

LMK01801 ZHCS747D - JANUARY 2012 - REVISED SEPTEMBER 2021

LMK01801 双时钟分频缓冲器

1 特性

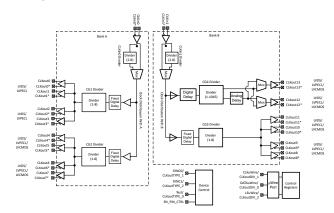
- 引脚控制模式或 MICROWIRE (SPI)
- 输入和输出频率范围: 1 kHz 至 3.1 GHz
- 针对时钟输出组A和B的单独输入
- 两组(A和B)中的14个差分时钟输出
 - 输出组 A
 - 8个差分、可编程输出(如同 LVCMOS 多达 8个)
 - 分压器值为1至8,偶数和奇数。
 - 输出组 B
 - 6 个差分输出(或如同 LVCMOS 多达 12
 - 将数值 1 到 1045 或 1 到 8 分频,偶数和奇
 - 模拟和数字延迟
- 所有分频的所有输出均为 50% 占空比
- A组和B组分别同步。
- 在 800MHz 时的 RMS 附加抖动为 50fs。
 - 50fs RMS 附加抖动 (12kHz 至 20MHz)
- 工业温度范围: 40°C 至 85°C
- 3.15V 至 3.45V 工作电压

2 应用

- 高性能的时钟分配和分频
- 无线基础设施
- 数据通信和电信时钟分配
- 医疗成像
- 测试和测量
- 军用/航天

3 说明

LMK01801 是针对时钟系统的一种超低噪音的解决方 案,需要精确时钟的分配和频率分频。


LMK01801 具有超低残余噪声、频率分频、数字和模 拟延迟调整以及十四 (14) 个可编程差分输出: LVPECL、LVDS 和 LVCMOS (每个差分输出有 2 个 输出)。

LMK01801 具有两个独立输入, 该输入可采用差分驱 动(LVDS、LVPECL)或以单端模式驱动 (LVCMOS、RF Sinewave)。第一个输入驱动包括 八 (8) 个输出的输出组 A。第二个输入驱动包括六 (6) 个输出的输出组 B。

器件信息(1)

器件型号	封装	封装尺寸
LMK01801	VQFN (48)	7.00mm × 7.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

功能方框图

Table of Contents

1 特性1	9.4 Device Functional Modes	17
 2 应用 1	9.5 Programming	<mark>27</mark>
3 说明	9.6 Register Map	
4 Revision History2	10 Application and Implementation	41
5 Device Comparison4	10.1 Typical Application	41
5.1 Functional Configurations4	11 Power Supply Recommendations	47
6 Pin Configuration and Functions5	11.1 Current Consumption	
7 Specifications7	12 Layout	49
7.1 Absolute Maximum Ratings7	12.1 Layout Guidelines	49
7.2 Recommended Operating Conditions	12.2 Thermal Management	49
7.3 Thermal Information	13 Device and Documentation Support	
7.4 Electrical Characteristics8	13.1 Documentation Support	50
7.5 Serial MICROWIRE Timing Diagram	13.2 接收文档更新通知	<mark>5</mark> 0
7.6 Typical Characteristics	13.3 支持资源	
8 Parameter Measurement Information	13.4 Trademarks	
8.1 Differential Voltage Measurement Terminology 13	13.5 Electrostatic Discharge Caution	
9 Detailed Description14	13.6 术语表	
9.1 Overview	14 Mechanical, Packaging, and Orderable	
9.2 Functional Block Diagram14	Information	50
9.3 Feature Description		
•		

4 Revision History

注:以前版本的页码可能与当前版本的页码不同

	Page
ed Delay column for Clock Output Configurations table	4
Fixed Digital Delay note for Clock Output Configurations table	4
ged Absolute Maximum Ratings note 1	
I Fixed Digital Delay block for CLKout0 to CLKout11 in <i>Functional Block Diagram</i>	
ged content and renamed Large Divider (1 to 1045) section to CLKout0 to CLKout11 Digital Delay	/ 1 <mark>5</mark>
I CLKoutX_Y_OFFSET_PD description to the Fixed Digital Delay section	17
I CLKoutX_Y_OFFSET_PD description to SYNC Timing section	19
I CLKoutX_Y_OFFSET_PD to 图 9-1	
I CLKoutX_Y_OFFSET_PD to 图 9-2	
I CLKoutX_Y_OFFSET_PD to the <i>Register Map</i> table	
I CLKoutX_Y_OFFSET_PD fields to the <i>Default Device Register Settings</i> table	
I CLKoutX_Y_OFFSET_PD section	
from Revision B (January 2019) to Revision C (October 2019)	Page
ged Test/CLKoutTYPE_0 type from: I to: I/O	5
ged Test/CLKoutTYPE_0 type from: I to: I/O I propagation delay parameter in the <i>Electrical Characteristics</i> table	5
ged Test/CLKoutTYPE_0 type from: I to: I/O I propagation delay parameter in the <i>Electrical Characteristics</i> table I note to <i>Clock Output Synchronization (SYNC)</i> section	5 8 19
ged Test/CLKoutTYPE_0 type from: I to: I/O I propagation delay parameter in the Electrical Characteristics table	5 19 19
ged Test/CLKoutTYPE_0 type from: I to: I/O I propagation delay parameter in the Electrical Characteristics table I note to Clock Output Synchronization (SYNC) section ged Clock Output Synchronization Using the SYNC1 Pin graphic ged the Relative Dynamic Digital Delay Programming Example, 2nd Adjust graphic	5 19 19 25
ged Test/CLKoutTYPE_0 type from: I to: I/O	5 19 19 25
ged Test/CLKoutTYPE_0 type from: I to: I/O I propagation delay parameter in the Electrical Characteristics table I note to Clock Output Synchronization (SYNC) section ged Clock Output Synchronization Using the SYNC1 Pin graphic ged the Relative Dynamic Digital Delay Programming Example, 2nd Adjust graphic	5 19 19 25 32
ged Test/CLKoutTYPE_0 type from: I to: I/O	5 19 19 25 32
ged Test/CLKoutTYPE_0 type from: I to: I/O	51925323949

www.ti.com.cn

45
Page
50
8
8
5
4
4

5 Device Comparison

5.1 Functional Configurations

表 5-1. Clock Output Configurations

Bank	Input	Clock Group	Output CLKoutX/CLKoutX*	Output Type	Outputs in Divider Group	Divider Ratios	Delay
	CLKin0/	CG1	0 to 3	LVDS/LVPECL	0 to 3	1 to 8	Fixed Digital ⁽²⁾
A	CLKin0*	CG2	4 to 7	LVDS/LVPECL/ LVCMOS	4 to 7	1 to 8	Fixed Digital ⁽²⁾
B	CLKin1/	CG3	8 to 11	LVDS/LVPECL/ LVCMOS	8 to 11	1 to 8	Fixed Digital ⁽²⁾
Б	CLKin1* CG4 12 and 13	12 and 13	LVDS/LVPECL/ LVCMOS	12 and 13	1 to 1045 ⁽¹⁾	Digital and Analog ⁽³⁾	

- (1) Digital Delay will not work if CLKout12 13 DIV = 1.
- (2) Fixed Digital Delay occurs when CLKoutX_Y_OFFSET_PD = 0. See 节 9.4.5.
- (3) See 节 7.4

表 5-2. Pin Control Mode for EN_PIN_CTRL = Low(1)

Pin	Output Groups	Pin=Low	Pin=Middle	Pin=High
CLKoutTYPE 0	CLKout0 to CLKout3	LVDS	Powerdown	LVPECL
CLROUITTE_0	CLKout4 to CLKout7	LVDS	LVCMOS (Norm/Inv)	LVFEGE
CLKoutTYPE_1	CLKout8 to CLKout11	LVDS	LVCMOS (Norm/Inv)	LVPECL
CLKoutTYPE_2	CLKout12 to CLKout13	LVDS	LVCMOS (Norm/Inv)	LVPECL
CLKoutDIV_0	CLKout0 to CLKout3 Divider	÷ 1	÷ 4	÷ 2
CLKoutDIV_1	CLKout4 to CLKout7 Divider	÷ 1	÷ 4	÷ 2
CLKoutDIV 2	CLKout8 to CLKout11 Divider	÷ 1	÷ 4	÷ 2
OLINGUIDIV_2	CLKout12 to CLKout13 Divider	÷ 8	÷ 512	÷ 16

(1) Floating is SPI. See \ddagger 9.4.2.

表 5-3. Pin Control Mode for EN_PIN_CTRL = High(1) (2)

Pin	Output Groups	Pin=Low	Pin=Middle	Pin=High
CLKoutTYPE 0	CLKout0 to CLKout3	LVDS	LVPECL	LVPECL
OLINOUTI I L_0	CLKout4 to CLKout7	LVDS	LVCMOS (Norm/Inv)	LVI LOL
CLKoutTYPE_1	CLKout8 to CLKout11	LVDS	LVCMOS (Norm/Inv)	LVPECL
CLKoutTYPE_2	CLKout12 to CLKout13	LVDS	LVCMOS (Norm/Inv)	LVPECL
CLKoutDIV_0	CLKout0 to CLKout7 Dividers	÷ 1	÷ 4	÷ 2
CLKoutDIV_1	CLKout8 to CLKout11 Divider	÷ 1	÷ 4	÷ 2
CLKoutDIV_2	CLKout12 to CLKout13 Divider	÷ 4	÷ 512	÷ 16

- (1) Digital Delay will not work if CLKout12_13_DIV = 1.
- (2) See 节 7.4

Product Folder Links: LMK01801

6 Pin Configuration and Functions

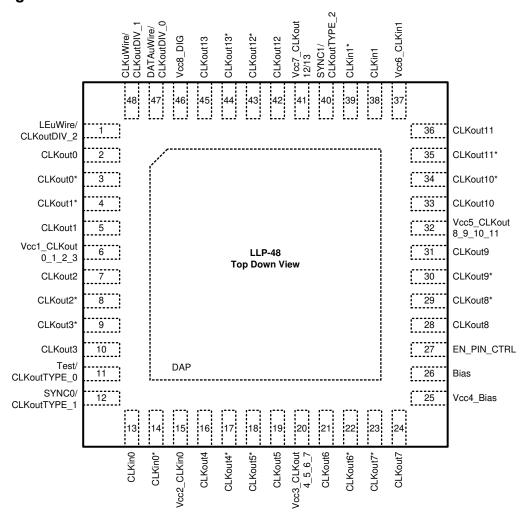


图 6-1. 48-Pin Package

表 6-1. Pin Functions⁽¹⁾

Pin Number	Name(s)	I/O	Туре	Description		
1	LEuWire/ CLKoutDIV_2	I	CMOS / 3-State	MICROWIRE Latch Enable Input / Pin control mode: clock divider 2		
2, 3	CLKout0, CLKout0*	0	Programmable	Clock output 0: LVDS or LVPECL		
4, 5	CLKout1*, CLKout1	0	Programmable	Clock output 1: LVDS or LVPECL		
6	Vcc1_CLKout 0_1_2_3	I	PWR	Power supply for clock outputs 0, 1, 2, and 3		
7, 8	CLKout2, CLKout2*	0	Programmable	Clock output 2: LVDS or LVPECL		
9, 10	CLKout3*, CLKout3	0	Programmable	Clock output 3: LVDS or LVPECL		
11	Test/ CLKoutTYPE_0	I/O	CMOS / 3-State	Reserved Test Pin / Pin control mode: clock output type select 0		
12	SYNC0/ CLKoutTYPE_1	I	CMOS / 3-State	SYNC0 / Pin control mode: clock output type select 1		

表 6-1. Pin Functions⁽¹⁾ (continued)

