

📕 Order

Now

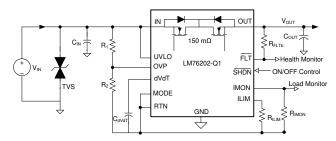
LM76202-Q1

ZHCSJE7A – MARCH 2019– REVISED SEPTEMBER 2019

具有过压和过流保护的 LM76202-Q1 60V、2.2A 集成式理想二极管

Technical

Documents


1 特性

- 符合面向汽车应用的 AEC-Q100 标准
 温度等级 1: -40°C ≤ T_A ≤ +125°C
 - AEC-Q100-012 A 级短路可靠性
 - HBM ESD 分类等级 2
 - CDM ESD 分类等级 C6
- 4.2V 至 60V 工作电压,最大值 62V
- 集成反向输入极性保护,低至 -60V
- 总 RON 为 150mΩ 的集成背对背 MOSFET
- 高达 65V 的瞬态抗扰度
- 0.1A 至 2.23A 可调节电流限制 (1A 时精确度为 ±5%)
- ISO7637 和 ISO16750-2 测试期间的负载保护
- 电池短路和接地短路保护
- 反向电流阻断,可提供输出对电池短路保护
- IMON 电流指示器输出(精度为 ±8.5%)
- 低静态电流(工作时为 285µA,关断时为 16µA)
- 可调节的 UVLO、OVP 切断、浪涌电流控制
- 出厂设置 38V 过压钳位选项
- 可选电流限制故障响应选项(自动重试、闭锁、CB 模式)
- 采用易于使用的 16 引脚 HTSSOP 封装

2 应用

- 前置摄像头,后置摄像头
- 驾驶辅助 ECU
- 远程信息处理控制单元
- 蜂窝式模块资产跟踪

简化原理图

3 说明

🥭 Tools &

Software

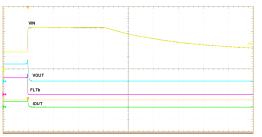
LM76202-Q1 器件是一款功能丰富的紧凑型 60V 集成 式理想二极管,具有一整套保护 特性。宽电源输入范 围允许控制 12V 和 24V 汽车电池驱动 应用。此器件 可以承受并保护由高达 ±60V 的正负电源供电的负载。 负载、电源和器件保护还具有许多可编程 特性,包括 过流保护、浪涌电流控制、过压保护和欠压阈值保护。 此器件内部可靠的保护控制模块以及 60V 额定电压简 化了针对 ISO 标准脉冲测试的系统设计。

Support &

Community

22

借助关断引脚,可以从外部控制内部 FET 的启用和禁用,还可以将器件置于低电流关断模式。为实现系统状态监视和下游负载控制,此器件提供故障输出和精密电流监视输出。MODE 引脚可用于在三种电流限制故障响应(断路器、闭锁以及自动重试模式)之间灵活地对器件进行配置。此器件可监视 V_(IN)和 V_(OUT),以便在V(IN) < (V(OUT)-10mV)时提供反向电流阻断。该功能可在输出端发生电池短路故障期间保护系统总线不受过压影响,并且有助于在电源故障和欠压条件下满足保持电压的要求。


此器件采用 5mm × 4.4mm 16 引脚 HTSSOP,额定工 作温度范围为 -40℃ 至 +125℃。

器件信息⁽¹⁾

器件型号	封装	封装尺寸(标称值)
LM76202-Q1	HTSSOP (16)	5.00mm x 4.40mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

24V 条件下的 ISO16750-2 负载突降脉冲 5b 性能

目录

1	特性	1
2	应用	1
3	说明	1
4	修订	历史记录 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics 5
	6.6	Timing Requirements 6
	6.7	Typical Characteristics 8
7	Para	ameter Measurement Information 11
8	Deta	ailed Description 12
	8.1	Overview 12
	8.2	Functional Block Diagram 13
	8.3	Feature Description 14

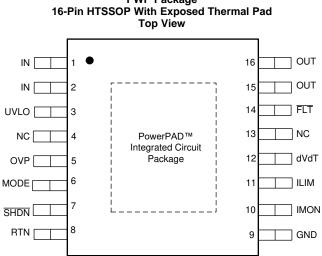
4 修订历史记录

2

Changes from Original (March 2019) to Revision A

•	将"预告信息"更改为"生产数据"		1
---	------------------	--	---

	8.4 [Device Functional Modes	24
9	Appli	cation and Implementation	25
	9.1 <i>A</i>	Application Information	25
	9.2	Typical Application	25
10	Powe	er Supply Recommendations	29
	10.1	Transient Protection	29
11	Layo	ut	30
	11.1	Layout Guidelines	30
	11.2	Layout Example	31
12	器件利	印文档支持	32
	12.1	文档支持	32
	12.2	接收文档更新通知	32
	12.3	社区资源	32
	12.4	商标	32
	12.5	静电放电警告	
	12.6	Glossary	32
13	机械、	,封装和可订购信息	32


Page

www.ti.com.cn

5 Pin Configuration and Functions

PWP Package 16-Pin HTSSOP With Exposed Thermal Pad Top View

Pin Functions

PIN		TYPE	DESCRIPTION			
NO. NAME		TYPE	DESCRIPTION			
1, 2	IN	Р	Input supply voltage. See IN, OUT, RTN and GND Pins section.			
3	UVLO	I	Input for setting the programmable Undervoltage Lockout threshold. An undervoltage event turns off the internal FET and asserts FLT to indicate power failure. If the Undervoltage Lockout function is not needed, the UVLO terminal must be connected to the IN terminal. See Undervoltage Lockout (UVLO) section.			
4, 13	NC	_	No internal connection. These pins can be connected to RTN for enhanced thermal performance.			
5	OVP	I	Input for setting the programmable Overvoltage Protection threshold. An overvoltage event turns off the internal FET and asserts FLT to indicate the overvoltage fault. For fixed overvoltage clamp response connect OVP to RTN externally. See Overvoltage Protection (OVP) section.			
6	MODE	I	Mode selection pin for overload fault response. See the <i>Device Functional Modes</i> section.			
7	SHDN	I	Shutdown pin. Pulling SHDN low enters the device into low-power shutdown mode. Cycling SHDN pin voltage resets the device that has latched off due to a fault condition. See <i>Low Current Shutdown Control (SHDN)</i> section.			
8	RTN	—	Reference for device internal control circuits. If reverse input polarity protection is not required, this pin can be connected to GND. See <i>IN, OUT, RTN and GND Pins</i> section.			
9	GND	_	Connect GND to system ground. See IN, OUT, RTN and GND Pins section.			
10	IMON	0	Analog current monitor output. This pin sources a scaled down ratio of current through the internal FET. A resistor from this pin to RTN converts current to proportional voltage. If pin is unused, leave pin floating. See <i>Current Monitoring</i> section.			
11	ILIM	I/O	A resistor from this pin to RTN sets the overload and short-circuit current limit. See the Overload and Short Circuit Protection section.			
12	dVdT	I/O	A capacitor from this pin to RTN sets output voltage slew rate. See the <i>Hot Plug-In and In-</i> <i>Rush Current Control</i> section.			
14 FLT		0	Fault event indicator. Indicator is an open drain output. If indicator is unused, leave indicator floating. See <i>FAULT Response</i> section.			
15,16	OUT	Р	Power output of the device. See IN, OUT, RTN and GND Pins section.			
PowerPA	AD	_	PowerPAD integrated circuit package must be connected to RTN plane on PCB using multiple vias for enhanced thermal performance. PowerPAD is not internally connected to RTN. Do not use the PowerPAD as the only electrical connection to RTN.			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range, all voltages referred to GND (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
IN, IN-OUT		-62	62	
IN, IN-OUT (350ms transient), $T_A = 25^{\circ}C$		-65	65	
[IN, OUT, FLT, UVLO, SHDN] to RTN		-0.3	62	V
[OVP, dVdT, ILIM, IMON, MODE] to RTN		-0.3	5	
RTN		-62	0.3	
IFLT, Idvat, ISHDN	Sink current	10		mA
I _{dVdT} , I _{ILIM} , I _{IMON}	Source Current	Internally limited	Internally limited	
т	Operating junction temperature	-40	150	°C
TJ	Transient junction temperature	-65	T _(TSD)	°C
T _{stg}	Storage Temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

				VALUE	UNIT	
		Human body model (HBM), p	per AEC Q100-002 ⁽¹⁾	±2000]
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per AEC Q100-011	All pins	±1000	V	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
IN		-60		60	
UVLO, OUT, FLT	Input voltage range	0		60	V
OVP, dVdT, ILIM, IMON, SHDN		0		4	
ILIM	Desistance	5.36		120	L.O.
IMON	Resistance -	1			kΩ
IN, OUT		0.1	1		μF
dVdT	Resistance External capacitance Operating junction temperature range	10			nF
TJ	Operating junction temperature range	-40	25	125	°C

6.4 Thermal Information

		LM76202-Q1	
	THERMAL METRIC ⁽¹⁾	PWP (HTSSOP)	UNIT
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	38.6	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	22.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	18.2	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.5	°C/W
Y _{JB}	Junction-to-board characterization parameter	18	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	1.5	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

 $-40^{\circ}C \leq T_{A} = T_{J} \leq +125^{\circ}C, \ V_{(IN)} = 12 \ V, \ V_{(SHDN)} = 2 \ V, \ R_{(ILIM)} = 120 \ k\Omega, \ IMON = \overline{FLT} = OPEN, \ C_{(IN)} = 0.1 \ \mu\text{F}, \ C_{(OUT)} = 1 \ \mu\text{F}, \ C_{(dVdT)} = OPEN.$

