

LMG1210
ZHCSHO1D – NOVEMBER 2018 – REVISED JANUARY 2019

具有可调节死区时间的 **LMG1210 200V、1.5A、3A** 半桥 **MOSFET** 和

GaN FET 驱动器 (适合 工作频率高达 50MHz 的应用)

1 特性

- 工作频率高达 50MHz
- 10ns 典型传播延迟
- 3.4ns 高侧至低侧匹配
- 4ns 最小脉宽
- 两个控制输入选项
 - 具有可调死区时间的单个 PWM 输入
 - 独立输入模式
- 1.5A 峰值拉电流和 3A 峰值灌电流
- 外部自举二极管可实现灵活性
- 内部 LDO 可实现对电压轨的适应能力
- 高 300V/ns CMTI
- HO 到 LO 的电容小于 1pF
- UVLO 和过热保护
- 低电感 WQFN 封装

2 应用

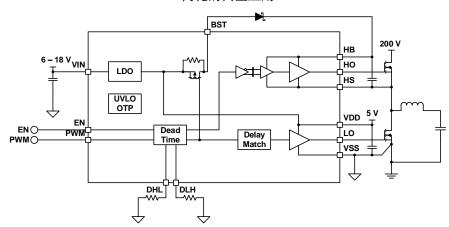
- 高速直流/直流转换器
- 射频封装跟踪
- D 类音频放大器
- E 类无线充电
- 高精度电机控制

3 说明

LMG1210 是一款 200V 半桥 MOSFET 和氮化镓场效应晶体管 (GaN FET) 驱动器,专为要求超高频率、高效率的应用而开发,具有可调节死区时间功能、极短的传播延迟以及 3.4ns 高侧/低侧匹配,以优化系统效率。此部件还具备一个内部 LDO,可确保 5V 的栅极驱动器电压(而与电源电压无关)。

为了在各种应用中获得 最佳性能,LMG1210 允许设计人员选择最佳的自举二极管对高侧自举电容器充电。当低侧不导通时,内部开关会关闭自举二极管,以有效防止高侧自举过度充电,并将反向恢复电荷降至最低。

GaN FET 上额外的寄生电容被最小化至小于 1pF,以减少额外的开关损耗。

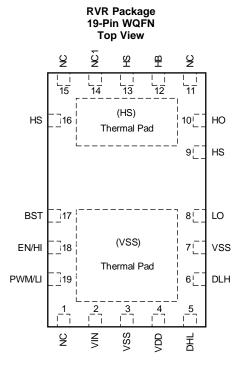

该 LMG1210 具有 两种控制输入模式: 独立输入模式 (IIM) 和 PWM 模式。在 IIM 中,每个输出都由专用输入独立控制。在 PWM 模式下,两个补偿输出信号由单个输入产生,用户可将每个沿的死区时间从 Ons 调节为 20ns。LMG1210 可在 -40°C 至 125°C 的宽温度范围内运行,并采用低电感 WQFN 封装。

器件信息(1)

器件型号	封装	封装尺寸 (标称值)
LMG1210	WQFN (19)	4.00mm × 3.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

简化的典型应用



		目記	录		
1	特性	1		7.4 Device Functional Modes	15
2	应用		8	Application and Implementation	16
3		1		8.1 Application Information	
4	修订历史记录			8.2 Typical Application	16
5	Pin Configuration and Functions			8.3 Do's and Don'ts	20
6			9	Power Supply Recommendations	20
Ŭ	6.1 Absolute Maximum Ratings		10	Layout	21
	6.2 ESD Ratings			10.1 Layout Guidelines	21
	6.3 Recommended Operating Conditions			10.2 Layout Example	21
	6.4 Thermal Information		11	器件和文档支持	<mark>22</mark>
	6.5 Electrical Characteristics	5		11.1 文档支持	
	6.6 Switching Characteristics	7		11.2 接收文档更新通知	22
	6.7 Typical Characteristics	8		11.3 社区资源	
	6.8 Timing Diagrams	10		11.4 商标	
7	Detailed Description	11		11.5 静电放电警告	22
	7.1 Overview			11.6 术语表	
	7.2 Functional Block Diagram	11	12	机械、封装和可订购信息	<u>22</u>
	修订历史记录 nges from Revision C (December 2018) to R	evision D			Page
	Changed Maximum High-side dynamic current		/MHz to	0.7mA/MHz	5
	nges from Revision B (November 2018) to R				Page
• i	已更改 将差错从 2.5ns 更改为 3.4ns				1
• i	已更改 将最小脉宽从 3ns 更改为 4ns				1
	Changed Reordered Pin Functions table in alph				
	已添加 Figure 14 IIM Timing Diagram				
	已添加 CMTI performance reference app note				
• i	已添加 charge per cycle removed from the boot	strap due to	dynamic	high side current	17
• i	已添加 Power Consumption Calculation referen	ce app note			19
Cha	nges from Revision A (May 2018) to Revisio	n B			Page

5 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
BST	17	0	Bootstrap diode anode connection point.		
DHL	5	ı	Sets the dead time for a high-to-low transition in PWM mode by connecting a resistor to VSS. If using IIM this pin can be left floating, tied to GND, tied to VDD.		
DLH	6	ı	Sets the dead time for a low-to-high transition in PWM mode by connecting a resistor to VSS. Tie to VDD to select IIM.		
EN/HI	18	ı	Enable input or high-side driver control. In PWM mode this is the EN pin. In IIM mode this is the HI pin.		
PWM/LI	19	I	PWM input or low-side driver control. In PWM mode this is the PWM pin. In IIM mode this is the LI pin.		
НВ	12	ı	High-side driver supply. Bootstrap diode cathode connection point.		
НО	10	0	High-side driver output.		
HS	9,13,16	ı	Switch node and high-side driver ground. These pins are internally connected.		
LO	8	0	Low-side driver output.		
NC	1,11,15	_	Not internally connected.		
NC1	14	ı	For proper operation, this pin should be either unconnected or tied to HS.		
Thermal Pad (HS)	21	ı	Connected to HS.		
Thermal Pad (VSS)	20	I	Connected to VSS.		
VDD	4	0	Low-side driver supply and LDO output. 5 V		
VIN	2	I	6 V to 18 V input to LDO. If LDO is not required, connect to VDD.		
VSS	3,7	_	Low-side ground return: all low-side signals are referenced to this ground.		