13, 14 CLKin0, CLKin0 I ANLG Clock input 0. Supports clocking types including but not limited to LVDs, LVPECL, and LVCMOS 16, 17 CLKoul4, CLKoul4 O Programmable Clock output 4: LVDS, LVPECL, or LVCMOS 18, 19 CLKoul5, CLKoul5 O Programmable Clock output 4: LVDS, LVPECL, or LVCMOS 20 Vcc3, CLKoul6 O Programmable Clock output 5: LVDS, LVPECL, or LVCMOS 21, 22 CLKoul6 O Programmable Clock output 6: LVDS, LVPECL, or LVCMOS 23, 24 CLKoul7 O Programmable Clock output 6: LVDS, LVPECL, or LVCMOS 25 Vcc4 Bias I PWR Power supply for clock output 8: LVDS, LVPECL, or LVCMOS 26 Bias ANLG Bias bypass pin 27 EN_PIN_CTRL I 3-State Select MICROWIRE or pin control mode 28, 29 CLKoul8, CLKoul9 O Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 30, 31 CLKoul9 O Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 32 Vcc5, CLKoul 0 Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 33 Vcc6, CLKoul9 O Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 34 Programmable Clock output 9: LVDS, LVPECL, or LVCMOS 35 QLKoul9 O Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 36 QLKoul10 O Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 37 Vcc6, CLKoul1 I PWR Power supply for clock output 8: 9, 10, and 11 38, 39 CLKoul11 O Programmable Clock output 10: LVDS, LVPECL, or LVCMOS 40 CLKoul11 O Programmable Clock output 11: LVDS, LVPECL, or LVCMOS 40 CLKoul11 I PWR Power supply for clock input 1 Clock input 1 Supports clocking types including but not limited to LVDS, LVPECL, and LVCMOS 40 CLKoul11 I PWR Power supply for clock input 1 SyNC1 I CLKoul11 I PWR Power supply for clock output 12: LVDS, LVPECL, and LVCMOS 40 CLKoul11 I PWR Power supply for clock output 12: LVDS LVPECL, and LVCMOS 41 Vcc6, CLKin1 I PWR Power supply for clock output 12: LVDS, LVPECL, and LVCMOS 42 CLKoul13 I PWR Power supply for clock output 12: LVDS LVPECL, and LVCMOS 43 CLKoul13 I PWR Power supply for clock output 12: LVDS LVPECL, and LVCMOS 44 CLKoul13 I PWR Power supply for clock output 12: LVDS LVPECL, and LVCMOS 45 CLKoul13 I	Din Number	(Continued)			
19, 14 CLKino* I PWR Power supply for clock input 0 16, 17 CLKout4, CLKout4, CLKout5* O Programmable Clock output 4: LVDS, LVPECL, or LVCMOS 18, 19 CLKout5* O Programmable Clock output 5: LVDS, LVPECL, or LVCMOS 20 Voc3_CLKout I PWR Power supply for clock output 4, 5, 6, and 7 21, 22 CLKout6* O Programmable Clock output 6: LVDS, LVPECL, or LVCMOS 21, 22 CLKout6* O Programmable Clock output 6: LVDS, LVPECL, or LVCMOS 23, 24 CLKout7* O Programmable Clock output 7: LVDS, LVPECL, or LVCMOS 25 Voc4_Bias I PWR Power supply for bias 26 Bias ANLG Bias bypass pin 27 EN_PIN_CTRL I 3-State Select MICROWIRE or pin control mode 28, 29 CLKout6* O Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 30, 31 CLKout6* O Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 31 CLKout6* O Programmable Clock output 8: LVDS, LVPECL, or LVCMOS 32 Voc5_CLKout O Programmable Clock output 9: LVDS, LVPECL, or LVCMOS 33 Voc5_CLKout1 PWR Power supply for clock output 8: 9, 10, and 11 33, 34 CLKout10* O Programmable Clock output 9: LVDS, LVPECL, or LVCMOS 35, 36 CLKout10* O Programmable Clock output 10: LVDS, LVPECL, or LVCMOS 36 CLKout11* O Programmable Clock output 11: LVDS, LVPECL, or LVCMOS 37 Voc6_CLKout11* O Programmable Clock output 11: LVDS, LVPECL, or LVCMOS 40 SYNC1/ CLKout11* I PWR Power supply for clock output 8: 9, 10, and 11 38, 39 CLKout11* O Programmable Clock output 11: LVDS, LVPECL, or LVCMOS 40 SYNC1/ CLKout17* O Programmable Clock output 11: LVDS, LVPECL, or LVCMOS 41 Voc7_CLKout12* O Programmable Clock output 12: LVDS, LVPECL, or LVCMOS 42 CLKout12* O Programmable Clock output 12: LVDS, LVPECL, or LVCMOS 44, 45 CLKout12* O Programmable Clock output 12: LVDS, LVPECL, or LVCMOS 45 CLKout12* O Programmable Clock output 12: LVDS, LVPECL, or LVCMOS 46 Voc8_DIG I PWR Power supply for clock output 12: LVDS CLKOMOS 47 CLKout12* O Programmable Clock output 13: LVDS, LVPECL, or LVCMOS 48 CLKOUTD* O Programmable Clock output 13: LVDS, LVPECL, or LVCMOS 48 CLKoutDIV_0 I CMOS / 3-State MICROWIRE DATA Pin	Pin Number	Name(s)	I/O	Туре	Description
16, 17	13, 14	1	I	ANLG	
16, 17	15	Vcc2_CLKin0	I	PWR	Power supply for clock input 0
18, 19	16, 17	1	0	Programmable	Clock output 4: LVDS, LVPECL, or LVCMOS
21, 22	18, 19	1	0	Programmable	Clock output 5: LVDS, LVPECL, or LVCMOS
21, 22	20		I	PWR	Power supply for clock outputs 4, 5, 6, and 7
25	21, 22		0	Programmable	Clock output 6: LVDS, LVPECL, or LVCMOS
26	23, 24		0	Programmable	Clock output 7: LVDS, LVPECL, or LVCMOS
27	25	Vcc4_Bias	I	PWR	Power supply for Bias
28, 29	26	Bias		ANLG	Bias bypass pin
Clock output 8: LVDS, LVPECL, or LVCMOS	27	EN_PIN_CTRL	I	3-State	Select MICROWIRE or pin control mode
30, 31	28, 29		0	Programmable	Clock output 8: LVDS, LVPECL, or LVCMOS
Seg-10_11	30, 31		0	Programmable	Clock output 9: LVDS, LVPECL, or LVCMOS
33, 34 CLKout10* O Programmable Clock output 10: LVDS, LVPECL, or LVCMOS 35, 36 CLKout11*, CLKout11 PWR Power supply for clock input 1 38, 39 CLKin1, CLKin1* I ANLG Clock input 1. Supports clocking types including but not limited to LVDS, LVPECL, and LVCMOS 40 SYNC1/ CLKoutTYPE_2 I CMOS / 3-State Pin control mode: Clock output type select 2 41 Vcc7_CLKout 12_13 I PWR Power supply for clock output type select 2 42, 43 CLKout12* O Programmable Clock output 12: LVDS, LVPECL, or LVCMOS 44, 45 CLKout13*, CLKout13*, CLKout13*, CLKout13*, CLKout13*, CLKout13*, CLKout13* O Programmable Clock output 13: LVDS, LVPECL, or LVCMOS 46 Vcc8_DIG I PWR Power supply for digital 47 DATAUWire/ CLKoutDIV_0 I CMOS / 3-State MICROWIRE DATA Pin / Pin control mode: Clock divider 1 CLKoutDIV_1 I CMOS / 3-State MICROWIRE CLK Pin / Pin control mode: Clock divider 1	32		I	PWR	Power supply for clock outputs 8, 9, 10, and 11
35, 36 CLKout11 CLKout11 CLKin1, CLKin1, CLKin1* CLKin1, CLKin1* CLKout17PE_2 CLKout17PE_2 CLKout12, CLKout12* CLKout12* CLKout13*, CL	33, 34		0	Programmable	Clock output 10: LVDS, LVPECL, or LVCMOS
38, 39 CLKin1, CLKin1* I ANLG Clock input 1. Supports clocking types including but not limited to LVDS, LVPECL, and LVCMOS SYNC1/ CLKoutTYPE_2 I CMOS / 3-State SYNC pin for CLKin1 and bank B. Pin control mode: Clock output type select 2 Vcc7_CLKout 12_13 I PWR Power supply for clock outputs 12, and 13 42, 43 CLKout12* CLKout12* O Programmable Clock output 12: LVDS, LVPECL, or LVCMOS 44, 45 CLKout13* CLKout13 O Programmable Clock output 13: LVDS, LVPECL, or LVCMOS ANLG MICROWIRE DATA Pin / Pin control mode: Clock divider 1 CLKoutDIV_0 CLKoutDIV_1 I CMOS / 3-State MICROWIRE CLK Pin / Pin control mode: Clock divider 1	35, 36		0	Programmable	Clock output 11: LVDS, LVPECL, or LVCMOS
CLKin1* I ANLG limited to LVDS, LVPECL, and LVCMOS	37	Vcc6_CLKin1	I	PWR	Power supply for clock input 1
CLKoutTYPE_2	38, 39	1	I	ANLG	
41 12_13 I PWR Power supply for clock outputs 12, and 13 42, 43 CLKout12, CLKout12* O Programmable Clock output 12: LVDS, LVPECL, or LVCMOS 44, 45 CLKout13*, CLKout13 O Programmable Clock output 13: LVDS, LVPECL, or LVCMOS 46 Vcc8_DIG I PWR Power supply for digital 47 DATAuWire/ CLKoutDIV_0 I CMOS / 3-State MICROWIRE DATA Pin / Pin control mode: Clock divider 0 48 CLKuWire/ CLKoutDIV_1 I CMOS / 3-State MICROWIRE CLK Pin / Pin control mode: Clock divider 1	40	1	I	CMOS / 3-State	
42, 43 CLKout12* O Programmable Clock output 12: LVDS, LVPECL, or LVCMOS 44, 45 CLKout13* O Programmable Clock output 13: LVDS, LVPECL, or LVCMOS 46 Vcc8_DIG I PWR Power supply for digital MICROWIRE DATA Pin / Pin control mode: Clock divider 0 CLKoutDIV_0 CLKoutDIV_1 I CMOS / 3-State MICROWIRE CLK Pin / Pin control mode: Clock divider 1	41		I	PWR	Power supply for clock outputs 12, and 13
44, 45 CLKout13 O Programmable Clock output 13: LVDS, LVPECL, or LVCMOS 46 Vcc8_DIG I PWR Power supply for digital 47 DATAuWire/ CLKoutDIV_0 I CMOS / 3-State CLKuWire/ CLKoutDIV_1 I CMOS / 3-State MICROWIRE DATA Pin / Pin control mode: Clock divider MICROWIRE CLK Pin / Pin control mode: Clock divider 1	42, 43		0	Programmable	Clock output 12: LVDS, LVPECL, or LVCMOS
DATAuWire/ CLKoutDIV_0 CLKuWire/ CLKoutDIV_1 I CMOS / 3-State MICROWIRE DATA Pin / Pin control mode: Clock divider 0 MICROWIRE DATA Pin / Pin control mode: Clock divider 1 MICROWIRE CLK Pin / Pin control mode: Clock divider 1	44, 45	1	0	Programmable	Clock output 13: LVDS, LVPECL, or LVCMOS
47 CLKoutDIV_0 I CMOS / 3-State 0 48 CLKuWire/ CLKoutDIV_1 I CMOS / 3-State MICROWIRE CLK Pin / Pin control mode: Clock divider 1	46	Vcc8_DIG	I	PWR	Power supply for digital
CLKoutDIV_1 I CMOS / 3-State MICROWIRE CLK Pin / Pin control mode: Clock divider 1	47		I	CMOS / 3-State	MICROWIRE DATA Pin / Pin control mode: Clock divider 0
DAP DAP GND DIE ATTACH PAD, connect to GND	48		I	CMOS / 3-State	MICROWIRE CLK Pin / Pin control mode: Clock divider 1
	DAP	DAP		GND	DIE ATTACH PAD, connect to GND

⁽¹⁾ See 节 12.1.1 for recommended connections.

7 Specifications

7.1 Absolute Maximum Ratings

see (1) (2) (3) (5)

		MIN	MAX	UNIT
V _{CC}	Supply Voltage ⁽⁴⁾	- 0.3	3.6	V
V _{IN}	Input Voltage	- 0.3	(V _{CC} + 0.3)	V
T _L	Lead Temperature (solder 4 seconds)		260	°C
I _{IN}	Differential Input Current (CLKinX/X*)		±5	mA
MSL	Moisture Sensitivity Level		3	
T _{stg}	Storage Temperature	- 65	150	°C

- (1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) This device is a high performance RF integrated circuit with an ESD rating up to 2.5 kV Human Body Model, up to 250 V Machine Model and up to 1,250 V Charged Device Model and is ESD sensitive. Handling and assembly of this device should only be done at ESD-free workstations.
- (3) Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress ratings only. Functional operation of the device is only implied at these or any other conditions in excess of those given in the operation sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.
- (4) Never to exceed 3.6 V.
- (5) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

7.2 Recommended Operating Conditions

	PARAMETER	MIN	NOM	MAX	UNIT	
T _A	Ambient Temperature	V _{CC} = 3.3 V	-40	25	85	°C
V _{CC}	Supply Voltage		3.15	3.3	3.45	V
TJ	Junction Temperature				125	°C

7.3 Thermal Information

48-Lead WQFN

		VALUE	UNIT
θ JA	Thermal resistance from junction to ambient on 4-layer JEDEC board ⁽¹⁾	26	°C/W
θ JC	Thermal resistance from junction to case	3	°C/W

(1) Specification assumes 9 thermal vias connect the die attach pad to the embedded copper plane on the 4-layer JEDEC board. These vias play a key role in improving the thermal performance of the WQFN. It is recommended that the maximum number of vias be used in the board layout.

7.4 Electrical Characteristics

 $3.15~V \leqslant V_{CC} \leqslant 3.45~V,~-40^{\circ}C \leqslant T_{A} \leqslant 85^{\circ}C.$ Typical values represent most likely parametric norms at V_{CC} = $3.3~V,~T_{A}$ = $25^{\circ}C,~$ at the Recommended Operating Conditions at the time of product characterization and are not ensured.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT C	ONSUMPTION					
I _{CC_PD}	Power Down Supply Current			1		mA
I _{CC_CLKS}	Supply Current with all clocks enabled ⁽²⁾	All clock delays disabled, CLKoutX_Y_DIV = 1, CLKoutX_TYPE = 1 (LVDS),		313	390	mA
CLKin0/0* AN	ID CLKin1/1* INPUT CLOCK SPECIFI	CATIONS				
		CLKinX_MUX = Bypassed CLKoutX_Y_DIV = 1	0.001		3100	MHz
f _{CLKinX}	Clock 0 or 1 Input Frequency	CLKinX_MUX = Bypassed CLKoutX_Y_DIV = 2 to 8	0.001		1600	MHz
		CLKin_MUX = Divide CLKinX_DIV = 2 to 8	0.001		3100	MHz
SLEW _{CLKin}	Slew Rate on CLKin ⁽³⁾	20% to 80%	0.15	0.5		V/ns
DUTY _{CLKin}	Clock input duty cycle		-	50%		-
V	Clock Input,	AC coupled to CLKinX; CLKinX* AC coupled to Ground (CLKinX_BUF_TYPE = Bipolar	0.25		2.4	Vpp
V _{CLKin}	Single-ended Input Voltage	AC coupled to CLKinX; CLKinX* AC coupled to Ground (CLKinX_BUF_TYPE = MOS	0.25		2.4	Vpp
V _{ID} CLK _{in}		AC coupled	0.25		1.55	V
V _{SS} CLK _{in}	Clock Input	(CLKinX_BUF_TYPE = Bipolar	0.5		3.1	Vpp
V _{ID} CLK _{in}	Differential Input Voltage (1) (9)	AC coupled	0.25		1.55	V
V _{SS} CLK _{in}		(CLKinX_BUF_TYPE = MOS	0.5		3.1	Vpp
	DC offset voltage between CLKinX/	Each pin AC coupled		0		mV
V _{CLKinX-offset}	CLKinX* CLKinX* - CLKinX	CLKinX_BUF_TYPE = Bipolar		0		mV
V _{CLKin-} V _{IH}	Maximum input voltage	DC coupled to CLKinX; CLKinX* AC	2.0		V _{CC}	V
V _{CLKin-} V _{IL}	Minimum input voltage	coupled to Ground CLKinX_BUF_TYPE = MOS	0.0		0.4	V
V _{CLKinX-offset}	DC offset voltage between CLKinX/ CLKinX* CLKinX* - CLKinX				mV	
DIGITAL INPL	JTS (CLKuWire, DATAuWire, LEuWire) for EN_PIN_CTRL = MIDDLE			'	
V _{IH}	High-Level Input Voltage		1.2		V _{CC}	V
V _{IL}	Low-Level Input Voltage				0.4	V
I _{IH}	High-Level Input Current	V _{IH} = V _{CC}	-5		5	μA
I _{IL}	Low-Level Input Current	V _{IL} = 0	-5		5	μA
DIGITAL INPU	JTS (SYNC0, SYNC1) FOR EN_PIN_0	CTRL = MIDDLE				
V _{IH}	High-Level Input Voltage		1.2		V _{CC}	V
V _{IL}	Low-Level Input Voltage			-	0.4	V
I _{IH}	High-Level Input Current V _{IH} = V _{CC}	V _{IH} = V _{CC} -5		5	μA	
I _{IL}	Low-Level Input Current V _{IL} = 0 V	V _{IL} = 0	-40		-5	μA
DIGITAL INPU	JTS (CLKuWire, DATAuWire, LEuWire	, SYNC0, SYNC1) FOR EN_PIN_CTRL	= LOW OR HIG	GH		
V _{IH}	High-Level Input Voltage		2.6		V _{CC}	V
V _{IM}	Mid-Level Input Voltage		1.3		1.85	V

Submit Document Feedback

www.ti.com.cn

 $3.15~V \leqslant V_{CC} \leqslant 3.45~V,~-40^{\circ}C \leqslant T_{A} \leqslant 85^{\circ}C.$ Typical values represent most likely parametric norms at V_{CC} = $3.3~V,~T_{A}$ = $25^{\circ}C,~$ at the Recommended Operating Conditions at the time of product characterization and are not ensured.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IL}	Low-Level Input Voltage				0.7	V
Іін	High-Level Input Current	V _{IH} = V _{CC}			100	μA
Іім	Mid-Level Input Current		-10		10	μA
I _{IL}	Low-Level Input Current	V _{IL} = 0	-100			μA
CLOCK SKE	W AND DELAY					
T_{PD}	CLKinX to CLKoutY	Single-ended CLKinX* input, LVDS output		2.25		ns
	CLKoutX to CLKoutY	LVDS-to-LVDS, T = 25°C, F_{CLK} = 800 MHz, R_L = 100 Ω AC coupled, Within same Divider	3			
T _{SKEW}	(4) (5)	LVPECL-to-LVPECL, T = 25°C F_{CLK} = 800 MHz, R_L = 100 Ω emitter resistors = 240 Ω to GND AC coupled, Within same Divider		3		ps
	Skew between any two LVCMOS outputs, same CLKout or different CLKout (4) (5)			50		
MixedT _{SKFW}	LVPECL to LVDS skew			32		
CLKoutX -	LVDS to LVCMOS skew	Same device, T = 25°C, 250 MHz, Within same Divider	830		ps	
CLKoutY	LVCMOS to LVPECL skew	200 WH 12, WHI III SAINE BIVIGE	800			
F _{ADLY}	Maximum Analog Delay Frequency		1536		MHz	
LVDS CLOCK	OUTPUTS (CLKoutX)					
f _{CLKout}	Maximum Clock Frequency (5) (6)	R _L = 100 Ω	1600			MHz
V _{OD}	Differential Output Voltage (1) (9)		225	400	575	mV
Δ V _{OD}	Change in Magnitude of V _{OD} for complementary output states	T = 25°C, DC measurement AC coupled to receiver input	-50		50	mV
V _{OS}	Output Offset Voltage	R = 100 Ω differential termination	1.125	1.25	1.375	V
ΔV _{OS}	Change in V _{OS} for complementary output states				35	mV
T _R	Output Rise Time	20% to 80%, R _L = 100 Ω		200		ps
Γ _F	Output Fall Time	80% to 20%, R _L = 100 Ω		300		ps
SA SB	Output short circuit current - single ended	Single-ended output shorted to GND, T = 25°C	ported to GND		24	mA
I _{SAB}	Output short circuit current -	Complimentary outputs tied together	-12		12	mA

 $3.15~V \leqslant V_{CC} \leqslant 3.45~V,~-40^{\circ}C \leqslant T_{A} \leqslant 85^{\circ}C.$ Typical values represent most likely parametric norms at V_{CC} = $3.3~V,~T_{A}$ = $25^{\circ}C,~$ at the Recommended Operating Conditions at the time of product characterization and are not ensured.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
LVPECL CLO	OCK OUTPUTS (CLKoutX)				-	
T _R	Output Rise Time	20% to 80%, R _L = 100 $^{\Omega}$, emitter resistors = 240 $^{\Omega}$ to GND		200		ps
T _F	Output Fall Time	80% to 20%, R _L = 100 $^{\Omega}$, emitter resistors = 240 $^{\Omega}$ to GND	200			ps
LOW COMM	ON-MODE VOLTAGE PECL (LCPE	CL) ⁽⁷⁾ , ⁽⁸⁾				
CLKout	Maximum Clock Frequency (5) (6)	R_L = 100 Ω, emitter resistors = 240 Ω to GND	3100			MHz
V _{OH}	Output High Voltage	T = 25°C. DC Measurement		1.6		V
V _{OL}	Output Low Voltage	Termination = 50 Ω to		0.75		V
V _{OD}	Output Voltage	V _{CC} - 0.6 V	535	840	1145	mV
1600-mV LV	PECL (LVPECL) CLOCK OUTPUTS	(CLKoutX)				
CLKout	Maximum Clock Frequency (5) (6)	R_L = 100 Ω, emitter resistors = 240 Ω to GND	3100			MHz
V _{OH}	Output High Voltage	T = 25°C. DC Measurement	•	V _{CC} - 0.94		V
V _{OL}	Output Low Voltage	Termination = 50 Ω to		V _{CC} - 1.9		V
V _{OD}	Output Voltage	V _{CC} - 2.0 V	585	925	1240	mV
2000-mV LV	PECL (2VPECL) CLOCK OUTPUTS	(CLKoutX)				
f _{CLKout}	Maximum Clock Frequency (5) (6)	R_L = 100 Ω, emitter resistors = 240 Ω to GND	3100			MHz
V _{OH}	Output High Voltage	T = 25°C, DC Measurement	,	V _{CC} - 0.97		V
V _{OL}	Output Low Voltage	Termination = 50 Ω to		V _{CC} - 1.95		V
V _{OD}	Output Voltage	V _{CC} - 2.3 V	705	1150	1585	mV
LVCMOS CL	OCK OUTPUTS (CLKoutX)					
f _{CLKout}	Maximum Clock Frequency (5) (6)	5-pF Load	250			MHz
V _{OH}	Output High Voltage	1-mA Load	V _{CC} - 0.1			V
V _{OL}	Output Low Voltage	1-mA Load			0.1	V
Гон	Output High Current (Source)	V _{CC} = 3.3 V, V _O = 1.65 V		28		mA
OL	Output Low Current (Sink)	V _{CC} = 3.3 V, V _O = 1.65 V		28		mA
DUTY _{CLK}	Output Duty Cycle (5)	$V_{CC}/2$ to $V_{CC}/2$, F_{CLK} = 100 MHz, T = 25 °C	45% 50% 55%		55%	
T _R	Output Rise Time	20% to 80%, R_L = 50 Ω , C_L = 5 pF	400		ps	
T _F	Output Fall Time	80% to 20%, R_L = 50 Ω , C_L = 5 pF		400		ps

