

LM74670-Q1

ZHCSGN3A - SEPTEMBER 2015-REVISED OCTOBER 2015

LM74670-Q1 零 Io 智能二极管整流器控制器

特性

- 符合 AEC-Q100 标准, 其中包括以下内容:
 - 器件温度 1 级: -40℃ 至 +125℃ 的环境工作温 度范围
 - 超出人体模型 (HBM) 静电放电 (ESD) 分类等级
 - 器件充电器件模型 (CDM) ESD 分类等级 C4B
- 峰值输入交流电压: 42V
- 零 lo
- 适用于外部 N 通道 MOSFET 的电荷泵栅极驱动器
- 与肖特基二极管相比,正向压降和功耗更低
- 能够处理频率高达 300Hz 的交流信号

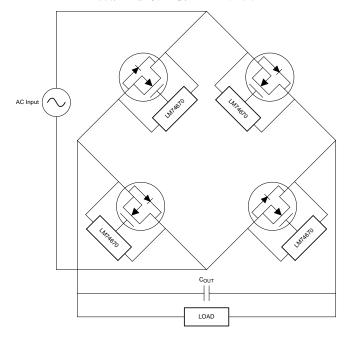
应用

- 交流整流器
- 交流发电机
- 电动工具
- 反极性保护

智能二极管配置

3 说明

LM74670-Q1 是一种控制器器件,可在交流发电机的 全桥或半桥整流器架构中与 N 通道 MOSFET 搭配使 用。它旨在驱动外部 MOSFET 以模拟理想二极管。此 方案独一无二的优势在于其并无接地基准,因此其具有 零 Io。采用全桥或半桥整流器和交流发电机的肖特基 二极管可以替换为 LM74670-Q1 解决方案,以避免正 向导电二极管损耗并使交流/直流转换器更加高效。


LM74670-Q1 控制器为外部 N 通道 MOSFET 提供栅 极驱动,并配有快速响应内部比较器,可使 MOSFET 栅极在反极性情况下放电。此器件支持频率高达 300Hz 的交流信号。

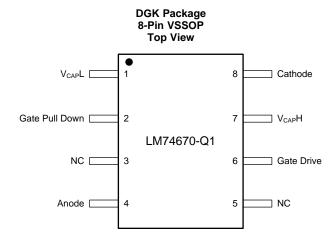
器件信息(1)

器件型号	封装	封装尺寸(标称值)
LM74670-Q1	VSSOP (8)	3.00mm x 5.00mm

(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。

智能二极管全桥整流器应用

	目录			
1	特性		7.3 Feature Description	
2 3	应用 1 说明 1	8	Application and Implementation	12
4 5	修订历史记录 2 Pin Configuration and Functions 3		8.1 Typical Rectifier Application	
6	Specifications4	9	Power Supply Recommendations	
	6.1 Absolute Maximum Ratings	10	10.1 Layout Guidelines	17
	6.3 Recommended Operating Conditions	11	10.2 Layout Example 器件和文档支持	
	6.5 Electrical Characteristics		11.1 社区资源	19
7	6.6 Typical Characteristics		11.2 商标 11.3 静电放电警告	19
	7.1 Overview	12	11.4 Glossary 机械、封装和可订购信息	
	=			


4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

CI	hanges from Original (September 2015) to Revision A	Pag	е
•	将"产品预览"更改为"生产数据"		1

5 Pin Configuration and Functions

Pin Functions

PIN NO.	NAME	1/0	DESCRIPTION
1	VcapL		Charge Pump Output, connect to an external charge pump capacitor
2	Gate Pull Down		Connect to the gate of the external MOSFET for fast turn OFF in the case of reverse polarity
3	NC		No connect. Leave floating or connect to Anode pin
4	Anode		Anode of the diode, connect to source of the external MOSFET
5	NC		No connect. Leave floating or connect to gate drive pin
6	Gate Drive		Gate Drive output, Connect to the Gate of the external MOSFET
7	VcapH		Charge Pump Output, connect to an external charge pump capacitor
8	Cathode		Cathode of the diode, connect to Drain of the external MOSFET

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	MIN	MAX	UNIT
Cathode to Anode (For a 2ms time duration) (2), (3)	-3	45	V
Cathode to Anode (Continuous) ⁽³⁾	-3	42	V
VcapH to VcapL	-0.3	7	V
Anode to VcapL	-0.3	3	V
Gate Drive, Gate Pull Down to VcapL	-0.3	7	V
Ambient Temperature (TA-MAX) (4)	-40	125	°C
Case Temperature (TC-MAX)	-40	125	°C
Storage temperature range, T _{stg}	-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) 42V continuous (and 45V transients for 2ms) absmax condition from Cathode to Anode. Suitable to use with TVS SMBJ28A and SMBJ14A at the anode.
- (3) Reverse voltage rating only. There is no positive voltage limitation for the LM74670-Q1 Anode terminal.
- (4) The device performance is ensured over this Ambient Temperature range as long the Case Temperature does not exceed the MAX value.