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V _{IN}	Input Supply Voltage	-0.5	20	V
V_{DD}	5V Supply Voltage	-0.5	5.5	V
V_{HS}	High Side Voltage Without Bootstrap Diode	-300	300	V
V _{HB} -V _{HS}	Bootstrap supply voltage, continuous	-0.5	5.5	V
V _{LI/PWM} , V _{HI/EN}	Input Pin Voltage on LI or HI	-0.5	10	V
V _{DHL} , V _{DHL}	Voltage on DLH and DHL pins	-0.5	V _{DD} + 0.5	V
V_{LO}	Low-side gate driver output	-0.5	V _{DD} + 0.5	V
V _{HO}	High-side gate driver output	V _{HS} -0.5	V _{HB} + 0.5	V
V _{BST}	Bootstrap pin voltage	-0.5	V _{DD} + 0.5	V
TJ	Operating Junction Temperature Range	-40	150	°C
T _{STG}	Storage Temperature	-55	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±XXX V may actually have higher performance.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{IN}	Input Supply Voltage (if using internal LDO)	6		18	V
V_{DD}	5V Supply Voltage (if bypassing internal LDO)	4.75	5.00	5.25	V
V _{HS} -V _{SS}	High-Side Voltage Without Bootstrap diode (1)	-200		200	V
V _{HB} -V _{HS}	Bootstrap Supply Voltage	3.80		5.25	V
V_{LI}, V_{HI}	Input Pin Voltage	-0.3		10	V
T _J	Operating Junction Temperature Range	-40		125	°C
CMTI	High Side Slew Rate			300	V/ns
R _{DHL} , R _{DLH}	Dead Time Adjustment External Resistance	20		1800	kΩ
V_{DT}	Dead Time Voltage Range	0.8		1.8	V

⁽¹⁾ If using a bootstrap diode, actual negative HS pin voltage may be more limited, see Section 7.3.6 for details.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±YYY V may actually have higher performance.

6.4 Thermal Information

		LMG1210	
	THERMAL METRIC ⁽¹⁾	RVR (QFN)	UNIT
		19 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	40.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	40	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	16.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	2.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	16.4	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

VDD=5V, HB-HS=4.6V, outputs unloaded over operating junction temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY	CURRENT				'	
	Quiescent Current for Low-Side	LI, HI=0V, Independent Mode		300	475	μА
I _{DD}	Circuits Only, Vin=6V, powered through LDO	EN=0V, PWM=X, PWM Input Mode, R _{DHL} and R _{DLH} = 1.78MΩ		380	550	μΑ
I _{HB}	HB Quiescent Current	HI=0V, Independent Mode		520	850	μΑ
I _{HBS}	HB to V _{SS} Quiescent Current	V _{HS} =100V		1		nA
I _{HBSO}	HB to V _{SS} Operating Current	V _{HS} =100V, F _{SW} =1MHz		1		nA
I _{LSDyn}	Low-side dynamic current	Unloaded, PWM Mode		1	1.25	mA/MHz
I _{HSDyn}	High-side dynamic current	Unloaded		0.5	0.7	mA/MHz
LOW-SIE	DE TO HIGH-SIDE CAPACITANCE				'	
C _{ISO}	Capacitance from High to Low Side	Low Side Pins Shorted Together, High Side Pins Shorted Together		0.25		pF
5V LDO						
V _{5V}	LDO Output	V _{IN} =10V	4.75	5.00	5.25	V
V_{DO}	Dropout Voltage	I _O =100mA		400	750	mV
I _{LDOM}	Maximum Current	V _{IN} =12V	100			mA
I _{SC}	Short Circuit Current	V _{IN} =12V	105		250	mA
C _{OUT}	Minimum Required Output Capacitance (1)	Effective Capacitance at Bias Voltage			0.3	μF
DIGITAL	INPUT PINS (LI/PWM & HI/EN)					
V _{IR}	Input Rising Edge Threshold		1.70		2.45	V
V _{IF}	Input Falling Edge Threshold		0.70		1.30	V
V_{IHYS}	Input Hysteresis			1		V
R _{IPD}	Input Pull-Down Resistance	V _{LI} , V _{HI} =1V	100	200	300	kΩ
UNDER	OLTAGE LOCKOUT					
V_{DDR}	V _{DD} Rising Threshold		4.00	4.25	4.50	V
V_{DDF}	V _{DD} Falling Threshold		3.8	4.05	4.3	V
V_{DDH}	V _{DD} Hysteresis			200		mV
V_{HBR}	HB-HS Rising Threshold		3.40	3.55	3.8	V
V_{HBF}	HB-HS Falling Threshold		3.30	3.45	3.65	V
V _{HBH}	HB-HS Hysteresis			130		mV
воотѕт	RAP DIODE SWITCH					
R _{SW}	Diode Switch On Resistance	I _D =100mA		0.4		Ω
GATE D	RIVER				1	
V _{OL}	Low-Level Output Voltage	I _{OL} =100mA			0.16	V

⁽¹⁾ Ensured by design

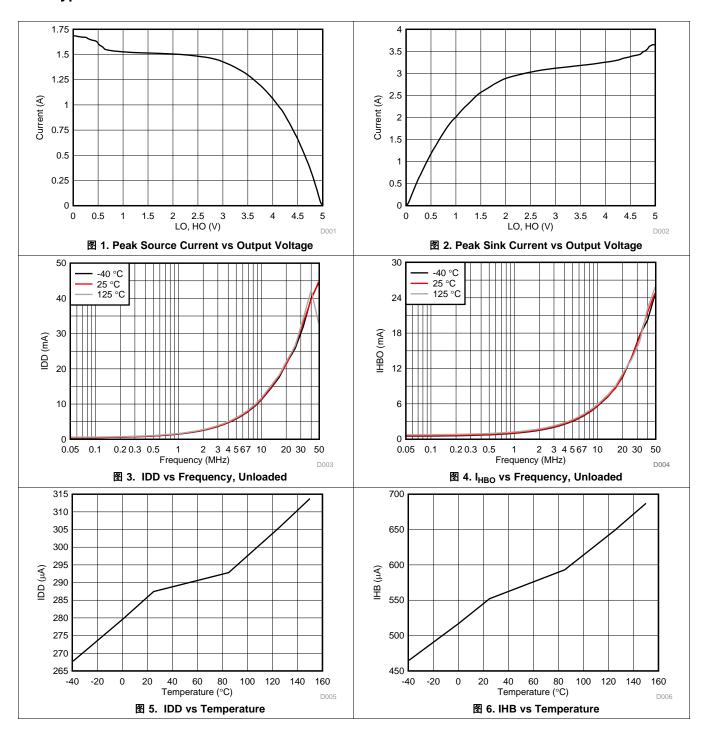
Electrical Characteristics (continued)