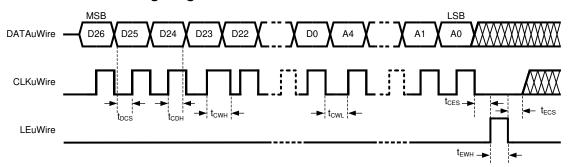
www.ti.com.cn

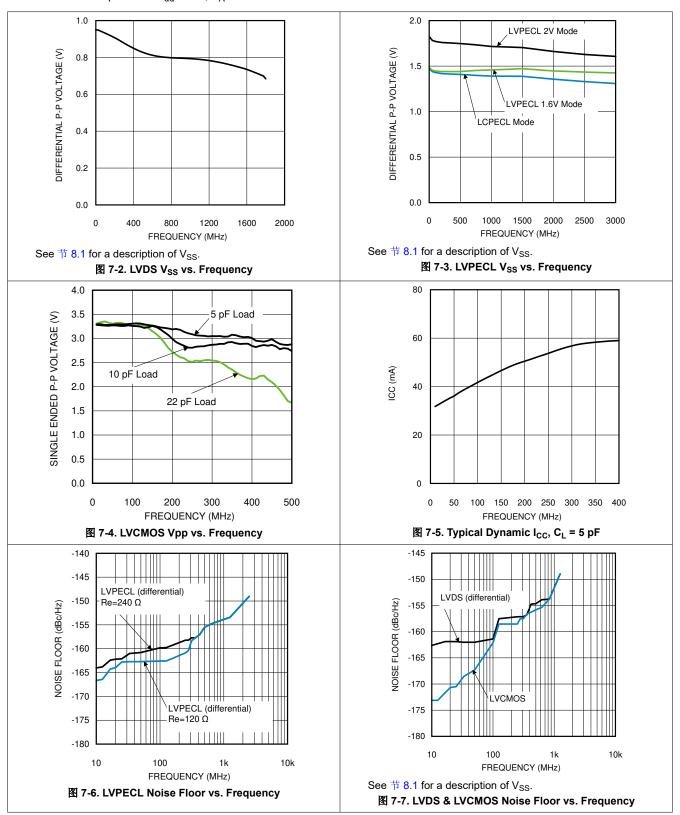
 $3.15~V \leqslant V_{CC} \leqslant 3.45~V,~-40^{\circ}C \leqslant T_{A} \leqslant 85^{\circ}C.$ Typical values represent most likely parametric norms at V_{CC} = $3.3~V,~T_{A}$ = 25°C, at the Recommended Operating Conditions at the time of product characterization and are not ensured.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
MICROWI	RE INTERFACE TIMING					
T _{ECS}	LE to Clock Set Up Time	See MICROWIRE Input Timing	25			ns
T _{DCS}	Data to Clock Set Up Time	See MICROWIRE Input Timing	25			ns
T _{CDH}	Clock to Data Hold Time	See MICROWIRE Input Timing	8			ns
T _{CWH}	Clock Pulse Width High	See MICROWIRE Input Timing	25	-		ns
T _{CWL}	Clock Pulse Width Low	See MICROWIRE Input Timing	25	-		ns
T _{CES}	Clock to LE Set Up Time	See MICROWIRE Input Timing	25			ns
T _{EWH}	LE Pulse Width	See MICROWIRE Input Timing	25			ns

- See applications section $\frac{1}{7}$ 8.1 for definition of V_{ID} and V_{OD} voltages. (1)
- For Icc for specific part configuration, see applications section # 11.1 for calculating Icc.
- The minimum recommended slew rate for all input clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase noise performance will begin to degrade as the clock input slew rate is reduced. However, the device will function at slew rates down to the minimum listed. When compared to single-ended clocks, differential clocks (LVDS, LVPECL) will be less susceptible to degradation in phase noise performance at lower slew rates due to their common mode noise rejection. However, it is also recommended to use the highest possible slew rate for differential clocks to achieve optimal phase noise performance at the device outputs.
- Equal loading and identical clock output configuration on each clock output is required for specification to be valid. Specification not valid for delay mode.
- Ensured by characterization.
- Refer to typical performance charts for output operation performance at higher frequencies than the minimum maximum output frequency.
- For LCPECL, the common mode voltage is regulated (VOH=1.6V, VOL=VOH-Vsw, Vcm=(VOH+VOL)/2) and is more stable against (7) with PVT (process, supply, temperature) variations than conventional LVPECL implementations...
- With proper selection of external emitter resistors, LCPECL can also be used for DC-coupling with devices with low common voltage such as 0.5V or 0.8V etc.
- Refer to application note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for more information.

7.5 Serial MICROWIRE Timing Diagram




图 7-1. MICROWIRE Timing Diagram

Register programming information on the DATAuWire pin is clocked into a shift register on each rising edge of the CLKuWire signal. On the rising edge of the LEuWire signal, the register is sent from the shift register to the register addressed. A slew rate of at least 30 V/µs is recommended for these signals. After programming is complete the CLKuWire, DATAuWire, and LEuWire signals should be returned to a low state.

7.6 Typical Characteristics

Unless otherwise specified: V_{dd} =3.3V, T_A =25 °C

8 Parameter Measurement Information

8.1 Differential Voltage Measurement Terminology

The differential voltage of a differential signal can be described by two different definitions causing confusion when reading data sheets or communicating with other engineers. This section will address the measurement and description of a differential signal so that the reader will be able to understand and discern between the two different definitions when used.

The first definition used to describe a differential signal is the absolute value of the voltage potential between the inverting and non-inverting signal. The symbol for this first measurement is typically V_{ID} or V_{OD} depending on if an input or output voltage is being described.

The second definition used to describe a differential signal is to measure the potential of the non-inverting signal with respect to the inverting signal. The symbol for this second measurement is V_{SS} and is a calculated parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its differential pair. V_{SS} can be measured directly by oscilloscopes with floating references, otherwise this value can be calculated as twice the value of V_{CD} as described in the first section

 \boxtimes 8-1 illustrates the two different definitions side-by-side for inputs and \boxtimes 8-2 illustrates the two different definitions side-by-side for outputs. The V_{ID} and V_{OD} definitions show V_A and V_B DC levels that the noninverting and inverting signals toggle between with respect to ground. V_{SS} input and output definitions show that if the inverting signal is considered the voltage potential reference, the noninverting signal voltage potential is now increasing and decreasing above and below the noninverting reference. Thus the peak-to-peak voltage of the differential signal can be measured.

V_{ID} and V_{OD} are often defined in volts (V) and V_{SS} is often defined as volts peak-to-peak (V_{PP}).

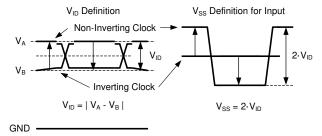


图 8-1. Two Different Definitions for Differential Input Signals

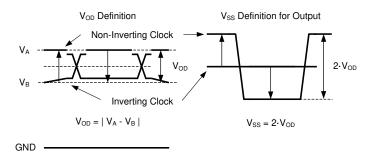
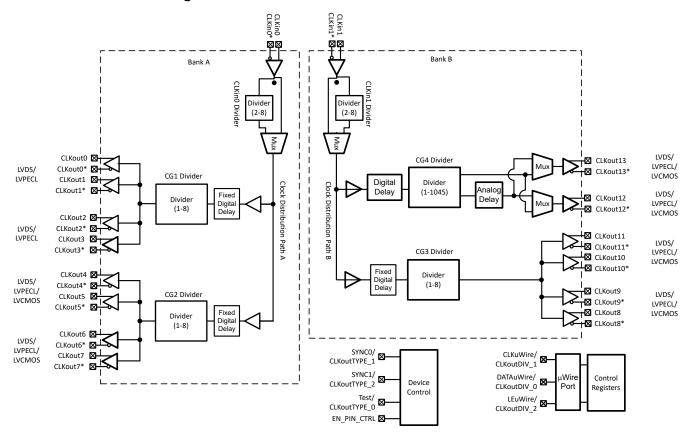


图 8-2. Two Different Definitions for Differential Output Signals

9 Detailed Description

9.1 Overview

The LMK01801 is a dual clock buffer which allows separate clock domains on the same IC with options to divide and delay signals.


The LMK01801 consists of two separate buffer banks, each with its own input divider, output dividers and programmable control of clock output channels.

- Bank A has two clock output groups, see the # 5.1 for more details.
- Bank B has two clock output groups, one of which has analog and digital delay. See the 节 5.1 for more details.

Each bank has it own common input divider and is then divided into output groups which share an output divider.

The LMK01801 comes in a 48-pin WQFN package.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 High-Speed Clock Inputs (CLKin0/CLKin0* and CLKin1/CLKin1*)

The LMK01801 has two clock inputs, CLKin0 and CLKin1 which can be driven differentially or single-ended. See † 10.1.1.1 for more information. Each input has a 2 to 8 divider that may be enabled or bypassed.

9.3.2 Clock Distribution

The LMK01801 features a total of 14 differential outputs. CLKout0 through CLKout7 are driven from CLKin0 and CLKout8 through CLKout13 are driven from CLKin1.

Submit Document Feedback

9.3.3 Small Divider (1 to 8)

There are three small dividers which drive CLKout0 to CLKout3, CLKout4 to CLKout7, and CLKout8 to CLKout11. These dividers support a divide range of 1 to 8 (even and odd).

9.3.4 Large Divider (1 to 1045)

The divider for CLKout12 and CLKout13 supports a divide range of 1 to 1045 (even and odd). When divides of 26 or greater are used, the divider/delay block uses extended mode.

9.3.5 CLKout Analog Delay

Clock outputs 12 and 13 include a fine (analog) delay for phase adjustment of the clock outputs.

The fine (analog) delay allows a nominal 25 ps step size and range from 0 to 475 ps of total delay. Enabling the analog delay adds a nominal 500 ps of delay in addition to the programmed value.

When adjusting analog delay, glitches may occur on the clock outputs being adjusted.

9.3.6 CLKout0 to CLKout11 Digital Delay

CLKout0 to CLKout11 include a fixed digital delay for phase adjustment of the clock outputs.

The fixed delay allows a group of outputs to be delayed by 5 clock distribution path cycles. The 5-cycle offset takes effect on the clock outputs after a SYNC event. The delay is enabled through the CLKoutX_Y_OFFSET_PD register bit.

See # 9.4.5 for more information.

9.3.7 CLKout12 and CLKout13 Digital Delay

CLKout12 and CLKout13 includes a coarse (digital) delay for phase adjustment of the clock outputs.

The coarse (digital) delay allows a group of outputs to be delayed by 4.5 to 12 clock distribution path cycles in normal mode, or from 12.5 to 522 clock cycles in extended mode. The delay step can be as small as half the period of the clock distribution path by using the CLKout12_13_HS bit. For example, a 2-GHz clock frequency without using CLKin1 input clock divider results in 250-ps coarse tuning steps.

The coarse (digital) delay value takes effect on the clock outputs after a SYNC event.

There are 2 different ways to use the digital (coarse) delay.

- 1. Fixed Digital Delay
- 2. Relative Dynamic Digital Delay

See Device Functional Modes for more information.

9.3.8 Programmable Outputs

The outputs of the LMK01801 are programmable in a combination of output types based on ₹ 5-1. Programming the outputs is by MICROWIRE or by pin control mode based on the state of EN_PIN_CTRL pin.

Any LVPECL output type can be programmed to LCPECL, 1600, or 2000 mVpp amplitude levels. The 2000 mVpp LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000 mVpp differential swing for compatibility with many data converters and is also known as 2VPECL.

9.3.9 Clock Output Synchronization

Using the SYNC input causes all active clock outputs to share a rising edge. See † 9.4.6 for more information.

The SYNC event also causes the digital delay value to take effect.

9.3.10 Default Clock Outputs

The power on reset sets the device to operate with all outputs active in bypass mode (no divide) with LVDS output type. In this way the device can be used without programming for fan-out purposes.

Submit Document Feedback

9.4 Device Functional Modes

9.4.1 Programmable Mode

When the EN_PIN_CTRL pin is floating (default by internal pull-up/pull-down) then programming is via MICROWIRE.

See 表 5-1 for a description of available programming options for the LMK01801 in programmable mode.

9.4.2 Pin Control Mode

The LMK01801 provides for an alternate function of the MICROWIRE (uWire) pins. This pin control mode is set by the logic of the EN_PIN_CTRL pin to provide limited control of the outputs and dividers.

When the EN_PIN_CTRL pin is set high or low (not open) then the output states can be programmed by pins, eliminating the need for an external FPGA or CPU.

If EN_PIN_CTRL is LOW then 表 5-2 in 节 5.1 defines how the outputs and dividers are configured.

If EN_PIN_CTRL is HIGH then 表 5-3 in 节 5.1 defines how the outputs and dividers are configured.

9.4.3 Inputs / Outputs

9.4.3.1 CLKin0 and CLKin1

There are two clock inputs CLKin0 and CLKin1. CLKin0 provides the input for output Bank A and CLKin1 provides the input for the output Bank B. Each input has it's own divider (2 to 8) that may be bypassed.

9.4.4 Input and Output Dividers

This section discusses the recommended usage of input and output dividers.

Clock inputs 0 and 1 each have an associated divider (2 to 8) that may be enabled or bypassed.

Clock groups 1, 2 and 3 have small output dividers (1 to 8). Clock group 4 (CLKout12 and CLKout13) has a large output divider (1 to 1045).

While the input and output clock dividers may be used in any combination the recommended operating frequency ranges are shown in the table below to minimize the phase noise floor:

Input Divider	Output Divider	Max Frequency
Bypassed	Divide = 1	3.1 GHz
Bypassed	Divide > 1	1.6 GHz
Divide = 2 to 8	Divide = 1 to 8	3.1 GHz

表 9-1. Input and Output Divider Input Frequency Ranges

9.4.5 Fixed Digital Delay

This section discusses Fixed Digital Delay and associated registers.

Clock outputs 0 to 11 may be delayed after synchronization by a fixed offset of 5 clock distribution path cycles. The CLKoutX_Y_OFFSET_PD register bit inserts the delay for each respective clock group. By default, the fixed offset is enabled for CLKout8_11 and disabled for CLKout0_3 and CLKout4_7. CLKoutX_Y_OFFSET_PD aligns the specified clock group with CLKout12_13 after a SYNC event upon meeting the following conditions:

- 1. The input clock frequency of the specified clock group(s) is the same as CLKout12 13 (CLKin1).
- 2. CLKout12 13 does not have any digital or analog delays enabled.

See SYNC Timing for further synchronization details on CLKoutX Y OFFSET PD.

Clock outputs 12 and 13 may be delayed relative to CLKout8 to CLKout11 by up to 517.5 clock distribution path periods if divide is 1 and 518.5 clock distribution path periods if divide is greater than 1. By programming a digital delay value from 4.5 to 522 clock distribution path periods, a relative clock output delay from 0 to 517.5 periods is achieved. The CLKout12 13 DDLY register sets the digital delay as shown in the table 表 9-2.

表 9-2. Possible Digital Delay Values

CLKout12_13_DDLY	CLKout12_13_HS	DIGITAL DELAY
5	1	4.5
5	0	5
6	1	5.5
6	0	6
7	1	6.5
7	0	7
520	0	520
521	1	520.5
521	0	521
522	1	521.5
522	0	522

The CLKout12_13_DDLY value only takes effect during a SYNC event and if the NO_SYNC_CLKout12_13 bit is cleared for this clock group. See 节 9.4.6 for more information.

The resolution of digital delay is related to the frequency at the input to the Clock Group 4 (CG4) clock distribution path.

Digital Delay Resolution = 1 / (2 * Clock Frequency)

The digital delay between clock outputs can be dynamically adjusted with minimum or no disruption of the output clocks. See † 9.4.6.1 for more information.

9.4.5.1 Fixed Digital Delay - Example

Given a CLKin1 clock frequency of 983.04 MHz as input to CG4, by using digital delay the outputs can be adjusted in $1/(2*983.04 \text{ MHz}) = \sim 509 \text{ ps steps}$ (Assumes CLKin1 MUX = bypass).

To achieve a quadrature (90 degree) phase shift on 122.88 MHz outputs between CLKout12 and CLKout11 from a clock frequency of 983.04 MHz program:

- Clock output divider to 8. CLKout8_11 = 8 and CLKout12_13_DIV = 8
- Set clock digital delay value. CLKout12 13 DDLY = 5, CLKout12 13 HS = 0.

