

ISO721-Q1、ISO722-Q1 3.3V 和 5V 高速数字隔离器

1 特性

- 100Mbps 信号传输速率选项
- 传播延迟为 12ns (典型值)。
- 脉冲偏移为 0.5ns (典型值)。
- 低功耗睡眠模式
- 额定工作电压下的使用寿命典型值为 28 年 (请参阅[绝缘特性曲线](#))
- 失效防护输出
- 大多数光隔离器和磁隔离器的直接替代产品
- 由 3.3V 和 5V 电源供电
- -40°C 至 +125°C 工作温度范围
- **安全相关认证**
 - DIN EN IEC 60747-17 (VDE 0884-17)
 - UL 1577 组件认证计划
 - IEC 61010-1、IEC 62368-1 认证

2 应用

- **工厂自动化**
 - Modbus
 - Profibus™
 - DeviceNet™ 数据总线
- **计算机外设接口**
- **伺服器控制接口**
- **数据采集**

3 说明

ISO721-Q1 和 ISO722-Q1 器件是数字隔离器，其逻辑输入和输出缓冲器由二氧化硅 (SiO_2) 绝缘栅进行隔离。该隔离栅可提供符合 VDE 0884-17 标准、高达 4000V_{PK} 的电隔离。与隔离式电源一起使用时，这些器件可防止数据总线或者其他电路上的噪声电流进入本地接地并且干扰或损坏敏感电路。

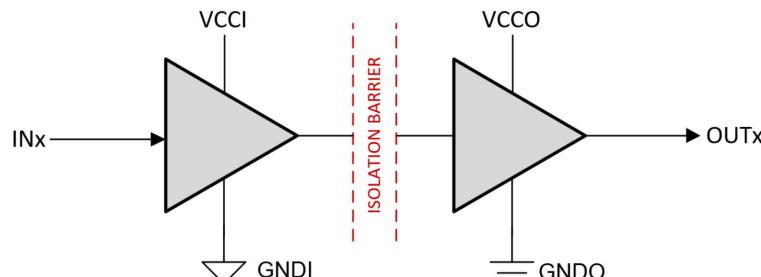
对二进制输入信号进行调理并转换为平衡的信号，然后由隔离层进行差分。跨越该隔离层，差分比较器可接收逻辑转换信息，然后相应地设置或重置触发器和输出电路。电路将跨越隔离层发送定期更新脉冲，以提供适当的直流输出电平。

如果没有接收到该直流刷新脉冲的时间超过 $4 \mu\text{s}$ ，则输入被视为未通电或未被主动驱动，失效防护电路会将输出驱动至逻辑高电平状态。

这些器件需要两个 3.3V 和 5V 电源电压或二者的任意组合。通过 3.3V 电源供电时，所有输入均可耐受 5V 电压，所有输出均为 4mA CMOS。

ISO722-Q1 器件包含一个低电平有效输出使能端，当被驱动至高逻辑电平时，该使能端会将输出置于高阻抗状态并关闭内部偏置电路以节省功耗。

ISO721-Q1 和 ISO722-Q1 器件具有 TTL 输入阈值，并且在输入端具有噪声滤波器，可防止持续时间高达 2ns 的瞬态脉冲传递到器件的输出端。


ISO721-Q1 和 ISO722-Q1 器件在 -40°C 至 +125°C 的环境温度范围内运行。

封装信息

器件型号 ⁽¹⁾	封装	本体尺寸 (标称值)	封装尺寸 ⁽²⁾
ISO721-Q1	D (SOIC , 8)	4.90mm × 3.91mm	4.9mm × 6mm
ISO722-Q1			

(1) 如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

(2) 封装尺寸 (长 × 宽) 为标称值，并包括引脚 (如适用)。

简化版原理图

本资源的原文使用英文撰写。为方便起见，TI 提供了译文；由于翻译过程中可能使用了自动化工具，TI 不保证译文的准确性。为确认准确性，请务必访问 ti.com 参考最新的英文版本 (控制文档)。

内容

1 特性	1	6.17 绝缘特性曲线	12
2 应用	1	7 参数测量信息	13
3 说明	1	8 详细说明	15
4 器件比较表	2	8.1 概述	15
5 引脚配置和功能	3	8.2 功能方框图	15
6 规格	4	8.3 器件功能模式	16
6.1 绝对最大额定值	4	9 应用和实施	17
6.2 建议运行条件	4	9.1 应用信息	17
6.3 热性能信息	4	9.2 典型应用	17
6.4 功率等级	4	9.3 电源相关建议	19
6.5 绝缘规格	5	9.4 布局	19
6.6 安全相关认证	5	10 器件和文档支持	20
6.7 安全限值	6	10.1 器件支持	20
6.8 电气特性 : V_{CC1} 和 V_{CC2} 为 5V 运行	6	10.2 文档支持	20
6.9 电气特性 : V_{CC1} 和 V_{CC2} 为 3.3V 运行	6	10.3 接收文档更新通知	20
6.10 电气特性 : V_{CC1} 为 3.3V, V_{CC2} 为 5V 运行	7	10.4 支持资源	20
6.11 电气特性 : V_{CC1} 为 5V, V_{CC2} 为 3.3V 运行	7	10.5 商标	20
6.12 开关特性 : V_{CC1} 和 V_{CC2} 为 5V 运行	8	10.6 静电放电警告	20
6.13 开关特性 : V_{CC1} 和 V_{CC2} 为 3.3V 运行	8	10.7 术语表	20
6.14 开关特性 : V_{CC1} 为 3.3V, V_{CC2} 为 5V 运行	9	11 修订历史记录	20
6.15 开关特性 : V_{CC1} 为 5V, V_{CC2} 为 3.3V 运行	9	12 机械、封装和可订购信息	21
6.16 典型特性	11		

4 器件比较表

器件型号	信令速率	输出已启用	输入阈值	噪声滤波器
ISO721-Q1	100Mbps	否	TTL	是
ISO722-Q1	100Mbps	是	TTL	是

5 引脚配置和功能

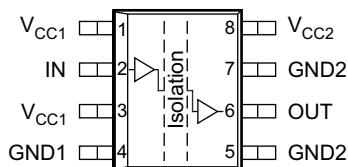


图 5-1. ISO721-Q1
D 封装 , 8 引脚 SOIC
顶视图

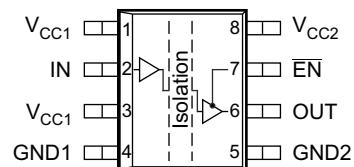


图 5-2. ISO722-Q1
D 封装 , 8 引脚 SOIC
顶视图

表 5-1. 引脚功能

名称	引脚		类型 ⁽¹⁾	说明		
	编号					
	ISO721x-Q1	ISO722x-Q1				
V _{CC1}	1	1	—	电源 , V _{CC1}		
	3	3				
V _{CC2}	8	8	—	电源 , V _{CC2}		
IN	2	2	I	输入		
OUT	6	6	O	输出		
EN	—	7	I	输出使能。当 EN 为低电平或断开时启用 OUT , 当 EN 为高电平时禁用 OUT。		
GND1	4	4	—	V _{CC1} 的接地连接		
GND2	5	5	—	V _{CC2} 的接地连接		
	7					

(1) I = 输入 ; O = 输出

6 规格

6.1 绝对最大额定值

请参阅 [\(1\)](#)

参数		值
V _{CC}	电源电压 ⁽²⁾ , V _{CC1} , V _{CC2}	-0.5V 至 6V
V _I	IN 或 OUT 端子电压	-0.5V 至 6V
I _O	输出电流	±15mA
T _J	最高虚拟结温	170°C

(1) 超出“绝对最大额定值”运行可能会对器件造成永久损坏。“绝对最大额定值”并不表示器件在这些条件下或在“建议运行条件”以外的任何其他条件下能够正常运行。如果超出“建议运行条件”但在“绝对最大额定值”范围内使用，器件可能不会完全正常运行，这可能影响器件的可靠性、功能和性能并缩短器件寿命。

(2) 差分 I/O 总线电压以外的所有电压值均为相对于网络接地端子的峰值电压值本出版物中未列出 VRMS 值。

6.2 建议运行条件

		最小值	最大值	单位
V _{CC}	电源电压 ⁽¹⁾ , V _{CC1} , V _{CC2}	3	5.5	V
I _{OH}	高电平输出电流		4	mA
I _{OL}	低电平输出电流	-4		mA
t _{ui}	输入脉冲持续时间	10		ns
V _{IH}	高电平输入电压 (IN)	2	V _{CC}	V
V _{IL}	低电平输入电压 (IN)	0	0.8	V
T _A	自然通风条件下的工作温度	-40	125	°C
T _J	运行虚拟结温	150		°C
H	符合 IEC 61000-4-8 和 IEC 61000-4-9 认证要求的外部磁场强度	1000		A/m

(1) 对于 5V 工作电压, V_{CC1} 或 V_{CC2} 规范为 4.5V 至 5.5V。对于 3.3V 工作电压, V_{CC1} 或 V_{CC2} 的规范为 3V 至 3.6V。

6.3 热性能信息

热指标 ⁽¹⁾		D (SOIC)	单位
		8 引脚	
R _{θ JA}	结至环境热阻	低 K 热阻 ⁽²⁾	212
		高 K 热阻	122
R _{θ JC(top)}	结至外壳 (顶部) 热阻	69.1	°C/W
R _{θ JB}	结至电路板热阻	47.7	°C/W
Ψ _{JT}	结至顶部特征参数	15.2	°C/W
Ψ _{JB}	结至电路板特征参数	47.2	°C/W
R _{θ JC(bot)}	结至外壳 (底部) 热阻	—	°C/W