(All voltages referenced to GND, (unless otherwise noted))

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY VOLT	AGE					
V _(IN)	Operating input voltage		4.2		60	V
V _{PORR}	Internal POR Threshold, Rising		3.89	4	4.14	V
V _{PORHys}	Internal POR Hysteresis		55	275	305	mV
IQ _{ON}	Supply Current with device enabled	VIN = 24V, Enabled: V _(SHDN) = 2 V		300	398	μA
IQ _{ON}	Supply Current with device enabled	VIN = 12V Enabled: $V_{(SHDN)} = 2 V$,		285	390	μA
IQ _{OFF}	Supply Current with device disabled	$VIN = 24V, V_{(\overline{SHDN})} = 0 V$		18	35	μA
IQ _{OFF}	Supply Current with device disabled	$VIN = 12V, V_{(\overline{SHDN})} = 0 V$		16	32	μA
I _{VINR}	Reverse Input supply current	V _(IN) = -60 V, V _(OUT) = 0 V			66	μA
UNDERVOLTA	GE LOCKOUT (UVLO) INPUT		· · ·			
V _(UVLOR)	UVLO Threshold Voltage, Rising		1.175	1.19	1.25	V
V _(UVLOR)	UVLO Threshold Voltage, Falling		1.08	1.1	1.126	V
I _(UVLO)	UVLO Input leakage current	$0 \text{ V} \leq \text{V}_{(\text{UVLO})} \leq 60 \text{ V}$	-100		100	nA
()	DOWN (SHDNb) INPUT	N= -7				
V(SHDN)	Output voltage	$I_{(SHDN)} = 0.1 \mu A$	2	2.7	3.4	V
V _(SHUTF)	SHDN Threshold Voltage for Low IQ Shutdown, Falling		0.45			V
V _(SHUTFR)	SHDN Threshold, Rising				0.96	V
	Input current	$V_{(SHDN)} = 0.4 V$	-10			μA
	GE PROTECTION (OVP) INPUT					
V _(SEL_OVP)	Factory Set OV Clamp Select Threshold		180	200	240	mV
V _{OVC}	Internal Over voltage clamp	V _(IN) > 42 V, I _(OUT) =10mA V _(OVP) = 0 V	36	37.5	40	V
V _(OVPR)	Over-Voltage Threshold Voltage, Rising		1.175	1.19	1.225	V
V _(OVPF)	Over-Voltage Threshold Voltage, Falling		1.085		1.125	
I _(OVP)	OVP Input Leakage Current	$0V \le V_{(OVP)} \le 4V$	-100	0	100	nA
OUTPUT RAM	P CONTROL (dVdT)					
I _(dVdT)	dVdT Charging Current	$V_{(dVdT)} = 0 V$	4	4.7	5.82	μA
R _(dVdT)	dVdT Discharging Resistance	$\overline{\text{SHDN}} = 0 \text{ V}$, with $I_{(dVdT)} = 10\text{mA}$ sinking		28		Ω
GAIN _(dVdT)	dVdT to OUT Gain	△V _(OUT) /△V _(dVdT)	23.75	24.63	25.5	V/V
CURRENT LIM	IT PROGRAMMING (ILIM)					
V _(ILIM)	ILIM Bias Voltage			1		V
i		$R_{(ILIM)} = 120 \text{ k}\Omega, V_{(IN)}-V_{(OUT)}=1V$	0.085	0.1	0.115	
1		$R_{(ILIM)} = 12 \text{ k}\Omega, \text{ V}_{(IN)} \text{-} \text{V}_{(OUT)} \text{=} 1\text{V}$	0.95	1	1.05	
I _(OL)		$R_{(ILIM)} = 8 k\Omega, V_{(IN)} - V_{(OUT)} = 1V$	1.425	1.5	1.575	
	Overload Current Limit	$R_{(ILIM)} = 5.36 \text{ k}\Omega, V_{(IN)} - V_{(OUT)} = 1 \text{ V}$	2.11	2.23	2.35	А
I _(OL_R-OPEN)		R _(ILIM) = OPEN, Open Resistor Current Limit		0.055		
I _(OL_R-SHORT)		R _(ILIM) = SHORT, Shorted Resistor Current Limit		0.095		
I _(CB)	Circuit breaker detection threshold	$R_{(ILIM)} = 120 \text{ k}\Omega, \text{ MODE} = \text{open}$	0.045	0.073	0.11	А
I _(CB)	Circuit breaker detection threshold	$R_{(ILIM)} = 5.36 \text{ k}\Omega, \text{ MODE} = \text{open}$	2	2.21	2.4	А

Electrical Characteristics (continued)

 $-40^{\circ}C \leq T_{A} = T_{J} \leq +125^{\circ}C, \ V_{(IN)} = 12 \ V, \ V_{(SHDN)} = 2 \ V, \ R_{(ILIM)} = 120 \ k\Omega, \ IMON = \overline{FLT} = OPEN, \ C_{(IN)} = 0.1 \ \mu F, \ C_{(OUT)} = 1 \ \mu F, \ C_{(dVdT)} = OPEN.$

(All voltages referenced to GND, (unless otherwise noted))

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$R_{(ILIM)} = 120 \text{ k}\Omega, V_{(IN)}-V_{(OUT)}=5V$	0.08	0.1	0.12	А
I _(SCL)	Short-Circuit Current Limit	$R_{(ILIM)} = 8 \text{ k}\Omega, V_{(IN)}-V_{(OUT)}=5V$	1.425	1.5	1.575	А
		$R_{(ILIM)} = 5.36 \text{ k}\Omega, V_{(IN)}-V_{(OUT)}=5V$	2.11	2.23	0.12 1.575 2.35 2.35 168 220 265 12 11 50 -5 110 200 h latch de with	А
I _(FASTRIP)	Fast-trip comparator threshold			1.87 x I _(OL) + 0.015		A
CURRENT MO	NITOR OUTPUT (IMON)					
GAIN(IMON)	Gain Factor I(IMON):I(OUT)	$0.1A \le I_{(OUT)} \le 2A$	72	78.28	85	µA/A
PASS FET OU						
		$0.1A \le I_{(OUT)} \le 2A, T_J = 25^{\circ}C$	130	150	168	
R _{ON}	IN to OUT Total ON Resistance	$0.1A \le I_{(OUT)} \le 2A$, $-40^{\circ}C \le T_{J} \le 85^{\circ}C$		150	220	mΩ
		$0.1A \le I_{(OUT)} \le 2A$, $-40^{\circ}C \le T_{J} \le 125^{\circ}C$	78	150	265	
I _{lkg(OUT)}	OUT Leakage Current in Off State	$V_{(IN)} = 60 \text{ V}, V_{(\overline{SHDN})} = 0 \text{ V}, V_{(OUT)} = 0$ V, Sourcing			12	μA
		$V_{(IN)} = 0 V, V_{(\overline{SHDN})} = 0 V, V_{(OUT)} = 24$ V, Sinking	-11		11	
I _{lkg(OUT)}	OUT Leakage Current in Off State	$V_{(\text{IN})}$ = -60 V, $V_{(\overline{\text{SHDN}})}$ = 0 V, $V_{(\text{OUT})}$ = 0 V, Sinking	-40	-18	50	μA
V _(REVTH)	V _(IN) -V _(OUT) Threshold for Reverse Protection Comparator, Falling		-16.2	-10	-5	mV
V _(FWDTH)	V _(IN) -V _(OUT) Threshold for Reverse Protection Comparator, Rising		85	96	110	mV
FAULT FLAG	(FLTb): ACTIVE LOW		,		,	
R _(FLT)	FLT Pull-Down Resistance	$V_{(OVP)} = 2 V, I_{(\overline{FLT})} = 5mA sinking$		350		Ω
I(FLT)	FLT Input Leakage Current	$0 \text{ V} \leq \text{V}_{(\overline{\text{FLT}})} \leq 60 \text{ V}$	-200		200	nA
THERMAL SH	UT DOWN (TSD)					
-	TSD Threshold, rising			157		°C
I (TSD)	TSD hysteresis			10.1		°C
MODE			<u>.</u>			
FAULT FLAG R(FLT) I(FLT) THERMAL SH		MODE = 402 k Ω to RTN	Current I	imiting wit	h latch	
MODE_SEL	Thermal fault mode selection	MODE = Open	Circuit breaker mode with auto-retry			
		MODE = Short to RTN	Current limiting with auto- retry			

6.6 Timing Requirements

 $-40^{\circ}C \leq T_{A} = T_{J} \leq +125^{\circ}C, V_{(IN)} = 12 \text{ V}, V_{(SHDN)} = 2 \text{ V}, R_{(ILIM)} = 120 \text{ k}\Omega, \text{ IMON} = \overline{FLT} = \text{OPEN}, C_{(IN)} = 0.1 \text{ }\mu\text{F}, C_{(OUT)} = 1 \text{ }\mu\text{F}, C_{(OUT)} = 1 \text{ }\mu\text{F}, C_{(OUT)} = 0.1 \text{ }\mu\text{F}, C_{(OUT)} = 1 \text{ }\mu\text{F}, C_{(IN)} = 0.1 \text{ }\mu\text{F}, C_{(IN)} = 0.1 \text{ }\mu\text{F}, C_{(IN)} = 0.1 \text{ }\mu\text{F}, C_{(OUT)} = 1 \text{ }\mu\text{F}, C_{(IN)} = 0.1 \text{ }\mu\text$