The frequency of 122.88 MHz has a period of \sim 8.14 ns. To delay 90 degrees of a 122.88 MHz clock period requires a \sim 2.03 ns delay. Given a digital delay step of \sim 509 ps, this requires a digital delay value of 4 steps (2.03 ns / 509 ps = 4). Since the 4 steps are half period steps, CLKout12_13_DDLY is programmed 2 full periods beyond 5 for a total of 7.

表 9-3 shows some of the possible phase delays in degrees achievable in the above example.

表 9-3. Relative Phase Shift From CLKout12 and CLKout13 to CLKout8 to CLKout11

CLKout12_13_DDLY	CLKout12_13_HS	Relative Digital Delay	Degrees of 122.88 MHz
5	1	-0.5	-23°
5	0	0.0	0°
6	1	0.5	23°
6	0	1.0	45°
7	1	1.5	68°
7	0	2.0	90°
8	1	2.5	113°
8	0	3.0	135°

Submit Document Feedback

表 9-3. Relative Phase Shift From CLKout12 and CLKout13 to CLKout8 to CLKout11 (continued)

CLKout12_13_DDLY	CLKout12_13_HS	Relative Digital Delay	Degrees of 122.88 MHz
9	1	3.5	158°
9	0	4.0	180°
10	1	4.5	203°
10	0	5.0	225°
11	1	5.5	248°
11	0	6.0	270°
12	1	6.5	293°
12	0	7.0	315°
13	1	7.5	338°
13	0	8.0	360°

Refer to † 9.4.6.1 for more information on dynamically adjusting digital delay.

9.4.6 Clock Output Synchronization (SYNC)

The purpose of the SYNC function is to synchronize the clock outputs with a fixed and known phase relationship between each clock output selected for SYNC. SYNC can also be used to hold the outputs in a low or 0 state. The NO_SYNC_CLKoutX_Y bits can be set to disable synchronization for a clock group.

The digital delay value set by CLKout12_13_DDLY takes effect only upon a SYNC event. The digital delay due to CLKout12_13_HS takes effect immediately upon programming. See † 9.4.6.1 for more information on dynamically changing digital delay.

It is necessary to ensure that the CLKin1 signal is stable before a sync event occurs when CLKout12_13_DIV is greater than 1.

Effect of SYNC

When SYNC is asserted, the outputs to be synchronized are held in a logic low state. When SYNC is unasserted, the clock outputs to be synchronized are activated and will transition to a high state simultaneously with one another except where digital delay values have been programmed.

Refer to # 9.4.6.1 for SYNC functionality when SYNC QUAL = 1.

表 9-4. Steady-State Clock Output Condition Given Specified Inputs

SYNC_POL _INV	SYNC PIN	CLOCK STEADY STATE
0	0	Active
0	1	Low
1	0	Low
1	1	Active

Methods of Generating SYNC

There are three methods to generate a SYNC event:

- Manual:
 - Asserting the SYNC pin according to the polarity set by SYNC POL INV.
 - Toggling the SYNC_POL_INV bit though MICROWIRE will cause a SYNC to be asserted.
- Automatic:
 - Programming Register R4 when SYNC_EN_AUTO = 1 will generate a SYNC event for Bank B.
 - Programming Register R5 when SYNC_EN_AUTO = 1 will generate a SYNC event for both Bank A and Bank B.

Due to the high speed of the clock distribution path (as fast as ~322 ps period) and the slow slew rate of the SYNC, the exact clock cycle at which the SYNC is asserted or unasserted by the SYNC is undefined. The timing diagrams show a sharp transition of the SYNC to clarify functionality.

Avoiding clock output interruption due to SYNC

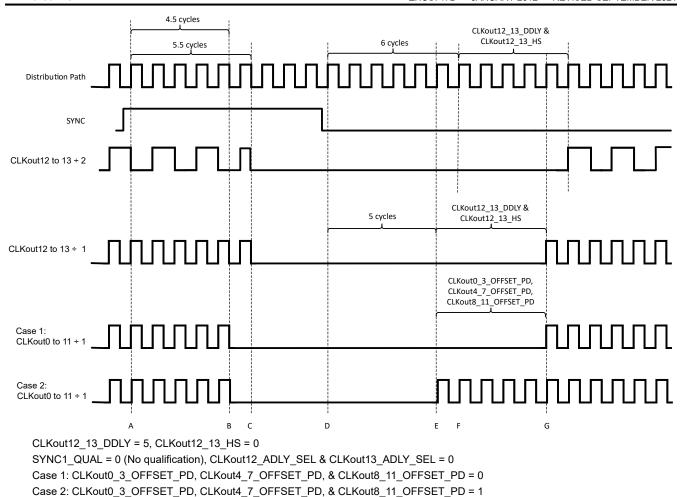
Note

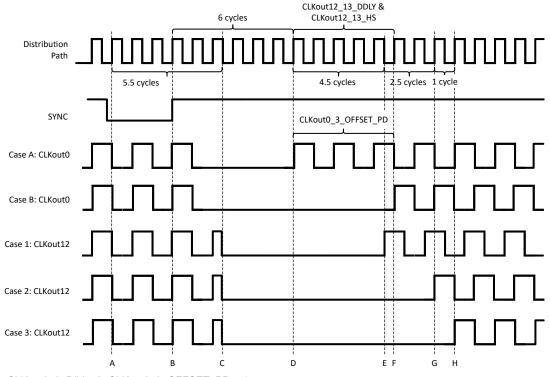
When Automatic SYNC is enabled, after a write to registers 4 of 5, there is an 170-ns delay after LE falling edge before the SYNC event is registered.

If a clock output has the NO_SYNC_CLKoutX_Y bits set they will be unaffected by the SYNC event. It is possible to perform a SYNC operation with the NO_SYNC_CLKoutX_Y bit cleared, set the NO_SYNC_CLKoutX_Y bits so that the selected clocks will not be affected by a future SYNC. Future SYNC events will not effect these clocks but will still cause the newly synchronized clocks to be resynchronized using the currently programmed digital delay values. When this happens, the phase relationship between the first group of synchronized clocks and the second group of synchronized clocks will be undefined. Except for CLKout12 and CLKout13 when synced using qualification mode. See † 9.4.6.1.

SYNC Timing

When discussing the timing of the SYNC function, one cycle refers to one period of the clock distribution path.




图 9-1. Clock Output Synchronization Using the SYNC1 Pin (SYNC1 is Active High, SYNC1 POL INV = 0)

Refer to \$\bigsepsec{\text{9-1}}{9-1}\$ during this discussion on the timing of SYNC. SYNC must be asserted for greater than one clock cycle of the clock distribution path to register the SYNC event. After SYNC is asserted the SYNC event will begin on the following rising edge of the distribution path clock, at time A. After this event has been registered, the outputs will not reflect the low state for 4.5 cycles for CLKout0 to CLKout11 at time B or 5.5 cycles for CLKout12 and CLKout13 if divide > 1, at time C. Due to the asynchronous nature of SYNC with respect to the output clocks, it is possible that a runt pulse could be created when the clock output goes low from the SYNC event. This is shown by CLKout12 and CLKout13. See \$\frac{\pi}{9.4.6.1.2}\$ for more information on synchronizing relative to an output clock to eliminate or minimize this runt pulse for CLKout13 or CLKout13.

After SYNC becomes unasserted the event will be registered on the following rising edge of the distribution path clock, time D. CLKout0 to CLKout11 will rise at time E, if Case 2, coincident with a rising distribution clock edge that occurs after 5 cycles for CLKout0 to CLKout11 and for CLKout12 to CLKout13, if CLKout12_13_DIV = 1. If CLKoutX_Y_OFFSET_PD = 0, CLKout0 to CLKout11 will rise at time G after an additional 5 cycles. If CLKout12_13_DIV > 1 then the rising edge of CLKout12 and CLKout13 will occur after 6 cycles of the distribution path at time F plus as many more cycles as programmed by the digital delay for that clock output path. CLKout12 and CLKout13 will rise at time G, which is the Digital Delay value plus 5 cycles when CLKout12_13_DIV = 1 or 6 cycles when CLKout12_13_DIV > 1.

See \(\begin{align*} \text{9-2} for further SYNC timing detail using different digital delays. \end{align*}

Case A: CLKout0_3_DIV = 2, CLKout0_3_OFFSET_PD = 1

Case B: CLKout0_3_DIV = 2, CLKout0_3_OFFSET_PD = 0

Case 1: CLKout12_13_DIV = 2, CLKout12_13_DDLY = 5, CLKout12_13_HS = 1

Case 2: CLKout12_13_DIV = 2, CLKout12_13_DDLY = 7, CLKout12_13_HS = 0

Case 3: CLKout12_13_DIV = 2, CLKout12_13_DDLY = 8, CLKout12_13_HS = 0

SYNC1_QUAL = 0 (No qualification), CLKout12_ADLY_SEL & CLKout13_ADLY_SEL = 0

图 9-2. Clock Output Synchronization Using the SYNC Pin (SYNC is Active Low, SYNC_POL_INV = 1)

图 9-2 illustrates the timing with various digital delays programmed.

- Time A) SYNC assertion event is registered.
- Time B) SYNC unassertion registered.
- Time C) CLKout12 outputs toggle and remain low. A runt pulse can occur at this time as shown.
- Time D) After 5 cycles, in Case A, CLKout0 rises.
- Time E) After 6 + 4.5 = 10.5 cycles, in Case 1, CLKout12 rises.
- Time F) After 5 + 5 = 10 cycles, in Case B, CLKout0 rises.
- Time G) After 6 + 7 = 13 cycles, in Case 2, CLKout12 rises.
- Time H) After 6 + 8 = 14 cycles, in Case 3, CLKout12 rises.
- Note: CLKout 12 and CLKout 13 are driven by the same divider and delay circuit, therefore, their timing is always the same except when analog delay is used.

9.4.6.1 Dynamically Programming Digital Delay

To use dynamic digital delay **synchronization qualification** set SYNC1_QUAL = 3. This causes the SYNC pulse to be qualified by a clock output so that the SYNC event occurs after a specified time from a clock output transition. This allows the relative adjustment of clock output phase in real-time with no or minimum interruption of clock outputs. Hence the term dynamic digital delay.

Note that changing the phase of a clock output requires momentarily altering in the rate of change of the clock output phase and therefore by definition results in a frequency distortion of the signal.

Without qualifying the SYNC with an output clock, the newly synchronized clocks would have a random and unknown digital delay (or phase) with respect to clock outputs not currently being synchronized. Only CLKout12 can be used as a qualifying clock.

Relative Dynamic Digital Delay

When the qualifying clock digital delay is being adjusted, because the qualifying clock and the adjusted clock are the same, then a **relative dynamic digital delay** adjust is performed. Clocks with NO_SYNC_CLKoutX_Y = 1 are defined as clocks not being adjusted. These clocks operate without interruption.

SYNC and Minimum Step Size

The minimum step size adjustment for digital delay is half a clock distribution path cycle. This is achieved by using the CLKout12_13_HS bit. The CLKout12_13_HS bit change effect is immediate without the need for SYNC. To shift digital delay using CLKout12_13_DDLY, a SYNC signal must be generated for the change to take effect.

Programming Overview

To dynamically adjust the digital delay with respect to an existing clock output the device should be programmed as follows:

- Set SYNC1 QUAL = 3 for clock output qualification.
- Set NO SYNC CLKout12 13 = 0 to enable synchronization on CLKout12 and CLKout13.
- Set CLKout12 ADLY SEL = 0.
- Set NO_SYNC_CLKoutX_Y = 1 for the output clocks, except CLKout12 and CLKout13, that will continue to operate during the SYNC event. There is no interruption of output on these clocks.
- The SYNC_EN_AUTO bit may be set to cause a SYNC event to begin when register R4 is programmed. The auto SYNC feature is a convenience since it does not require the application to manually assert SYNC by toggling the SYNC_POL_INV bit or the SYNC pin when changing digital delay.

Internal Dynamic Digital Delay Timing

Once SYNC is qualified by an output clock, 1.5 cycles later an internal one shot pulse will occur. The width of the one shot pulse is 3 cycles. This internal one shot pulse will cause the outputs to turn off and then back on with a fixed delay with respect to the falling edge of the qualification clock. This allows for dynamic adjustments of digital delay with respect to an output clock.

The qualified SYNC timing is shown in \(\begin{align*} \begin{align*} 9-3 & for relative dynamic digital delay. \end{align*} \)

Dynamic Digital Delay Conditions

To perform a dynamic digital delay adjustment, the analog delay must be bypassed by setting CLKout12_ADLY_SEL to 0. If the analog delay is not bypassed the output synchronization may be inaccurate due to unknown analog delay settings.

When adjusting digital delay dynamically, the falling edge of the qualifying clock must coincide with the falling edge of the clock distribution path. For this requirement to be met, program the CLKout12_13_HS value of the qualifying clock group according to $\frac{1}{2}$ 9-5.

表 9-5. Half-Step Programming Requirement of Qualifying Clock During SYNC Event

CLKout12_13_DIV VALUE	CLKout12_13_HS
Odd	Must = 1 during SYNC event.
Even	Must = 0 during SYNC event.

Product Folder Links: / MK01801

24

9.4.6.1.1 Relative Dynamic Digital Delay

Relative dynamic digital delay can be used to program a clock output to a specific phase offset from another clock output.

Pros:

- · Direct phase adjustment with respect to same clock output.
- Possible glitch pulses from clock output will always be the same during digital delay adjustment transient.

Cons:

- For some clock divide values there may be a glitch pulse due to SYNC assertion.
- Adjustments of digital delay requiring the half step bit (CLKout12_13_HS) for finer digital delay adjust is complicated due to the half step requirement in 表 9-5 above.

9.4.6.1.2 Relative Dynamic Digital Delay - Example

To illustrate the relative dynamic digital delay adjust procedure, consider the following example.

System Requirements:

- CLKin1 Frequency = 983.04 MHz
- CLKout8 = 983.04 MHz (CLKout8 11 DIV = 1)
- CLKout12 = 491.52 MHz (CLKout12_13_DIV = 2)
- · During initial programming:
 - CLKout12 13 DDLY = 5
 - CLKout12_13_HS = 0
 - NO SYNC CLKoutX Y = 0

The application requires the 491.52 MHz clock to be stepped in 90 degree steps (\sim 508.6 ps), which is the minimum step resolution allowable by the clock distribution path. That is 1 / 983.04 MHz / 2 = \sim 169.5 ps. During the stepping of the 491.52 MHz clocks the 983.04 MHz clock must not be interrupted.

Step 1: The device is programmed from register R0 to R5 with values that result in the device operating as desired, see the system requirements above. The phase of all the output clocks are aligned because all the digital delay and half step values were the same when the SYNC was generated by programming register R5. The timing of this is as shown in $\boxed{8}$ 9-1.

Step 2: Now the registers will be programmed to prepare for changing digital delay (or phase) dynamically.

REGISTER	PURPOSE
SYNC1_QUAL = 3	Use clock output for qualifying the SYNC pulse for dynamically adjusting digital delay.
NO_SYNC_CLKout7_11 = 1	Clock output 8 (983.04 MHz) won't be affected by SYNC. It will operate without interruption.
SYNC1_AUTO = 0 (default)	Automatically generation of SYNC is not allowed because of the half step requirement. SYNC must be generated manually by toggling the SYNC_POL_INV bit or the SYNC pin.

After the above registers have been programmed, the application may now dynamically adjust the digital delay of the 491.52 MHz clocks.

Step 3: Adjust digital delay of CLKout12 by one step.

Refer to $\frac{1}{8}$ 9-6 for the programming sequence to step one half clock distribution period forward or backwards.

表 9-6. Programming Sequence for One-Step Adjust

STEP DIRECTION AND CURRE	NT HS STATE		İ	PROGRAMMING SEQUENCE
Adjust clock output one step forw CLKout12_13_HS = 0.	ard.			1. CLKout12_13_HS = 1.

表 9-6. Programming Sequence for One-Step Adjust (continued)

yes or regramming organisms for one orepression (community)							
STEP DIRECTION AND CURRENT HS STATE	PROGRAMMING SEQUENCE						
Adjust clock output one step forward. CLKout12_13_HS = 1.	1. CLKout12_13_DDLY = 9. 2. Perform SYNC event. 3. CLKout12_13_HS = 0.						
Adjust clock output one step backward. CLKout12_13_HS = 0.	1. CLKout12_13_HS = 1. 2. CLKout12_13_DDLY = 5. 3. Perform SYNC event.						
Adjust clock output one step backward. CLKout12_13_HS = 1.	1. CLKout12_13_HS = 0.						

To fulfill the qualifying clock output half step requirement in 表 9-5 when dynamically adjusting digital delay, the CLKout12_13_HS bit must be set if CLKout12 or CLKout13 has an odd divide. So before any dynamic digital delay adjustment, CLKout12_13_HS must be set because the clock divide value is odd. To achieve the final required digital delay adjustment, the CLKout12_13_HS bit may cleared after SYNC.

If a SYNC is to be generated this can be done by toggling the SYNC pin or by toggling the SYNC_POL_INV bit. Because of the internal one shot pulse, no strict timing of the SYNC pin or SYNC_POL_INV bit is required. After the SYNC event, the clock output will be at the specified phase. See

9-3 for a detailed view of the timing diagram. The timing diagram critical points are:

- Time A) SYNC assertion event is registered.
- Time B) First qualifying falling clock output edge.
- Time C) Second qualifying falling clock output edge.
- Time D) Internal one shot pulse begins. 5.5 cycles later CLKout12 outputs will be forced low while 8.5 cycles later CLKout8 outputs will be forced low.
- Time E) Internal one shot pulse ends. 6 cycles + digital delay cycles later CLKout12 or CLKout13 outputs rise. 10 cycles later CLKout8 to CLKout11 outputs rise.
- Time F) CLKout12 to CLKout13 outputs are forced low.
- Time G) Beginning of digital delay cycles.
- Time H) CLKout8 to CLKout11 outputs are forced low.
- Time I) CLKout8 to CLKout11 outputs rise now.
- Time j) For CLKout12 13 DDLY = 5; the CLKout12 and CLKout13 outputs rise now.