(1) 有关新旧热性能指标的更多信息, 请参阅 [半导体和 IC 封装热性能指标](#) 应用手册。

(2) 根据 EIA/JESD51-3 的低 K 或高 K 热指标定义进行了引线式表面贴装封装测试。

6.4 功率等级

V_{CC1} = V_{CC2} = 5.5V , T_J = 150°C , C_L = 15pF , 输入 100Mbps 50% 占空比方波

参数		测试条件	最小值	典型值	最大值	单位
P _D	器件功率耗散			159		mW

6.5 绝缘规格

参数		测试条件	值	单位
通用				
CLR	外部间隙 ⁽¹⁾	端子间的最短空间距离	4	mm
CPG	外部爬电距离 ⁽¹⁾	端子间的最短封装表面距离	4	mm
DTI	绝缘穿透距离	最小内部间隙	0.008	mm
CTI	相对漏电起痕指数	DIN EN 60112 (VDE 0303-11) ; IEC 60112	≥400	V
	材料组		II	
过压类别		额定市电电压 $\leq 150V_{RMS}$	I-IV	
		额定市电电压 $\leq 300V_{RMS}$	I-III	
		额定市电电压 $\leq 400V_{RMS}$	I-II	
DIN EN IEC 60747-17 (VDE 0884-17)⁽²⁾				
V_{IORM}	最大重复峰值隔离电压	交流电压 (双极)	560	V_{PK}
V_{IOTM}	最大瞬态隔离电压	$V_{TEST} = V_{IOTM}, t = 60s$ (鉴定测试) ; $V_{TEST} = 1.2 \times V_{IOTM}, t = 1s$ (100% 生产测试)	4000	V_{PK}
q_{pd}	视在电荷 ⁽³⁾	方法 a : I/O 安全测试子组 2/3 后 , $V_{ini} = V_{IOTM}, t_{ini} = 60s$; $V_{pd(m)} = 1.2 \times V_{IORM}, t_m = 10s$	≤5	pC
		方法 a : 环境测试子组 1 后 , $V_{ini} = V_{IOTM}, t_{ini} = 60s$; $V_{pd(m)} = 1.3 \times V_{IORM}, t_m = 10s$	≤5	
		方法 b : 常规测试 (100% 生产测试) ; $V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1s$; $V_{pd(m)} = 1.5 \times V_{IORM}, t_m = 1s$ (方法 b1) 或 $V_{pd(m)} = V_{ini}, t_m = t_{ini}$ (方法 b2)	≤5	
C_{IO}	势垒电容 , 输入至输出 ⁽⁴⁾	$V_{IO} = 0.4 \sin(2\pi ft), f = 1MHz$	1	pF
R_{IO}	隔离电阻 , 输入至输出 ⁽⁴⁾	$V_{IO} = 500V, T_A = 25^\circ C$	$>10^{12}$	Ω
		$V_{IO} = 500V, 100^\circ C \leq T_A \leq 125^\circ C$	$>10^{11}$	
		$V_{IO} = 500V, T_S = 150^\circ C$	$>10^9$	
	污染等级		2	
	气候类别		40/125/21	
UL 1577				
V_{ISO}	可承受的隔离电压	$V_{TEST} = V_{ISO} = 2500V_{RMS}, t = 60s$ (鉴定测试) , $V_{TEST} = 1.2 \times V_{ISO} = 3000V_{RMS}, t = 1s$ (100% 生产测试)	2500	V_{RMS}

- (1) 爬电距离和间隙应满足应用的特定设备隔离标准中的要求。请注意保持电路板设计的爬电距离和间隙，从而确保印刷电路板上隔离器的安装焊盘不会导致此距离缩短。在特定的情况下，印刷电路板上的爬电距离和间隙变得相等。在印刷电路板上插入坡口和/或肋等技术用于帮助提高这些规格。
- (2) 此耦合器仅适用于最大工作额定值范围内的基本电气绝缘。应借助合适的保护电路来确保符合安全等级。
- (3) 视在电荷是局部放电 (pd) 引起的电气放电。
- (4) 将隔离栅每一侧的所有引脚都连在一起，构成一个双端子器件

6.6 安全相关认证

VDE	CSA	UL
根据 DIN EN IEC 60747-17 (VDE 0884-17) 进行了认证	根据 IEC 62368-1 进行了认证	根据 UL 1577 组件认证计划进行了认证
基本证书 : 40047657	主合同编号 : 220991	文件编号 : E181974

6.7 安全限值

安全限值⁽¹⁾旨在更大限度地减小在发生输入或输出电路故障时对隔离栅的潜在损害。I/O 发生故障时会导致低电阻接地或连接到电源，如果没有限流电路，则会因为功耗过大而导致芯片过热并损坏隔离栅，甚至可能导致辅助系统出现故障。

参数		测试条件	最小值	典型值	最大值	单位
I _S	安全输入、输出或电源电流	R _{θJA} = 212°C/W, V _I = 5.5V, T _J = 170°C, T _A = 25°C, 请参阅 热性能信息		124		mA
		R _{θJA} = 212°C/W, V _I = 3.6V, T _J = 170°C, T _A = 25°C, 请参阅 热性能信息		190		
T _S	安全温度			150		°C

(1) 安全限值约束是数据表中指定的最高结温。结温取决于应用硬件中所安装器件的功耗和结至空气热阻。假设表中的结至空气热阻所属器件安装在含引线的表面贴装封装对应的高 K 测试板上。功耗为建议的最大输入电压与电流之积。因此，结温是环境温度加上功耗与结至空气热阻之积。

6.8 电气特性：V_{CC1} 和 V_{CC2} 为 5V 运行

在建议运行条件下 (除非另有说明) ⁽¹⁾

参数		测试条件		最小值	典型值	最大值	单位
I _{CC1}	V _{CC1} 电源电流	静态	V _I = V _{CC} 或 0V, 空载	0.5	1		mA
		25Mbps		2	4		
I _{CC2}	V _{CC2} 电源电流	ISO722-Q1 睡眠模式	V _I = V _{CC} 或 0V, 空载	EN 为 V _{CC}		200	μA
		静态		EN 接 0V 或 ISO721-Q1	8	12	mA
		25Mbps	V _I = V _{CC} 或 0V, 空载		10	14	
V _{OH}	高电平输出电压	I _{OH} = -4mA		V _{CC} - 0.8	4.6		V
		I _{OH} = -20 μA		V _{CC} - 0.1	5		
V _{OL}	低电平输出电压	I _{OL} = 4mA		0.2	0.4		V
		I _{OL} = 20 μA		0	0.1		
V _{I(HYS)}	输入电压迟滞				150		mV
I _{IH}	高电平输入电流	IN 为 2V			10		μA
I _{IL}	低电平输入电流	IN 为 0.8V			-10		
I _{OZ}	高阻抗输出电流	ISO722-Q1	EN, IN 为 V _{CC}		1		μA
C _I	接地输入电容	IN 接 V _{CC} , VI = 0.4 sin (2π ft), f=2MHz			1		pF
CMTI	共模瞬态抗扰度	V _I = V _{CC} 或 0V, 请参阅 图 7-5		15	50		kV/μs

(1) 对于 5V 工作电压, V_{CC1} 或 V_{CC2} 规范为 4.5V 至 5.5V。对于 3.3V 工作电压, V_{CC1} 或 V_{CC2} 的规范为 3V 至 3.6V。

6.9 电气特性：V_{CC1} 和 V_{CC2} 为 3.3V 运行

在建议运行条件下 (除非另有说明) ⁽¹⁾

参数		测试条件		最小值	典型值	最大值	单位
I _{CC1}	V _{CC1} 电源电流	静态	V _I = V _{CC} 或 0V, 空载	0.3	0.6		mA
		25Mbps		1	2		
I _{CC2}	V _{CC2} 电源电流	ISO722-Q1 睡眠模式	V _I = V _{CC} 或 0V, 空载	EN 为 V _{CC}		150	μA
		静态		EN 接 0V 或 ISO721-Q1	4	6.5	mA
		25Mbps	V _I = V _{CC} 或 0V, 空载		5	7.5	
V _{OH}	高电平输出电压	I _{OH} = -4mA		V _{CC} - 0.4	3		V
		I _{OH} = -20 μA		V _{CC} - 0.1	3.3		
V _{OL}	低电平输出电压	I _{OL} = 4mA		0.2	0.4		V
		I _{OL} = 20 μA		0	0.1		
V _{I(HYS)}	输入电压迟滞				150		mV

在建议运行条件下 (除非另有说明) ⁽¹⁾

参数		测试条件		最小值	典型值	最大值	单位
I_{IH}	高电平输入电流	IN 为 2V				10	μA
I_{IL}	低电平输入电流	IN 为 0.8V		-10			μA
I_{OZ}	高阻抗输出电流	ISO722-Q1	\bar{EN} , IN 为 V_{CC}			1	μA
C_I	接地输入电容		IN 接 V_{CC} , $VI = 0.4 \sin(2\pi ft)$, $f=2MHz$		1		pF
CMTI	共模瞬态抗扰度		$VI = V_{CC}$ 或 0V, 请参阅 图 7-5	15	40		$kV/\mu s$