6.2 ESD Ratings

			VALUE	UNIT
V	Floatroatatio discharge (1)	Human body model (HBM), per AEC Q100-002 ⁽²⁾	±4000	
V _(ESD) Electrostatic discharge ⁽¹⁾	Charged-device model (CDM), per AEC Q100-011	±750	V	

- (1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
- (2) The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM MAX	UNIT				
Cathode To Anode		42	V				
Ambient Temperature (TA-MAX)	-40	125	°C				
Case Temperature (TC-MAX)		125	°C				

6.4 Thermal Information

		LM74670-Q1	
	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	UNIT
		8 PINS	-
$R_{\theta JA}$	Junction-to-ambient thermal resistance	181	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	73	
$R_{\theta JB}$	Junction-to-board thermal resistance	102	°C/W
ΨЈТ	Junction-to-top characterization parameter	11	
ΨЈВ	Junction-to-board characterization parameter	100	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953

6.5 Electrical Characteristics

 $^{(1)}T_A$ = 25°C unless otherwise noted. Minimum and Maximum limits are specified through test, design, validation or statistical correlation. Typical values represent the most likely parametric norm at T_A = 25°C and are provided for reference purpose

(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the table of Electrical Characteristics.

Electrical Characteristics (continued)

 $^{(1)}T_A$ = 25°C unless otherwise noted. Minimum and Maximum limits are specified through test, design, validation or statistical correlation. Typical values represent the most likely parametric norm at T_A = 25°C and are provided for reference purpose only. $V_{Anode-Cathode}$ = 0.55V for all tests.

only. $V_{Anode-Cathode}$ = 0.55V for all tests.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{Anode to Cathode}	Minimum Startup Voltage across External MOSFET's Body Diode	External MOSFET V _{GS} = 0V	0.48			V
V _{cap} Threshold	Charge Pump Capacitor Drive	Vcap Upper Threshold		6.3		V
	Thresholds	Vcap Lower Threshold		5.15		V
I _{Gate up}	Gate Drive Pull up current	V _{Gate to Anode} = 2V	60	67		μΑ
I _{Gate down}	Gate Drive pull down current during forward voltage	V _{Gate to Anode} = 4V	55	62		μΑ
I _{Gate pull down}	Gate drive pull down current when reverse voltage is sensed	V _{Gate Pull Down} = V _{Anode} + 2V		160		mA
I _{Charge}	Charging current for the charge pump capacitor	V _{Anode to Cathode} = 0.55 V	40	46		μΑ
I _{Discharge}	VCAP Current Consumption to power the controller when MOSFET is ON	V _{cap} = 6.6V		0.95		μA
T _{Recovery}	Time to shut off MOSFET when voltage is reversed (Equivalent to diode reverse recovery time)	V _{Anode to Cathode} = -20 mV Cgate = 4 nF		2.2	5 ⁽²⁾	μs
D	Duty Cycle	Iload = 3 A, T _A = 25°C		98%		
		Iload = 3 A, T _A = 125°C		92%		
I _{LKG}	Reverse Leakage Current	V _{Anode to Cathode} = -13.5 V		60	110 ⁽²⁾	μΑ
Iq	Quiescent Current to GND			0		μΑ
I _{Anode}	Current into Anode pin	Current into Anode pin when V _{Anode} - Cathode = 0.3V.		30		μΑ

(2) Limit applies over the full Operating Temperature Range $T_A = -40$ °C to +125 °C.

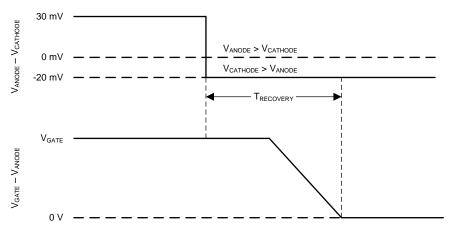
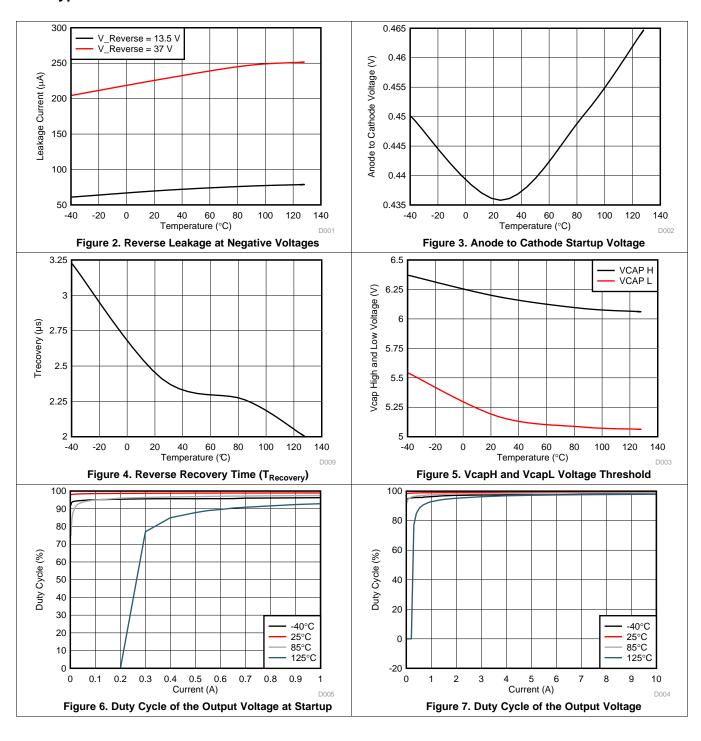
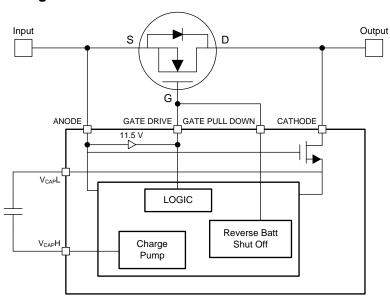