VDD=5V, HB-HS=4.6V, outputs unloaded over operating junction temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{DD} -V _{OH}	High-Level Output Voltage	I _{OH} = -100mA			0.30	V
I _{OL}	Peak Sink Current	V _{LO} ,V _{HO} =5V	2.0	3.1	4.3	Α
I _{OH}	Peak Source Current	V _{LO} ,V _{HO} =0V	0.85	1.58	2.4	Α
V_{CLAMP}	Unpowered Gate Clamp Voltage	V _{DD} , V _{HB} Floating, 1 mA pull-up applied to LO/HO		0.55	0.8	V
THERMAL	SHUTDOWN					
T _{SD}	Thermal Shutdown Switching, Rising Edge (2)		150			°C
T _{SD_LDO}	Thermal Shut Down LDO, Rising Edge ⁽²⁾		160			°C
T _{HYS_SD}	Thermal Hysteresis, LDO & Switching (2)		3	10		°C
T _{SD_HS}	Thermal Shutdown for High-Side, Rising Edge (2)		160			°C
DEADTIME	CONTROL RESISTORS				·	
R _{PU}	Internal Pullup Resistor		23.5	25	27	kΩ

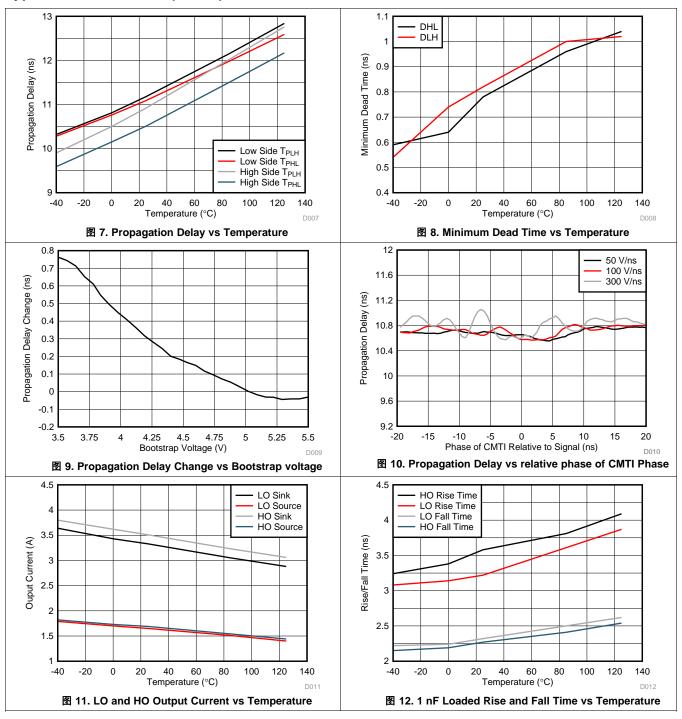
⁽²⁾ Ensured by design

6.6 Switching Characteristics


V_{DD}=5V, V_{HB-HS}=4.6V, outputs unloaded over operating junction temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INDEPEND	ENT INPUT MODE					
t _{PHL}	Turn-Off Delay			10	18	ns
t _{PLH}	Turn-On Delay			10	18	ns
t _{MTCH}	High-Off to Low-On and Low-Off to High-On Delay Mismatch	Over temperature, T _{jHI} =T _{jLO}		1	3.4	ns
PWM INPU	T MODE					
t _{PHL}	Turn-Off Delay	PWM rising to LO falling and PWM falling to HO falling		11	21	ns
t _{DEAD_MIN}	Minimum Dead Time	R_{ext} =1.78 $M\Omega$	-0.55	0.8	3.1	ns
t _{DEAD_MAX}	Maximum Dead Time	R _{ext} =20 kΩ	16	20	26	ns
t _{EN}	Enable Propagation Time			11	20	ns
OTHER CH	IARACTERISTICS				·	
t _{OR}	Output Rise Time, Unloaded	10%-90%		0.5		ns
t _{OF}	Output Fall Time, Unloaded	90%-10%		0.5		ns
t _{ORL}	Output Rise Time, Loaded	C _O =1nF, 10%-90%		3.5	5.6	ns
t _{OFL}	Output Fall Time, Loaded	C _O =1nF, 90%-10%		2.3	3.3	ns
t _{PW}	Minimum Input Pulse Width (1)	Minimum input pulse width which changes the output		1.8	4.0	ns
t _{PW,ext}	H-L-H Pulse extender width (1)	Unloaded ⁽²⁾		4.5	10	ns
	Start-Up Time of low side after VDD-	Independent Control Mode		25	60	μs
t _{STLS}	GND goes over UVLO threshold.	PWM Control Mode		100	150	μs
t _{STHS}	Start-Up Time of High-Side After V _{HB} -V _{HS} Goes Above UVLO			16	28	μs
t _{PWD}	Pulse-Width Distortion	t _{PLH} -t _{PHL} , Independent Input Mode		1	3	ns

⁽¹⁾ Ensured by design (2) Pulses longer than t_{PW} , but shorter than $t_{PW,ext}$ get extended to $t_{PW,ext}$



6.7 Typical Characteristics

Typical Characteristics (接下页)