(All voltages referenced to GND, (unless otherwise noted))

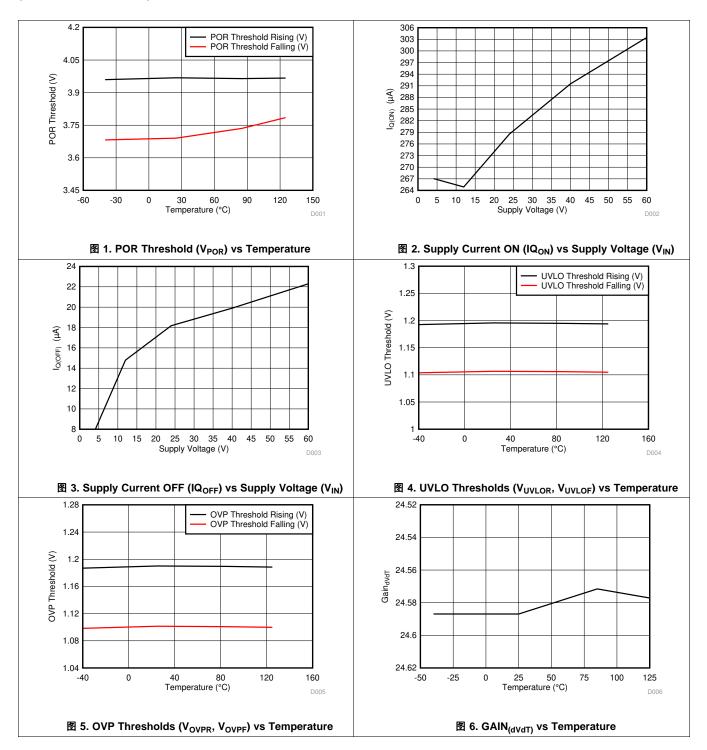
PARAMETER		TEST CONDITIONS	MIN NOM	MAX	UNIT
UVLO INPUT					
UVLO Turn On Delay	UVLO_t _{ON(dly)}	UVLO↑ (100mV above $V_{(UVLOR)}$) to $V_{(OUT)}$ = 100mV, $C_{(dvdt)}$ = Open	80		
	UVLO_t _{ON(dly)}	UVLO↑ (100mV above V _(UVLOR)) to V _(OUT) = 100mV, $C_{(dvdt)} \ge 10$ nF, [$C_{(dvdt)}$ in nF]	80+14. 5 x C _(dvdt)		μs
UVLO Turn-Off delay	UVLO_t _{off(dly)}	UVLO \downarrow (100mV below V _(UVLOF)) to FLT \downarrow	9		μs
SHUTDOWN INPUT					

Timing Requirements (continued)

 $-40^{\circ}C \leq T_{A} = T_{J} \leq +125^{\circ}C, \ V_{(IN)} = 12 \ V, \ V_{(SHDN)} = 2 \ V, \ R_{(ILIM)} = 120 \ k\Omega, \ IMON = \overline{FLT} = OPEN, \ C_{(IN)} = 0.1 \ \mu F, \ C_{(OUT)} = 1 \ \mu F, \ C_{(dVdT)} = OPEN.$

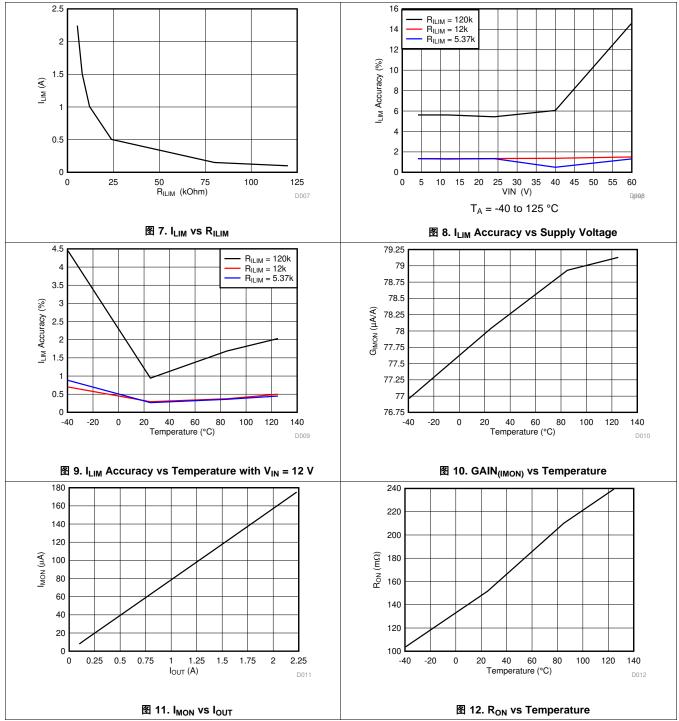
(All voltages referenced to GND, (unless otherwise noted))

PARAMET	ER	TEST CONDITIONS	MIN NOM	MAX	UNIT
SHUTDOWN Exit delay	SHDN_t _{on(dly)}	$\label{eq:shdrw} \begin{array}{l} \overline{SHDN}\uparrow(above~V_{(SHUTR)}~to~V_{(OUT)}=100mV,\\ C_{(dvdt)}\geq 10~nF,~[C_{(dvdt)}~in~nF] \end{array}$	$ \begin{array}{l l} \hline HDN \uparrow (above \ V_{(SHUTR)} \ to \ V_{(OUT)} = 100 mV, \\ (avdt) \geq 10 \ nF, \ [C_{(dvdt)} \ in \ nF] \end{array} \begin{array}{l} \hline 350+14 \\ .5 \ x \\ C_{(dvdt)} \end{array} $		μs
	SHDN_t _{on(dly)}		355		
SHUTDOWN Entry delay	SHDN_t _{off(dly)}	SHDN \downarrow (below V _(SHUTF) to FLT \downarrow	10		μs
OVP INPUT					
OVP Exit delay	t _{OVP(dly)}	OVP ↓(20mV below $V_{(OVPF)}$) to $V_{(OUT)}$ = 100mV	205		μs
OVP Disable delay	t _{OVP(dly)}	OVP↑ (20mV above $V_{(OVPR)}$) to FLT ↓	2		μs
OVP clamp delay	t _{OVC(dly)}	$V_{(IN)}$ step from 24V to 60V in 50 $\mu s,$ Iload: 10mA, C_L : 0.1uF. OVP connected to RTN	3		μs
CURRENT LIMIT					
Fast-Trip Comparator Delay	t _{FASTTRIP(dly)}	I _(OUT) = 1.5x I _(FASTRIP)	170		ns
REVERSE CURRENT BL	OCKING COMPA	RATOR			
		$(V_{(\text{IN})}\text{-}V_{(\text{OUT})})\downarrow$ (100mV overdrive below $V_{(\text{REVTH})})$ to internal FET OFF	1.29		μs
RCB comparator delay	t _{REV(dly)}	$\frac{(V_{(IN)}\text{-}V_{(OUT)})\downarrow}{FLT}\downarrow$ (10mV overdrive below $V_{(REVTH)})$ to	40		μs
	t _{FWD(dly)}	$\frac{(V_{(IN)}-V_{(OUT)})$ ↑ (10mV overdrive above V _(FWDTH)) to FLT ↑	60		μs
THERMAL SHUTDOWN					
Retry Delay in TSD	t _{retry}		540		ms
OUTPUT RAMP TIME	•				
Output Down Time		SHDN↑ to V _(OUT) = V _(IN)	1.6		ms
Output Ramp Time	t _{dVdT}	SHDN↑ to $V_{(OUT)} = V_{(IN)}$, with $C_{(dVdT)} = 47nF$	10		ms
FAULT FLAG					
FLT assertion delay in circuit breaker mode	t _{CB(dly)}	MODE = OPEN,Delay from $I_{(out)}$ > $I_{(lim)}$ to $\overline{FLT} \downarrow$ (and internal FET turned off)	4		ms
Retry Delay in circuit breaker mode	t _{CBretry(dly)}	$\begin{array}{l} \text{MOD}\underline{E} = \text{OPEN}, \ C_{(\text{dVdT})} = \text{Open. } I_{(\text{out})} {>} I_{(\text{lim}).} \ \text{Delay} \\ \text{from FLT} \downarrow \text{ to } V_{(\text{dVdT})} = 50 \text{mV} \ (\text{Rising}) \end{array}$	540		ms
DCOOD dolou time	t _{PGOODR}	Delay for rising FLT edge	1.8		ms
PGOOD delay time	t _{PGOODF}	Delay for falling FLT edge	900		μs