Figure 1. Gate Shut Down Timing in the Event of Reverse Polarity

TEXAS INSTRUMENTS

6.6 Typical Characteristics


7 Detailed Description

7.1 Overview

Using N-Channel MOSFETs with controller ICs can be highly effective and more efficient substitutes of lossy diodes in a bridge rectifier application. The LM74670-Q1 is designed to control a single N-Channel MOSFET in a full or half bridge rectifier as replacement for diode. In a full bridge rectifier, each diode can be replaced by the LM74670-Q1 and a MOSFET. Diodes used in bridge rectifiers cause high power losses associated with the forward voltage drop of each diode. In each cycle of sinusoidal AC voltage, two diodes conduct at the same time. Power losses during diode forward conduction increase as the output current increases. Diode rectification also increases peak current for applications that require high value output capacitance due to charge and discharge with the diode drop voltage. The ON state forward voltage loss in a MOSFET depends upon the R_{DSON} of the MOSFET. The power losses become substantially lower than diodes for the equivalent current. This solution has a small increase in complexity; however it eliminates the need for diode heatsinks and thermal management for high power AC bridge rectifier applications.

The LM74670-Q1 is a zero Iq controller that is combined with an external N-channel MOSFET to replace each diode in a bridge rectifier. The voltage across the MOSFET source and drain is constantly monitored by the LM74670-Q1 Anode and Cathode pins. An internal charge pump is used to provide the GATE drive for the external MOSFET. The forward conduction is through the MOSFET body diode for 2% of time when energy is stored in an external charge pump capacitor Vcap Figure 9. This stored energy is used to drive the gate of MOSFET. The voltage drop and power losses depend on the R_{DSON}of MOSFETs used to replace the rectifier diodes. The LM74670-Q1 has no ground reference which makes it identical to a diode.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 During T0

When power is initially applied, the load current (I_D) will flow through the body diode of the MOSFET and produce a voltage drop (V_f) during T0 in Figure 8. This forward voltage drop (V_f) across the body diode of the MOSFET is used to charge up the charge pump capacitor Vcap. During this time, the charge pump capacitor Vcap is charged to a higher threshold of 6.3V (typical).

Feature Description (continued)

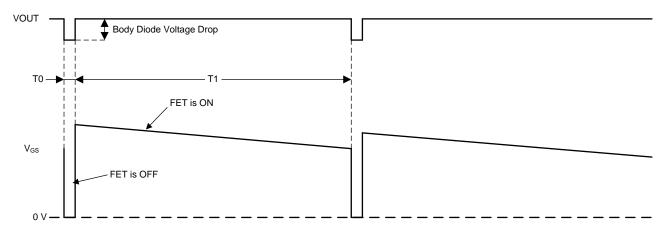


Figure 8. Output Voltage and V_{GS}Operation at 1A Output Current

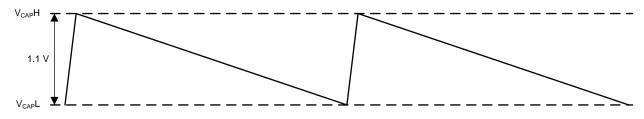
7.3.2 During T1

Once the voltage on the capacitor reaches a higher voltage level of 6.3V (typical), the charge pump is disabled and the MOSFET turns ON. The energy stored in the capacitor is used to provide the gate drive for the MOSFET (T1 in Figure 8). When the MOSFET is ON, it provides a low resistive path for the drain current to flow and minimizes the power dissipation associated with forward conduction. The power losses during the MOSFET ON state depend primarily on the R_{DSON} of the selected MOSFET and load current. At time when the capacitor voltage reaches its lower threshold VcapL 5.15V (typical), the MOSFET gate turns OFF. The drain current I_D will then begin to flow through the body diode of the MOSFET, causing the MOSFET body diode voltage drop to appear across Anode and Cathode pins. The charge pump circuitry is re-activated and begins charging the Vcap. The LM74670-Q1 operation keeps the MOSFET ON at approximately 98% duty cycle (typical) regardless of the external charge pump capacitor value. This is the key factor to minimizing the power losses. The forward voltage drop during this time is limited by the R_{DSON} of the MOSFET.