6.8 Timing Diagrams

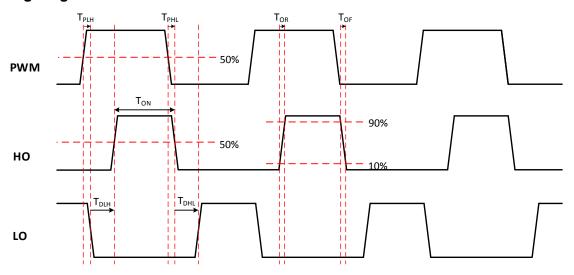


图 13. Timing diagram of LMG1210 in PWM mode under no load condition

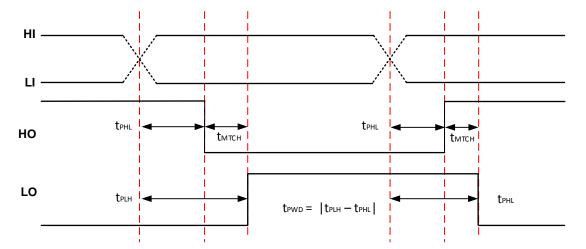
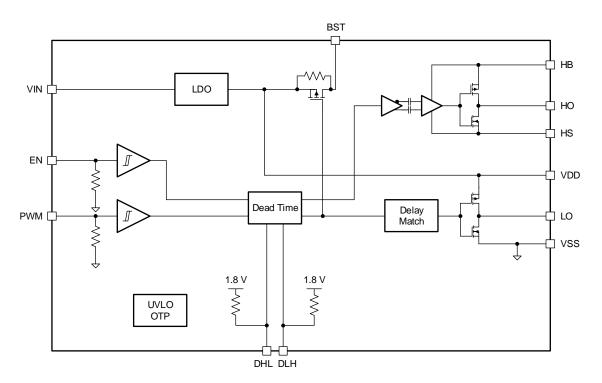


图 14. Timing diagram of LMG1210 in IIM mode under no load condition

7 Detailed Description


7.1 Overview

The LMG1210 is a high-speed half-bridge driver specifically designed to work with enhancement mode GaN FETs. Designed to operate up to 50 MHz, the LMG1210 is optimized for maximum performance and highly efficient operation. This includes reducing additional capacitance at the switch node (HS) to less than 1 pF and increased dV/dt noise immunity up to 300 V/ns on the HS pin to minimize additional switching losses. By having a 21 ns maximum propagation delay with 3.4 ns maximum mismatch, excessive dead times can be greatly reduced.

Auxiliary input voltages applied above 5 V enables an internal LDO to precisely regulate the output voltage at 5-V, preventing damage on the gate. An external bootstrap diode allows the designer to select an optimal diode. An integrated switch in series with the bootstrap diode stops overcharging of the bootstrap capacitor and decreases Q_{rr} losses in the diode.

The LMG1210 comes in a low-inductance WQFN package designed for small gate drive loops with minimal voltage overshoot.

7.2 Functional Block Diagram

7.3 Feature Description

The LMG1210 provides numerous features optimized for driving external GaN FETs.

7.3.1 Bootstrap Diode Operation

An internal low impedance switch enables the bootstrap only when the low-side GaN FET is on. If used in a converter where the low-side FET operates in third quadrant conduction during the dead times, this provides two main benefits. First, it stops the bootstrap diode from overcharging the high-side bootstrap rail. Second, if using a p-n junction diode with $Q_{\rm rr}$ as the bootstrap diode, it decreases the $Q_{\rm rr}$ losses of the diode. There is a 1 k Ω resistor connected between the drain and source of this internal bootstrap switch to allow the bootstrap capacitor to slowly charge at start-up before the low-side FET is turned on.

(1)

Feature Description (接下页)

The part does not have an actual clamp on the high-side bootstrap supply. The bootstrap switch disables conduction during the dead times, and the actual bootstrap capacitor voltage is set by the operating conditions of the circuit during the low-side on-time. The bootstrap voltage can be approximately calculated in 公式 1 through 公式 3.

The bootstrap voltage is given by 公式 1:

$$V_{BST} = V_{DD} - V_{F} - V_{HS}$$

where

V_F is the forward voltage drop of the bootstrap diode and series bootstrap switch.

V_{HS} is calculated in 公式 2:

$$V_{HS} = -I_L \times R_{DSON}$$

where

- I_L is the inductor current defined as flowing out of the half-bridge
- and R_{DSON} is the FET on resistance. (2)

Substituting (2) into (1) gives the expression for the bootstrap voltage as 公式 3:

$$V_{BST} = V_{DD} - V_F + I_L \times R_{DSON}$$
 (3)

From (3) one can determine that in an application where the current flows out of the half-bridge (I_L is positive) the bootstrap voltage can be charged up to a voltage higher than V_{DD} if $I_L \times R_{DSON}$ is greater than V_F . Take care not to overcharge the bootstrap too much in this application by choosing a diode with a larger V_F or limiting the $I_L \times R_{DSON}$ product.

In an application where I_L is negative, the $I_L \times R_{DSON}$ product subtracts from the available bootstrap cap voltage. In this case using a smaller V_F diode is recommended if $I_L \times R_{DSON}$ is large.

7.3.2 LDO Operation

An internal LDO allows the driver to run off higher voltages from 6 V to 18 V and regulates the supply to 5 V, so the LMG1210 can run off of higher input voltages with wide tolerances. To maintain stability of the internal LDO, care must be taken to make sure a capacitor of at least 0.3 μF from VDD to VSS with an ESR below 500 m Ω is used. A high-quality ceramic capacitor with an X7R dielectric is recommended. There is no maximum limit on the capacitance allowed on the output of the LDO.

If the input supply is already 5 V \pm 5%, then the LDO can be bypassed. This is achieved by connecting the 5 V supply directly to the V_{DD} pin. The V_{IN} pin should be tied to the V_{DD} pin, and the capacitor on the V_{IN} pin can be removed. Do not ground the V_{IN} pin.

Feature Description (接下页)

7.3.3 Dead Time Selection

In PWM mode the dead time can be set with a resistor placed between DHL/DLH and V_{SS} . For a desired dead time (t_{dt}), the corresponding required resistance can be calculated in $\Delta \pm 4$ with t_{dt} in ns and R_{ext} in $k\Omega$.

$$R_{\text{ext}} = (900/t_{\text{dt}}) - 25$$
 (4)

The maximum dead time is 20 ns, which gives a minimum resistor value of 20 k Ω . The minimum dead time is 0.5ns, which gives a maximum resistor value of 1.8 M Ω . There is an internal pull-up resistor at DHL/DLH pin, which forms a voltage divider with the external resistor. This voltage decides the final dead time. The calculation between dead time t_{DT} in ns and V_{DT} is shown in 公式 5.

$$t_{\text{dt}} = (1.8 - V_{\text{DT}}) \times 20$$
 (5)

Before being used to generate the dead times, the voltages on the DHL and DLH pins are first filtered through an internal RC filter with a nominal corner frequency of 10 kHz to attenuate switching noise.