Submit Document Feedback

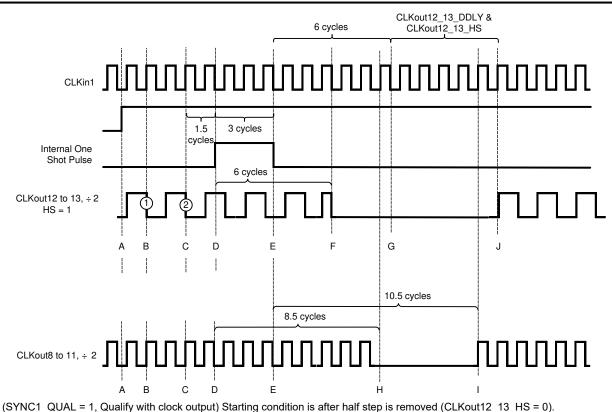


图 9-3. Relative Dynamic Digital Delay Programming Example, 2nd Adjust

9.5 Programming

LMK01801 devices are programmed using 32-bit registers. Each register consists of a 4-bit address field and 23-bit data field. The address field is formed by bits 0 through 3 (LSBs) and the data field is formed by bits 4 through 31 (MSBs). The contents of each register is clocked in MSB first (bit 31), and the LSB (bit 0) last. During programming, the LE signal should be held LOW. The serial data is clocked in on the rising edge of the CLK signal. After the LSB (bit 0) is clocked in the LE signal should be toggled LOW-to-HIGH-to-LOW to latch the contents into the register selected in the address field. It is recommended to program registers in numeric order, for example R0 to R5 and R15 to achieve proper device operation. 8 7-1 illustrates the serial data timing sequence.

9.5.1 Recommended Programming Sequence

Registers are programmed in numeric order with R0 being the first and R15 being the last register programmed. The recommended programming sequence involves programming R0 with the reset bit (b4) set to 1 to ensure the device is in a default state. Then R0 is programmed again, the reset bit is be cleared to 0 during the reprogramming of R0.

9.5.1.1 Overview

- R0 (Init):
 - Program R0 with RESET = 1. This ensures that the device is configured with default settings. When RESET =1, all other R0 bits are ignored.
- R0: Powerdown Controls and CLKin Dividers
 - Program R0 with RESET = 0
- R1 and R2: Clock output types
- R3: SYNC Features and Analog Delay for CLKout12 and CLKout13
- R4: Dynamic Digital Delay for CLKout12 and CLKout13
- R5: CLKout Dividers and Analog Delay Select

• R15: uWireLock

9.6 Register Map

表 9-7 provides the register map for device programming:

表 9-7. Register Map

REGISTER	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							•			•					Data [3	1:4]	•	•	•		•		•		•	•		•	Ad	ldres	s [3	:0]
R0	0	1	0	0	1	0	0	0	7			CLKin1_DIV		O SIZ	CENINO_IMIOA		CLKin0_DIV		1	1	CLKin1_BUF_TYPE	CLKin0_BUF_TYPE	CLKout12_13_PD	CLKout8_11_PD	CLKout4_7_PD	CLKout0_3_PD	POWERDOWN	RESET	0	0	0	0
R1	CL	Kout	7_TY	'PΕ	C	LKou	t6_TY	PE	CI	Kout	5_TYI	PE	С	LKout	4_TYF	PΕ	CLK	out3_7	ΓΥΡΕ	CLK	out2_	ΓΥΡΕ	CLK	out1_7	TYPE	CLK	out0_	ΓΥΡΕ	0	0	0	1
R2	0	0	0	0	С	LKout	13_TY	/PE	CL	Kout1	2_TY	PΕ	CL	_Kout1	11_TY	PE	CL	_Kout1	I0_TY	PΕ	С	LKout	9_TYF	PE	С	LKout	8_TYF	PE	0	0	1	0
R3	0	0	0	1	0	SYNC1_AUTO	SYNC0_AUTO	SYNC1_FAST	SYNC0_FAST	CLKout8_11_OFFSET_PD	CLKout4_7_OFFSET_PD	CLKout0_3_OFFSET_PD	NO_SYNC_CLKout12_13	NO_SYNC_CLKout8_11	NO_SYNC_CLKout4_7	NO_SYNC_CLKout0_3	SYNC1_POL_INV	SYNC0_POL_INV	0	N I CONS	OTINO LACOAL	CLKout12_13_HS		CLK	(out12	_13_A	NDLY		0	0	1	1
R4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				CLK	out12	_13_0	DLY				0	1	0	0
R5	0	0	0	0				(CLKo	ut12_	13_DI	V				0	0	CLKout13_ADLY_SEL	CLKout12_ADLY_SEL		CLKout8_11_DIV			CLKout4_7_DIV			CLKout0_3_DIV		0	1	0	1
R15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	uWireLock	1	1	1	1

9.6.1 Default Device Register Settings After Power On/Reset

The Default Device Register Settings after Power On/Reset Table below illustrates the default register settings programmed in silicon for the LMK018xx after power on or asserting the reset bit. Capital X and Y represent numeric values.

表 9-8. Default Device Register Settings After Power On/Reset

Device power down control R0 5	FIELD NAME	DEFAULT VALUE (DECIMAL)	DEFAULT STATE	FIELD DESCRIPTION	REGISTE R	BIT LOCATION (MSB:LSB)
CLKout0_3_PD	RESET	0	Not in reset	Performs power on reset for device	R0	4
CLKOULD_S_PD Disabled outputs 0 through 3 R0 6 CLKout4_7_PD 0 Disabled Power down the divider and clock outputs 4 through 7 R0 7 CLKout8_11_PD 0 Disabled Power down the divider and clock outputs 8 through 11 R0 8 CLKout12_13_PD 0 Disabled Power down the divider and clock outputs 8 through 11 R0 9 CLKin0_BUF_TYPE 0 Bipolar Clock in buffer type R0 11 CLKin0_BUF_TYPE 0 Bipolar Clock in buffer type R0 11 CLKin0_DIV 2 Divide by 2 Divider value for CLKin0 R0 14-16 CLKin0_MUX 0 Bypass Enables or bypasses the CLKin0 divider R0 17-16 CLKin1_BUX 0 Bypass Enables or bypasses the CLKin1 divider R0 12-22 CLKout1_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL. R1 7-9 CLKout2_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS.	POWERDOWN	0	N.	Device power down control	R0	5
CLKOUID_TYPE 0 Disabled Outputs 4 through 7 R0 7 CLKout12_13_PD 0 Disabled Power down the divider and clock outputs 8 through 11 R0 8 CLKout12_13_PD 0 Disabled Power down the divider and clock outputs 12 through 13 R0 9 CLKin0_BUF_TYPE 0 Bipolar Clock in buffer type R0 11 CLKin0_DIV 2 Divide by 2 Divider value for CLKin0 R0 14-16 CLKin0_DIV 2 Divide by 2 Divider value for CLKin1 R0 17-16 CLKin1_DIV 2 Divide by 2 Divider value for CLKin1 R0 19-21 CLKin1_MUX 0 Bypass Enables or bypasses the CLKin1 divider R0 19-21 CLKou10_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL. R1 4-6 CLKou11_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL. R1 10-12 CLKou12_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL. R1 2-2-2	CLKout0_3_PD	0	Disabled	I .	R0	6
CLKOUI2_13_PD	CLKout4_7_PD	0	Disabled		R0	7
CLROUIT_13_PD 0 Bipolar Clock in buffer type R0 10 CLKin1_BUF_TYPE 0 Bipolar Clock in buffer type R0 10 CLKin1_BUF_TYPE 0 Bipolar Clock in buffer type R0 11 CLKin1_BUF_TYPE 0 Bipolar Clock in buffer type R0 14:16 CLKin1_BUF 2 Divide by 2 Divider value for CLKin0 R0 14:16 CLKin1_DIV 2 Divide by 2 Divider value for CLKin1 R0 19:21 CLKin1_MUX 0 Bypass Enables or bypasses the CLKin1 divider R0 22:23 CLKoul0_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL. R1 4:6 CLKoul1_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL. R1 10:15 CLKoul1_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. R1 22:22 CLKoul1_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. <td< td=""><td>CLKout8_11_PD</td><td>0</td><td>Disabled</td><td></td><td>R0</td><td>8</td></td<>	CLKout8_11_PD	0	Disabled		R0	8
CLKin1_BUF_TYPE 0 Bipolar Clock in buffer type R0 111	CLKout12_13_PD	0	Disabled		R0	9
CLKin0_DIV 2 Divide by 2 Divider value for CLKin0 R0 14:16 CLKin0_MUX 0 Bypass Enables or bypasses the CLKin0 divider R0 17:18 CLKin1_DIV 2 Divide by 2 Divider value for CLKin1 R0 19:21 CLKin1_MUX 0 Bypass Enables or bypasses the CLKin1 divider R0 22:23 CLKout1_MX 0 Bypass Enables or bypasses the CLKin1 divider R0 22:23 CLKout1_TYPE 1 LVDS R1 4:6 CLKout2_TYPE 1 LVDS R1 7:9 CLKout3_TYPE 1 LVDS R1 10:12 CLKout4_TYPE 1 LVDS R1 10:12 CLKout5_TYPE 1 LVDS R1 10:12 CLKout6_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. R2 4:7 CLKout7_TYPE 1 LVDS R2 4:7 CLKout10_TYPE 1 LVDS R2	CLKin0_BUF_TYPE	0	Bipolar	Clock in buffer type	R0	10
CLKin0_MUX 0 Bypass Enables or bypasses the CLKin0 divider R0 17:18 CLKin1_DIV 2 Divide by 2 Divider value for CLKin1 R0 19:21 CLKin1_MUX 0 Bypass Enables or bypasses the CLKin1 divider R0 22:23 CLKout0_TYPE 1 LVDS R1 4:6 CLKout1_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL. R1 7:9 CLKout3_TYPE 1 LVDS R1 10:12 CLKout4_TYPE 1 LVDS R1 10:12 CLKout5_TYPE 1 LVDS R1 10:12 CLKout6_TYPE 1 LVDS R1 20:23 CLKout6_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. R1 22:33 CLKout9_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. R2 8:11 CLKout10_TYPE 1 LVDS R2 1:21:18 CLKout11_TYPE 1 </td <td>CLKin1_BUF_TYPE</td> <td>0</td> <td>Bipolar</td> <td>Clock in buffer type</td> <td>R0</td> <td>11</td>	CLKin1_BUF_TYPE	0	Bipolar	Clock in buffer type	R0	11
CLKin1_DIV 2 Divide by 2 Divider value for CLKin1 R0 19:21 CLKin1_MUX 0 Bypass Enables or bypasses the CLKin1 divider R0 22:23 CLKout0_TYPE 1 LVDS R1 4:6 CLKout1_TYPE 1 LVDS R1 4:6 CLKout3_TYPE 1 LVDS R1 10:12 CLKout4_TYPE 1 LVDS R1 10:12 CLKout4_TYPE 1 LVDS R1 10:12 CLKout5_TYPE 1 LVDS R1 10:12 CLKout6_TYPE 1 LVDS R1 20:23 CLKout8_TYPE 1 LVDS Individual clock output format. Select Form LVDS/LVPECL/LVCMOS. R1 22:23 CLKout9_TYPE 1 LVDS Individual clock output format. Select Form LVDS/LVPECL/LVCMOS. R2 4:7 CLKout10_TYPE 1 LVDS Individual clock output format. Select Form LVDS/LVPECL/LVCMOS. R2 1:21:16 CLKout12_TYPE 1 LVDS R2	CLKin0_DIV	2	Divide by 2	Divider value for CLKin0	R0	14:16 [3]
CLKin1_MUX 0 Bypass Enables or bypasses the CLKin1 divider R0 22:23 CLKout0_TYPE 1 LVDS R1 4:6 CLKout1_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL. R1 7:9 CLKout2_TYPE 1 LVDS R1 10:12 CLKout3_TYPE 1 LVDS R1 13:15 CLKout4_TYPE 1 LVDS R1 16:15 CLKout5_TYPE 1 LVDS R1 20:23 CLKout6_TYPE 1 LVDS R1 20:23 CLKout7_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. R1 22:27 CLKout8_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. R2 4:7 CLKout10_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. R2 4:7 CLKout11_TYPE 1 LVDS R2 21:15 CLKout12_TYPE 1 LVDS	CLKin0_MUX	0	Bypass	Enables or bypasses the CLKin0 divider	R0	17:18 [2]
CLKoutd_TYPE	CLKin1_DIV	2	Divide by 2	Divider value for CLKin1	R0	19:21 [3]
CLKout1_TYPE	CLKin1_MUX	0	Bypass	Enables or bypasses the CLKin1 divider	R0	22:23 [2]
CLKout2_TYPE	CLKout0_TYPE	1	LVDS		R1	4:6 [3]
CLKout3_TYPE	CLKout1_TYPE	1	LVDS	Individual clock output format. Select	R1	7:9 [3]
CLKout4_TYPE	CLKout2_TYPE	1	LVDS		R1	10:12 [3]
CLKout5_TYPE	CLKout3_TYPE	1	LVDS		R1	13:15 [3]
CLKout6_TYPE	CLKout4_TYPE	1	LVDS		R1	16:19 [4]
CLKout7_TYPE	CLKout5_TYPE	1	LVDS	1	R1	20:23 [4]
CLKout8_TYPE 1 LVDS Individual clock output format. Select from LVDS/LVPECL/LVCMOS. R2 4:7 CLKout9_TYPE 1 LVDS R2 8:11 CLKout10_TYPE 1 LVDS R2 12:15 CLKout11_TYPE 1 LVDS R2 16:19 CLKout12_TYPE 1 LVDS R2 20:23 CLKout13_TYPE 1 LVDS R2 24:27 CLKout12_13_ADLY 0 No Shift Half shift for digital delay. R3 4:9 CLKout12_13_HS 0 Not Qualified Allows SYNC operations to be qualified by a clock output R3 11:12 SYNC1_QUAL 0 Not Qualified by a clock output R3 11:12 SYNC0_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 14 SYNC1_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 15 NO_SYNC_CLKout0_3 0 Will sync Disable individual clock groups from being synchronized. R3 17	CLKout6_TYPE	1	LVDS	1	R1	24:27 [4]
CLKout9_TYPE 1 LVDS from LVDS/LVPECL/LVCMOS. R2 8:11 CLKout10_TYPE 1 LVDS R2 12:15 CLKout11_TYPE 1 LVDS R2 16:19 CLKout12_TYPE 1 LVDS R2 20:23 CLKout13_TYPE 1 LVDS R2 24:27 CLKout12_13_ADLY 0 No delay Analog delay setting for CLKout12 & CLKout12 & R3 4:9 CLKout12_13_HS 0 No Shift Half shift for digital delay. R3 10 SYNC1_QUAL 0 Not Qualified by a clock output Allows SYNC operations to be qualified by a clock output R3 11:12 SYNC1_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 14 SYNC1_POL_INV 1 Logic Low Input R3 14 NO_SYNC_CLKout0_3 0 Will sync Disable individual clock groups from being synchronized. R3 16 NO_SYNC_CLKout8_11 0 Will sync Disable individual clock groups from being synchronized. <td>CLKout7_TYPE</td> <td>1</td> <td>LVDS</td> <td>1</td> <td>R1</td> <td>28:31 [4]</td>	CLKout7_TYPE	1	LVDS	1	R1	28:31 [4]
CLKout9_TYPE 1 LVDS from LVDS/LVPECL/LVCMOS. R2 8:11 CLKout10_TYPE 1 LVDS R2 12:15 CLKout11_TYPE 1 LVDS R2 16:19 CLKout12_TYPE 1 LVDS R2 20:23 CLKout13_TYPE 1 LVDS R2 24:27 CLKout12_13_ADLY 0 No delay Analog delay setting for CLKout12 & CLKout12 & CLKout13. R3 4:9 CLKout12_13_HS 0 No Shift Half shift for digital delay. R3 10 SYNC1_QUAL 0 Not Qualified by a clock output Allows SYNC operations to be qualified by a clock output R3 11:12 SYNC1_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 14 SYNC1_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 15 NO_SYNC_CLKout4_7 0 Will sync Disable individual clock groups from being synchronized. R3 18	CLKout8_TYPE	1	LVDS	Individual clock output format. Select	R2	4:7 [4]
CLKout11_TYPE 1 LVDS CLKout12_TYPE 1 LVDS CLKout13_TYPE 1 LVDS CLKout12_13_ADLY 0 No delay Analog delay setting for CLKout12 & CLKout12 & CLKout13. R3 4:9 CLKout12_13_HS 0 No Shift Half shift for digital delay. R3 10 SYNC1_QUAL 0 Not Qualified by a clock output Allows SYNC operations to be qualified by a clock output R3 11:12 SYNC0_POL_INV 1 Logic Low input Sets the polarity of the SYNC pin when input R3 15 NO_SYNC_CLKout0_3 0 Will sync Disable individual clock groups from being synchronized. R3 17 NO_SYNC_CLKout8_11 0 Will sync Disable individual clock groups from being synchronized. R3 18	CLKout9_TYPE	1	LVDS		R2	8:11 [4]
CLKout12_TYPE 1 LVDS R2 20:23 CLKout13_TYPE 1 LVDS R2 24:27 CLKout12_13_ADLY 0 No delay Analog delay setting for CLKout12 & CLKout12 & CLKout13. R3 4:9 CLKout12_13_HS 0 No Shift Half shift for digital delay. R3 10 SYNC1_QUAL 0 Not Qualified by a clock output Allows SYNC operations to be qualified by a clock output R3 11:12 SYNC1_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 14 SYNC1_POL_INV 1 Logic Low Input R3 15 NO_SYNC_CLKout0_3 0 Will sync Disable individual clock groups from being synchronized. R3 17 NO_SYNC_CLKout8_11 0 Will sync Disable individual clock groups from being synchronized. R3 18	CLKout10_TYPE	1	LVDS		R2	12:15 [4]
CLKout13_TYPE 1 LVDS R2 24:27 CLKout12_13_ADLY 0 No delay Analog delay setting for CLKout12 & CLKout12 & CLKout13. R3 4:9 CLKout12_13_HS 0 No Shift Half shift for digital delay. R3 10 SYNC1_QUAL 0 Not Qualified by a clock output Allows SYNC operations to be qualified by a clock output R3 11:12 SYNC0_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 14 SYNC1_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 15 NO_SYNC_CLKout0_3 0 Will sync Disable individual clock groups from being synchronized. R3 16 NO_SYNC_CLKout8_11 0 Will sync Disable individual clock groups from being synchronized. R3 18	CLKout11_TYPE	1	LVDS	1	R2	16:19 [4]
CLKout12_13_ADLY 0 No delay Analog delay setting for CLKout12 & R3 4:9 CLKout12_13_HS 0 No Shift Half shift for digital delay. R3 10 SYNC1_QUAL 0 Not Qualified Allows SYNC operations to be qualified by a clock output SYNC0_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 15 NO_SYNC_CLKout0_3 0 Will sync NO_SYNC_CLKout4_7 0 Will sync NO_SYNC_CLKout4_7 0 Will sync No_SYNC_CLKout8_11 0 No delay Analog delay setting for CLKout12 & R3 4:9 CLKout13. R3 4:9 Allows SYNC operations to be qualified by a clock output R3 11:12 R3 14:9 R3 10 R3 11:12 R3 14:9 R3 11:12 R3 11:12 R3 15 R3 16 R3 17 R3 16 R3 17 R3 16 R3 17 R3 16 R3 17 R3 18	CLKout12_TYPE	1	LVDS	1	R2	20:23 [4]
CLKout12_13_ADLY O CLKout13. CLKout12_13_HS O No Shift Half shift for digital delay. R3 10 SYNC1_QUAL O Not Qualified by a clock output SYNC0_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 11:12 R3 10 R3 11:12 R3 12:12 R3 13:12 R3 14:12 R3 15:12 R3 16:12 R3 16:12 R3 16:12 R3 17:12 R3 16:12 R3 17:12 R3 18:12 R3 R3 R3 R3 R3 R3 R3 R3 R3 R	CLKout13_TYPE	1	LVDS	1	R2	24:27 [4]
SYNC1_QUAL O Not Qualified by a clock output SYNC0_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 11:12 R3 12 R3 15 R3 15 R3 15 R3 16 R3 16 R3 16 R3 16 R3 16 R3 16 R3 17 R0_SYNC_CLKout4_7 O Will sync Disable individual clock groups from being synchronized. R3 16 R3 16 R3 16 R3 16 R3 16	CLKout12_13_ADLY	0	No delay		R3	4:9 [6]
SYNC1_QUAL by a clock output R3 11:12 SYNC0_POL_INV 1 Logic Low Sets the polarity of the SYNC pin when input R3 14 SYNC1_POL_INV 1 Logic Low input R3 15 NO_SYNC_CLKout0_3 0 Will sync Disable individual clock groups from being synchronized. R3 17 NO_SYNC_CLKout8_11 0 Will sync Disable individual clock groups from being synchronized. R3 18	CLKout12_13_HS	0	No Shift	Half shift for digital delay.	R3	10
SYNC1_POL_INV 1 Logic Low input R3 15 NO_SYNC_CLKout0_3 0 Will sync R3 16 NO_SYNC_CLKout4_7 0 Will sync Disable individual clock groups from being synchronized. R3 17 NO_SYNC_CLKout8_11 0 Will sync Disable individual clock groups from being synchronized. R3 18	SYNC1_QUAL	0	Not Qualified		R3	11:12 [2]
SYNC1_POL_INV 1 Logic Low input R3 15 NO_SYNC_CLKout0_3 0 Will sync R3 16 NO_SYNC_CLKout4_7 0 Will sync Disable individual clock groups from being synchronized. R3 17 NO_SYNC_CLKout8_11 0 Will sync Disable individual clock groups from being synchronized. R3 18	SYNC0_POL_INV	1	Logic Low	Sets the polarity of the SYNC pin when	R3	14
NO_SYNC_CLKout0_3 0 Will sync R3 16 NO_SYNC_CLKout4_7 0 Will sync Disable individual clock groups from being synchronized. R3 17 NO_SYNC_CLKout8_11 0 Will sync Will sync R3 18	SYNC1_POL_INV	1	Logic Low	→ • • • • • • • • • • • • • • • • • • •	R3	15
NO_SYNC_CLKout4_7 0 Will sync Disable individual clock groups from being synchronized. R3 17 NO_SYNC_CLKout8_11 0 Will sync Disable individual clock groups from being synchronized. R3 18		0			R3	16
NO_SYNC_CLKout8_11 0 Will sync being synchronized. R3 18		0		Disable individual clock groups from	R3	17
		0	Will sync		R3	18
NO SYNC CLKOUTIZ 13 U WIII SYNC R3 19	NO_SYNC_CLKout12_13	0	Will sync	-	R3	19