LM76202-Q1 ZHCSJE7A – MARCH 2019 – REVISED SEPTEMBER 2019

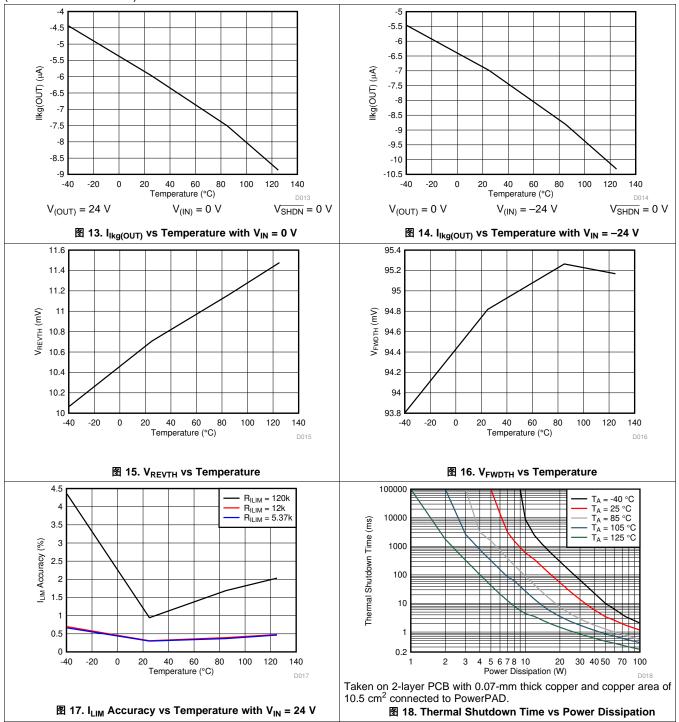
www.ti.com.cn

6.7 Typical Characteristics


 $T_{A} = 25 \text{ °C}, V_{(IN)} = 12 \text{ V}, V_{(\overline{SHDN})} = 2 \text{ V}, R_{(ILIM)} = 120 \text{ k}\Omega, \text{ IMON} = \overline{FLT} = \text{OPEN}, C_{(IN)} = 0.1 \text{ }\mu\text{F}, C_{(OUT)} = 1 \text{ }\mu\text{F}, C_{(dVdT)} = \text{OPEN}.$ (Unless otherwise noted)

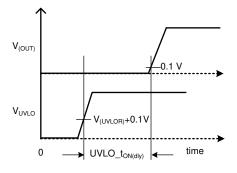
Typical Characteristics (接下页)

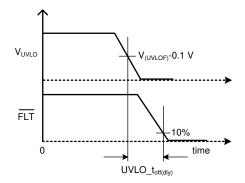
 $T_{A} = 25 \text{ °C}, V_{(IN)} = 12 \text{ V}, V_{(\overline{SHDN})} = 2 \text{ V}, R_{(ILIM)} = 120 \text{ k}\Omega, \text{ IMON} = \overline{FLT} = \text{OPEN}, C_{(IN)} = 0.1 \text{ }\mu\text{F}, C_{(OUT)} = 1 \text{ }\mu\text{F}, C_{(dVdT)} = \text{OPEN}.$ (Unless otherwise noted)

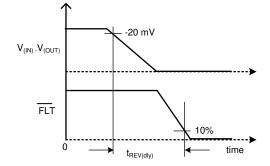


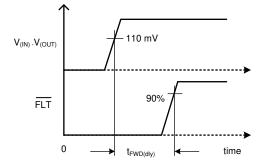
LM76202-Q1 ZHCSJE7A – MARCH 2019 – REVISED SEPTEMBER 2019

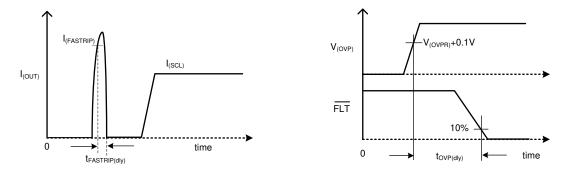
www.ti.com.cn


Typical Characteristics (接下页)


 $T_{A} = 25 \text{ °C}, V_{(IN)} = 12 \text{ V}, V_{(\overline{SHDN})} = 2 \text{ V}, R_{(ILIM)} = 120 \text{ k}\Omega, \text{ IMON} = \overline{FLT} = \text{OPEN}, C_{(IN)} = 0.1 \text{ }\mu\text{F}, C_{(OUT)} = 1 \text{ }\mu\text{F}, C_{(dVdT)} = \text{OPEN}.$ (Unless otherwise noted)





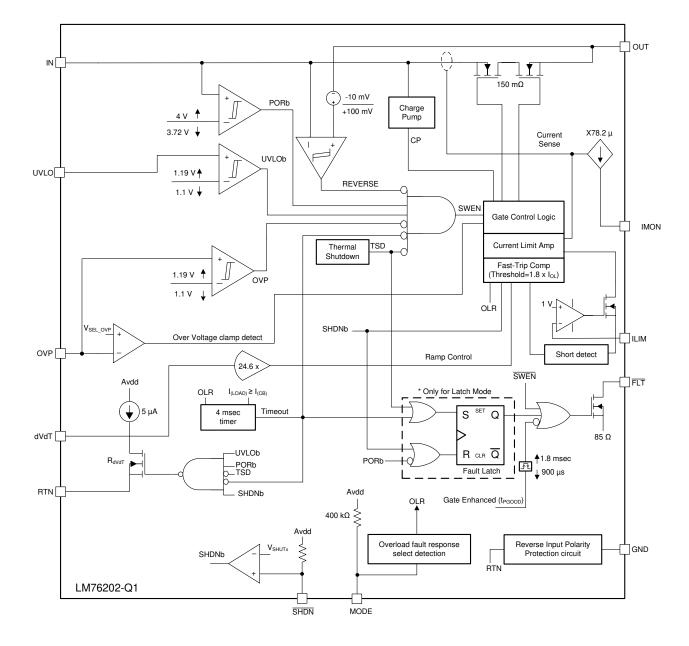

7 Parameter Measurement Information

8 Detailed Description

8.1 Overview

LM76202-Q1 is an ideal diode with integrated back-to-back FETs and enhanced built-in protection circuitry. It provides robust protection for all systems and applications powered from 4.2 V to 60 V. The device integrates reverse battery input, reverse current, overvoltage, undervoltage, overcurrent and short circuit protection. The precision overcurrent limit (±5% at 1A) helps to minimize over design of the input power supply, while the fast response short circuit protection immediately isolates the load from input when a short circuit is detected. The device allows the user to program the overcurrent limit threshold between 0.1 A and 2.23 A with an external resistor. The device monitors the bus voltage for brown-out and overvoltage protection, asserting the FLTb pin to notify downstream systems.

The device is designed to protect systems such as ADAS camera supplies against sudden output short to battery events. The device monitors V(IN) and V(OUT) to provide true reverse blocking from output when output short to battery fault condition or input power fail condition is detected. The internal robust protection control blocks of the LM76202-Q1 device along with its ± 60 V rating helps to simplify the system designs for the various ISO and LV124 compliance ensuring complete protection of the load and the device.


The device monitors $V_{(IN)}$ and $V_{(OUT)}$ to provide true reverse current blocking when a reverse condition or input power failure condition is detected. The LM76202-Q1 device is also designed to control redundant power supply systems.

Additional features of the LM76202-Q1 device include:

- Reverse input battery protection
- Reverse current blocking
- Current monitor output for health monitoring of the system
- · Electronic circuit breaker operation with overload timeout using MODE pin
- A choice of latch off or automatic restart mode response during current limit fault using MODE pin
- · Over temperature protection to safely shutdown in the event of an overcurrent event
- · De-glitched fault reporting for brown-out and overvoltage faults
- Look ahead overload current fault indication (see the Look Ahead Overload Current Fault Indicator section)

8.2 Functional Block Diagram

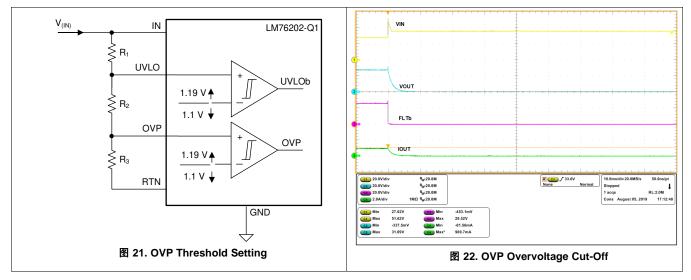
8.3 Feature Description

8.3.1 Undervoltage Lockout (UVLO)

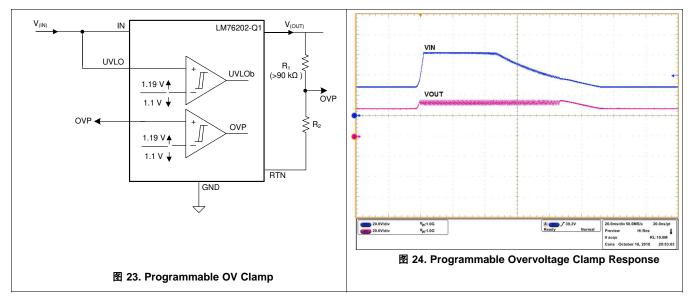
This section describes the undervoltage comparator input. When the voltage at UVLO pin falls below $V_{(UVLOF)}$ during input power fail or input undervoltage fault, the internal FET quickly turns off and FLT is asserted. The UVLO comparator has a hysteresis of 90 mV. To set the input UVLO threshold, connect a resistor divider network from IN supply to UVLO terminal to RTN as shown in \mathbb{R} 20.

图 20. UVLO and OVP Thresholds Set by R₁, R₂ and R₃

If the undervoltage lockout (UVLO) function is not needed, the UVLO terminal must be connected to the IN terminal. UVLO terminal must not be left floating.


The device also implements an internal power ON reset (POR) function on the IN terminal. The device disables the internal circuitry when the IN terminal voltage falls below internal POR threshold $V_{(PORF)}$. The internal POR threshold has a hysteresis of 275 mV.

