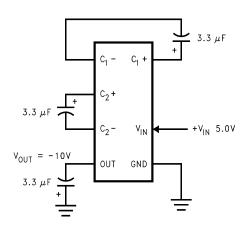


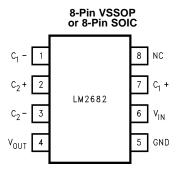
LM2682 Switched Capacitor Voltage Doubling Inverter

Check for Samples: LM2682

FEATURES

- Inverts Then Doubles Input Supply Voltage
- Small VSSOP Package and SOIC Package
- 90Ω Typical Output Impedance
- 94% Typical Power Efficiency at 10 mA


APPLICATIONS


- LCD Contrast Biasing
- GaAs Power Amplifier Biasing
- Interface Power Supplies
- Handheld Instrumentation
- Laptop Computers and PDAs

DESCRIPTION

The LM2682 is a CMOS charge-pump voltage inverter capable of converting positive voltage in the range of +2.0V to +5.5V to the corresponding doubled negative voltage of -4.0V to -11.0V respectively. The LM2682 uses three low cost capacitors to provide 10 mA of output current without the cost, size, and EMI related to inductor based circuits. With an operating current of only 150 μA and an operating efficiency greater than 90% with most loads, the LM2682 provides ideal performance for battery powered systems. The LM2682 offers a switching frequency of 6 kHz.

Typical Operating Circuit and Pin Configuration

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Absolute Maximum Ratings(1)

Input Voltage (V _{IN})	+5.8V		
V _{IN} dV/dT	V _{IN} dV/dT		
V _{OUT}	V _{OUT}		
V _{OUT} Short-Circuit Duration	Continuous		
Storage Temperature	−65°C to +150°C		
Lead Temperature Soldering		+300°C	
VSSOP VSSOP		300 mW	
Power Dissipation (2)	470 mW		
T _{JMAX}		+150°C	

- (1) Absolute Maximum Ratings are those values beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics.
- (2) The maximum power dissipation must be de-rated at elevated temperatures (only needed for T_A>85°C) and is limited by T_{JMAX} (maximum junction temperature), θ_{J-A} (junction to ambient thermal resistance) and T_A (ambient temperature). θ_{J-A} is 140°C/W for the SOIC-8 package and 220°C/W for the VSSOP-8 package. The maximum power dissipation at any temperature is:PDiss_{MAX} = (T_{JMAX} T_A)/θ_{J-A} up to the value listed in the Absolute Maximum Ratings.

Operating Ratings

ESD Susceptibility ⁽¹⁾	Human Body Model	2 kV
	Machine Model	200V
Ambient Temp. Range	-40°C to +85°C	
Junction Temp. Range		−40°C to +125°C

⁽¹⁾ The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

LM2682

Electrical Characteristics

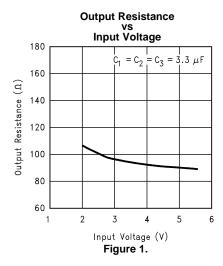
 V_{IN} = 5V and C_1 = C_2 = C_3 = 3.3 μ F unless otherwise specified. Limits with **bold typeface** apply over the full operating ambient temperature range, -40°C to +85°C, limits with standard typeface apply for T_A = 25°C.

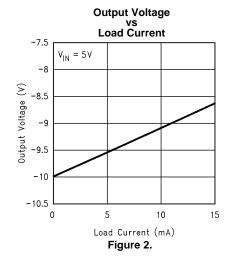
Symbol	Parameter	Conditions	Min	Typical ⁽¹⁾	Max	Units
V _{IN}	Supply Voltage Range	$R_L = 2 k\Omega$	2.0		5.5	V
I _{IN}	Supply Current	Open Circuit, No Load		150	300 400	μΑ
R _{OUT}	V _{OUT} Source Resistance	I _L = 10 mA		90	150	Ω
					200	
		$I_L=5$ mA, $V_{IN}=2$ V		110	250	Ω
f _{OSC}	Oscillator Frequency	See ⁽²⁾		12	30	kHz
f _{SW}	Switching Frequency	See ⁽²⁾		6	15	kHz
η _{POWER}	Power Efficiency	$R_L = 2k^{(3)}$	90	93		%
$\eta_{VOLTAGE}$	Voltage Conversion Efficiency			99.9		%

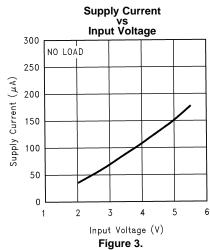
- (1) Typical numbers are at 25°C and represent the most likely norm.
- (2) The output switches operate at one half of the oscillator frequency, fosc = 2f_{sw}.
- 3) The minimum specification is specified by design and is not tested.