Instruments www.ti.com.cn

表 9-8. Default Device Register Settings After Power On/Reset (continued)

FIELD NAME	DEFAULT VALUE (DECIMAL)	DEFAULT STATE	FIELD DESCRIPTION	REGISTE R	BIT LOCATION (MSB:LSB)
CLKout0_3_OFFSET_PD	1	Disabled		R3	20
CLKout4_7_OFFSET_PD	1	Disabled	Enables a fixed 5-cycle digital delay offset.	R3	21
CLKout8_11_OFFSET_PD	0	5 clock cycles		R3	22
SYNC0_FAST	0	Disabled	Enables symphesization sirevity	R3	23
SYNC1_FAST	0	Disabled	Enables synchronization circuitry.	R3	24
SYNC0_AUTO	1	Automatic	SYNC is started by programming a Register R5	R3	25
SYNC1_AUTO	1	Automatic	SYNC is started by programming a Register R4 or R5	R3	26
CLKout12_13_DDLY	5	5 clock cycles	Digital Delay setting for CLKout12 & CLKout13.	R4	4:13 [10]
CLKout0_3_DIV	1	Divide-by-1		R5	4:6 [3]
CLKout4_7_DIV	1	Divide-by-1	Divider for clock outputs.	R5	7:9 [3]
CLKout8_11_DIV	1	Divide-by-1	_	R5	10:12 [3]
CLKout12_ADLY_SEL	0	No Delay	Enable Digital Delay for CLKout12	R5	13
CLKout13_ADLY_SEL	0	No Delay	Enable Digital Delay for CLKout13	R5	14
CLKout12_13_DIV	1	Divide-by-1	Divider for clock output.	R5	17:27 [11]
uWireLock	0	Writeable	The values of registers R0 to R5 are lockable	R15	4

9.6.2 Register R0

The R0 register controls reset, global power down, the power down functions for the channel dividers and their corresponding outputs, CLKinX divider value and CLKinX divide select. The X, Y in CLKoutX Y PD denote the actually clock output which may be from 0 to 13 where X is the first CLKout and Y is the last CLKout.

9.6.2.1 RESET

Setting this bit will cause the silicon default values to be set upon loading of R0 by a high LEuWire pin. When programming register R0 with the RESET bit set, all other programmed values are ignored.

The RESET bit is automatically cleared upon writing any other register. For instance, when R0 is written to again with default values.

If the user reprograms the R0, after the initial programming then set RESET = 0.

表 9-9. RESET

R0[4]	STATE
0	Normal operation
1	Reset (automatically cleared)

9.6.2.2 **POWERDOWN**

Setting this bit causes the device to enter powerdown mode. Normal operation is resumed by clearing this bit with MICROWIRE. All other MICROWIRE settings are preserved during POWERDOWN.

表 9-10. POWERDOWN

R1[5]	State
0	Normal operation
1	Powerdown

9.6.2.3 CLKoutX Y PD

This bit powers down the clock outputs as specified by CLKoutX to CLKoutY. This includes the divider and output buffers.

表 9-11. CLKoutX Y PD Programming Addresses

CLKoutX_Y_PD	Programming Address
CLKout0_3_PD	R0[6]
CLKout4_7_PD	R0[7]
CLKout8_11_PD	R0[8]
CLKout12_13_PD	R0[9]

表 9-12. CLKoutX_Y_PD

R0[6,7,8,9]	State
0	Power up clock group
1	Power down clock group

9.6.2.3.1 CLKinX_BUF_TYPE

There are two input buffer types for CLKin0 and CLKin1: bipolar or CMOS. Bipolar is recommended for differential inputs such as LVDS and LVPECL. CMOS is recommended for DC coupled single ended inputs.

When using bipolar, CLKinX and CLKinX* input pins must be AC coupled when using differential or single ended input.

When using CMOS, CLKinX and CLKinX* input pins may be AC or DC coupled with a differential input.

When using CMOS in a single ended mode, the used clock input pin (CLKinX or CLKinX*) may be AC or DC coupled to the signal source. The unused CLKin should be AC coupled to ground.

The programming address table shows at what register the specified CLKinX_BUF_TYPE is located.

The CLKinX BUF TYPE table shows the programming definition for these registers.

表 9-13. CLKinX_BUF_TYPE Programming Addresses

CLKinX_BUF_TYPE	Programming Address
CLKin0_BUF_TYPE	R0[10]
CLKin1_BUF_TYPE	R0[11]

表 9-14. CLKinX_BUF_TYPE

R0[10]	CLKinX Buffer Type
0	Bipolar
1	CMOS

9.6.2.3.2 CLKinX_DIV

These set the CLKin divide value, from 2-8.

表 9-15. CLKinX_DIV Programming Address

CLKinX_DIV	Programming Address
CLKin0_DIV	R0[16:14]
CLKin1_DIV	R0[21:19]

表 9-16. CLKinX DIV

R0[21:19, 16:14]	Divide Value						
0 (0x00)	8						
1 (0x01)	1						

表 9-16. CLKinX DIV (continued)

² σ τοι σειτιικ <u>ε</u> στο (σοιπιπασα)	
R0[21:19, 16:14]	Divide Value
2 (0x02)	2
3 (0x03)	3
4 (0x04)	4
5 (0x05)	5
6 (0x06)	6
7 (0x07)	7

9.6.2.3.3 CLKinX_MUX

These bits select whether or not the CLKin divider is bypassed or enabled.

表 9-17. CLKinX_MUX Programming Address

CLKinX_MUX	Programming Address
CLKin0_MUX	R0[18:17]
CLKin1_MUX	R0[23:22]

表 9-18. CLKinX_MUX

R0[23:22, 18:17]	State
0 (0x00)	Bypass
1(0x01)	Divide

9.6.3 Register R1 and R2

Registers R1 and R2 set the clock output types.

9.6.3.1 CLKoutX TYPE

The clock output types of the LMK01801 are individually programmable. The CLKoutX_TYPE registers set the output type of an individual clock output to LVDS, LVPECL, LVCMOS, or powers down the output buffer. Note that LVPECL supports three different amplitude levels and LVCMOS supports single LVCMOS outputs, inverted, and normal polarity of each output pin for maximum flexibility.

The programming addresses table shows at what register and address the specified clock output CLKoutX TYPE register is located.

The CLKoutX TYPE table shows the programming definition for these registers.

表 9-19. CLKoutX_TYPE Programming Addresses

CLKoutX	Programming Address
CLKout0	R1[4:6]
CLKout1	R1[7:9]
CLKout2	R1[10:12]
CLKout3	R1[13:15]
CLKout4	R1[16:19]
CLKout5	R1[20:23]
CLKout6	R1[24:27]
CLKout7	R1[28:31]
CLKout8	R2[4:7]
CLKout9	R2[8:11]
CLKout10	R2[12:15]
CLKout11	R2[16:19]
CLKout12	R2[20:23]
CLKout13	R2[24:27]

表 9-20. CLKoutX_TYPE, 4 Bits

R1[31:28,27:24,23:20,19:16], R2[27:24,23:20,19:16,15:12,11:8,7:4]	Definition
0 (0x00)	Powerdown
1 (0x01)	LVDS
2 (0x02)	LCPECL
3 (0x03)	Reserved
4 (0x04)	LVPECL (1600 mVpp)
5 (0x05)	LVPECL (2000 mVpp)
6 (0x06)	LVCMOS (Norm/Inv)
7 (0x07)	LVCMOS (Inv/Norm)
8 (0x08)	LVCMOS (Norm/Norm)
9 (0x09)	LVCMOS (Inv/Inv)
10 (0x0A)	LVCMOS (Off/Norm)
11 (0x0A)	LVCMOS (Off/Inv)
12 (0x0C)	LVCMOS (Norm/Off)
13 (0x0D)	LVCMOS (Inv/Off)
14 (0x0E)	LVCMOS (Off/Off)

Product Folder Links: LMK01801

9.6.4 Register R3

Register R3 sets the analog delay, digital delay half-shift and SYNC controls.

9.6.4.1 CLKout12_13_ADLY

This registers controls the analog delay of the clock outputs 12 and 13. Adding analog delay to the output will increase the noise floor of the output. For this analog delay to be active for a clock output, it must be selected with ADLY12_SEL or ADLY13_SEL. If neither clock output selects the analog delay, then the analog delay block is powered down.

In addition to the programmed delay, a fixed 500 ps of delay will be added by engaging the delay block.

The CLKout12_13_ADLY table shows the programming definition for these registers.

表 9-21. CLKout12_13_ADLY, 6 Bits

₹ 9-21. CLROU(12_13_ADL1, 6 Bits	
R3[4:9]	Definition
0 (0x00)	500 ps + No delay
1 (0x01)	500 ps + 25 ps
2 (0x02)	500 ps + 50 ps
3 (0x03)	500 ps + 75 ps
4 (0x04)	500 ps + 100 ps
5 (0x05)	500 ps + 125 ps
6 (0x06)	500 ps + 150 ps
7 (0x07)	500 ps + 175 ps
8 (0x08)	500 ps + 200 ps
9 (0x09)	500 ps + 225 ps
10 (0x0A)	500 ps + 250 ps
11 (0x0B)	500 ps + 275 ps
12 (0x0C)	500 ps + 300 ps
13 (0x0D)	500 ps + 325 ps
14 (0x0E)	500 ps + 350 ps
15 (0x0F)	500 ps + 375 ps
16 (0x10)	500 ps + 400 ps
17 (0x11)	500 ps + 425 ps
18 (0x12)	500 ps + 450 ps
19 (0x13)	500 ps + 475 ps
20 (0x14)	500 ps + 500 ps
21 (0x15)	500 ps + 525 ps
22 (0x16)	500 ps + 550 ps
23 (0x17)	500 ps + 575 ps

9.6.4.2 CLKout12_13_HS, Digital Delay Half Shift

This bit subtracts a half clock cycle of the clock distribution path period to the digital delay of CLKout12 and CLKout13. CLKout12_13_HS is used together with CLKout12_13_DDLY to set the digital delay value.

The state of this bit does not affect the power mode of the clock output group.

When changing CLKout12_13_HS, the digital delay immediately takes effect without a SYNC event.

表 9-22. CLKout12_13_HS

R3[10]	State
0	Normal

表 9-22. CLKout12_13_HS (continued)

R3[10]	State
1	Subtract half of a clock distribution path period from the total digital
	delay

9.6.4.3 SYNC1 QUAL

When SYNC1 QUAL is set clock outputs on Bank B will be synchronized.

CLKout12 will be used as the SYNC qualification clock.

Only CLKout12 and CLKout13 support dynamic digital delay. However, this permits the relative phase relationship between CLKout12 and CLKout13 to be dynamically adjusted with respect to all other clock outputs. When NO_SYNC_CLKoutX_Y = 1, the corresponding clock outputs will not be interrupted during the SYNC event.

Qualifying the SYNC means that the pulse which turns the clock outputs off and on will have a fixed time relationship with the phase of the other clock outputs.

See † 9.3.9 for more information.

表 9-23. SYNC1_QUAL

R3[11]	Mode
0 (0x00)	No Qualification
1 (0x01)	Reserved
2 (0x10)	Reserved
3 (0x11)	Qualification Enabled

9.6.4.4 SYNCX POL INV

Sets the polarity of a SYNCX input pin. When SYNC is asserted the clock outputs will transition to a low state.

A pull-up on the SYNCX pin results in normal operation when the SYNCX_POL_INV = 1 and the SYNCX input is a no connect.

See † 9.4.6 for more information on SYNC. A SYNC event can be generated by toggling this bit through the MICROWIRE interface.