The pulse widths of the HO and LO outputs are decreased from the PWM input by the chosen dead-times. The timing diagram under no load condition is shown in 图 13 and 图 14. PWM mode and Independent mode configurations can be found in 图 16.

7.3.4 Overtemperature Protection

The LMG1210 has three separate overtemperature thresholds: two on the low-side and one on the high-side. The lowest overtemperature threshold is the low-side *switching* threshold at 150 degrees minimum. When exceeded, this disables switching on both the low and high sides. However, the 5 V LDO continues to operate.

If the low-side temperature continues to rise, due to a short or external load on the 5 V LDO, then at 10 degrees higher, the low-side shuts down the 5 V LDO.

The high-side has an independent overtemperature threshold at 160 minimum. When triggered, it only shuts off the high-side while the low-side may continue to operate.

If it is undesirable in an application to have only the high side shut off and not the low side, TI recommends designing the thermal cooling of the board in a way to make the low-side die hotter. This can be achieved by controlling the size of the thermal planes connected to each thermal pad.

7.3.5 High-Performance Level Shifter

The LMG1210 uses a high-performance level shifter to translate the signal from the low side to the high side. The level shifter is built using Tl's proprietary high-voltage capacitor technology, which showcases best-in-class CMTI (common-mode transient immunity), or dV/dt on the HS pin. The level shifter can handle very high CMT (common-mode transient) rates while simultaneously providing low propagation time which does not vary depending on CMT rate. For more information on LMG1210 CMTI performance refer to section 2.4 from Design Considerations for LMG1205 Advanced GaN FET Driver During High-Frequency Operation.

7.3.6 Negative HS Voltage Handling

The LMG1210 by itself can operate with -200V on the HS pin as stated in the recommended operating conditions table. However, if using a bootstrap diode, the system will be more limited based on the potential of high-currents flowing through the bootstrap diode.

HS goes most negative during the dead times when the low-side FET is off. This also means the bootstrap switch is off so the BST pin is relatively high impedance. Therefore as HS goes negative, the bootstrap diode becomes forward biased and pulls the voltage at BST down with it. Because the bootstrap switch is off, very little current will flow until the bootstrap diode attempts to pull the BST pin below ground at which point the ESD diode on the BST pin will clamp the voltage at a diode drop below ground. The point where significant current begins to flow through the bootstrap diode is given in 公式 6

$$V_{HS} = -V_{BST} - V_{ESD} - (V_{HB} - V_{HS})$$

$$\tag{6}$$

Where V_{BST} is the forward voltage drop of the selected bootstrap diode and V_{ESD} is the forward voltage drop of the ESD diode of the BST pin which is typically 0.7V at room temp. $\boxed{8}$ 15 shows a schematic of this current path.

Feature Description (接下页)

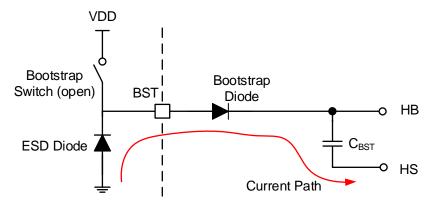


图 15. Current Path Across Bootstrap Diode

Once this negative voltage is exceeded, large currents will begin to flow out of the BST pin and through the bootstrap diode. The currents may be limited by the following: resistance of the BST ESD diode, resistance of the bootstrap diode, inductance of the bootstrap loop, or additional resistance purposely added in series with the bootstrap diode. If this current is too high, damage to the bootstrap diode or the LMG1210 can result. If this current delivers significant enough total charge, this can over-charge the bootstrap rail as well.

The BST pin ESD diode has been specifically designed to be robust to carry up to a couple amps surge current without damage.

7.4 Device Functional Modes

The mode of operation is determined by the state of DHL and DLH pins during power up. The state of the pins is sampled at power up and cannot be changed during operation. There are two different modes: independent operation where separate HI and LI signals are required, and PWM mode where one PWM input signal is required and the LMG1210 generates the complementary HI and LI signals. For PWM input, the dead time for the low-to-high and high-to-low switch-node transition is independently set by an external resistor at DHL and DLH. For independent input mode, DLH is tied to V_{DD} and DHL is internally set to high-impedance and can be tied to V_{DD} , tied to ground or left floating.

Operating Mode	DHL	DLH
PWM		£→
Independent Input Mode	Leave Floating or Tie to VSS	

图 16. Operation Mode Selection

表 1 lists the functional modes for the LMG1210.

表 1. LMG1210 Truth Table

INPUTS		PWM MODE INDEPENDENT MOD		INDEPENDENT MODE	
EN/HI	PWM/LI	НО	LO	НО	LO
0	0	0	0	0	0
0	1	0	0	0	1
1	0	0	1	1	0
1	1	1	0	1	1

8 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMG1210 is designed to optimally drive GaN FETs in half-bridge configurations, such as synchronous buck and boost converters, as well as more complex topologies. By integrating the level shifting and bootstrap operation the complexities of driving the high-side device are solved for the designer.

The list below shows some sample values for a typical 48 V to 12 V application synchronous buck.

Input Voltage: 48 V
Output Voltage: 12 V
Output Current: 10 A
Bias Voltage: 6 V
Duty Cycle: 25 %

Switching Frequency: 1 MHz

Inductor: 4.7 µH

8.2 Typical Application

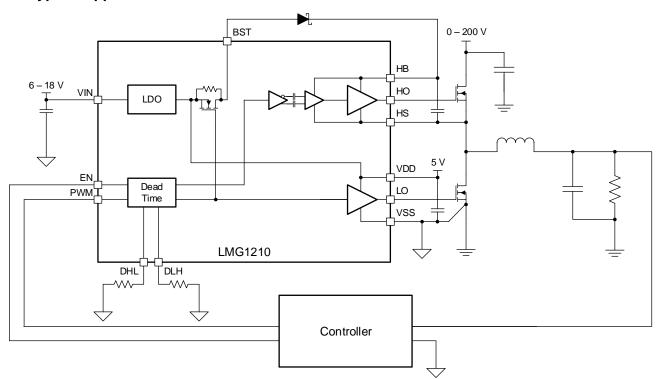


图 17. Simplified LMG1210 Configured as Synchronous Buck Converter

Typical Application (接下页)

8.2.1 Design Requirements

When designing a multi-MHz application that incorporates the LMG1210 gate driver and GaN power FETs, some design considerations must be evaluated first to make the most appropriate selection. Among these considerations are layout optimization, circuit voltages, passive components, operating frequency, and controller selection.

