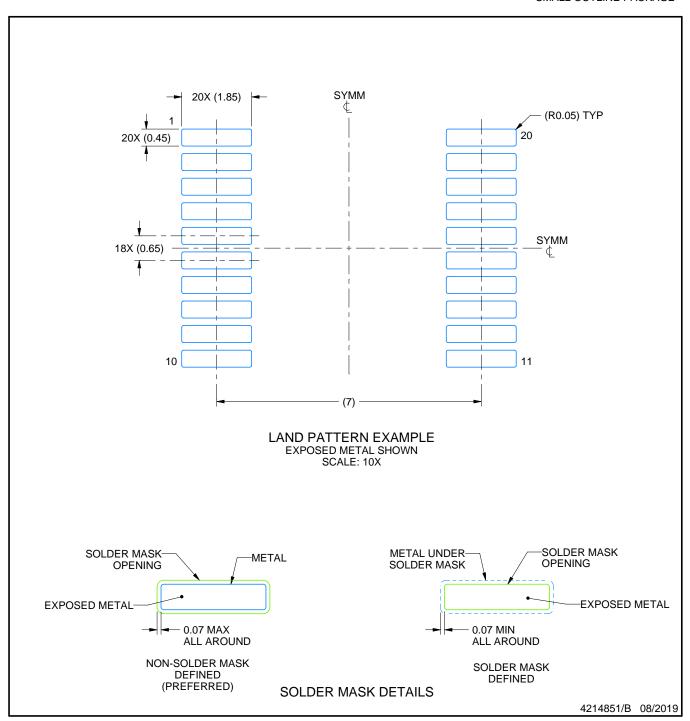


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MAX3223MDBREP	SSOP	DB	20	2000	353.0	353.0	32.0

SMALL OUTLINE PACKAGE

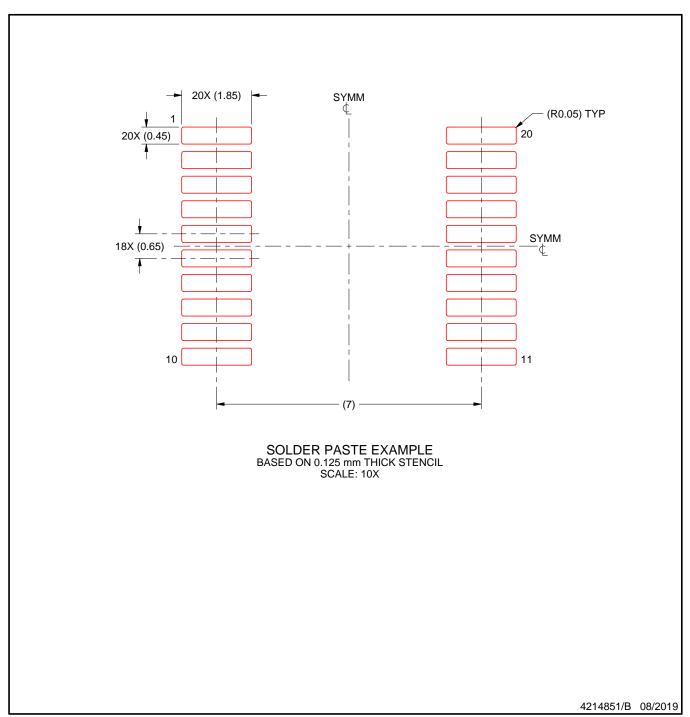
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025