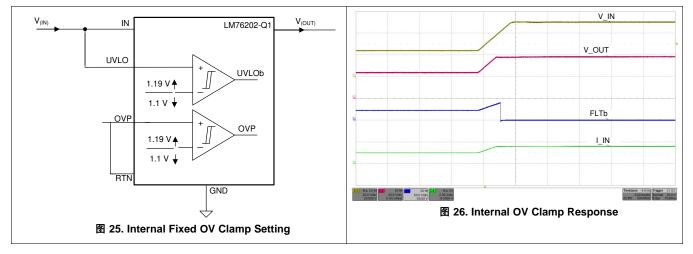
8.3.2 Overvoltage Protection (OVP)


The device incorporates circuitry to protect the system during overvoltage conditions. This device features an overvoltage cut off functionality. A voltage more than $V_{(OVPR)}$ on OVP pin turns off the internal FET and protects the downstream load. To program the OVP threshold, connect a resistor divider from IN supply to OVP terminal to RTN as shown in B 21. OVP Overvoltage Cut-off response is shown in B 22. OVP pin must not be left floating. If OVP pin could be floating due to dry soldering, an additional zener diode at the output will be required for protection from over voltage.

Feature Description (接下页)

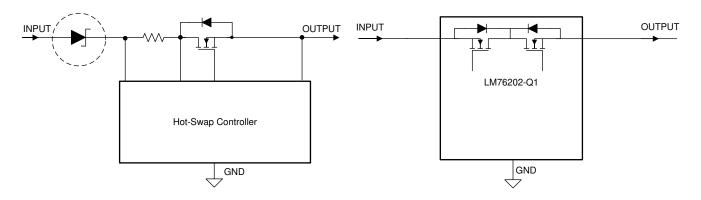
Programmable overvoltage clamp can also be achieved using LM76202-Q1 by connecting the resistor ladder from Vout to OVP to RTN as shown in 223. This results in clamping of output voltage close to OVP set-point by resistors R1 and R2. as shown in 24. This scheme will also help in achieving minimal system Iq during off state. For this OVP configuration, use R1 > 90 k Ω .

The LM76202-Q1 device also features an internally fixed 38 V overvoltage clamp (V_{OVC}) functionality. The OVP terminal of theLM76202-Q1 device must be connected to the RTN terminal directly as shown in \mathbb{Z} 25. The LM76202-Q1 clamps the output voltage to V_{OVC} , when the input voltage exceeds 38 V. During the output voltage clamp operation, the power dissipation in the internal MOSFET is $P_D = (V_{IN} - V_{OVC}) \times I_{OUT}$. Excess power dissipation for prolonged period can make the device to enter into thermal shutdown. \mathbb{Z} 26 illustrates the overvoltage clamp functionality.

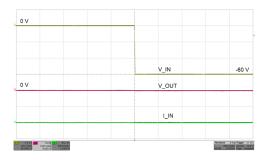

LM76202-Q1

ZHCSJE7A-MARCH 2019-REVISED SEPTEMBER 2019

NSTRUMENTS


EXAS

Feature Description (接下页)



8.3.3 Reverse Battery Protection

To protect the electronic systems from reverse battery voltage due to miswiring, often a power component like a schottky diode is added in series with the supply line as shown in 27. These additional discretes result in a lossy and bulky protection solution. The LM76202-Q1 devices feature fully integrated reverse input supply protection and does not need an additional diode. These devices can withstand a reverse voltage of -60 V without damage. 28 illustrates the reverse input polarity protection functionality.

Feature Description (接下页)

8.3.4 Hot Plug-In and In-Rush Current Control

The device is designed to control the in-rush current upon insertion of a card into a live backplane or other "hot" power source. This limits the voltage sag on the supply voltage and prevents unintended resets of the system power. The controlled start-up also helps to eliminate conductive and radiative interferences. An external capacitor connected from the dVdT pin to RTN defines the slew rate of the output voltage at power-on as shown in 🕅 29 and 🕅 30.

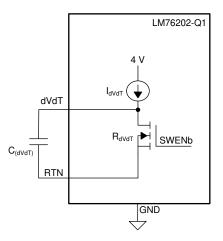


图 29. Output Ramp Up Time t_{dVdT} is Set by $C_{(dVdT)}$

The dVdT pin can be left floating to obtain a predetermined slew rate (t_{dVdT}) on the output. When the terminal is left floating, the devices set an internal output voltage ramp rate of 23.9 V / 1.6 ms. A capacitor can be connected from dVdT pin to RTN to program the output voltage slew rate slower than 23.9 V / 1.6 ms. Use $\Delta \pm$ 1 and $\Delta \pm$ 2 to calculate the external C_(dVdT) capacitance.

公式 1 governs slew rate at start-up.

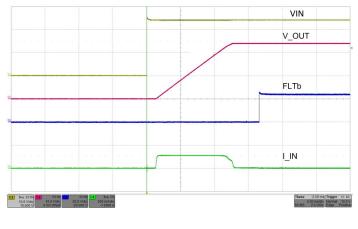
$$I_{(dVdT)} = \left(\frac{C_{(dVdT)}}{Gain_{(dVdT)}}\right) \times \left(\frac{dV_{(OUT)}}{dt}\right)$$

where

• $I_{(dVdT)} = 4.7 \ \mu A \ (typical)$

dV (out)

• $Gain_{(dVdT)} = dVdT$ to V_{OUT} gain = 24.6 (1)


The total ramp time (t_{dVdT}) of $V_{(OUT)}$ for 0 to $V_{(IN)}$ can be calculated using $\Delta \vec{x}$ 2.

$t_{dVdT} = 8.7 \times 10^3 \times V_{(IN)} \times C_{(dVdT)}$	(2)
The inrush current can be calculated by 公式 3	

 $I_{INRUSH} = C_{OUT} / [8.7 \times 10^3 \times C_{dVdT}]$

(3)

Feature Description (接下页)

 $C_{dVdT} = 22 \text{ nF}$ $C_{OUT} = 47 \mu \text{F}$ $R_{ILIM} = 5.36 \text{ k}\Omega$

图 30. Hot Plug-In and In-Rush Current Control at 24-V Input

8.3.5 Overload and Short Circuit Protection

The device monitors the load current by sensing the voltage across the internal sense resistor. The FET current is monitored during start-up and normal operation.

8.3.5.1 Overload Protection

The device offers following choices for the overload protection fault response:

- Active current limiting (Auto-retry and Latch-off modes)
- Electronic Circuit Breaker with overload timeout (Auto-retry mode)

See the configurations in $\frac{1}{5}$ 1 to select a specific overload fault response.

MODE Pin Configuration	Overload Protection Type		
Open	Electronic circuit breaker with auto-retry		
Shorted to RTN	Active current limiting with auto-retry		
A 402-kΩ resistor across MODE pin to RTN pin	Active current limiting with latch-off		

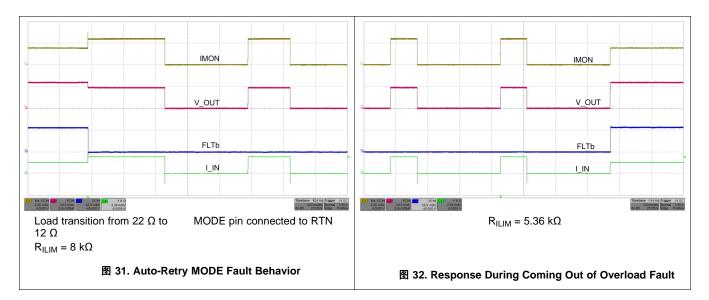
8.3.5.1.1 Active Current Limiting

When the active current limiting mode is selected, during overload events, the device continuously regulates the load current to the overcurrent limit $I_{(OL)}$ programmed by the $R_{(ILIM)}$ resistor as shown in $\Delta \pm 4$.

$$I_{OL} = \frac{12}{R_{(ILIM)}}$$

where

- I_(OL) is the overload current limit in Ampere
- $R_{(ILIM)}$ is the current limit resistor in k Ω


(4)

During an overload condition, the internal current-limit amplifier regulates the output current to $I_{(LIM)}$. The FLT signal assert after a delay of t_{PGOODF} . The output voltage droops during the current regulation, resulting in increased power dissipation in the device. If the device junction temperature reaches the thermal shutdown threshold ($T_{(TSD)}$), the internal FET is turn off. The device configured in latch-off mode stays latched off until it is reset by either of the following conditions:

- Cycling $V_{(IN)}$ below $V_{(PORF)}$ Toggling SHDN

When the device is <u>configured</u> in auto-retry mode, it commences an auto-retry cycle $t_{CBretry(dly)}$ ms after $T_J < T_J < T_J < T_J$ [T_(TSD) - 10°C]. The FLT signal remains asserted until the fault condition is removed and the device resumes normal operation. 图 31 and 图 32 illustrates the behavior of the system during current limiting with auto-retry functionality.