表 9-24. SYNCX_POL_INV

R3[14, 15]	Polarity
0	SYNC is active high
1	SYNC is active low

9.6.4.5 NO_SYNC_CLKoutX_Y

The NO_SYNC_CLKoutX_Y bits prevent individual clock groups from becoming synchronized during a SYNC event. A reason to prevent individual clock groups from becoming synchronized is that during synchronization, the clock output is in a fixed low state or can have a glitch pulse.

By disabling SYNC on a clock group, it will continue to operate normally during a SYNC event.

Digital delay requires a SYNC operation to take effect. If NO_SYNC_CLKout12_13 is set before a SYNC event, the digital delay value will be unused.

Setting the NO_SYNC_CLKoutX_Y bit has no effect on clocks already synchronized together.

表 9-25. NO_SYNC_CLKoutX_Y Programming Addresses

NO_SYNC_CLKoutX_Y	Programming Address
CLKout0 to CLKout3	R3[16]
CLKout4 to CLKout7	R3[17]

表 9-25. NO_SYNC_CLKoutX_Y Programming Addresses (continued)

NO_SYNC_CLKoutX_Y	Programming Address
CLKout8 to CLKout11	R3[18]
CLKout12 to CLKout13	R3[19]

表 9-26. NO SYNC CLKoutX Y

R3[19, 18, 17, 16]	Definition
0	CLKoutX_Y will synchronize
1	CLKoutX_Y will not synchronize

9.6.4.6 CLKoutX_Y_OFFSET_PD

CLKoutX Y_OFFSET_PD sets a fixed digital delay of 5 clock distribution path cycles for clock groups 0 to 11.

Setting the bit powers down the offset for the respective clock group, starting the outputs 5 cycles earlier. Clearing the bit enables the offset, inserting the 5-cycle delay. For example, CLKout4_7_OFFSET_PD = 0 adds a 5-cycle delay to outputs 4 to 7 after synchronization.

CLKoutX_Y_OFFSET_PD takes effect upon a SYNC event.

表 9-27. CLKoutX_Y_OFFSET_PD Programming Addresses

CLKoutX_Y_OFFSET_PD	PROGRAMMING ADDRESS
CLKout0 to CLKout3	R3[20]
CLKout4 to CLKout7	R3[21]
CLKout8 to CLKout11	R3[22]

表 9-28. CLKoutX_Y_OFFSET_PD

R3[20, 21, 22]	DEFINITION
0	5 cycle delay enabled in CLKoutX_Y
1	5 cycle delay disabled in CLKoutX_Y

9.6.4.7 SYNCX FAST

SYNC1 FAST must be set to 1 when using SYNC1 QUAL

9.6.4.8 SYNCX AUTO

When set, causes a SYNC event to occur when programming R4 to adjust digital delay values (this will cause a SYNC event for Bank B only) or R5 when adjusting divide values (this will cause a SYNC event for both Bank A and B).

The SYNC event will coincide with the LE uWire pin falling edge.

表 9-29. SYNCX AUTO

R3[26, 25]	Mode
0	Manual SYNC
1	SYNC internally generated

9.6.5 Register R4

9.6.5.1 CLKout12_13_DDLY, Clock Channel Digital Delay

CLKout12_13_DDLY and CLKout12_13_HS sets the digital delay used for CLKout12 and CLKout13. CLKout12_13_DDLY only takes effect during a SYNC event and if the NO_SYNC_CLKout12_13 bit is cleared for this clock group.

Programming CLKout12 13 DDLY can require special attention. See section † 9.4.6.1 for more details.

Using a CLKout12_13_DDLY value of 13 or greater will cause the clock outputs to operate in extended mode regardless of the clock group's divide value or the half step value.

One clock cycle is equal to the period of the clock distribution path. The period of the clock distribution path is equal to clock divider value divided by the CLKin1 frequency.

 $t_{clock\ distribution\ path}$ = CLKout divide value / f_{CLKin}

Instruments www.ti.com.cn

表 9-30. CLKout12 13 DDLY, 10 Bits

R4[13:4]	Delay (Divide = 1)	Delay (Divide >1)	Power Mode
0 (0x00)	5 clock cycles	6 clock cycles	
1 (0x01)	5 clock cycles	6 clock cycles	
2 (0x02)	5 clock cycles	6 clock cycles	
3 (0x03)	5 clock cycles	6 clock cycles	
4 (0x04)	5 clock cycles	6 clock cycles	Normal Mode
5 (0x05)	5 clock cycles	6 clock cycles	- Normal wode
6 (0x06)	6 clock cycles	7 clock cycles	
7 (0x07)	7 clock cycles	8 clock cycles	
12 (0x0C)	12 clock cycles	13 clock cycles	
13 (0x0D)	13 clock cycles	14 clock cycles	
520 (0x208)	520 clock cycles	521 clock cycles	Extended Mode
521 (0x209)	521 clock cycles	522 clock cycles	
522 (0x20A)	522 clock cycles	523 clock cycles	

9.6.6 Register R5

Register 5 sets the clock output dividers and analog delay.

9.6.6.1 CLKout12 ADLY SEL[13], CLKout13 ADLY SEL[14], Select Analog Delay

These bits individually select the analog delay block for use with CLKout12 or CLKout13. It is not required for both outputs of a clock output group to use analog delay, but if both outputs do select the analog delay block, then the analog delay will be the same for each output. When neither clock output uses analog delay, the analog delay block is powered down.

表 9-31. CLKout12_ADLY_SEL[13], CLKout13_ADLY_SEL[14]

R5[13]	R5[14]	STATE
0	0	Analog delay powered down
0	1	Analog delay on CLKout13
1	0	Analog delay on CLKout12
1	1	Analog delay on both CLKouts

9.6.6.2 CLKoutX_Y_DIV Clock Output Divide

CLKoutX_Y_DIV sets the divide value for the clock outputs X through Y. The divide may be even or odd. Both even and odd divides output a 50% duty cycle clock.

Programming CLKoutX_Y_DIV is as follows:

表 9-32. CLKoutX_Y_DIV Programming Addresses

CLKoutX_Y_DIV	Programming Address
CLKout0_3_DIV	R5[6:4]
CLKout4_7_DIV	R5[9:7]
CLKout8_11_DIV	R5[12:10]
CLKout12_13_DIV	R5[27:17]

表 9-33. CLKoutX_Y_Div, 3 Bits

R5[12:10, 9:7, 6:4]	Divide Value
0 (0x00)	8

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

表 9-33. CLKoutX Y Div, 3 Bits (continued)

R5[12:10, 9:7, 6:4]	Divide Value
1 (0x01)	1
2 (0x02)	2
3 (0x03)	3
4 (0x04)	4
5 (0x05)	5
6 (0x06)	6
7 (0x07)	7

表 9-34. CLKout12_13_DIV, 11 Bits

R5[27:17]	Divide Value	Power Mode
0 (0x00)	Invalid	
1 (0x01)	1	
2 (0x02)	2 ⁽¹⁾	-
3 (0x03)	3	
4 (0x04)	4 (1)	Name at Maria
5 (0x05)	5 (1)	Normal Mode
6 (0x06)	6	
24 (0x18)	24	
25 (0x19)	25	
26 (0x1A)	26	
27 (0x1B)	27	_
		Extended Mode
1044 (0x414)	1044	-
1045 (0x415)	1045	_

⁽¹⁾ After programming CLKout12_13_DIV a SYNC event must occur on the channels using this divide value (CLKout12 and CLKout13), A SYNC event may be generated by changing the SYNC1_POL_INV bit or through the SYNC1 pin. Ensure that CLKin1 is stable before this SYNC event occurs.

Using a divide value of 26 or greater will cause the clock group to operate in extended mode regardless of the clock group's digital delay value.

9.6.7 Register 15

9.6.7.1 uWireLock

Setting uWireLock will prevent any changes to uWire registers R0 to R5. Only by clearing uWireLock bit in R15 can the MICROWIRE registers be unlocked and written to once more.

表 9-35. uWireLock

R15 [4]	State
0	Registers Unlocked
1	Registers locked, Write-protected

Product Folder Links: LMK01801

40

10 Application and Implementation

Note

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

10.1 Typical Application

10.1.1 Detailed Design Procedure

10.1.1.1 Driving CLKin Inputs

10.1.1.1.1 Driving CLKin Pins With a Differential Source

Both CLKin ports can be driven by differential signals. It is recommended that the input mode be set to bipolar (CLKinX_BUF_TYPE = 0) when using differential reference clocks. The LMK01801 family internally biases the input pins so the differential interface should be AC coupled. The recommended circuits for driving the CLKin pins with either LVDS or LVPECL are shown in § 10-1 and § 10-2.

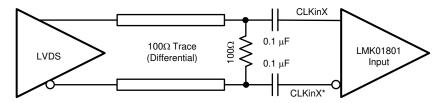


图 10-1. CLKinX/X* Termination for an LVDS Reference Clock Source

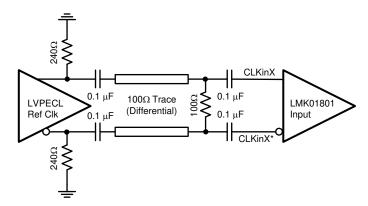


图 10-2. CLKinX/X* Termination for an LVPECL Reference Clock Source

Finally, a reference clock source that produces a differential sine wave output can drive the CLKin pins using the circuit shown in 图 10-3. Note: the signal level must conform to the requirements for the CLKin pins listed in the 节 7.4.

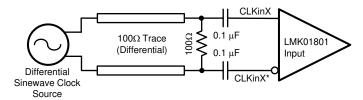


图 10-3. CLKinX/X* Single-Ended Termination

10.1.1.1.2 Driving CLKin Pins With a Single-Ended Source

The CLKin pins of the LMK01801 family can be driven using a single-ended reference clock source, for example, either a sine wave source or an LVCMOS/LVTTL source. Either AC coupling or DC coupling may be used. In the

Copyright © 2021 Texas Instruments Incorporated

case of the sine wave source that is expecting a 50 Ω load, it is recommended that AC coupling be used as shown in 8 10-4 the circuit below with a 50 Ω termination.

Note

The signal level must conform to the requirements for the CLKin pins listed in the \dagger 7.4. CLKinX_BUF_TYPE is recommended to be set to bipolar mode (CLKinX_BUF_TYPE = 0).

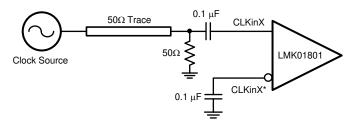


图 10-4. DC-Coupled LVCMOS/LVTTL Reference Clock

If the CLKin pins are being driven with a single-ended LVCMOS/ LVTTL source, either DC coupling or AC coupling may be used. If DC coupling is used, see 10-5, the CLKinX_BUF_TYPE should be set to MOS buffer mode (CLKinX_BUF_TYPE = 1) and the voltage swing of the source must meet the specifications for DC coupled, MOS-mode clock inputs given in the table of Electrical Characteristics. If AC coupling is used, the CLKinX_BUF_TYPE should be set to the bipolar buffer mode (CLKinX_BUF_TYPE = 0). The voltage swing at the input pins must meet the specifications for AC coupled, bipolar mode clock inputs given in the table of Electrical Characteristics. In this case, some attenuation of the clock input level may be required. A simple resistive divider circuit before the AC coupling capacitor is sufficient.

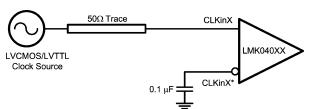


图 10-5. DC-Coupled LVCMOS/LVTTL Reference Clock

10.1.1.2 Termination and Use of Clock Output (Drivers)

When terminating clock drivers keep in mind these guidelines for optimum phase noise and jitter performance:

- Transmission line theory should be followed for good impedance matching to prevent reflections.
- Clock drivers should be presented with the proper loads. For example:
 - LVDS drivers are current drivers and require a closed current loop.
 - LVPECL drivers are open emitters and require a DC path to ground.
- Receivers should be presented with a signal biased to their specified DC bias level (common mode voltage) for proper operation. Some receivers have self-biasing inputs that automatically bias to the proper voltage level. In this case, the signal should normally be AC coupled.

It is possible to drive a non-LVPECL or non-LVDS receiver with an LVDS or LVPECL driver as long as the above guidelines are followed. Check the datasheet of the receiver or input being driven to determine the best termination and coupling method to be sure that the receiver is biased at its optimum DC voltage (common mode voltage).

For example, when driving the OSCin/OSCin* input of the LMK04800 family, OSCin/OSCin* should be AC coupled because OSCin/ OSCin* biases the signal to the proper DC level. This is only slightly different from the AC coupled cases described in † 10.1.1.1.2 because the DC blocking capacitors are placed between the termination and the OSCin/OSCin* pins, but the concept remains the same. The receiver (OSCin/OSCin*) sets the input to the optimum DC bias voltage (common mode voltage), not the driver.

10.1.1.2.1 Termination for DC-Coupled Differential Operation

For DC coupled operation of an LVDS driver, terminate with 100 Ω as close as possible to the LVDS receiver as shown in \mathbb{Z} 10-6.

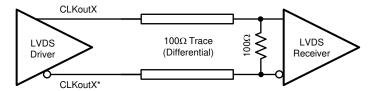


图 10-6. Differential LVDS Operation, DC Coupling, No Biasing of the Receiver

For DC coupled operation of an LVPECL driver, terminate with 50 Ω to VCC - 2 V as shown in \boxtimes 10-7. Alternatively terminate with a Thevenin equivalent circuit (120 Ω resistor connected to VCC and an 82 Ω resistor connected to ground with the driver connected to the junction of the 120 Ω and 82 Ω resistors) as shown in \boxtimes 10-8 for VCC = 3.3 V.

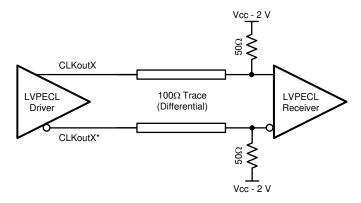


图 10-7. Differential LVPECL Operation, DC Coupling

Copyright © 2021 Texas Instruments Incorporated

Submit Document Feedback

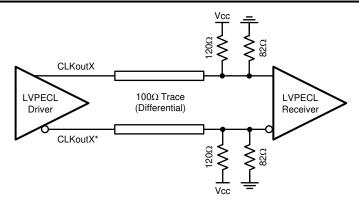


图 10-8. Differential LVPECL Operation, DC Coupling, Thevenin Equivalent

10.1.1.2.2 Termination for AC-Coupled Differential Operation

AC coupling allows for shifting the DC bias level (common-mode voltage) when driving different receiver standards. AC coupling prevents the driver from providing a DC bias voltage at the receiver, therefore it is important to ensure the receiver is biased to its ideal DC level.

When driving non-biased LVDS receivers with an LVDS driver, the signal may be AC coupled by adding DC blocking capacitors, however the proper DC bias point needs to be established at the receiver. One way to do this is with the termination circuitry in $\boxed{8}$ 10-9.

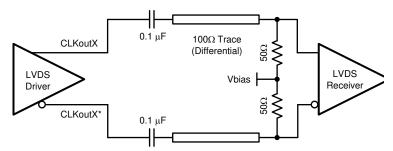


图 10-9. Differential LVDS Operation, AC Coupling, External Biasing at the Receiver

Some LVDS receivers may have internal biasing on the inputs. In this case, the circuit shown in is modified by replacing the 50- Ω terminations to Vbias with a single 100- Ω resistor across the input pins of the receiver, as shown in 30-10. When using AC coupling with LVDS outputs, there may be a start-up delay observed in the clock output due to capacitor charging. The previous figures employ a 0.1- μ F capacitor. This value may need to be adjusted to meet the start-up requirements for a particular application.

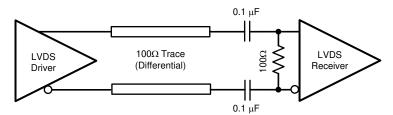


图 10-10. LVDS Termination for a Self-Biased Receiver

Submit Document Feedback

A typical application is shown in \boxtimes 10-11, where R_{em} = 120 Ω to 240 Ω . Refer to the receiver input recommendations to determine if the proper value of C_A 's, if needed.

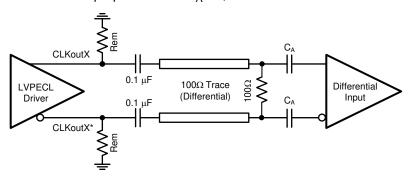


图 10-11. Differential LVPECL Operation, AC Coupling, External Biasing at the Receiver, R_{em} = 120 Ω to 240 Ω

10.1.1.2.3 Termination for Single-Ended Operation

A balun can be used with either LVDS or LVPECL drivers to convert the balanced, differential signal into an unbalanced, single-ended signal.

It is possible to use an LVPECL driver as one or two separate 800 mVpp signals. When using only one LVPECL driver of a CLKoutX/CLKoutX* pair, be sure to properly terminated the unused driver. When DC coupling one of the LMK04800 family clock LVPECL drivers, the termination should be 50 Ω to VCC - 2 V as shown in \boxtimes 10-12. The Thevenin equivalent circuit is also a valid termination as shown in \boxtimes 10-13 for Vcc = 3.3 V.