(1) 对于 5V 工作电压, V_{CC1} 或 V_{CC2} 规范为 4.5V 至 5.5V。对于 3.3V 工作电压, V_{CC1} 或 V_{CC2} 的规范为 3V 至 3.6V。

6.10 电气特性: V_{CC1} 为 3.3V, V_{CC2} 为 5V 运行

在建议运行条件下 (除非另有说明) ⁽¹⁾

参数		测试条件		最小值	典型值	最大值	单位
I_{CC1}	V_{CC1} 电源电流	静态	$VI = V_{CC}$ 或 0V, 空载	0.3	0.6		mA
		25Mbps		1	2		
I_{CC2}	V_{CC2} 电源电流	ISO722-Q1 睡眠模式	$VI = V_{CC}$ 或 0V, 空载		200		μA
		静态		\bar{EN} 接 0V 或 ISO721-Q1	8	12	mA
		25Mbps	$VI = V_{CC}$ 或 0V, 空载		10	14	
V_{OH}	高电平输出电压	$I_{OH} = -4mA$		$V_{CC} - 0.8$	4.6		V
		$I_{OH} = -20 \mu A$		$V_{CC} - 0.1$	5		
V_{OL}	低电平输出电压	$I_{OL} = 4mA$			0.2	0.4	V
		$I_{OL} = 20 \mu A$			0	0.1	
$V_{I(HYS)}$	输入电压迟滞				150		mV
I_{IH}	高电平输入电流	IN 为 2V			10		μA
I_{IL}	低电平输入电流	IN 为 0.8V		-10			μA
I_{OZ}	高阻抗输出电流	ISO722-Q1	\bar{EN} , IN 为 V_{CC}		1		μA
C_I	接地输入电容		IN 接 V_{CC} , $VI = 0.4 \sin(2\pi ft)$, $f=2MHz$		1		pF
CMTI	共模瞬态抗扰度		$VI = V_{CC}$ 或 0V, 请参阅 图 7-5	15	40		$kV/\mu s$

(1) 对于 5V 工作电压, V_{CC1} 或 V_{CC2} 规范为 4.5V 至 5.5V。对于 3.3V 工作电压, V_{CC1} 或 V_{CC2} 的规范为 3V 至 3.6V。

6.11 电气特性: V_{CC1} 为 5V, V_{CC2} 为 3.3V 运行

在建议运行条件下 (除非另有说明) ⁽¹⁾

参数		测试条件		最小值	典型值	最大值	单位
I_{CC1}	V_{CC1} 电源电流	静态	$VI = V_{CC}$ 或 0V, 空载	0.5	1		mA
		25Mbps		2	4		
I_{CC2}	V_{CC2} 电源电流	ISO722-Q1	$VI = V_{CC}$ 或 0V, 空载		150		μA
		静态		\bar{EN} 接 0V 或 ISO721-Q1	4	6.5	mA
		25Mbps			5	7.5	
V_{OH}	高电平输出电压	$I_{OH} = -4mA$		$V_{CC} - 0.4$	3		V
		$I_{OH} = -20 \mu A$		$V_{CC} - 0.1$	3.3		
V_{OL}	低电平输出电压	$I_{OL} = 4mA$			0.2	0.4	V
		$I_{OL} = 20 \mu A$			0	0.1	
$V_{I(HYS)}$	输入电压迟滞				150		mV
I_{IH}	高电平输入电流	IN 为 2V			10		μA
I_{IL}	低电平输入电流	IN 为 0.8V		-10			μA
I_{OZ}	高阻抗输出电流	ISO722-Q1	\bar{EN} , IN 为 V_{CC}		1		μA
C_I	接地输入电容		IN 接 V_{CC} , $VI = 0.4 \sin(2\pi ft)$, $f=2MHz$		1		pF

在建议运行条件下 (除非另有说明) ⁽¹⁾

参数	测试条件	最小值	典型值	最大值	单位
CMTI 共模瞬态抗扰度	$V_I = V_{CC}$ 或 0V, 请参阅 图 7-5	15	40		$kV/\mu s$

(1) 对于 5V 工作电压, V_{CC1} 或 V_{CC2} 规范为 4.5V 至 5.5V。对于 3.3V 工作电压, V_{CC1} 或 V_{CC2} 的规范为 3V 至 3.6V。

6.12 开关特性： V_{CC1} 和 V_{CC2} 为 5V 运行

在建议运行条件下 (除非另有说明)

参数	测试条件	最小值	典型值	最大值	单位
t_{PLH} 传播延迟, 低至高电平输出	请参阅 图 7-1	17	24		ns
t_{PHL} 传播延迟, 高至低电平输出	请参阅 图 7-1	17	24		ns
$t_{sk(p)}$ ⁽¹⁾ 脉冲偏移 ($ t_{PHL} - t_{PLH} $)	请参阅 图 7-1	0.5	2		ns
$t_{sk(pp)}$ ⁽¹⁾ 器件间延迟		0	3		ns
t_r 输出信号上升时间	请参阅 图 7-1	2.3			ns
t_f 输出信号下降时间	请参阅 图 7-1	2.3			ns
t_{pHZ} 睡眠模式传播延迟, 高电平至高阻抗输出	ISO722-Q1	6	8	15	ns
t_{pZH} 睡眠模式传播延迟, 高阻抗至高电平输出		3.5	4	15	μs
t_{pLZ} 睡眠模式传播延迟, 低电平至高阻抗输出		5.5	8	15	ns
t_{pZL} 睡眠模式传播延迟, 高阻抗至低电平输出		4	5	15	μs
t_{fs} 输入功率损耗的失效防护输出延迟时间	请参阅 图 7-4	3			μs
$t_{jilt(PP)}$ 峰值间眼图抖动	请参阅 图 7-6	2			ns
	请参阅 图 7-6	3			

(1) $t_{sk(pp)}$ 是在两个器件以相同的电源电压、相同的温度运行并且具有相同的封装和测试电路时两个器件的任何指定端子之间传播延迟时间的差大小。

6.13 开关特性： V_{CC1} 和 V_{CC2} 为 3.3V 运行

在建议运行条件下 (除非另有说明)

参数	测试条件	最小值	典型值	最大值	单位
t_{PLH} 传播延迟, 低至高电平输出	请参阅 图 7-1	20	34		ns
t_{PHL} 传播延迟, 高至低电平输出	请参阅 图 7-1	20	34		ns
$t_{sk(p)}$ 脉冲偏移 ($ t_{PHL} - t_{PLH} $)	请参阅 图 7-1	0.5	3		ns
$t_{sk(pp)}$ ⁽¹⁾ 器件间延迟		0	5		ns
t_r 输出信号上升时间	请参阅 图 7-1	2.3			ns
t_f 输出信号下降时间	请参阅 图 7-1	2.3			ns
t_{pHZ} 睡眠模式传播延迟, 高电平至高阻抗输出	ISO722-Q1	7	13	25	ns
t_{pZH} 睡眠模式传播延迟, 高阻抗至高电平输出		5	6	15	μs
t_{pLZ} 睡眠模式传播延迟, 低电平至高阻抗输出		7	13	25	ns
t_{pZL} 睡眠模式传播延迟, 高阻抗至低电平输出		5	6	15	μs
t_{fs} 输入功率损耗的失效防护输出延迟时间	请参阅 图 7-4	3			μs

在建议运行条件下 (除非另有说明)