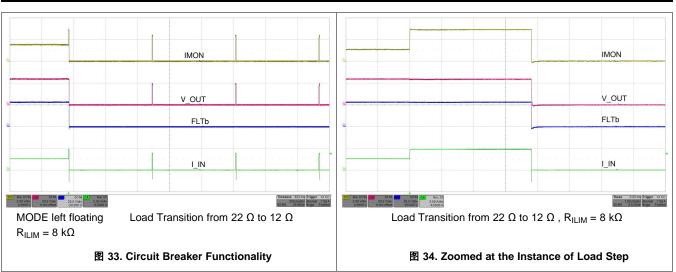
8.3.5.1.2 Electronic Circuit Breaker with Overload Timeout, MODE = OPEN

In this mode, during overload events, the device allows the overload current to flow through the device until $I_{(LOAD)} < I_{(FASTRIP)}$. The circuit breaker threshold $I_{(CB)}$ can be programmed using the $R_{(ILIM)}$ resistor, as shown in Δ 式 5.

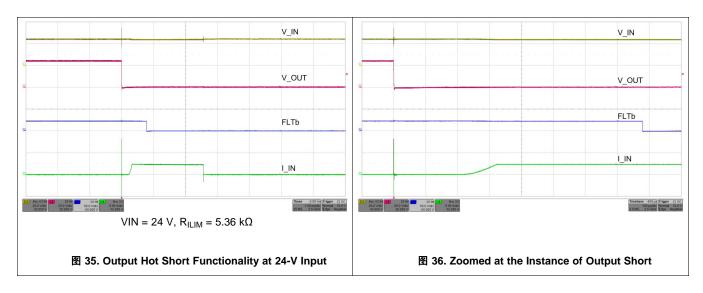
$$I(\text{CB}) = \frac{12}{R_{\left(\text{ILIM}\right)}} + 0.03A$$

where

- I(CB) is circuit breaker current threshold in A
- $R_{(ILIM)}$ is the current limit resistor in k Ω

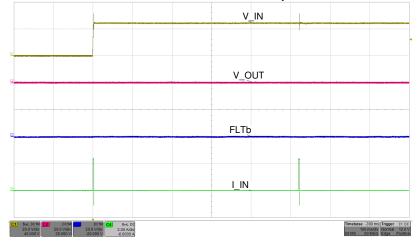

(5)

The device commences an auto-retry cycle after a delay of t_{CBretry(dly)}. The FLT signal remains asserted until the fault condition is removed and the device resumes normal operation. 图 33 and 图 34 illustrate behavior of the system during electronic circuit breaker with auto-retry functionality.


LM76202-Q1

ZHCSJE7A-MARCH 2019-REVISED SEPTEMBER 2019

8.3.5.2 Short Circuit Protection


During a transient output short circuit event, the current through the device increases very rapidly. As the current-limit amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip comparator, with a threshold $I_{(FASTRIP)}$. The fast-trip comparator turns off the internal FET after a duration of $t_{FASTRIP(dly)}$, when the current through the FET exceeds $I_{(FASTRIP)}$ ($I_{(OUT)} > I_{(FASTRIP)}$), and terminates the rapid short-circuit peak current. The fast-trip threshold is internally set to 87% higher than the programmed overload current limit ($I_{(FASTRIP)} = 1.87 \times I_{(OL)} + 0.015$). The fast-trip circuit holds the internal FET off for only a few microseconds, after which the device turns back on slowly, allowing the current-limit loop to regulate the output current to $I_{(OL)}$. Then the device behaves similar to overload condition. 35 and 36 illustrate the behavior of the system when the current exceeds the fast-trip threshold.

8.3.5.2.1 Start-Up With Short-Circuit On Output

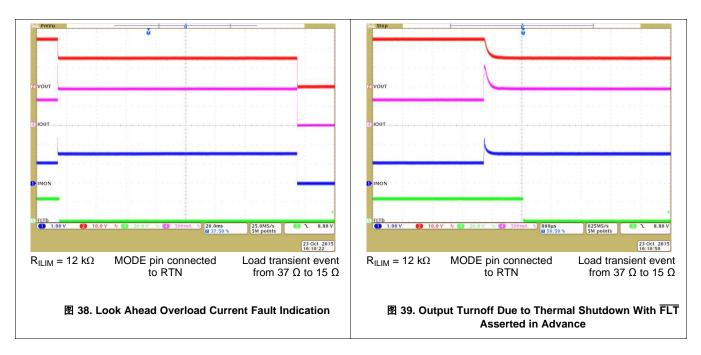
When the device is started with a short-circuit on the output end, it limits the load current to the current limit $I_{(OL)}$, and behaves similarly to the overload condition. 🛛 37 illustrates the behavior of the device in this condition. This feature helps in quick isolation of the fault and hence ensures stability of the DC bus.

MODE pin connected to RTN VIN = 24 V R_{ILIM} = 5.36 kΩ **图 37. Start-Up With Short on Output**

8.3.5.3 FAULT Response

The FLT open-drain output asserts (active low) under following conditions:

- Fault events such as undervoltage, overvoltage, overload, reverse current and thermal shutdown conditions
- When the device enters low current shutdown mode when SHDN is pulled low
- During start-up when the internal FET GATE is not fully enhanced (for example: V_{OUT} has not reached V_{IN}).


The FLT output does not assert in the event of reverse voltage on Input.

The device is designed to eliminate false reporting by using an internal "de-glitch" circuit for fault conditions without the need for an external circuitry.

The FLT signal can also be used as Power Good indicator to the downstream loads like DC-DC converters. An internal Power Good (PGOOD) signal is OR'd with the fault logic. During start-up, when the device is operating in dVdT mode, PGOOD and FLT remains low and is de-asserted after the dVdT mode is completed and the internal FET is fully enhanced and V_{OUT} has reached V_{IN} . The PGOOD signal has deglitch time incorporated to ensure that internal FET is fully enhanced before heavy load is applied by the downstream converters. Rising deglitch delay is determined by $t_{PGOOD(degl)}$ = Maximum {(900 + 20 × C_(dVdT)), t_{PGOODR} }, where C_(dVdT) is in nF and $t_{PGOOD(degl)}$ is in µs. FLT can be left open or connected to RTN when not used. $V_{(IN)}$ falling below $V_{(PORF)}$ resets FLT.

8.3.5.3.1 Look Ahead Overload Current Fault Indicator

With the device configured in current limit operation and when the overload condition exists for more than t_{PGOODF} , the FLT asserts to warn of impending turnoff of the internal FETs due to the subsequent thermal shutdown event. 🛛 38 and 🖾 39 depict this behavior. The FLT signal remains asserted until the fault condition is removed and the device resumes normal operation.

8.3.5.4 Current Monitoring

The current source at IMON terminal is internally configured to be proportional to the current flowing from IN to OUT. This current can be converted into a voltage using a resistor $R_{(IMON)}$ from IMON terminal to RTN terminal. The IMON voltage can be used as a means of monitoring current flow through the system. The maximum voltage range ($V_{(IMONmax)}$) for monitoring the current is limited to minimum of ($[V_{(IN)} - 1.5 V, 4 V]$) to ensure linear output. This puts a limitation on maximum value of $R_{(IMON)}$ resistor and is determined by $\Delta \vec{x}$ 6.

$$R(IMONmax) = \frac{Min [(V(IN) - 1.5), 4V]}{1.8 \times I(LIM) \times GAIN(IMON)}$$

The output voltage at IMON terminal is calculated using 公式 7 and 公式 8.

For $I_{OUT} > 50 \text{ mA}$,

 $V(IMON) = [I(OUT) \times GAIN(IMON)] \times R(IMON)$

Where,

- GAIN_(IMON) is the gain factor I_(IMON):I_(OUT)
- I(OUT) is the load current
- I_(MON OS) = 2 μA (Typical)

For I_{OUT} < 50 mA (typical), IMON output current is close to $I_{(MON OS)}$ and $\Delta \vec{x}$ 8 provides the voltage output with R_{IMON}.

 $V(IMON) = (I(IMON OS)) \times R(IMON)$

This pin must not have a bypass capacitor to avoid delay in the current monitoring information.

In case of reverse input polarity fault, an external 100-k Ω resistor is recommended between IMON pin and ADC input to limit the current through the ESD protection structures of the ADC.

8.3.5.5 IN, OUT, RTN and GND Pins

The device has two pins for input (IN) and output (OUT). All IN pins must be connected together and to the power source. A ceramic bypass capacitor close to the device from IN to GND is recommended to alleviate bus transients. The recommended input operating voltage range is 4.2 V to 60 V. Similarly all OUT pins must be connected together and to the load. $V_{(OUT)}$, in the ON condition, is calculated using $\Delta \vec{x}$ 9.

$$V(OUT) = V(IN) - (RON \times I(OUT))$$

Where.

٠ R_{ON} is the total ON resistance of the internal FETs.

The GND pin must be connected to the system ground. RTN is the device ground reference for all the internal control blocks. Connect the device support components: R(ILIM), C(dVdT), R(IMON), R(MODE) and resistors for UVLO and OVP with respect to the RTN pin. Internally, the device has reverse input polarity protection block between RTN and the GND terminal. Connecting RTN pin to GND pin disables the reverse input polarity protection feature. if negative input voltage is applied on IN pins with RTN pin connected to GND, the device can get damaged.

8.3.5.6 Thermal Shutdown

The device has a built-in overtemperature shutdown circuitry designed to protect the internal FETs, if the junction temperature exceeds T_(TSD). After the thermal shutdown event, depending upon the mode of fault response, the device either latches off or commences an auto-retry cycle 540 ms after $T_J < [T_{(TSD)} - 10^{\circ}C]$. During the thermal shutdown, the fault pin FLT pulls low to indicate a fault condition.