7.3.3 Pin Operation

7.3.3.1 Anode and Cathode Pins

The LM74670-Q1 Anode and Cathode pins are connected to the source and drain of the external MOSFET. The current into the Anode pin is 30 μ A (typical). When power is initially applied, the load current flows through the body diode of the external MOSFET, the voltage across Anode and Cathode pins is equal to the forward diode drop . The minimum value of diode voltage drop required to enable the charge pump circuitry is 0.48V. Once the MOSFET is turned ON, the Anode and Cathode pins constantly sense the voltage difference across the MOSFET to determine the magnitude and polarity of the voltage across it. When the MOSFET is on, the voltage difference across Anode and Cathode pins depends on the R_{DSON} and load current. If voltage difference across source and drain of the external MOSFET becomes negative, this is sensed as a fault condition by Anode and Cathode pins and gate is turned off by Gate Pull Down pin as shown in Figure 1. The reverse voltage threshold across Anode and Cathode to detect the fault condition is -20 mV. The consistent sensing of voltage polarity across the MOSFET enables the LM74670-Q1 to provide a fast response to the power source failure and limit the amount and duration of the reverse current flow.


7.3.3.2 VcapH and VcapL Pins

VcapH and VcapL are high and low voltage thresholds respectively that the LM74670-Q1 uses to detect when to turn the charge pump circuitry ON and OFF. The capacitor charging and discharging time can be correlated to the duty cycle of the MOSFET gate. Figure 9 shows the voltage behavior across the Vcap. During the time period T0, the capacitor is storing energy from the charge pump. The MOSFET is turned off and current flow is only through the body diode during this time period. The conduction though body diode of the MOSFET is for a

Feature Description (continued)

very small period of time (2% typical) which rules out the chances of overheating the MOSFET, regardless of the output current. Once the capacitor voltage reaches its high threshold, the MOSFET is turned off and charge pump circuity is deactivated until the Vcap reaches its low voltage threshold (T1). The voltage difference between Vcap high and low threshold is typically 1.15V. The LM74670-Q1 charge pump has 46µA charging capability with 5-8MHz frequency.

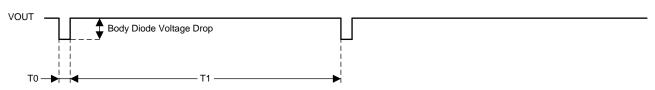


Figure 9. Vcap Charging and Discarding by the Charge Pump

The Vcap current consumption is 0.95µA (typical) to drive the gate. The MOSFET OFF time (T0) and ON time (T1) can be calculated using the following expression

$$\Delta T = C \frac{dV}{dI} \tag{1}$$

Where:

- C = Vcap Capacitance
- dV = 1.15V
- dI = 46 µA for charging
- dI = 0.95 μA for discharging

Note: Temperature dependence of these parameters – The duty cycle is dependent on temperature since the capacitance variation over temperature has a direct correlation to the MOSFET OFF and ON periods and the frequency. If the capacitor varies 20% the periods and the frequency will also vary by 20% so it is recommended to use a quality X7R/COG cap and not to place the cap in close proximity to high temperature devices. The variation of the capacitor does not have a thermal impact in the application as the duty cycle does not change.

7.3.3.3 Gate Drive Pin

When the charge pump capacitor is charged to the high voltage level of 6.3V (typ), the Gate Drive pin provides a 67µA (typ) of drive current. When the charge pump capacitor reaches its lower voltage threshold of 5.15V (typ), Gate is pulled down to the Anode voltage (Vin). During the positive cycle of AC sinusoid, the MOSFET gate is turned ON by the LM74670-Q1 gate drive to ensure the forward conduction through the MOSFET.

7.3.3.4 Gate Pull Down Pin

The Gate Pull Down pin of the LM74670-Q1 is connected to the Gate Drive pin in a bridge rectifier application. When the controller detects negative polarity during the negative cycle of AC sinusoidal, the Pull-Down quickly discharges the MOSFET gate through a discharge transistor. This fast pull down reacts regardless of the Vcap charge level. When the negative voltage across the Anode and Cathode pins due to reverse current reaches -20mV (typical), the LM74670-Q1 immediately reacts and discharges the MOSFET gate capacitance as shown in Figure 10. The Gate voltage is pulled down to Anode voltage with 160mA pull down current when the negative

Feature Description (continued)

cycle of the AC input starts. . A MOSFET with 4nF of effective gate capacitance can be turned off by the LM74670-Q1 within 2.2µs (typical). The fast turnoff time minimizes the reverse current flow from MOSFET drain by opening the circuit. The reverse leakage current does not exceed 110µA for a constant 13.5V reverse voltage across Anode and Cathode pins. The reverse leakage current for a Schottky diode is 15mA under the same voltage and temperature conditions.

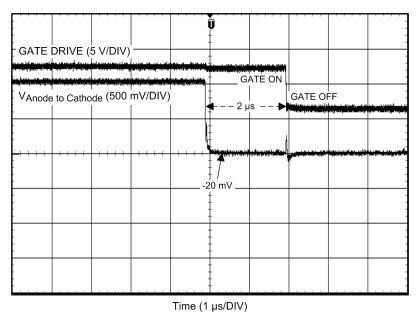


Figure 10. Gate Pull Down in the Event of Reverse Polarity

7.4 Device Functional Modes

The LM74670-Q1 operates in two modes:

• Body Diode Conduction Mode

The LM74670-Q1 solution works like a conventional diode during this time with higher forward voltage drop. The power dissipation during this time can be given as:

$$P_{\text{Dissipation}} = \left(V_{\text{Forward Drop}}\right) \times \left(I_{\text{Drain Current}}\right) \tag{2}$$

However, the current only flows through the body diode while the MOSFET gate is being charged to $V_{GS(TH)}$. This conduction is only for 2% duty cycle, therefore it does not cause any thermal issues.