8.2.2 Detailed Design Procedure

8.2.2.1 Bypass Capacitor

To properly drive the GaN FETs, TI recommends placing high-quality ceramic bypass capacitors as close as possible between the HB to HS and V_{DD} to V_{SS} . If using the LDO, the V_{DD} - V_{SS} capacitor is required to be at least 0.3 μ F at bias for stability. However, a larger capacitor may be required for many applications.

The bootstrap capacitor must be large enough to support charging the high-side FET and supplying the high-side quiescent current when the high-side FET is on. The required capacitance can be calculated as 公式 7:

$$(0.5 \text{ nC} + Q_{rr} + Q_{qH} + I_{HB} \times t_{on})/\Delta V = C_{BST,min}$$

where

- Q_{qH} is the gate charge of the high-side GaN FET,
- I_{HB} is the quiescent current of the high-side driver,
- t_{ON} is the maximum on time period of the high side,
- Q_{rr} is the reverse recovery of the bootstrap diode,
- 0.5 nC is the additional charge per cycle removed from the bootstrap due to high side dynamic current,
- and ΔV is the acceptable droop on the bootstrap capacitor voltage.

(7)

When using larger bootstrap capacitors, TI recommends that the V_{DD} - V_{SS} capacitor also be increased to keep the ratio at least 5 to 1. If this is not maintained, the charging of the bootstrap capacitor can pull the V_{DD} - V_{SS} rail down sufficiently to cause UVLO conditions and potentially unwanted behavior.

8.2.2.2 Bootstrap Diode Selection

The bootstrap diode blocks the high voltage from the gate drive circuitry when the switch node swings high, with the rated blocking voltage equal to the maximum V_{ds} of the GaN FET. For low or moderate frequency operation ultra-fast recovery diodes (<50 ns) are recommended. The internal low voltage switch in the LMG1210 acts to reduce the reverse recovery. For high-frequency operation a Schottky diode is recommended. To minimize switching losses and improve performance, it is important to select a diode with low capacitance.

For extreme cases, where the low-side FET on time is less than 20 ns, TI recommends using a small GaN FET as synchronous bootstrap instead of a diode. In this case, TI recommends leaving the BST pin floating or connected to V_{DD} , and to connect the source of the synchronous bootstrap directly to V_{DD} .

8.2.2.3 Handling Ground Bounce

For the best switching performance, it is important to connect the V_{SS} gate return to the source of the low-side FET with a very low-inductance path.

However, doing so can cause the ground of the LMG1210 to bounce relative to the system or controller ground and cause erroneous switching transitions on the inputs. Multiple strategies can be employed to eliminate these undesired transitions.

The LMG1210 has input hysteresis built into the input buffers to help counteract this effect, but this alone may not be sufficient in all applications. The simplest option is to tie the system ground together and the power ground only at the LMG1210 (single-point connection). This gives the cleanest solution but may not always be possible depending on system grounding requirements.

For moderate ground-bounce cases, a simple R-C filter can be built with a simple resistor in series with the inputs. The resistor should be close to the inputs of the LMG1210. The input capacitance of the LMG1210 produces an RC filter which can help decrease ringing at the inputs. The addition of a small C on the inputs to supplement the LMG1210 input capacitance can also be helpful. This solution is acceptable for moderate cases in applications where the extra delay is acceptable.

Typical Application (接下页)

For more extreme cases or where no delay is tolerable, using a common-mode choke provides the best results. One example application where the ground bounce is particularly challenging is when using a current sense resistor. In this application, the LMG1210 ground is connected to the GaN source, while the controller ground is connected to the other side of the current sense resistor as shown in 8.18.

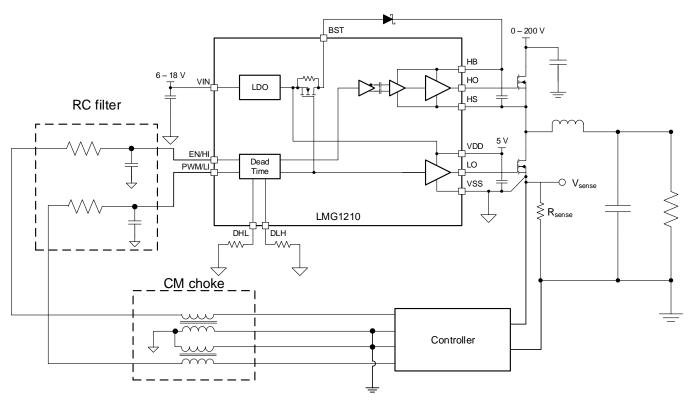


图 18. LMG1210 Configured With Current Sense Resistor Using a CMC as Filter

The combination of high dl/dt experienced through the sense resistor inductance will cause severe ground noise that could cause false triggering or even damage the part. To prevent this, a common-mode choke (CMC) can be used. Each signal requires its own CMC. Also, to provide additional RC filtering, a 100 Ω resistor should be added to the signal output line before the LMG1210.

8.2.2.4 Independent Input Mode

In independent input mode, the signals LI and HI will propagate to the outputs LO and HO maintaining the same phase shift, varied only by the timing mismatch.

In this mode, the dead time-generating circuit will be inoperative, and the correct dead time value would have to be generated by the controller.

LI and HI cannot be high at the same time. The controller is responsible for assuring that the LI and HI on-times do not overlap and cause shoot-through.

8.2.2.5 Computing Power Dissipation

The power dissipation of the LMG1210 can be divided up into three parts. One is the quiescent current which is defined in the *Electrical Characteristics* table. This is the current consumed when no switching is taking place.

The second is the dynamic power consumed in the internal circuits of the driver at each switching transition regardless of the load on the output. This can be measured by switching the driver with no output load.

The third component is the power used to switch the load capacitance presented by the external FET.

Typical Application (接下页)

If operating in PWM mode, there is an additional quiescent current consumed in the dead time resistors. The additional current consumed in each dead time pin can be calculated as 公式 8.

$$I_{\text{adxx}} = 1.8/(25k + R_{\text{ext}})$$
 (8)

The first component, the quiescent power, is given in the *Electrical Characteristics* table. The second component, the dynamic power dissipation can be calculated as 公式 9.