参数		测试条件	最小值	典型值	最大值	单位
$t_{jilt(PP)}$	峰值间眼图抖动	请参阅 图 7-6	2	ns	3	ns
		请参阅 图 7-6	2			

(1) $t_{sk(PP)}$ 是在两个器件以相同的电源电压、相同的温度运行并且具有相同的封装和测试电路时两个器件的任何指定端子之间传播延迟时间的差大小。

6.14 开关特性 : V_{CC1} 为 3.3V, V_{CC2} 为 5V 运行

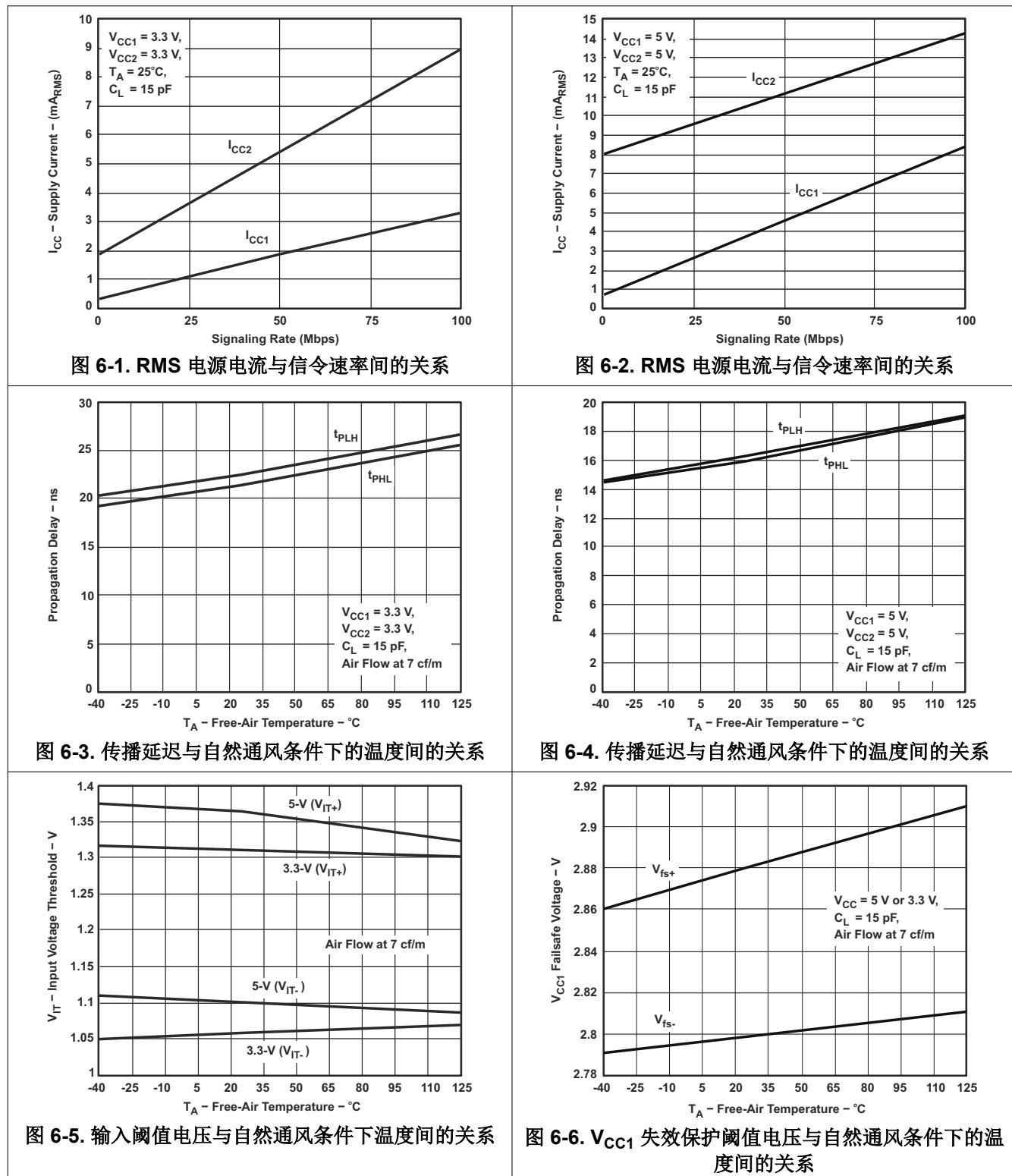
在建议运行条件下 (除非另有说明)

参数		测试条件	最小值	典型值	最大值	单位	
t_{PLH}	传播延迟, 低至高电平输出	请参阅 图 7-1	17	30	ns	ISO722-Q1	
t_{PHL}	传播延迟, 高至低电平输出	请参阅 图 7-1	17	30	ns		
$t_{sk(p)}$ ⁽¹⁾	脉冲偏移 ($ t_{PHL} - t_{PLH} $)	请参阅 图 7-1	0.5	3	ns		
$t_{sk(pp)}$ ⁽¹⁾	器件间延迟		0	5	ns		
t_r	输出信号上升时间	请参阅 图 7-1	2.3		ns		
t_f	输出信号下降时间	请参阅 图 7-1	2.3		ns		
t_{pHZ}	睡眠模式传播延迟, 高电平至高阻抗输出	请参阅 图 7-2	7	9	15		
t_{pZH}	睡眠模式传播延迟, 高阻抗至高电平输出		4.5	5	15		
t_{pLZ}	睡眠模式传播延迟, 低电平至高阻抗输出		7	9	15		
t_{pZL}	睡眠模式传播延迟, 高阻抗至低电平输出		4.5	5	15		
t_{fs}	输入功率损耗的失效防护输出延迟时间	请参阅 图 7-4	3		μs	ns	
$t_{jilt(PP)}$	峰值间眼图抖动	请参阅 图 7-6	2	ns	3		
		请参阅 图 7-6	2				

(1) $t_{sk(PP)}$ 是在两个器件以相同的电源电压、相同的温度运行并且具有相同的封装和测试电路时两个器件的任何指定端子之间传播延迟时间的差大小。

6.15 开关特性 : V_{CC1} 为 5V, V_{CC2} 为 3.3V 运行

在建议运行条件下 (除非另有说明)


参数		测试条件	最小值	典型值	最大值	单位
t_{PLH}	传播延迟, 低至高电平输出	请参阅 图 7-1	19	30	ns	ISO722-Q1
t_{PHL}	传播延迟, 高至低电平输出	请参阅 图 7-1	19	30	ns	
$t_{sk(p)}$	脉冲偏移 ($ t_{PHL} - t_{PLH} $)	请参阅 图 7-1	0.5	3	ns	
$t_{sk(pp)}$ ⁽¹⁾	器件间延迟		0	5	ns	
t_r	输出信号上升时间	请参阅 图 7-1	2.3		ns	
t_f	输出信号下降时间	请参阅 图 7-1	2.3		ns	
t_{pHZ}	睡眠模式传播延迟, 高电平至高阻抗输出	请参阅 图 7-2	7	13	25	
t_{pZH}	睡眠模式传播延迟, 高阻抗至高电平输出		5	6	15	
t_{pLZ}	睡眠模式传播延迟, 低电平至高阻抗输出	请参阅 图 7-3	7	13	25	
t_{pZL}	睡眠模式传播延迟, 高阻抗至低电平输出		5	6	15	
t_{fs}	输入功率损耗的失效防护输出延迟时间	请参阅 图 7-4	3		μs	

在建议运行条件下 (除非另有说明)