Body Diode ON Time =
$$\frac{C \times (V \text{capH} - V \text{capL})}{I_{\text{Charge Current}}}$$
(3)

• The MOSFET Conduction Mode

The MOSFET is turned on during this time and current flow is only through the MOSFET. The forward voltage drop and power losses are limited by the R_{DSON} of the specific MOSFET used in the solution. The LM74670-Q1 solution output is comprised of the MOSFET conduction mode for 98% of its duty cycle. This time period is given by the following expression:

MOSFET ON Time =
$$\frac{C \times (VcapH - VcapL)}{I_{Discharge Current}}$$
(4)

Device Functional Modes (continued)

7.4.1 Duty Cycle Calculation

The LM74670-Q1 has an operating duty cycle of 98% at 25 °C and >90% at 125 °C. The duty cycle doesn't depend on the Vcap capacitance value. However, the variation in capacitance value over temperature has direct correlation to the switching frequency between the MOSFET and body diode. If the capacitance value decreases, the charging and discharging time will also decrease, causing more frequent switching between body diode and the MOSFET condition. The following expression can be used to calculate the duty cycle of the LM74670-Q1:

Duty Cycle (%) =
$$\frac{\text{(MOSFET ON Time)}}{\text{(MOSFET ON Time + Body Diode ON Time)}} \times 100$$
(5)

7.4.2 Startup Voltage

The LM74670-Q1 will not initiate the charge pump operation if a closed loop system is in standby mode or the drain current is smaller than 1mA (typical). This is due to a minimum body diode voltage requirement of the LM74670-Q1 controller. If the drain current is too small to produce a minimum voltage drop of 0.48V at 25 °C, the charge pump circuitry will remain off and the MOSFET will act just like a diode. It is very important to know the body diode voltage parameter of a MOSFET before implementing it into the Smart Diode solution. Some N-channels MOSFETs have very low body diode voltage at higher temperature. This makes their drain current requirement higher to achieve 0.48V across the body diode in order to initiate the LM74670-Q1 controller at higher temperatures.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Typical Rectifier Application

The LM74670-Q1 can be used with appropriate N-channel MOSFET to replace a diode in a typical rectifier application. The rectifier could be industrial for a 12/24AC supply or an automotive rectifier for a single phase or three phase field winding controlled alternator. The schematic for a typical implementation is shown in Figure 11 to implement a full bridge rectifier. The same schematic can also be extended to six legs for a three phase alternator rectification. Following considerations need to be made when selecting the appropriate MOSFET for this application:

- 1. An input voltage of 24V AC can reach a 34V peak. The MOSFET selected should have a V_{DS} greater than this voltage.
- 2. The Continuous drain current of the MOSFET should be nearly 2.5X I_{AVG} to cover peak currents during rectification.
- 3. The V_{GS(TH)} threshold voltage of the selected MOSFET should be ≤3V to ensure error-free operation.

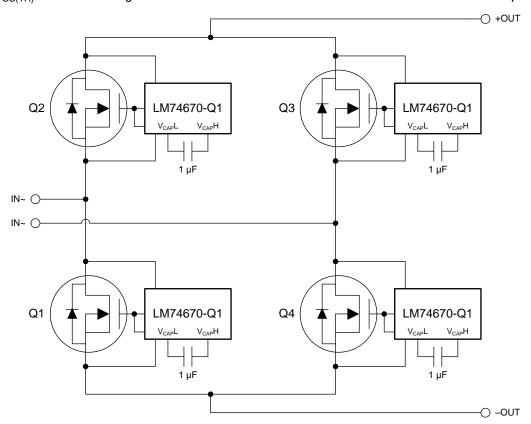


Figure 11. Typical Full Bridge Rectifier Application

Typical Rectifier Application (continued)

8.1.1 Design Requirements

For this design example, use the parameters listed in Table 1 as the input parameters

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input Voltage Range	4 – 42V peak AC
Output Voltage	rectified positive amplitude
Output current range	Maximum Drain current of MOSFET
Threshold voltage of FET V _{GS(TH)}	3V Max
Vcap value	1µF

8.1.2 Detailed Design Procedure

To begin the design process, determine the following:

8.1.2.1 Design Considerations

- Input voltage range
- · Output current range
- Body Diode forward voltage drop for the selected MOSFET
- MOSFET Gate threshold voltage

8.1.2.2 Capacitor Selection

A ceramic capacitor should be placed between VcapL and VcapH. The capacitor acts as a holding tank to power up the control circuitry when the MOSFET is on.

When the MOSFET is off, this capacitor is charged up to higher voltage threshold of ~6.3V. Once this voltage is reached, the Gate Drive of LM74670-Q1 will provide drive for the external MOSFET. When the MOSFET is ON, the voltage across its body diode is collapsed because the forward conduction is through the MOSFET. During this time, the capacitor acts as a supply for the Gate Drive to keep the MOSFET ON.