(8)

(7)

(9)

ZHCSJE7A-MARCH 2019-REVISED SEPTEMBER 2019

8.3.5.7 Low Current Shutdown Control (SHDN)

The internal FETs and hence the load current can be switched off by pulling the \overline{SHDN} pin below $V_{(SHUTF)}$ threshold with a micro-controller GPIO pin as shown in \mathbb{E} 40. The device quiescent current reduces to 16 μ A (typical) in shutdown state. To assert SHDN low, the pull down must sink at least 10 μ A at 400 mV. To enable the device, SHDN must be pulled up to $V_{(SHUTR)}$ threshold. Once the device is enabled, the internal FETs turns on with dVdT mode.

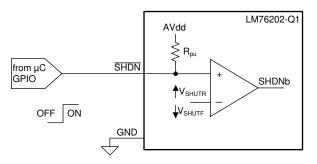


图 40. Shutdown Control

8.4 Device Functional Modes

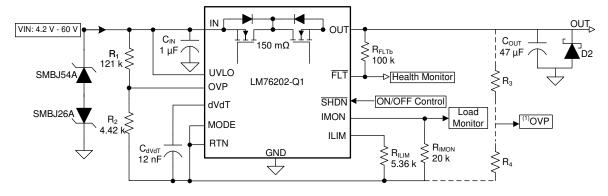
The device responds differently to overload and short circuit conditions. The operational differences are explained in $\frac{1}{8}$ 2.

Mode Pin Configuration	Mode Connected To RTN (Current Limit With Auto-Retry)	A 402-KΩ Resistor Connected Between Mode And RTN Pins (Current Limit With Latchoff)	Mode Pin = Open						
Start-up		Inrush current controlled by dVdT							
	Inrush limited to $I_{(OL)}$ level as set by $R_{(ILIM)}$	Inrush limited to $I_{(OL)}$ level as set by $R_{(ILIM)}$	Inrush limited to $I_{(OL)}$ level as set by $R_{(ILIM)}$						
			Fault timer runs when current is limited to ${\rm I}_{\rm (OL)}$						
			Fault timer expires after t _{CB(dly)} causing the FETs to turnoff						
	If $T_J > T_{(TSD)}$, device turns off	If $T_J > T_{(TSD)}$, device turns off	Device turns off if $T_J > T_{(TSD)}$ before timer expires						
Overcurrent response	Current is limited to $I_{(OL)}$ level as set by $R_{(ILIM)}$	Current is limited to $I_{(OL)}$ level as set by $R_{(ILIM)}$	Current is allowed through the device if $I_{(LOAD)} < I_{(FASTTRIP)}$						
	Power dissipation increases as $V_{(IN)} - V_{(OUT)}$ increases	Power dissipation increases as $V_{(IN)} - V_{(OUT)}$ increases	Fault timer runs when the current increases above $\mathbf{I}_{(\text{OL})}$						
			Fault timer expires after $t_{\mbox{CB}(\mbox{dly})}$ causing the FETs to turnoff						
	Device turns off when $T_J > T_{(TSD)}$	Device turns off when $T_J > T_{(TSD)}$	Device turns off if $T_J > T_{(TSD)}$ before timer expires						
	Device attempts restart 540 ms after $T_J < [T_{(TSD)} - 10^{\circ}C]$	Device remains off	Device attempts restart 540 ms after $T_J < [T_{(TSD)} - 10^{\circ}C]$.						
Short-circuit response	Fast turnoff when I _(LOAD) > I _(FASTRIP)								
	Quick restart a	Quick restart and current limited to I(OL), follows standard start-up							

表 2. Device Operational Differences Under Different MODE Configurations

9 Application and Implementation

注


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The device is an automotive ideal diode, typically used for load protection in automotive applications. It can operate from 24-V battery with programmable current limit, overvoltage, undervoltage and reverse polarity protections. The device provides robust protection against reverse current and transients (such as ISO 7637-2 Pulse 1 and ISO 16750-2 Pulse 5b) due to cables and switches in different automotive systems such as an ECU. The device also provides robust protection for output short to battery, output short to GND, reverse battery and input overvoltage.

The *Detailed Design Procedure* section can be used to select component values for the device.

9.2 Typical Application

(1) OVP connection for Programmable over voltage clamp. See Overvoltage Protection (OVP).

图 41. 24-V, 2-A Ideal Diode Load Protection Circuit for Automotive ECU

9.2.1 Design Requirements

表 3 shows the Design Requirements for LM76202-Q1. In addition to below requirements, the circuit is designed to provide protection for transients as per ISO 7637-2 Pulse 1 and ISO 16750-2 Pulse 5b.

表 3. Design Requirements

	DESIGN PARAMETER	EXAMPLE VALUE
V _(IN)	Typical input voltage	4.2 to 60 V
V _(UV)	Undervoltage lockout set point	4 V
V _(OV)	Overvoltage cutoff set point	33.8 V
I _(LIM)	Current limit	2.23 A
C _(OUT)	Load capacitance	47 µF
I _(LOAD)	Load current	2 A

9.2.2 Detailed Design Procedure

9.2.2.1 Step by Step Design Procedure

To begin the design process, the designer must know the following parameters:

Operating voltage range

- Maximum output capacitance
- Start-up time
- Maximum current limit
- Transient voltage levels

9.2.2.2 Setting Undervoltage Lockout and Overvoltage Set Point for Operating Voltage Range

To provide operation in cold crank conditions for automotive batteries, the UVLO is set to POR value (4 V) by connecting UVLO to IN pin and OVP threshold is set from resistors connected from IN pins to provide protection from transient during ISO 16750 Pulse 5b. During the ISO 16750 5b transient, output voltage is cut-off at 33.8 V and provides protection to load from high input voltage during the transient. The overvoltage threshold is calculated by 公式 10.

 $V_{OVPR} = R_2/(R_1 + R_2) \times V_{OV}$

where

- Overvoltage threshold rising, V_{OVPR} = 1.19 V
- V_{OV} is overvoltage protection voltage (= 33.8 V)

However, the leakage current due to external active components connected at resistor string can add error to these calculations. So, the resistor string current, $I(R_{23})$ must be chosen to be 20x greater than the leakage current of OVP pin.

9.2.2.3 Programming the Current-Limit Threshold—R_(ILIM) Selection

The $R_{(ILIM)}$ resistor at the ILIM pin sets the over load current limit, this can be set using $\Delta \pm 4$.

 $R_{(ILIM)} = 5.36 \text{ k}\Omega$ was selected to set I_{LIM} to 2.23 A.

9.2.2.4 Programming Current Monitoring Resistor—R_{IMON}

The voltage at IMON pin V_(IMON) represents the voltage proportional to the load current. This can be connected to an ADC of the downstream system for health monitoring of the system. The R_(IMON) must be configured based on the maximum input voltage range of the ADC used. R_(IMON) is set using $\Delta \vec{x}$ 11.

$$R(IMON) = \frac{V(IMON \max)}{I(LIM) \times 75 \times 10^{-6}}$$
(11)

For current monitoring up-to a current of 2.2 A, and considering the operating input voltage range of ADC from 0 V to 4 V, $V_{(IMONmax)}$ is 4 V and $R_{(IMON)}$ is selected as 20 k Ω .

9.2.2.5 Limiting the Inrush Current

To limit the inrush current and power dissipation during start-up, an appropriate value of C_{dVdT} must be selected. The inrush current during start-up is estimated by $\Delta \pm 12$. A 12nF capacitance is selected for C_{dVdT} to keep inrush current less than 0.5 A.

 $I_{\text{INRUSH}} = C_{\text{OUT}} / [8.7 \times 10^3 \times C_{\text{dVdt}}]$

26

9.2.2.5.1 Selection of Input TVS for Transient Protection

To protect the device and the load from input transients exceeding the absolute maximum ratings of the device, a TVS diode is required at input of the device. To meet the requirements of protection for ISO 16750 pulse 5b and ISO 7637 pulse 1 as per 表 4, SMBJ54A and SMBJ26A are selected for protection from transients.

Parameter	ISO 16750 Pulse 5b	and Reverse Battery	
Maximum Transient Voltage of Pulse (V _T)	65 V	-600V	A bidirectional TVS is required to protect from positive and negative transients
Pulse Current through TVS (I _{Pulse})	(V _T - V _C)/(R _i)	(V _T - V _C)/(R _i)	R_i = Source impedance. For ISO 16750 Pulse 5b; R_i = 1 Ω For ISO 7637 Pulse 1; R_i = 50 Ω

表 4. Input TVS Selection for Transients

TEXAS INSTRUMENTS

(10)

(12)

表 4. Input TVS Selection for Transients (接下页)