参数		测试条件	最小值	典型值	最大值	单位
$t_{jitter(PP)}$	峰值间眼图抖动	请参阅 图 7-6	2	ns	3	
		请参阅 图 7-6				

(1) $t_{sk(PP)}$ 是在两个器件以相同的电源电压、相同的温度运行并且具有相同的封装和测试电路时两个器件的任何指定端子之间传播延迟时间的差大小。

6.16 典型特性

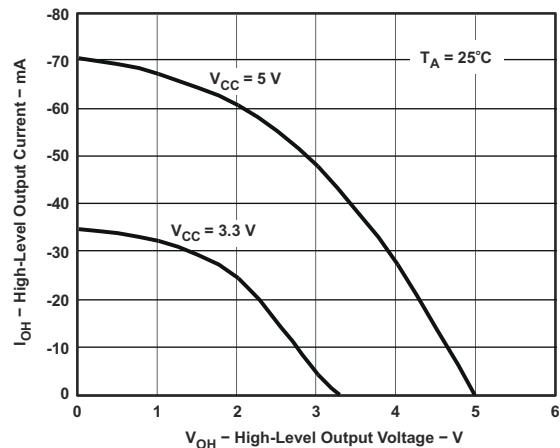


图 6-7. 高电平输出电流与高电平输出电压间的关系

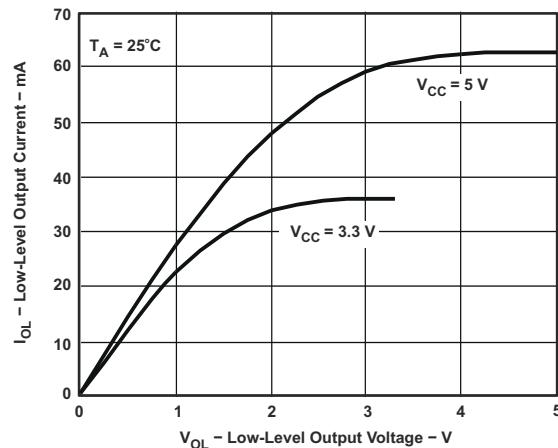


图 6-8. 低电平输出电流与低电平输出电压间的关系

6.17 绝缘特性曲线

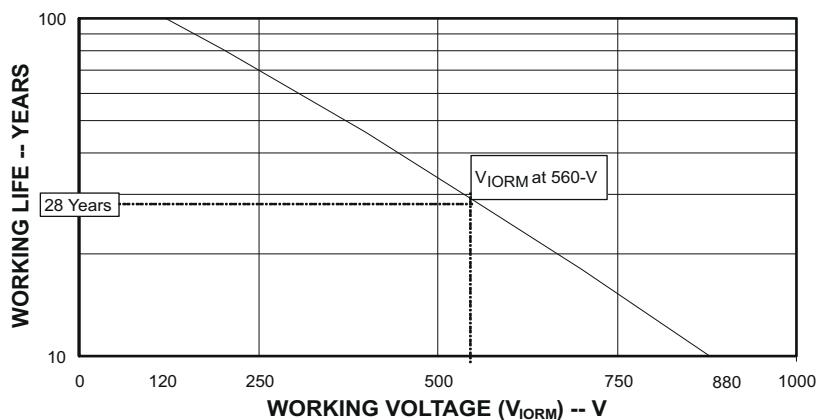


图 6-9. 时间依赖性电介质击穿测试结果

7 参数测量信息

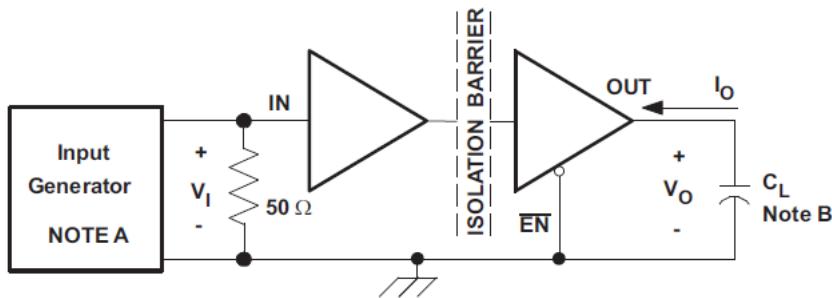


图 7-1. 开关特性测试电路和电压波形

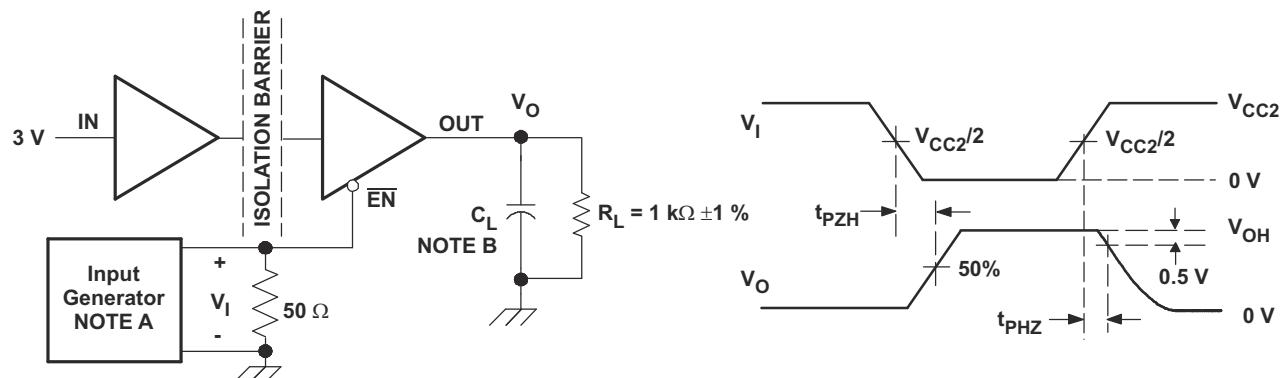
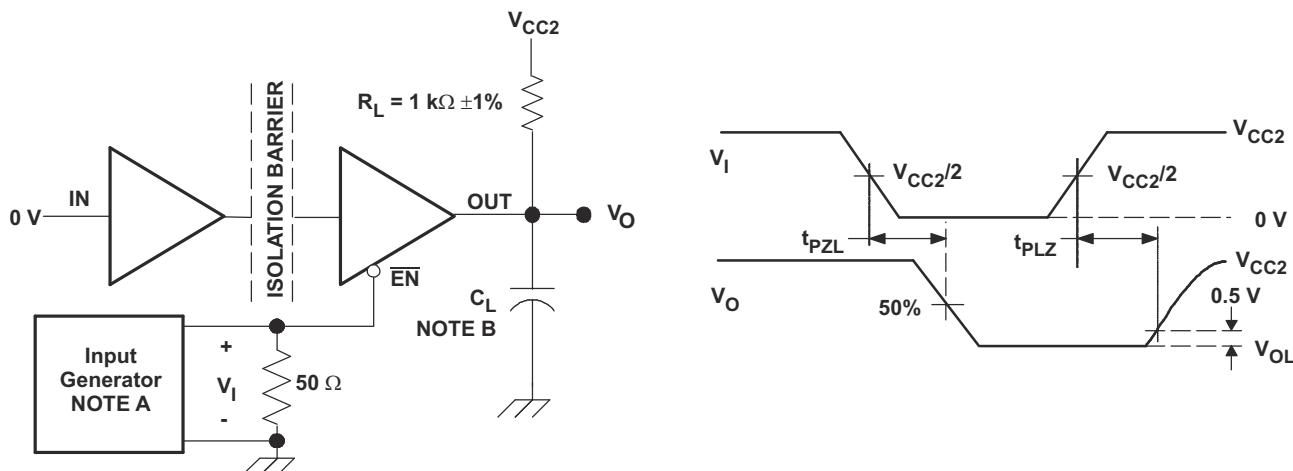
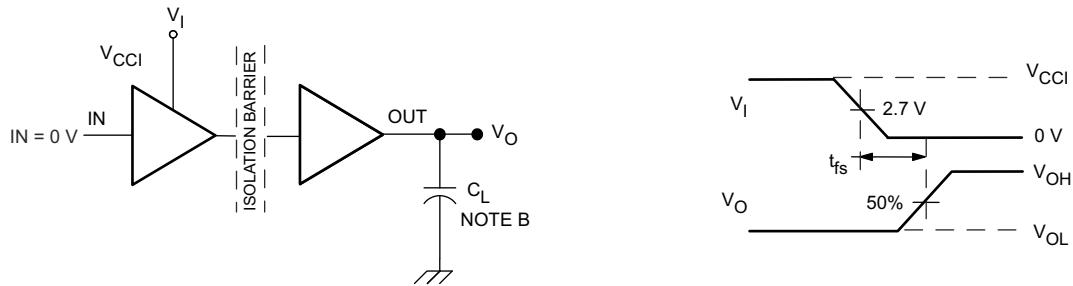


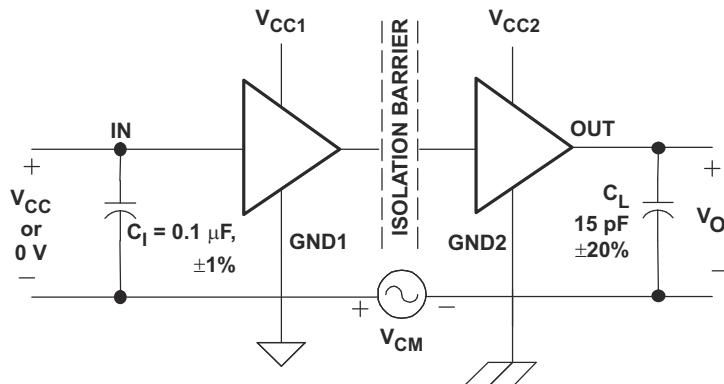
图 7-2. ISO722-Q1 睡眠模式高电平输出测试电路和电压波形




图 7-3. ISO722-Q1 睡眠模式低电平输出测试电路和电压波形

备注

A : 输入脉冲由具有以下特性的发生器提供：


$PRR \leq 50\text{kHz}$, 50% 占空比 , $t_r \leq 3\text{ns}$, $t_f \leq 3\text{ns}$, $Z_O = 50\Omega$ 。

B : $C_L = 15\text{ pF} \pm 20\%$ 并包含仪表和设备电容。

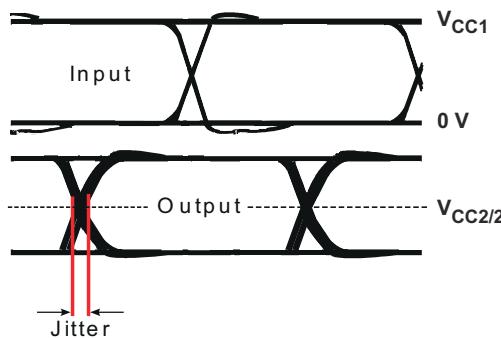
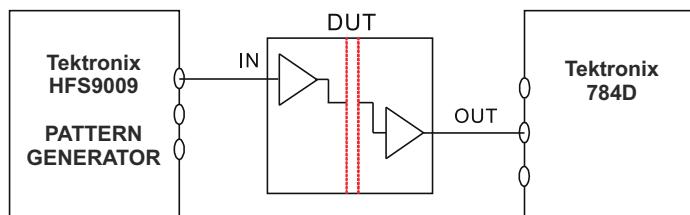
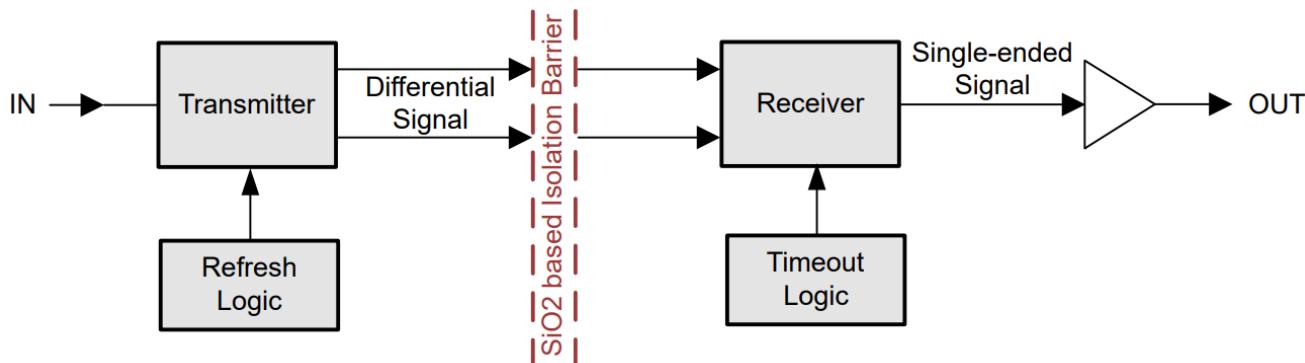


注意： V_I 切换时间为 100ns。

图 7-4. 失效防护延迟时间测试电路和电压波形

注意：通过/未通过标准是 V_O 没有变化。

图 7-5. 共模瞬态抗扰度测试电路和电压波形

注意：位图形运行长度为 $2^{16} - 1$ 。转换时间为 800ps。NRZ 数据输入不超过五个连续的 1 或 0。


图 7-6. 峰值间眼图抖动测试电路和电压波形

8 详细说明

8.1 概述

ISO72x-Q1 系列器件通过基于二氧化硅的隔离栅传输数字数据。器件的数字输入信号 (IN) 由发送器采样，并且发送器在每个数据沿都会跨隔离栅发送相应的差分信号。当输入信号为静态时，刷新逻辑会定期从发送器发送必要的差分信号。在隔离栅的另一侧，接收器将差分信号转换为单端信号，该信号通过缓冲器在 OUT 引脚上输出。如果接收器没有接收到数据或刷新信号，超时逻辑会检测输入端的信号或功率损失并将输出驱动至默认电平。