The capacitor voltage will gradually decay when the MOSFET is ON. Once the capacitor voltage reaches a lower voltage threshold of 5.15V, the MOSFET is turned off and the capacitor gets recharged again for the next cycle.

A capacitor value of 220nF to 2.2uF with X7R/COG characteristic and 16V rating or higher is recommended for this application. A higher value capacitor sets longer MOSFET ON time and OFF time; however, the duty cycle remains at ~98% for MOSFET ON time irrespective of capacitor value.

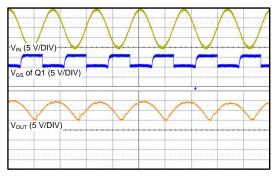
If the Vcap value is 1µF, the MOSFET ON time and OFF time can be calculated using Equation 1:

MOSFET ON Time =
$$(1\mu F \times 1.15V)/0.95\mu A = 1.21$$
 seconds (6)

The duty cycle can be calculated using Equation 5:

Duty Cycle
$$\%$$
 = 1.21 sec / (1.21 sec + 0.025sec) = 98% (8)

8.1.2.3 MOSFET Selection


The important MOSFET electrical parameters are the maximum continuous Drain current I_D , the maximum drain-to-source voltage $V_{DS(MAX)}$, the gate-to-source threshold voltage $V_{GS(TH)}$ and the drain-to-source On resistance R_{DSON} . The maximum continuous drain current, I_D , rating must exceed the maximum continuous load current. The rating for the maximum current through the body diode, I_S , is typically rated the same as, or slightly higher than the drain current, but body diode current only flows for a small period while the MOSFET gate is being charged to $V_{GS(TH)}$. The LM74670-Q1 can provide up to 5V V_{GS} to drive the external MOSFET, therefore the V_{GS} threshold of the selected MOSFET must be $\leq 3V$.

The voltage across the MOSFET's body diode must be higher than 0.48V at low current. The body diode voltage for MOFETS typically decreases as the ambient temperature increases. This will increase the source current requirement to achieve the minimum body diode drain-to-source voltage for the charge pump to initiate. The maximum drain-to-source voltage, $V_{DS(MAX)}$, must be high enough to withstand the highest differential voltage seen in the application. This would include any anticipated fault conditions. Although there are no positive V_{DS} limitation. However, it is recommended to use MOSFETS with voltage rating up to 45V for automotive applications, since the LM74670-Q1 has a reverse voltage limit of -45V. Table 2 shows the examples of recommended MOSFETs to be used with the LM74670-Q1.

8.1.3 Application Curves

In the following plots, the input voltage is 20V AC. The output current is 5A for all frequencies.

Time (5 ms/DIV)

Figure 12. Response to 60Hz AC Input

Figure 13. Response to 100Hz AC Input

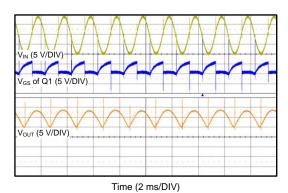


Figure 14. Response to a 300Hz AC Input

8.2 Design Requirements

NOTE

Startup voltage is the voltage drop is needed for the controller to turn ON. It directly influences the Minimum output current at which the MOSFET turns ON.

Table 2. Recommended MOSFET Examples⁽¹⁾

Part No	Voltage (V) Current	Drain Current at 25C	Rdson mΩ @ 4.5V	Vgs Threshold (V)	Diode Voltage @ 2A at 125C/175C	Package; Footprint	Qual
CSD17313Q2Q1	30	5	26	1.8	0.65	SON; 2 x 2	Auto
SQJ886EP	40	60	5.5	2.5	0.5	PowerPAK SO-8L; 5 x 6	Auto
SQ4184EY	40	29	5.6	2.5	0.5	SO-8; 5 x 6	Auto
Si4122DY	40	23.5	6	2.5	0.5	SO-8; 5 x 6	Auto
RS1G120MN	40	12	20.7	2.5	0.6	HSOP8; 5 x 6	Auto
RS1G300GN	40	30	2.5	2.5	0.5	HSOP8; 5 x 6	Auto
CSD18501Q5A	40	22	3.3	2.3	0.53	SON; 5 x 6	Industrial
SQD40N06-14L	60	40	17	2.5	0.5	TO-252; 6 x 10	Auto
SQ4850EY	60	12	31	2.5	0.55	SO-8; 5 x 6	Auto
CSD18532Q5B	60	23	3.3	2.2	0.53	SON;5 x 6	Industrial
IPG20N04S4L-07A	40	20	7.2	2.2	0.48	PG-TDSON-8-10; 5 x 6	Auto
IPB057N06N	60	45	5.7	3.3	0.55	PG-TO263-3; 10 x 15	Auto
IPD50N04S4L	40	50	7.3	2.2	0.50	PG-TO252-3-313; 6 x10	Auto
BUK9Y3R5-40E	40	100	3.8	2.1	0.48	LFPAK56; Power-SO8 (SOT669); 5 x 6	Auto
IRF7478PbF-1	60	7	30	3	0.55	SO-8; 5 x 6	Industrial
SQJ422EP	40	75	4.3	2.5	0.50	PowerPAK SO-8L; 5 x 6	Auto
IRL1004	40	130	6.5	1	0.60	TO-220AB	Auto
AUIRL7736	40	112	2.2	3	0.65	DirectFET®; 5 x 6	Auto

⁽¹⁾ The LM74670-Q1 solution is not limited to the MOSFETs included in this table. It only shows examples of compatible MOSFETs.