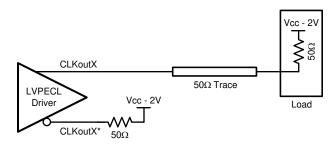


图 10-12. Single-Ended LVPECL Operation, DC Coupling

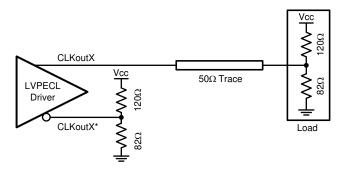


图 10-13. Single-Ended LVPECL Operation, DC Coupling, Thevenin Equivalent

When AC coupling an LVPECL driver use a 120 Ω to 240 Ω emitter resistor to provide a DC path to ground and ensure a 50 Ω termination with the proper DC bias level for the receiver. The typical DC bias voltage for LVPECL receivers is 2 V (See \dagger 10.1.1.2.2). If the companion driver is not used it should be terminated with either a proper AC or DC termination. This latter example of AC coupling a single-ended LVPECL signal can be used to measure single-ended LVPECL performance using a spectrum analyzer or phase noise analyzer. When using most RF test equipment no DC bias point (0 VDC) is required for safe and proper operation. The internal 50 Ω termination of the test equipment correctly terminates the LVPECL driver being measured as shown in Ξ 10-14.

Copyright © 2021 Texas Instruments Incorporated

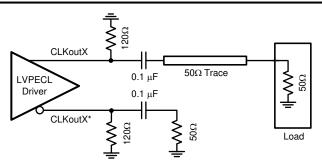


图 10-14. Single-Ended LVPECL Operation, AC Coupling R $_{\rm em}$ =120 Ω to 240 Ω

11 Power Supply Recommendations

11.1 Current Consumption

Note

Assuming $\theta_{JA} = 25.8^{\circ}\text{C/W}$, the total power dissipated on chip must be less than (125°C - 85°C) / $25.8^{\circ}\text{C/W} = 1.5 \text{ W}$ to ensure a junction temperature less than 145°C.

Worst case power dissipation can be estimated by multiplying typical power dissipation with a factor of 1.20.

From 表 11-1 the current consumption can be calculated for any configuration.

For example, the current for the entire device with 1 LVDS (CLKout0) and 1 LVPECL 1600 mVpp /w 240 Ω emitter resistors (CLKout1) output active with a clock output divide = 1, and no other features enabled can be calculated by adding the following blocks:

- Core Current
- Clock Buffer
- One LVDS Output Buffer Current
- Bank A
- Output Divider Buffer Current
- LVPECL 1600 mVpp buffer /w 240 Ω emitter resistors

Since there will be one LVPECL output drawing emitter current, this means some of the power from the current draw of the device is dissipated in the external emitter resistors which doesn't add to the power dissipation budget for the device but is important for LDO I_{CC} calculations.

For total current consumption of the device add up the significant functional blocks. In this example 92 mA =

- 1 mA (core current)
- 22 mA (Bank A current)
- 15 mA (Output Buffer current)
- 21 mA (Output Divider current)
- 9 mA (LVDS output current)
- 24 mA (LVPECL 1600 mVpp buffer /w 240 Ω emitter resistors)

Once the total current consumption has been calculated, power dissipated by the device can be calculated. The power dissipation of the device is equal to the total current entering the device multiplied by the voltage at the device minus the power dissipated in any emitter resistors connected to any of the LVPECL outputs. If no emitter resistors are connected to the LVPECL outputs, this power will be 0 watts. Continuing the output with 240 Ω emitter resistors. Total IC power = 275.1 mW = 3.3 V * 95 mA -28.5 mW.

表 11-1. Typical Current Consumption for Selected Functional Blocks $(T_A = 25^{\circ}C, V_{CC} = 3.3 \text{ V})$

Block	Condition	Typical I _{CC} (mA)	Power dissipated in device (mW)	Power dissipated externally (mW)	
		Core	1		
Core	All outputs and	dividers off	1	3.3	-
Donk	Bank A	22	72.6	-	
Bank	Bank B	At least on output enabled	25	82.5	-
Buffers	CLKout0 to CLKout3			-	
	CLKout4 to CLKout7	On when any on output in the group is	15	40.5	-
	CLKout8 to CLKout11	enabled	15	49.5	-
	CLKout12 to CLKout13			-	
	CLIVE AND AN CLIVE AND	Divide = 1	21	69.3	-
Output	CLKout0 to CLKout11	Divide = 2 to 8	24.2	79.8	-
Divider	CLKout12 and CLKout13	Divide = 1 to 25 and DDLY = 1 to 12	15	49.5	-
	CEROULIZ AND CEROULIS	Divide = 26 to 1045 or DDLY > 13	19.1	63.0	-
Input	Bank A	Divide = 2 to 8	0	20.7	-
Divider	Bank B	Divide = 2 to 8	9	29.7	-
Analog Delay		CLKout12_13_ADLY = 0 to 3	3.4	11.2	-
		CLKout12_13_ADLY = 4 to 7	3.8	12.5	-
	Analog Delay Value	CLKout12_13_ADLY = 8 to 11	4.2	13.9	-
		CLKout12_13_ADLY = 12 to 15	4.7	15.5	-
		CLKout12_13_ADLY = 16 to 23	5.2	17.2	-
	When only one, CLKout12 or CLKou	2.8	9.2	-	
		Clock Output Buffers			
	CLkout0 to CLKout11; 100	Ω differential termination	9	29.7	-
LVDS	CLkout12 to CLKout13; 100	14	46.2	-	
	CLkout0 to CLKout11; LVPECL 1600 mVpp, AC coupled using 240 Ω emitter resistors		24	79.2	28.5
LVPECL	CLkout12 to CLKout13; LVPECL 1600 mVpp, AC coupled using 240 Ω emitter resistors		29.5	97.3	28.5
		10 MHz	18.6	61.4	-
	LVCMOS Pair, CLKout4 to CLKout11, (CLKoutX TYPE = 6 - 10), C ₁ = 5 pF	50 MHz	23.1	76.2	-
	(σσσ = σ το,, σ_ σ μι	150 MHz	31.7	104.6	-
		10 MHz	24.7	81.51	-
LVCMO	LVCMOS Pair, CLKout12 and CLKout13, (CLKoutX TYPE = 6 - 10), C ₁ = 5 pF	50 MHz	30.3	100	-
	(σειτομοίζει τι ε το τιο), σε - σ μι	150 MHz	42.0	138.6	-
S		10 MHz	9.7	32	-
	LVCMOS Single, CLKout4 to CLKout11, (CLKoutX TYPE=11 - 13), C ₁ = 5 pF	50 MHz	10.8	35.6	-
	(οειοασζίτι Ε-τι-10), οι - 5 μι	150 MHz	13.5	44.5	-
		10 MHz	15	49.5	-
	LVCMOS Single, CLKout12 and CLKout13, (CLKoutX TYPE= 11 - 13), C _L = 5 pF	50 MHz	17.5	57.7	-
	(OLNOUN_TTE-TT-13), OL - 3 PF	150 MHz	22.8	75.2	+

⁽¹⁾ Power is dissipated externally in LVPECL emitter resistors. The externally dissipated power is calculated as twice the DC voltage level of one LVPECL clock output pin squared over the emitter resistance. That is to say power dissipated in emitter resistors = 2 * V_{em} ²/R_{em}

Product Folder Links: LMK01801

12 Layout

12.1 Layout Guidelines

12.1.1 Pin Connection Recommendations

12.1.1.1 Vcc Pins and Decoupling

All Vcc pins must always be connected.

Integrated capacitance on the IC makes high frequency decoupling capacitors unnecessary. Ferrite beads should be used on CLKout Vcc pins to minimize crosstalk through power supply. When several clocks share the same frequency, a single ferrite bead can be shared with the common frequency CLKout V_{CC} ' s for power supply isolation.

12.1.1.2 Unused clock outputs

Leave unused clock outputs floating and powered down.

12.1.1.3 Unused clock inputs

Unused clock inputs can be left floating.

12.1.1.4 Unused GPIO (CLKoutTYPE_X)

Unused GPIO pins can be left floating. Alternatively, unused GPIO pins can individually be pulled to GND.

12.1.1.5 Bias

Proper bypassing of the Bias pin with a 1-µF capacitor connected to Vcc4_Bias (Pin 25) is important for low noise performance.

12.1.1.6 In MICROWIRE Mode

SYNC0 and SYNC1 have an internal pullup and may be left as a no-connect if external SYNC is not required. MIRCROWIRE SYNC may still be used in this condition.

12.2 Thermal Management

Power consumption of the LMK01801 can be high enough to require attention to thermal management. For reliability and performance reasons the die temperature should be limited to a maximum of 125°C. That is, as an estimate, T_A (ambient temperature) plus device power consumption times θ_{JA} should not exceed 125°C.

The package of the device has an exposed pad that provides the primary heat removal path as well as excellent electrical grounding to a printed circuit board. To maximize the removal of heat from the package a thermal land pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package.

A recommended footprint including recommended solder mask and solder paste layers can be found at: http://www.ti.com/packaging for the RHS0048A package.

13 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

13.1 Documentation Support

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

The current documentation that describes the DSP, related peripherals, and other technical collateral is listed below.

Application Reports

AN-912 Common Data Transmission Parameters and their Definitions (SNLA036)

User's Guides

LMK01801 User's Guide (SNAU118)

Selection and Solution Guides

Clock and Timing Solutions (SLYB210)

13.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

13.3 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

13.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

13.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司 www.ti.com 1-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
LMK01801BISQ/NOPB	Active	Production	WQFN (RHS) 48	1000 SMALL T&R	Yes	SN	Level-3-260C-168 HR	-40 to 85	K01801BI
LMK01801BISQ/NOPB.A	Active	Production	WQFN (RHS) 48	1000 SMALL T&R	Yes	SN	Level-3-260C-168 HR	-40 to 85	K01801BI
LMK01801BISQE/NOPB	Active	Production	WQFN (RHS) 48	250 SMALL T&R	Yes	SN	Level-3-260C-168 HR	-40 to 85	K01801BI
LMK01801BISQE/NOPB.A	Active	Production	WQFN (RHS) 48	250 SMALL T&R	Yes	SN	Level-3-260C-168 HR	-40 to 85	K01801BI
LMK01801BISQE/NOPB.B	Active	Production	WQFN (RHS) 48	250 SMALL T&R	-	Call TI	Call TI	-40 to 85	
LMK01801BISQX/NOPB	Active	Production	WQFN (RHS) 48	2500 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 85	K01801BI
LMK01801BISQX/NOPB.A	Active	Production	WQFN (RHS) 48	2500 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 85	K01801BI
LMK01801BISQX/NOPB.B	Active	Production	WQFN (RHS) 48	2500 LARGE T&R	=	Call TI	Call TI	-40 to 85	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

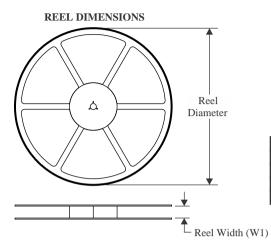
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

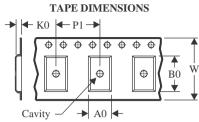
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

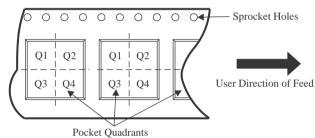
PACKAGE OPTION ADDENDUM


www.ti.com 1-Nov-2025

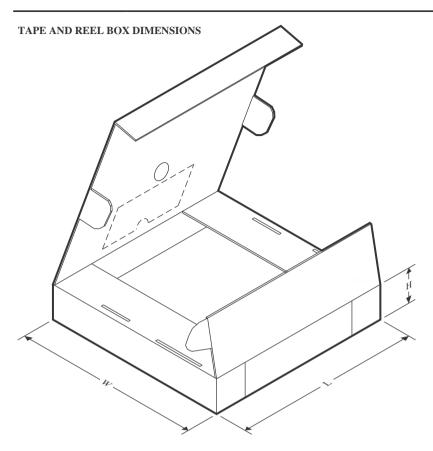

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 1-Aug-2025


TAPE AND REEL INFORMATION

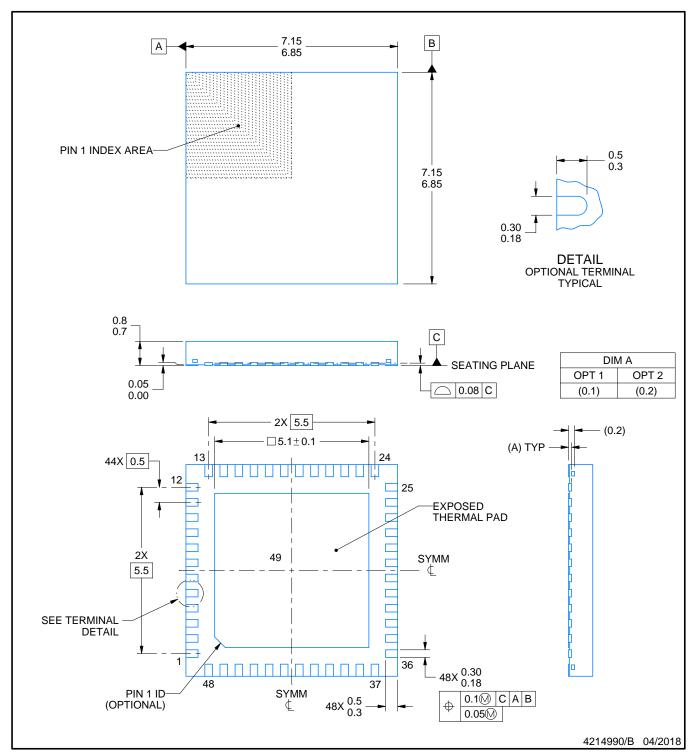
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMK01801BISQ/NOPB	WQFN	RHS	48	1000	330.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1
LMK01801BISQE/NOPB	WQFN	RHS	48	250	178.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1
LMK01801BISQX/NOPB	WQFN	RHS	48	2500	330.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1

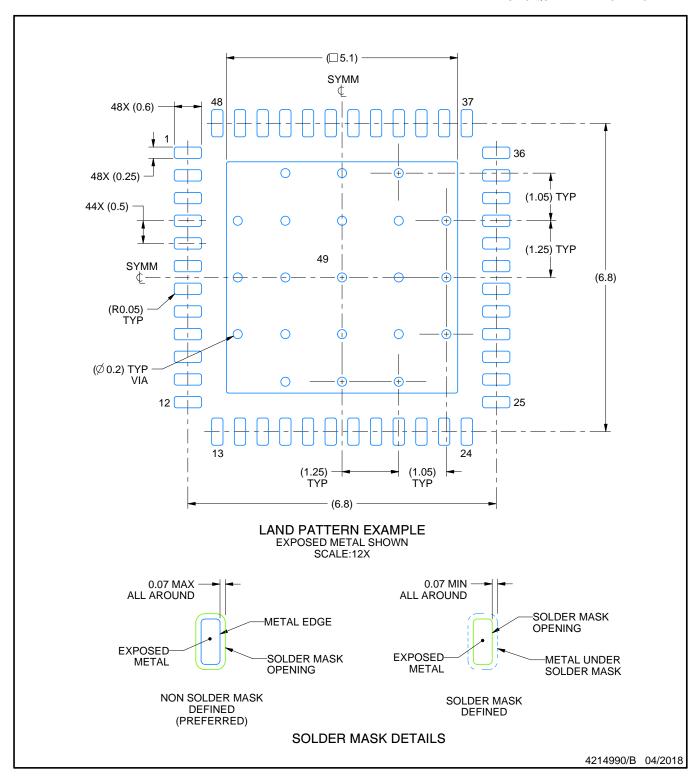
www.ti.com 1-Aug-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMK01801BISQ/NOPB	WQFN	RHS	48	1000	356.0	356.0	36.0
LMK01801BISQE/NOPB	WQFN	RHS	48	250	208.0	191.0	35.0
LMK01801BISQX/NOPB	WQFN	RHS	48	2500	356.0	356.0	36.0

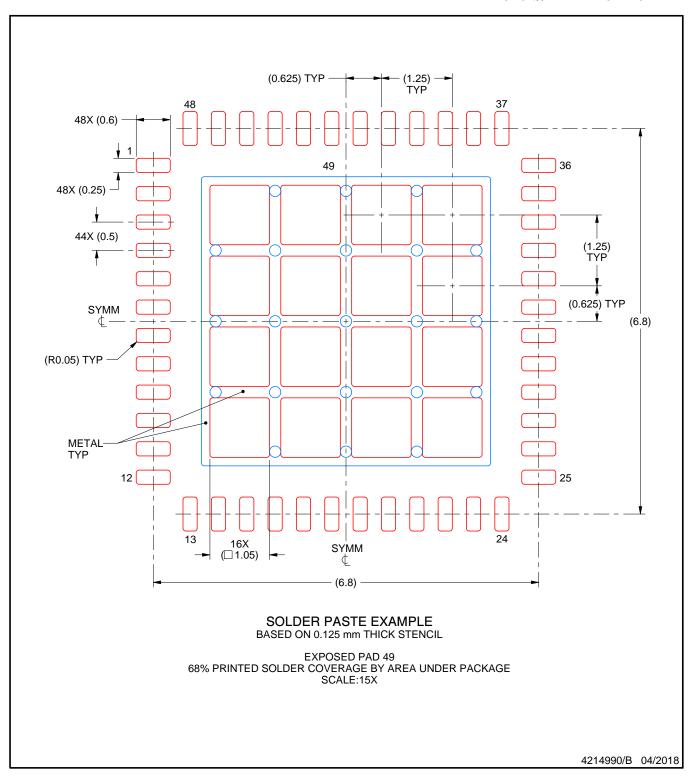
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月