8.2 功能方框图

8.3 器件功能模式

表 8-1 和 表 8-2 列出了 ISO72x-Q1 器件的功能模式。

表 8-1. ISO721-Q1 功能表

V_{CC1}	V_{CC2}	输入 (IN)	输出 (OUT)
PU	PU	H	H
		L	L
		开路	H
PD	PU	X	H
X	PD	X	不确定

表 8-2. ISO722-Q1 功能表

V_{CC1}	V_{CC2}	输入 (IN)	输出使能 (EN)	输出 (OUT)
PU	PU	H	L 或开路	H
		L	L 或开路	L
		X	H	Z
		开路	L 或开路	H
PD	PU	X	L 或开路	H
PD	PU	X	H	Z
X	PD	X	X	不确定

8.3.1 器件 I/O 原理图

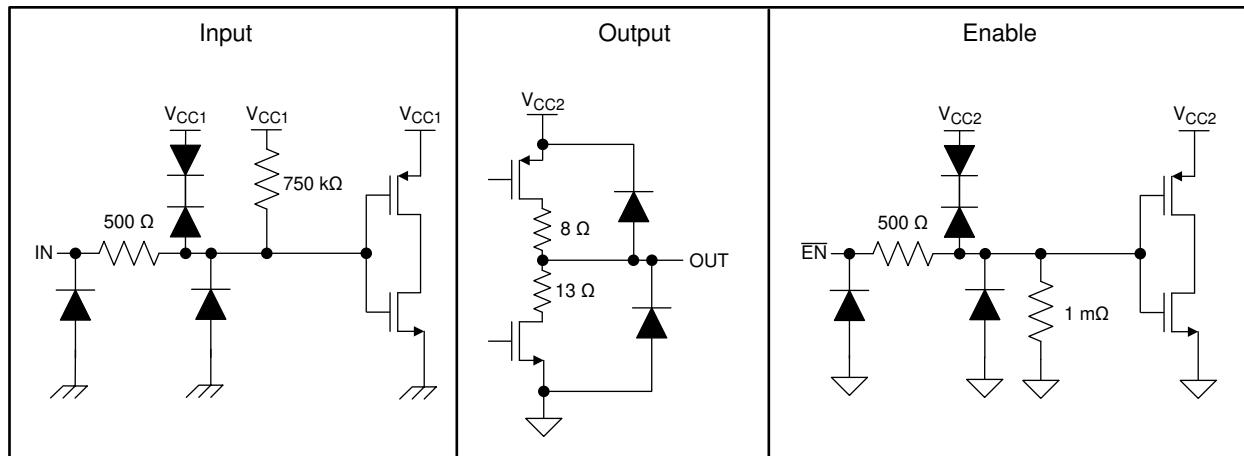


图 8-1. 等效输入和输出原理图

9 应用和实施

备注

以下应用部分中的信息不属于 TI 元件规格，TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途，以及验证和测试其设计实现以确认系统功能。

9.1 应用信息

ISO72x-Q1 器件采用单端 TTL 或 CMOS 逻辑开关技术。该器件 V_{CC1} 和 V_{CC2} 这两个电源的电源电压范围均为 3V 至 5.5V。使用数字隔离器进行设计时，由于采用的是单端设计结构，数字隔离器不符合任何特定的接口标准，并仅用于隔离单端 CMOS 或 TTL 数字信号线。不管接口类型或标准如何，隔离器通常都放在数据控制器 (μC 或 UART) 和数据转换器或数据线收发器之间。

9.2 典型应用

ISO721 器件可与德州仪器 (TI) 的微控制器、CAN 收发器、变压器驱动器和低压差稳压器配合使用，以便创建隔离式 CAN 接口，如 图 9-1 所示。

A. 为清楚起见，省略了多个引脚和电容器。

图 9-1. 隔离式 CAN 接口

9.2.1 设计要求

不同于需要外部元件来提高性能、提供偏置或限制电流的光耦合器，ISO72x-Q1 器件仅需两个外部旁路电容器即可工作。

9.2.2 详细设计过程

图 9-2 显示了 ISO721-Q1 器件的典型电路组装情况。

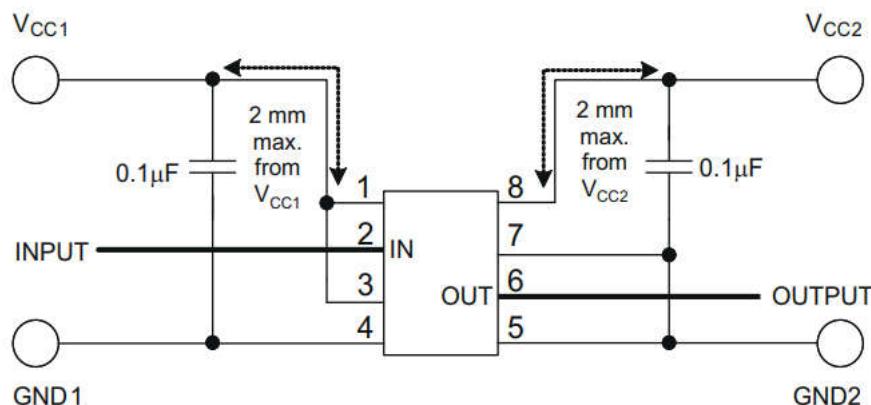


图 9-2. 典型 ISO721-Q1 电路组装

ISO72x-Q1 隔离器具有与大多数其他供应商相同的功能引脚排列，如 图 9-3 所示，并且通常为引脚对引脚直接替代产品。产品间的显著差异体现在传输延迟、信令速率、功耗及瞬态保护等级方面。表 9-1 可用作将其他隔离器替换为 ISO72x-Q1 系列单通道隔离器的指南。

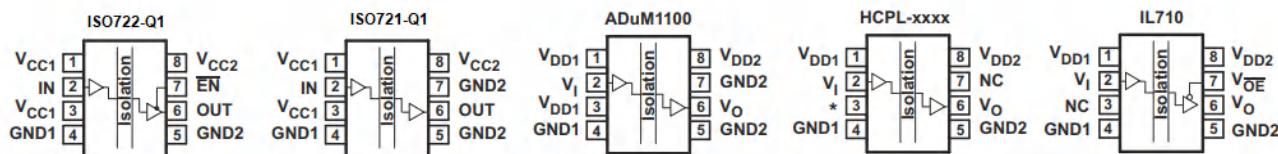


图 9-3. 引脚交叉参考

表 9-1. 交叉参考

隔离器	引脚 1	引脚 2	引脚 3	引脚 4	引脚 5	引脚 6	引脚 7		引脚 8
							ISO721-Q1 OR ISO721M-Q1	ISO722-Q1 OR ISO722M-Q1	
ISO721 ^{(1) (2)}	V _{CC1}	IN	V _{CC1}	GND1	GND2	OUT	GND2	EN	V _{CC2}
ADuM1100 ^{(1) (2)}	V _{DD1}	V _I	V _{DD1}	GND1	GND2	V _O	GND2		V _{DD2}
HCPL-xxxx	V _{DD1}	V _I	*保持开路 ⁽³⁾	GND1	GND2	V _O	NC ⁽⁵⁾		V _{DD2}
IL710	V _{DD1}	V _I	NC ⁽⁴⁾	GND1	GND2	V _O	V _{OE}		V _{DD2}

(1) 引脚 1 必须用作 V_{CC1}。只要引脚 1 连接到 V_{CC1}，引脚 3 也可以用作 V_{CC1} 或保持开路。

(2) 引脚 5 必须用作 GND2。只要引脚 5 连接到 GND2，引脚 7 也可以用作 GND2 或保持开路。

(3) HCPL 器件的引脚 3 必须保持开路。在替换 ISO72x-Q1 器件时，这不是问题，因为引脚 3 上的额外 V_{CC1} 也会保持开路。

(4) IL710 的引脚 3 不得连接至电路板上的接地端，因为这会将 ISO72x-Q1 V_{CC1} 短接至地。IL710 引脚 3 只能连接到 V_{CC} 或保持开路，以便直接替换为 ISO72x-Q1 器件。

(5) 当 ISO722-Q1 或 ISO722M-Q1 器件用作直接替代产品时，HCPL 器件引脚 7 必须保持悬空（开路）或接地。如果 ISO722-Q1 或 ISO722M-Q1 器件的引脚 7 处于高逻辑状态，则器件的输出被禁用。

9.3 电源相关建议

为确保在各种数据速率和电源电压条件下可靠运行，必须将 $0.1 \mu F$ 旁路电容器放置在输入和输出电源引脚 (V_{CC1} 和 V_{CC2}) 处。该电容必须尽量靠近电源引脚放置。如果应用中只有单个初级侧电源，则可以借助德州仪器 (TI) 的 **SN6501** 器件等变压器驱动器为次级侧生成隔离式电源。对于此类应用，**SN6501 适用于隔离式电源的变压器驱动器数据表** 中提供了详细的电源设计和变压器选择建议。