9 Power Supply Recommendations

While testing the LM74670-Q1 solution, it is important to use low impedance power supply which allows current sinking. If the power supply does not allow current sinking, it would prevent the current flow in the reverse direction in the event of reverse polarity. The MOSFET gate won't get pulled down immediately due to the absence of reverse current flow.

10 Layout

10.1 Layout Guidelines

- The VIN terminal is recommended to have a low-ESR ceramic bypass-capacitor. The typical recommended bypass capacitance is a 10-μF ceramic capacitor with a X5R or X7R dielectric.
- The VIN terminal must be tied to the source of the MOSFET using a thick trace or polygon.
- The Anode pin of the LM74670-Q1 is connected to the Source of the MOSFET for sensing.
- The Cathode pin of the LM74670-Q1 is connected to the drain of the MOSFET for sensing.
- The high current path of for this solution is through the MOSFET, therefor it is important to use thick traces for source and drain of the MOSFET.
- The charge pump capacitor Vcap must be kept away from the MOSFET to lower the thermal effects on the capacitance value.
- The Gate Drive and Gate pull down pins of the LM74670-Q1 must be connected to the MOSFET gate without using vias.
- Obtaining acceptable performance with alternate layout schemes is possible, however this layout has been shown to produce good results and is intended as a guideline.

10.2 Layout Example

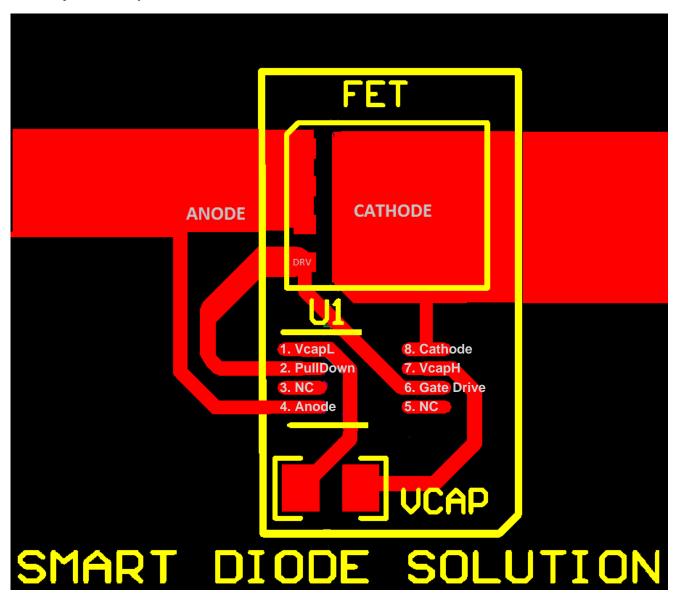


Figure 15. Layout Example

11 器件和文档支持

11.1 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点:请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 **TI** 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

11.2 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.3 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
LM74670QDGKRQ1	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	ZGPK
LM74670QDGKRQ1.B	Active	Production	VSSOP (DGK) 8	2500 LARGE T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	ZGPK
LM74670QDGKTQ1	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	ZGPK
LM74670QDGKTQ1.B	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	NIPDAUAG	Level-2-260C-1 YEAR	-40 to 125	ZGPK

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

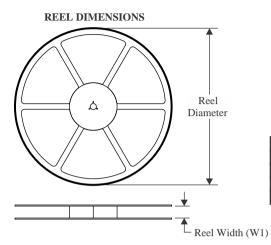
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

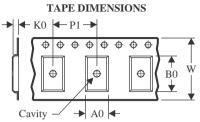
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

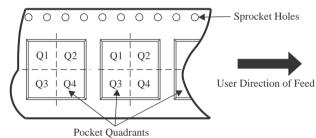
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