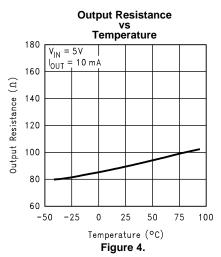
Submit Documentation Feedback

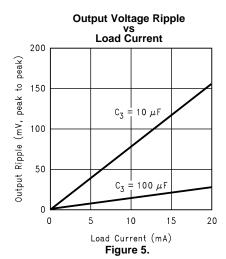
Table 1. PIN DESCRIPTIONS


Pin Number	Symbol	Description			
1	C ₁ -	Capacitor C ₁ negative terminal			
2	C ₂ +	Capacitor C ₂ positive terminal			
3	C ₂ -	Capacitor C ₂ negative terminal			
4	V _{OUT}	Negative output voltage (-2V _{IN})			
5	GND	Device ground			
6	V _{IN}	Power supply voltage			
7	C ₁ +	Capacitor C ₁ positive terminal			
8	NC	No Connection			


Submit Documentation Feedback




Typical Performance Characteristics


 V_{IN} = 5V and T_{A} = 25°C unless otherwise noted.

BASIC APPLICATION CIRCUITS

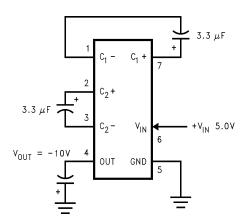


Figure 6. Doubling Voltage Inverter

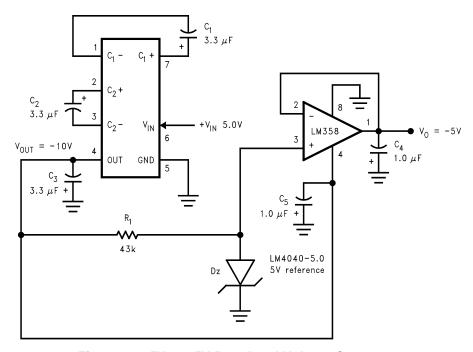


Figure 7. +5V to -5V Regulated Voltage Converter

APPLICATION INFORMATION

VOLTAGE DOUBLING INVERTER

The main application of the LM2682 is to generate a negative voltage that is twice the positive input voltage. This circuit requires only three external capacitors and is connected as shown in Figure 6. It is important to keep in mind that the efficiency of the circuit is determined by the output resistance. A derivation of the output resistance is shown below:

$$R_{OUT} = 2(R_{SW1} + R_{SW2} + ESR_{C1} + R_{SW3} + R_{SW4} + ESR_{C2}) + 2(R_{SW1} + R_{SW2} + ESR_{C1} + R_{SW3} + R_{SW4} + ESR_{C2}) + 1/(f_{OSC} \times C1) + 1/(f_{OSC} \times C2) + ESR_{C3}$$

Using the assumption that all four switches have the same ON resistance our equation becomes:

$$R_{OUT} = 16R_{SW} + 4ESR_{C1} + 4ESR_{C2} + ESR_{C3} + 1/(f_{OSC} \times C1) + 1/(f_{OSC} \times C2)$$

Output resistance is typically 90Ω with an input voltage of +5V, an operating temperature of 25°C, and using low ESR 3.3 μ F capacitors. This equation shows the importance of capacitor selection. Large value, low ESR capacitors will reduce the output resistance significantly but will also require a larger overall circuit. Smaller capacitors will take up less space but can lower efficiency greatly if the ESR is large. Also to be considered is that C1 must be rated at 6 VDC or greater while C2 and C3 must be rated at 12 VDC or greater.

The amount of output voltage ripple is determined by the output capacitor C3 and the output current as shown in this equation:

 $V_{RIPPLE P-P} = I_{OUT} \times (2 \times ESR_{C3} + 1/[2 \times (f_{OSC} \times C3)])$

Once again a larger capacitor with smaller ESR will give better results.