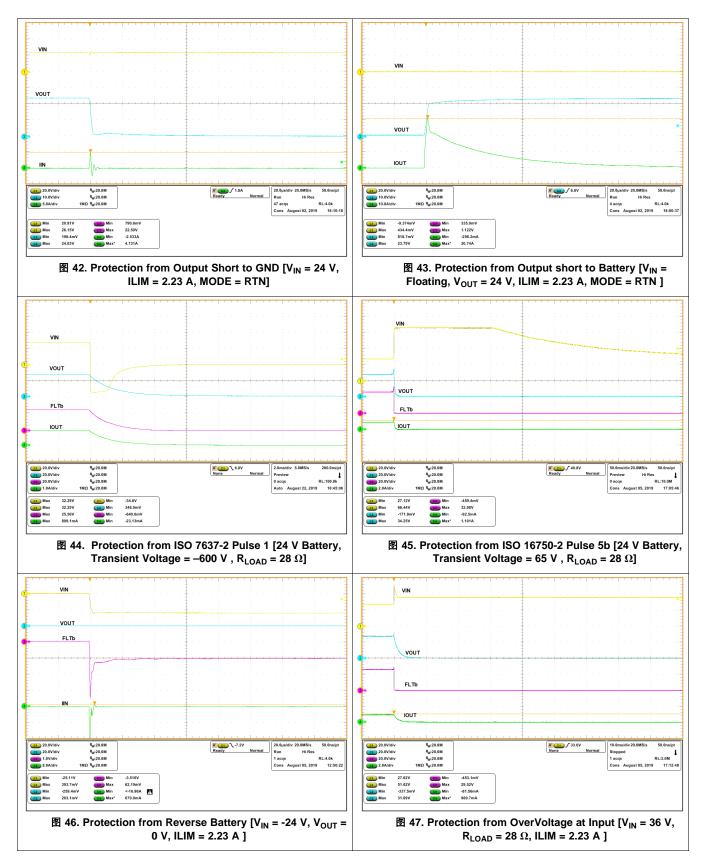
Parameter	ISO 16750 Pulse 5b	ISO 7637 Pulse 1 and Reverse Battery	
Clamping voltage of TVS (V _C) at Pulse current I _{Pulse}	< 65 V	> –(65 - V _{OUT-Max}) V	To keep input voltage below absolute maximum rating of the device. See 公式 13 for V_C
Breakdown voltage of TVS (V_{BR})	> 60V	> 28V	To operate with maximum operating input voltage and to protect from maximum reverse battery voltage

 $V_{C} = V_{BR} + I_{Pulse} \times [V_{Clamp-max} - V_{BR}]/[I_{PP} - I_{T}]$

where

- V_C is the clamping voltage of TVS at I_{Pulse} current through it.
- V_{BR} is break down voltage of TVS with I_T test current through it.
- $V_{Clamp-max}$ is maximum clamping voltage of TVS at peak pulse current I_{PP}
- $V_{BR},\,I_{T},\,V_{Clamp-max}$ and I_{PP} are the specifications of the TVS diode.

(13)


LM76202-Q1

ZHCSJE7A-MARCH 2019-REVISED SEPTEMBER 2019

NSTRUMENTS

ÈXAS

9.2.3 Application Curves

10 Power Supply Recommendations

The device is designed for the supply voltage range of 4.2 V \leq V_{IN} \leq 60 V. Power supply must be rated higher than the current limit set to avoid voltage droops during overcurrent and short circuit conditions.

10.1 Transient Protection

In case of short circuit and over load current limit, when the device interrupts current flow, input inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the input or output of the device. Such transients can exceed the *Absolute Maximum Ratings* of the device if steps are not taken to address the issue.

Typical methods for addressing transients include:

- · Minimizing lead length and inductance into and out of the device
- Using large PCB GND plane
- Schottky diode across the output to absorb negative spikes
- A ceramic capacitor at input ($C_{(IN)}$) with value more than 1µF to absorb the energy and dampen the transients.

The approximate value of input capacitance can be estimated with 公式 14.

$$V_{\text{spike}(\text{Absolute})} = V_{(\text{IN})} + I_{(\text{Load})} \times \sqrt{\frac{L_{(\text{IN})}}{C_{(\text{IN})}}}$$


where

- V_(IN) is the nominal supply voltage
- I_(LOAD) is the load current
- L_(IN) equals the effective inductance seen looking into the source
- C(IN) is the capacitance present at the input

(14)

Automotive applications could require additional Transient Voltage Suppressor (TVS) to prevent transients from exceeding the *Absolute Maximum Ratings* of the device. These transients include ISO 7637 Pulse 1, Output short to battery, Output short to GND and reverse battery at input.

The circuit implementation with optional protection components (TVS Diode at Input and schottky diode at output) is shown in 🛛 48. For protection from automotive transients similar to ISO 7637 Pulse 1, Output short to battery , output short to GND and reverse battery, use $C_{IN} \ge 1 \ \mu\text{F}$ and $C_{OUT} \ge 3.3 \ \mu\text{F}$. For selection of TVS diode and other components, see *Application Information*.

* Optional components needed for suppression of transients

图 48. Circuit Implementation for Automotive Transient Protection

11 Layout

11.1 Layout Guidelines

- For all the applications, a 0.1 µF or higher value ceramic decoupling capacitor is recommended between IN terminal and GND. Use C_{IN} ≥ 1 µF for automotive transient protection. See *Transient Protection*.
- The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the GND terminal of the device. See 图 49 for PCB layout example with HTSSOP package.
- High current carrying power path connections must be as short as possible and must be sized to carry atleast twice the full-load current.
- RTN, which is the reference ground for the device must be a copper plane or island.
- Locate all the device support components R_(ILIM), C_(dVdT), R_(IMON), and MODE, UVLO, OVP resistors close to their connection pin. Connect the other end of the component to the RTN with shortest trace length.
- The trace routing for the R_{ILIM} and R_(IMON) components to the device must be as short as possible to reduce parasitic effects on the current limit and current monitoring accuracy. These traces must not have any coupling to switching signals on the board.
- Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the device they are intended to protect, and routed with short traces to reduce inductance. For example, a protection Schottky diode is recommended to address negative transients due to switching of inductive loads, and it must be physically close to the OUT and GND pins.
- Thermal Considerations: When properly mounted, the PowerPAD package provides significantly greater cooling ability. To operate at rated power, the PowerPAD must be soldered directly to the board RTN plane directly under the device. Other planes, such as the bottom side of the circuit board can be used to increase heat sinking in higher current applications. Designs that do not need reverse input polarity protection can have RTN, GND and PowerPAD connected together. PowerPAD in these designs can be connected to the PCB ground plane.

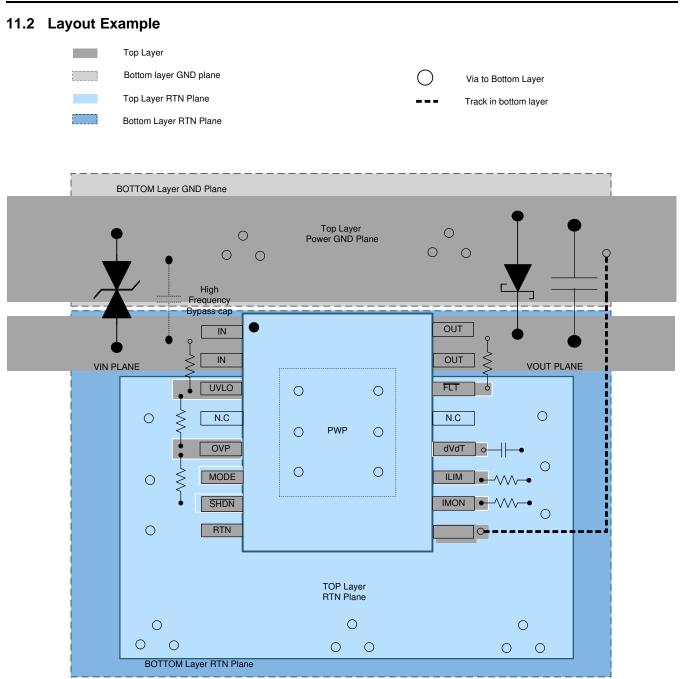


图 49. Typical PCB Layout Example With HTSSOP Package With a 2-Layer PCB

TEXAS INSTRUMENTS

www.ti.com.cn

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

请参阅如下相关文档:

• 《LM76202-Q1 EVM 用户指南》

12.2 接收文档更新通知

要接收文档更新通知,请导航至 TL.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.3 社区资源

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 商标

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更, 恕不另行通知, 且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
LM76202QPWPRQ1	ACTIVE	HTSSOP	PWP	16	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	M76202Q	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

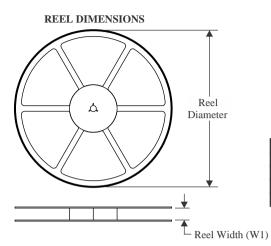
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

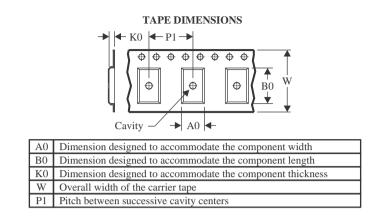
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

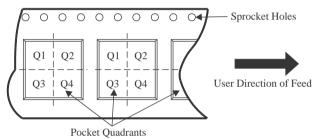
(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



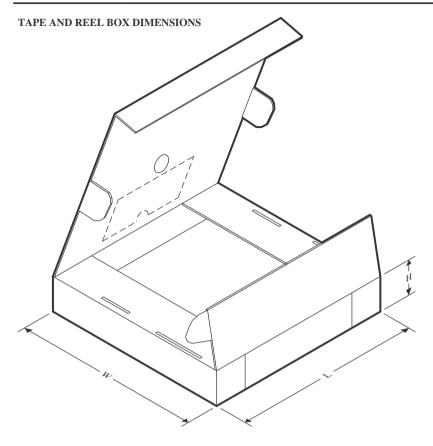
Texas


NSTRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All	dimensions	are	nominal	


Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM76202QPWPRQ1	HTSSOP	PWP	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Dec-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM76202QPWPRQ1	HTSSOP	PWP	16	2000	350.0	350.0	43.0

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司