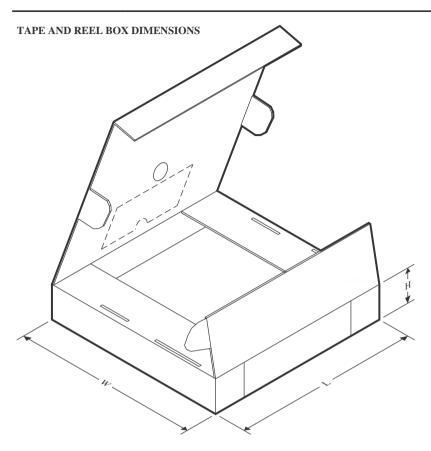

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Jul-2025


TAPE AND REEL INFORMATION

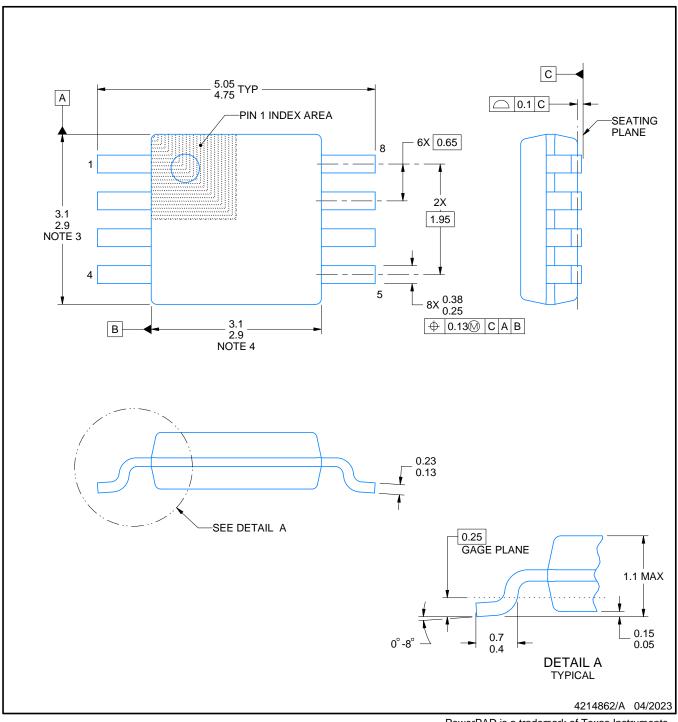
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM74670QDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM74670QDGKTQ1	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM74670QDGKTQ1	VSSOP	DGK	8	250	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 23-Jul-2025



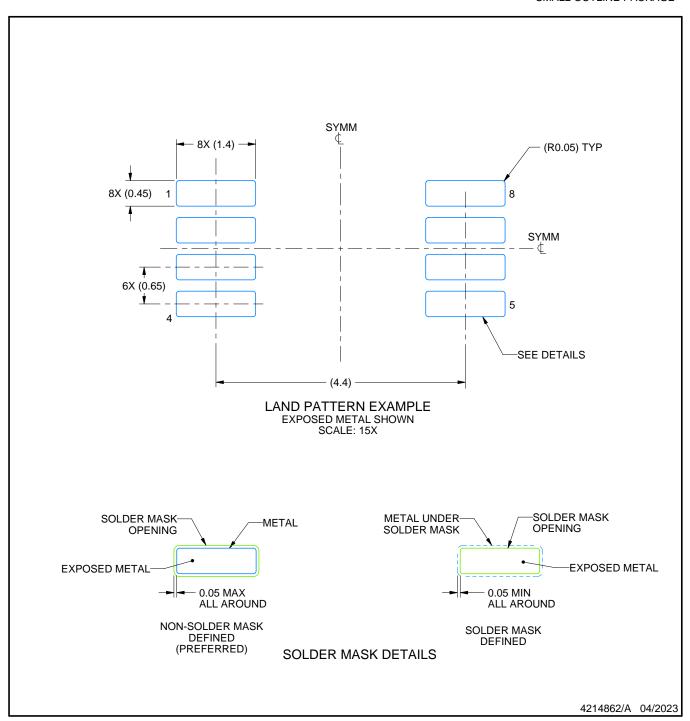
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM74670QDGKRQ1	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM74670QDGKTQ1	VSSOP	DGK	8	250	366.0	364.0	50.0
LM74670QDGKTQ1	VSSOP	DGK	8	250	353.0	353.0	32.0

SMALL OUTLINE PACKAGE

NOTES:

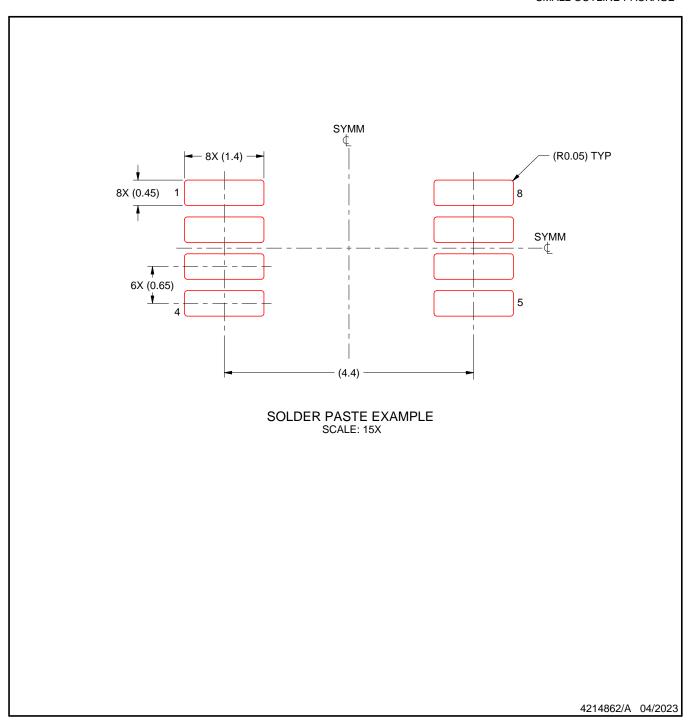
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月