9.4 布局

9.4.1 布局指南

至少需要四层才能实现低 EMI PCB 设计（请参阅图 9-4）。层堆叠必须符合以下顺序（从上到下）：高速信号层、接地平面、电源平面和低频信号层。

- 在顶层布置高速走线可避免使用过孔（及其引入的电感），并在隔离器与数据链路的发送器和接收器电路之间实现可靠互连。
- 通过在高速信号层旁边放置一个实心接地层，可以为传输线互连建立受控阻抗，并为返回电流提供出色的低电感路径。
- 在接地平面旁边放置电源平面后，会额外产生大约 $100pF/in^2$ 的高频旁路电容。
- 在底层路由速度较慢的控制信号可实现更高的灵活性，因为这些信号链路通常具有裕量来承受过孔等导致的不连续性。

如果需要额外的电源电压层或信号层，请在堆叠中添加另一个电源层或接地层系统，以使这些层保持对称。这样可使栈保持机械稳定并防止其翘曲。此外，每个电源系统的电源和接地层可以放置得更靠近彼此，从而显著增大高频旁路电容。

有关详细的布局建议，请参阅 [数字隔离器设计指南](#)。

9.4.1.1 PCB 材料

对于运行速度低于 150 Mbps（或上升和下降时间大于 1 ns）且迹线长度达 10 英寸的数字电路板，请使用标准 FR-4 UL94V-0 印刷电路板。该 PCB 在高频下具有较低的电介质损耗、较低的吸湿性、较高的强度和刚度以及自熄性可燃性特征，因而优于较便宜的替代产品。

9.4.2 布局示例

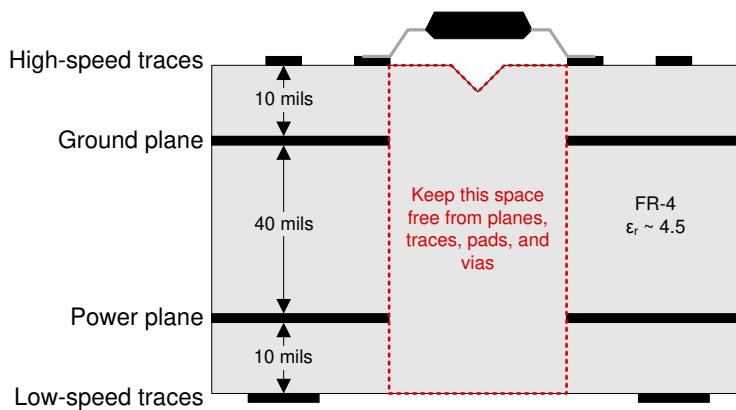


图 9-4. 建议的层堆叠

10 器件和文档支持

10.1 器件支持

10.1.1 开发支持

相关开发支持，请参阅以下文档：

- 德州仪器 (TI), [36Vdc-75Vdc 输入、20V @ 4A 输出、有源钳位正激式 TI 参考设计](#)
- 德州仪器 (TI), [18Vdc-54Vdc 输入、24V @ 5A 输出、有源钳位正激式 TI 参考设计](#)
- 德州仪器 (TI), [36Vdc-75Vdc 输入、6V @ 20A 输出、有源钳位正激式 TI 参考设计](#)
- 德州仪器 (TI), [ISO72x IBIS 模型](#)

10.2 文档支持

10.2.1 相关文档

欲查看相关文件，请参阅以下内容：

- 德州仪器 (TI), [数字隔离器设计指南](#)
- 德州仪器 (TI), [隔离相关术语](#)
- 德州仪器 (TI), [隔离式 RS-485 参考设计应用报告](#)
- 德州仪器 (TI), [ISO721EVM 用户指南](#)

10.3 接收文档更新通知

要接收文档更新通知，请导航至 ti.com 上的器件产品文件夹。点击[通知](#)进行注册，即可每周接收产品信息更改摘要。有关更改的详细信息，请查看任何已修订文档中包含的修订历史记录。

10.4 支持资源

[TI E2E™ 中文支持论坛](#)是工程师的重要参考资料，可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题，获得所需的快速设计帮助。

链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的[使用条款](#)。

10.5 商标

Profibus™ is a trademark of Profibus.

DeviceNet™ is a trademark of Open DeviceNet Vendors Association.

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

10.6 静电放电警告

 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序，可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级，大至整个器件故障。精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

10.7 术语表

TI 术语表

本术语表列出并解释了术语、首字母缩略词和定义。

11 修订历史记录

注：以前版本的页码可能与当前版本的页码不同

Changes from Revision E (February 2025) to Revision F (October 2025)	Page
• 将安全相关认证部分第二行中全部 3 处“计划认证”更改为“已认证”	4
• 将以下部分中的“计划证书”更改为“基本证书：40047657”（VDE 列）、“主合同编号：220991”（CSA 列中）以及“文件编号：E181974”（UL 列）：安全相关认证部分。	4

Changes from Revision D (November 2024) to Revision E (February 2025)	Page
• 更新了整个文档中的表格、图和交叉参考的编号格式.....	1

Changes from Revision C (July 2013) to Revision D (November 2024)	Page
• 通篇将“VDE V 0884-11”更新为“DIN VDE 0884-17”	1
• 通篇将引用内容从电容隔离更新为隔离栅.....	1
• 更新了整个文档中的表格、图和交叉参考的编号格式.....	1
• 更新了热特性、安全限值和热降额曲线以提供更准确的系统级热计算.....	4
• 更新了电气和开关特性以匹配器件性能.....	6
• 添加了“详细说明”、“概述”、“功能说明”、“功能方框图”和“器件功能模式”部分	15
• 添加了“典型应用”、“电源建议”和“布局”部分.....	17

Changes from Revision B (June 2013) to Revision C (July 2013)	Page
• 将温度等级从 3 更改为 1.....	1
• 将 IEC 60664-1 额定值表 - 污染等级 I-III 的测试条件从：额定市电电压 $\leq 150\text{VRMS}$ ，更改为：额定市电电压 $\leq 300\text{VRMS}$ 。为 I-II 规格添加了一行.....	5

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件可用的最新数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。有关此数据表的浏览器版本，请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
ISO721QDRQ1	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	IS721Q
ISO721QDRQ1.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	IS721Q
ISO722QDRQ1	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	IS722Q
ISO722QDRQ1.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	IS722Q

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

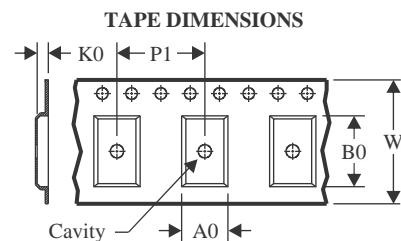
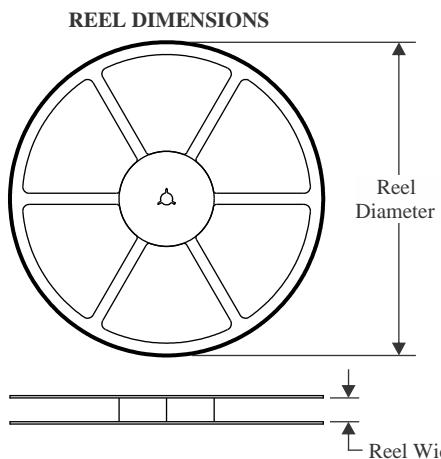
⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

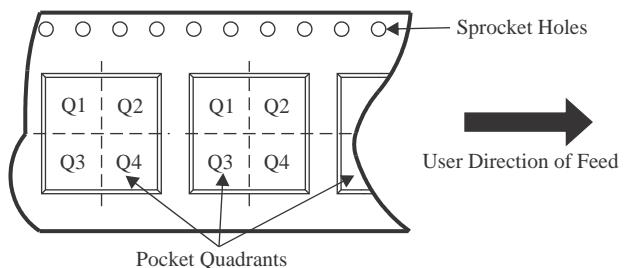
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ISO721-Q1, ISO722-Q1 :

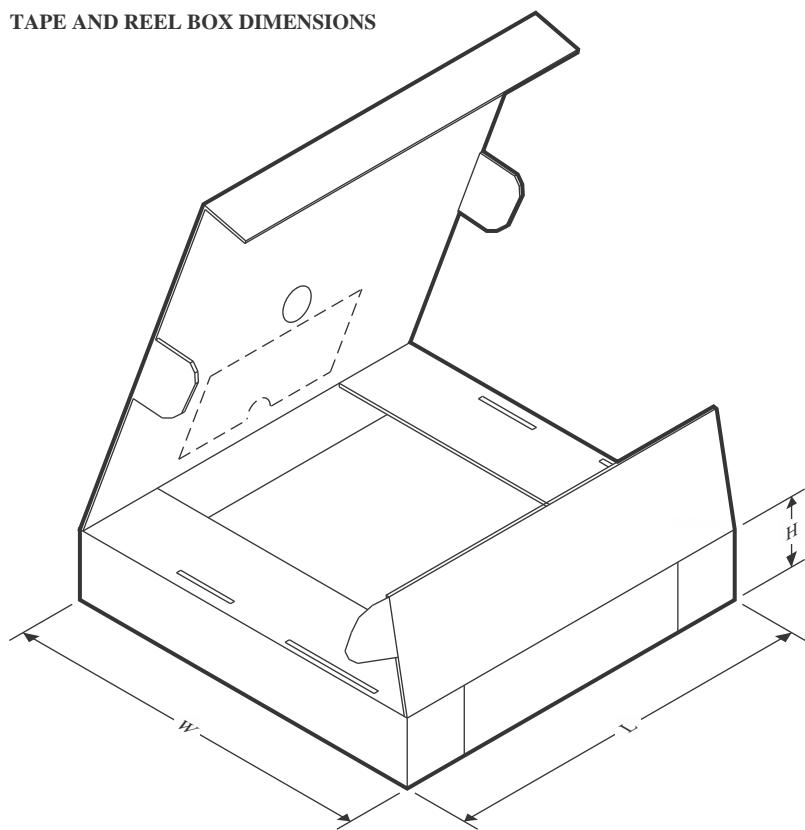



- Catalog : [ISO721](#), [ISO722](#)