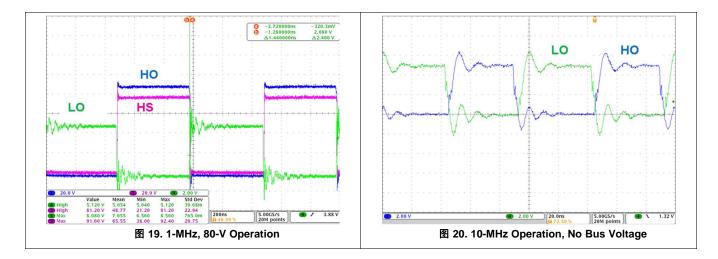
$$I_{INT} = I_{DYN} \times F_{sw}$$

where

- I_{DYN} is the dynamic current consumption found in the *Electrical Characteristics* table
- and F_{sw} is the switching frequency in MHz. (9)

The third component of the power dissipation is the gate driver power. The current associated to this loss can be calculated given the Q_{α} of the FET as $\Delta \vec{x}$ 10:

$$I_{FET,q} = Q_q \times F_{sw} \tag{10}$$


or alternatively in terms of C_{iss} as 公式 11:

$$I_{FET,q} = C_{iss} \times V_{sup} \times F_{sw}$$
 (11)

These current consumption numbers should be calculated for both the high side and low side separately and added together. When a total current consumption is computed, multiplying it by the input supply voltage gives a worst-case approximation for the total power dissipation of the LMG1210. If using a non-zero external gate resistor of value R_{g,ext}, some of this power will be dissipated in this external resistor, and can be subtracted from the power consumed inside the IC. For further details when calculating total driver power loss see section 2 from Design Considerations for LMG1205 Advanced GaN FET Driver During High-Frequency Operation.

The WQFN package has two thermal pads: one for the low-side die and another for the high-side die. Though there is good thermal coupling between the die and the associated thermal pad, there is very limited thermal coupling between a die and the opposite thermal pad. This means that if power dissipation calculations indicate a die needs improved cooling, the cooling must be focused on cooling the correct thermal pad.

8.2.3 Application Curves

8.3 Do's and Don'ts

When using the LMG1210, DO:

- 1. Read and fully understand the data sheet, including the application notes and layout recommendations.
- 2. Use a four-layer board and place the return power path on an inner layer to minimize power-loop inductance.
- 3. Use small, surface-mount bypass and bus capacitors to minimize parasitic inductance.
- Use the proper size decoupling capacitors and place them close to the IC as described in the Layout Guidelines section.
- 5. Use common-mode chokes for the input signals to reduce ground bounce noise. If not, ensure the signal source is connected to the signal V_{SS} plane which is tied to the power source only at the LMG1210 IC.

To avoid issues in your system when using the LMG1210, DON'T:

- 1. Use a single-layer or two-layer PCB for the LMG1210 as the power-loop and bypass capacitor inductances will be excessive and prevent proper operation of the IC.
- 2. Reduce the bypass capacitor values below the recommended values.
- 3. Allow the device to experience pin transients above 200 V as they may damage the device.
- 4. Drive the IC from a controller with a separate ground connection than the V_{SS} pin of the IC, unless connecting though a CMC.

9 Power Supply Recommendations

The power to the LMG1210 can be supplied either through the LDO or the LDO can be bypassed and 5 V can be supplied directly. The maximum input voltage to the LDO of the LMG1210 is specified in the electrical characteristics table. The minimum input voltage of the LDO is set by the minimum drop-out of the LDO at the operational current. The dropout at max current is specified in the electrical characteristics table, but a lower dropout can be used in a lower-current application. A local bypass capacitor must be placed between the V_{IN} and V_{SS} pins, and the V_{DD} and V_{SS} pins. This capacitor must be placed as close as possible to the device. TI recommends a low-ESR, ceramic, surface-mount capacitor. TI also recommends using 2 capacitors across V_{DD} and V_{SS} pin: a 100 nF ceramic surface-mount capacitor for high frequency filtering placed very close to V_{DD} and V_{SS} pin, and another surface-mount capacitor, 220 nF to 10 μF , for IC bias requirement. The V_{IN} and V_{SS} capacitor can be removed if the LDO is bypassed.

10 Layout

10.1 Layout Guidelines

The layout of the LMG1210 is critical for performance and functionality. The low inductance WQFN package helps mitigate many of the problems associated with board level parasitics, but take care with layout and placement with components to ensure proper operation. The following design rules are recommended.

- Place LMG1210 as close to the GaN FETs as possible to minimize the length of high-current traces between the HO/LO and the Gate of the GaN FETs
- Place bootstrap diode as close as possible to the LMG1210 to minimize the inductance of the BST to HB loop.
- Place the bypass capacitors across V_{IN} to V_{SS} , V_{DD} to V_{SS} , and HB to HS as close to the LMG1210 pins as possible. The V_{DD} to V_{SS} cap is a higher priority than the V_{IN} to V_{SS} cap.
- Separate power traces and signal traces, such as output and input signals, and minimize any overlaps between layers
- Minimize capacitance from the high-side pins to the input pins to minimize noise injection.

10.2 Layout Example

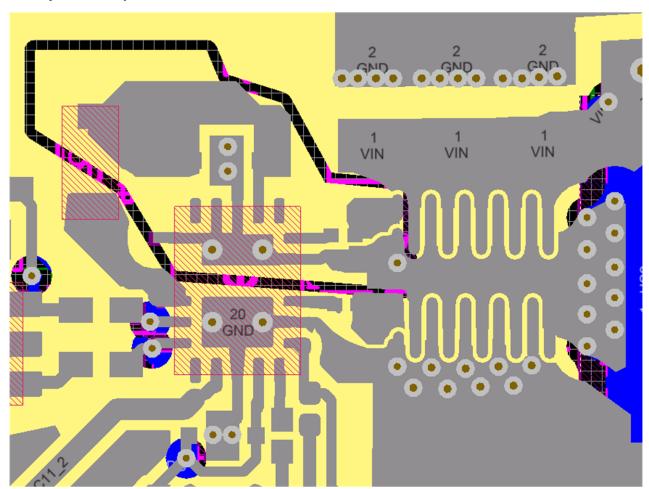


图 21. LMG1210 Layout Example

11 器件和文档支持

11.1 文档支持

11.1.1 相关文档

请参阅如下相关文档:

- 《LMG1210 半桥 GaN 驱动器的死区时间优化》(SNVA815)
- LMG1205 高级 GaN FET 驱动器在高频运行期间的设计注意事项 (SNVA723)
- 《LMG1210 TINA-TI 参考设计》(SNOM617)
- 《LMG1210 TINA-TI 瞬态 Spice 模型》(SNOM616)
- 《LMG1210 PSpice 瞬态模型》(SNOM615)

11.2 接收文档更新通知

要接收文档更新通知,请导航至 Tl.com.cn 上的器件产品文件夹。单击右上角的*通知我* 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.3 社区资源

下列链接提供到 TⅠ 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TⅠ 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可 能会损坏集成电路。

🕼 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。

11.6 术语表

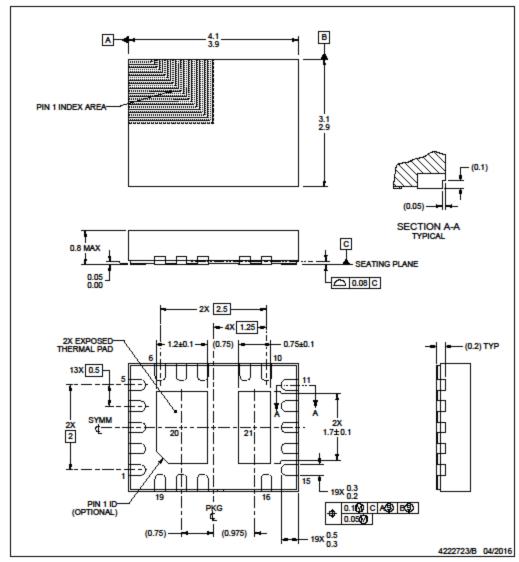
SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

LMG1210 作为 MSL3 发布。超过其车间寿命的产品可以通过烘烤进行再加工,以排除残留的湿气。IPC/JEDEC J-STD-033C 提供有关烘烤规程的指导,以及为了确保塑料外壳(托盘、卷带封装或管)能够承受所考虑温度,您应 留意哪些方面。


RVR0019A

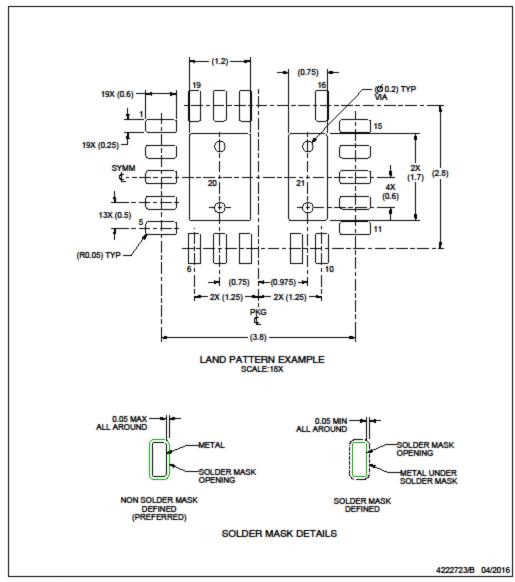
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

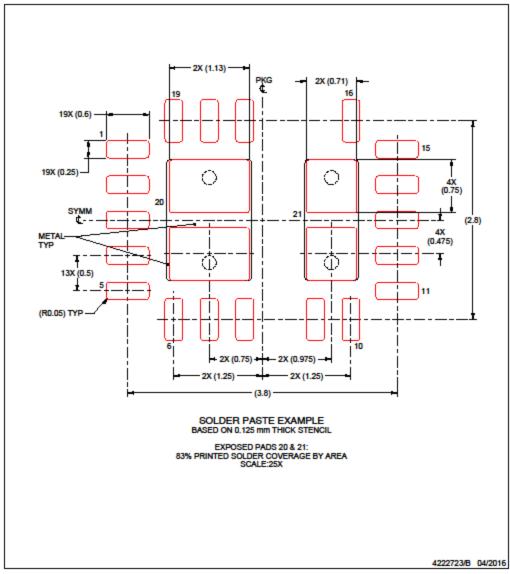
RVR0019A

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas instruments literature number SLUA271 (www.ti.com/lit/slua271).
 5. Vlas are optional depending on application, refer to device data sheet. If any vlas are implemented, refer to their locations shown on this view. It is recommended that vlas under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RVR0019A

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
LMG1210RVRR	Active	Production	WQFN (RVR) 19	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	LMG1210
LMG1210RVRR.A	Active	Production	WQFN (RVR) 19	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	LMG1210
LMG1210RVRR.B	Active	Production	WQFN (RVR) 19	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
LMG1210RVRT	Active	Production	WQFN (RVR) 19	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	LMG1210
LMG1210RVRT.A	Active	Production	WQFN (RVR) 19	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	LMG1210
LMG1210RVRT.B	Active	Production	WQFN (RVR) 19	250 SMALL T&R	-	Call TI	Call TI	-40 to 125	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

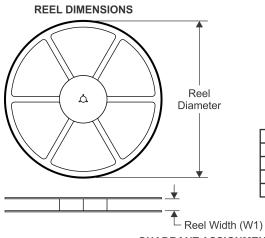
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

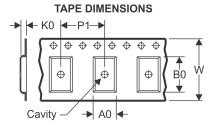
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

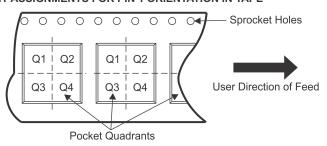
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM

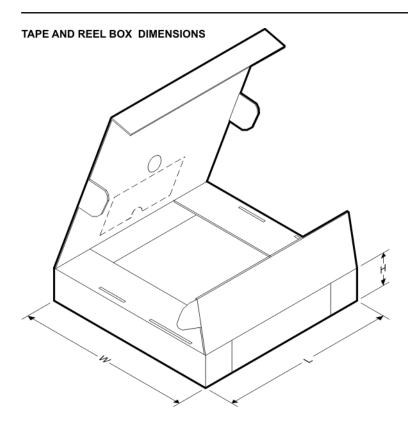

www.ti.com 10-Nov-2025

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2021


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMG1210RVRR	WQFN	RVR	19	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2
LMG1210RVRT	WQFN	RVR	19	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q2

www.ti.com 5-Jan-2021

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMG1210RVRR	WQFN	RVR	19	3000	367.0	367.0	38.0
LMG1210RVRT	WQFN	RVR	19	250	213.0	191.0	35.0

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月