+5V TO -5V REGULATED VOLTAGE CONVERTER

Another application in which the LM2682 can be used is for generating a -5V regulated supply from a +5V unregulated supply. This involves using an op-amp and a reference and is connected as shown in Figure 7. The LM358 op-amp was chosen for its low cost and versatility and the LM4040-5.0 reference was chosen for its low bias current requirement. Of course other combinations may be used at the designer's discretion to fit accuracy, efficiency, and cost requirements. With this configuration the circuit is well regulated and is still capable of providing nearly 10 mA of output current. With a 9 mA load the circuit can typically maintain 5% regulation on the output voltage with the input varying anywhere from 4.5V to the maximum of 5.5V. With less load the results are even better. Voltage ripple concerns are reduced in this case since the ripple at the output of the LM2682 is reduced at the output by the PSRR of the op-amp used.

Submit Documentation Feedback

PARALLELING DEVICES

Any number of devices can be paralleled to reduce the output resistance. As shown in Figure 8, each device must have its own pumping capacitors, C1 and C2, but only one shared output capacitor is required. The effective output resistance is the output resistance of one device divided by the number of devices used in parallel. Paralleling devices also gives the capability of increasing the maximum output current. The maximum output current now becomes the maximum output current for one device multiplied by the number of devices used in parallel. For example, if you parallel two devices you can get 20 mA of output current and have half the output resistance of one device supplying 10 mA.

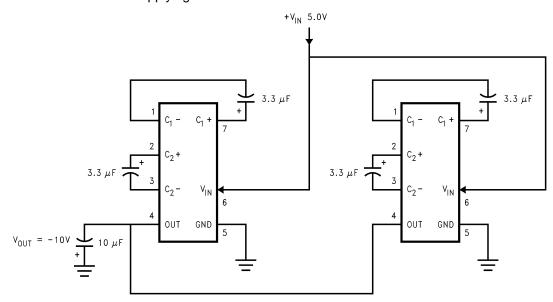


Figure 8. Paralleling Devices

SNVS044B -NOVEMBER 1999-REVISED MAY 2013

REVISION HISTORY

Changes from Revision A (May 2013) to Revision B					
•	Changed layout of National Data Sheet to TI format		7		

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	. ,	. ,			. ,	(4)	(5)		. ,
LM2682MM/NOPB	Active	Production	VSSOP (DGK) 8	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S11A
LM2682MM/NOPB.A	Active	Production	VSSOP (DGK) 8	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S11A
LM2682MM/NOPB.B	Active	Production	VSSOP (DGK) 8	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S11A
LM2682MMX/NOPB	Active	Production	VSSOP (DGK) 8	3500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S11A
LM2682MMX/NOPB.A	Active	Production	VSSOP (DGK) 8	3500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S11A
LM2682MMX/NOPB.B	Active	Production	VSSOP (DGK) 8	3500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S11A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

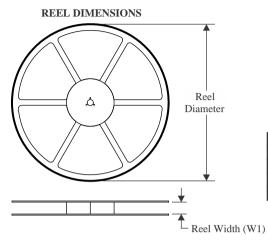
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

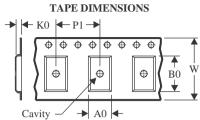
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

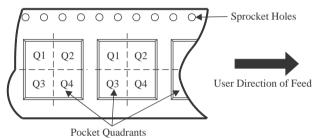
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025