- Military : [ISO721M](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

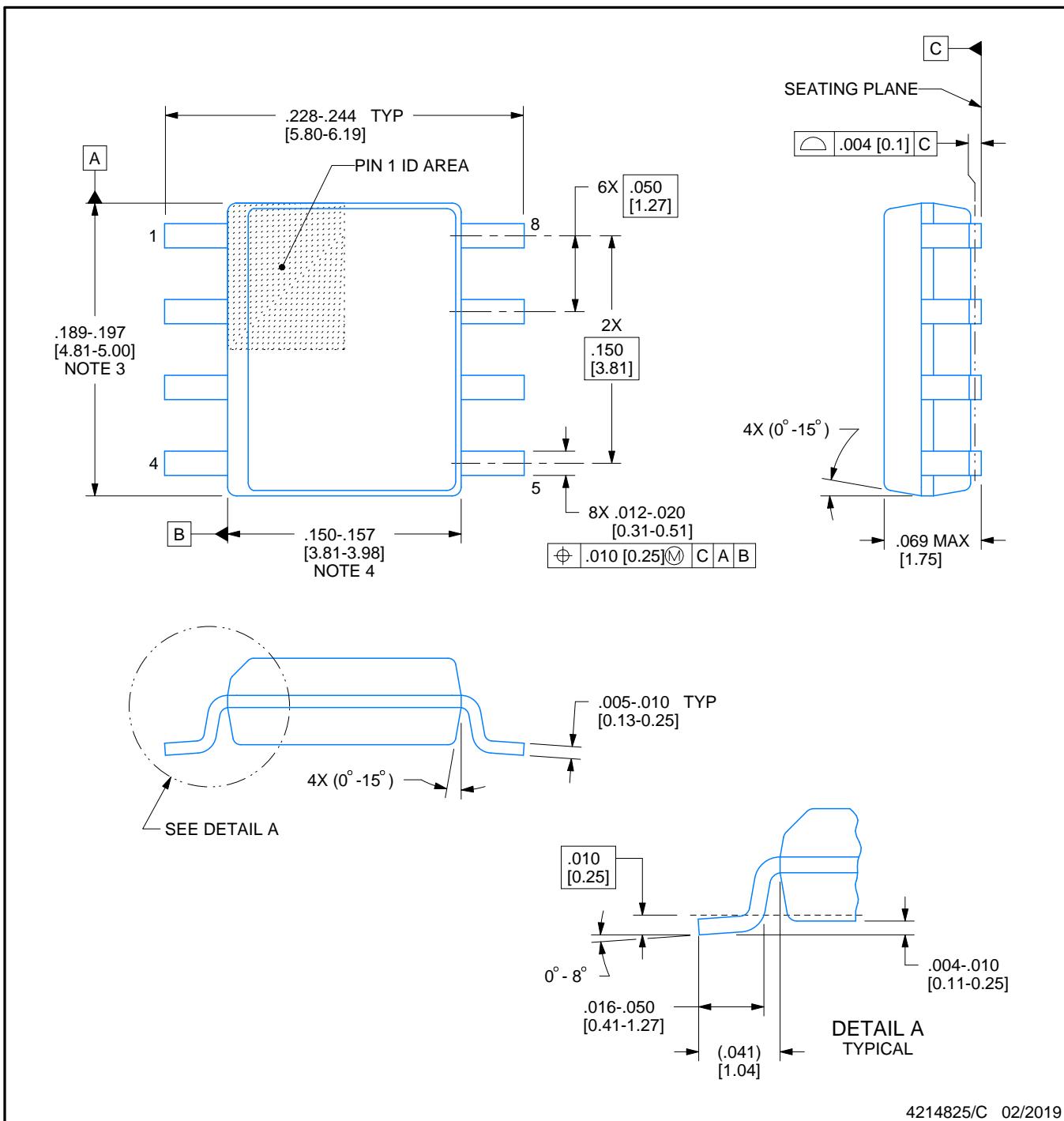
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO721QDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
ISO722QDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

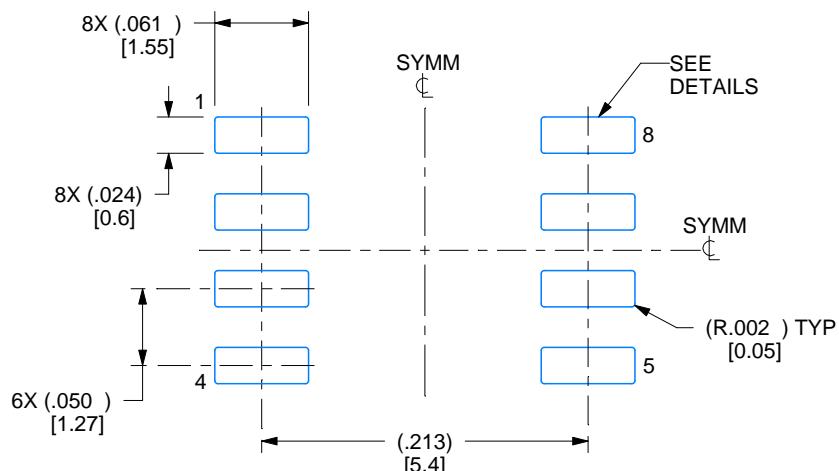

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO721QDRQ1	SOIC	D	8	2500	350.0	350.0	43.0
ISO722QDRQ1	SOIC	D	8	2500	350.0	350.0	43.0

PACKAGE OUTLINE

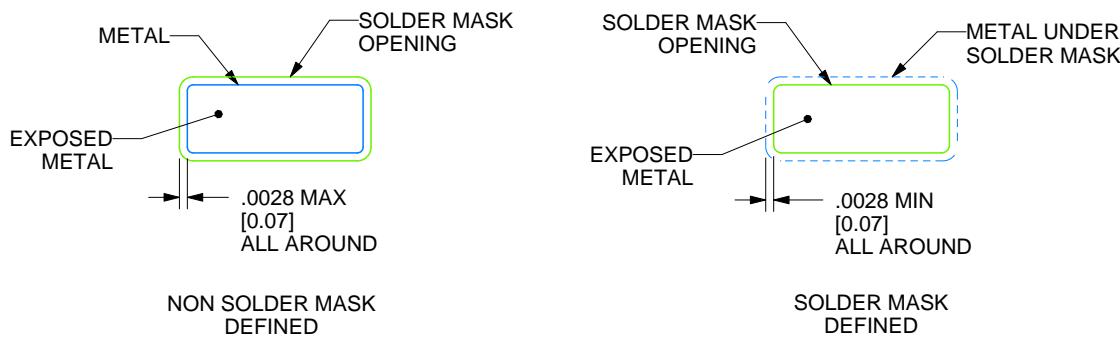
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:


1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

EXAMPLE BOARD LAYOUT


D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

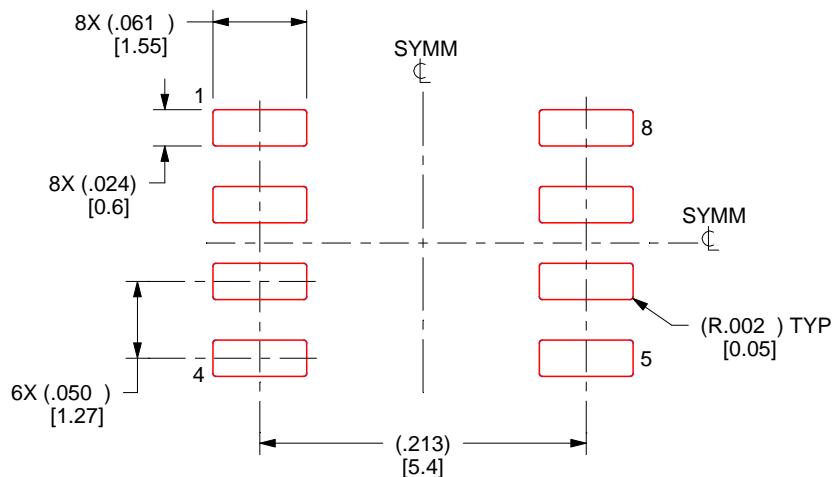
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:8X

SOLDER MASK DETAILS

4214825/C 02/2019

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.125 MM] THICK STENCIL
SCALE:8X

4214825/C 02/2019

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI“按原样”提供技术和可靠性数据（包括数据表）、设计资源（包括参考设计）、应用或其他设计建议、网络工具、安全信息和其他资源，不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：(1) 针对您的应用选择合适的 TI 产品，(2) 设计、验证并测试您的应用，(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务，您将全额赔偿，TI 对此概不负责。

TI 提供的产品受 [TI 销售条款](#)、[TI 通用质量指南](#) 或 [ti.com](#) 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品，否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2026，德州仪器 (TI) 公司

最后更新日期：2025 年 10 月