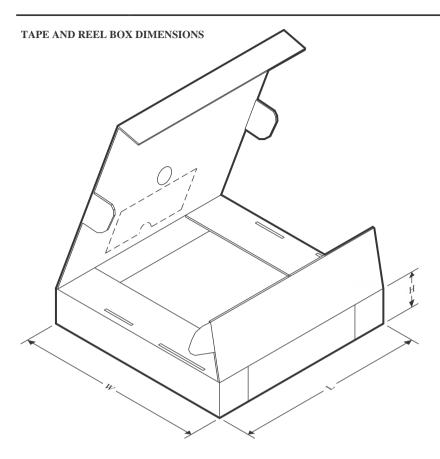
PACKAGE MATERIALS INFORMATION

www.ti.com 31-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

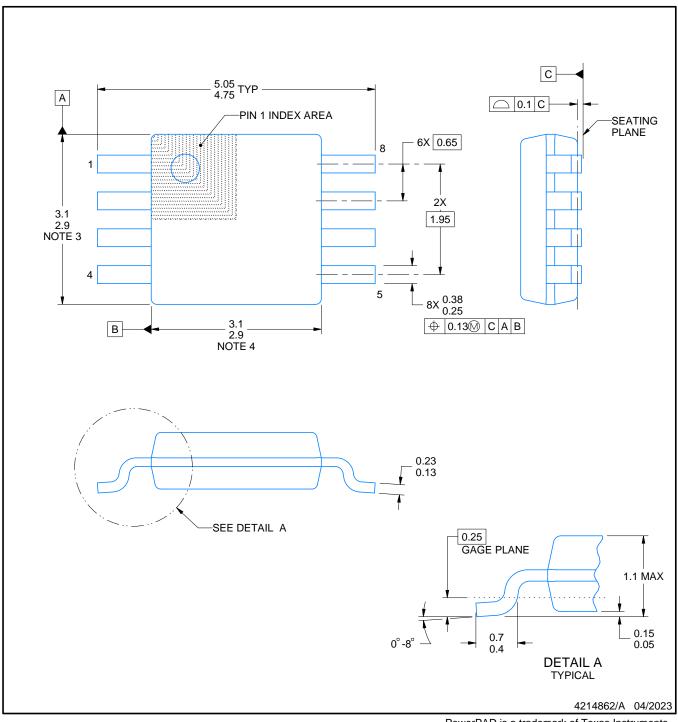


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2682MM/NOPB	VSSOP	DGK	8	1000	177.8	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2682MMX/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Jul-2025



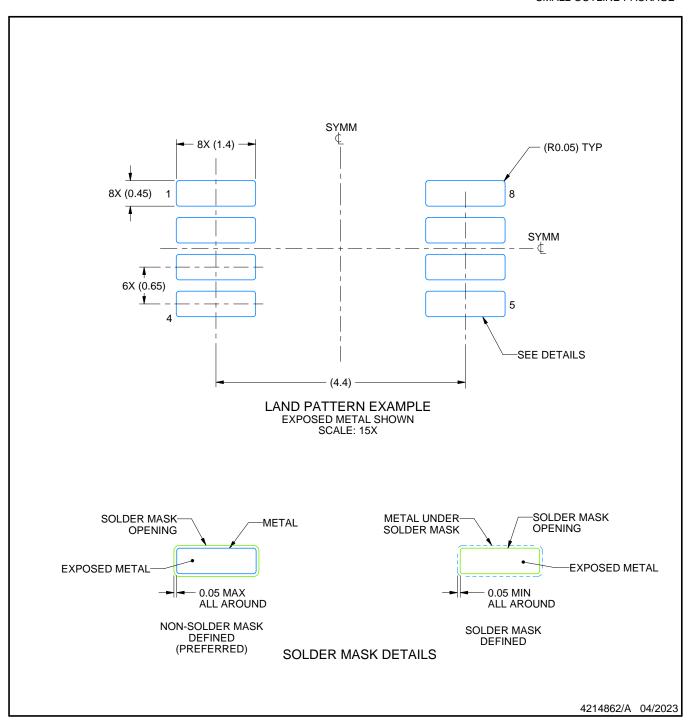
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2682MM/NOPB	VSSOP	DGK	8	1000	210.0	185.0	35.0
LM2682MMX/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0

SMALL OUTLINE PACKAGE

NOTES:

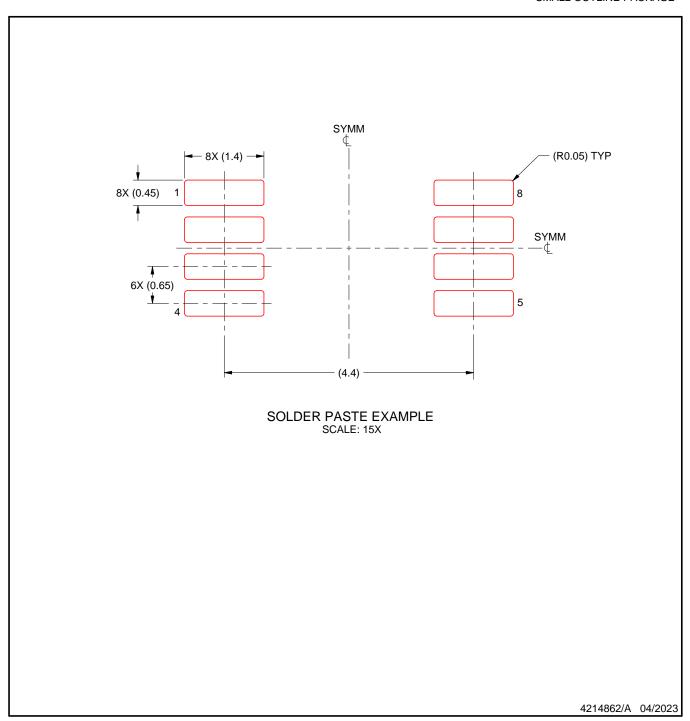
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025