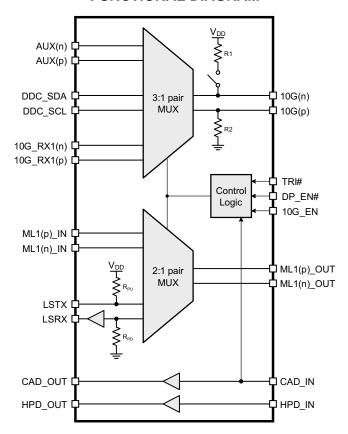


10.3Gbps Thunderbolt™ Port and DisplayPort™ Switch Check for Samples: HD3SS0001

FEATURES

- Compatible with Thunderbolt[™] Technology Electrical Standards and DisplayPort ™1.2a
- Wide -3dB Differential Bandwidth of Over 10GHz on 10G Path
- **Supports DP and DP++ Configurations**
- Handles HPD (5V tolerant) and Cable Detect
- **Supports AUX and DDC MUX**
- **Excellent Dynamic Characteristics (on 10G** path, typical values at 5GHz):
 - Crosstalk = -35dB
 - Off-Isolation = -24dB
 - Insertion Loss = -1.5dB
 - Return Loss = -20dB
 - Intra-pair Skew Added < 4ps
- Single 3.3V Power Supply
- Small 3x3mm 24-Pin QFN Package
- **Low Power Consumption**
 - 3.3mW Typical Active Power
 - 80 µW Typical Detect Mode


DESCRIPTION

The HD3SS0001 is a high-speed passive-switch device with integrated buffers and resistors, designed to support Thunderbolt™ technology, DisplayPort, and Dual Mode DisplayPort. The 10G path supports a 10GHz bandwidth high and excellent characteristics, while the DisplayPort path supports 5.4Gbps.

The integrated 3-pairs to 1-pair multiplexer (3:1 MUX) switches between DDC, AUX, and 10.3Gbps signals. The integrated 2-pairs to 1-pair multiplexer (2:1 MUX) switches between the Thunderbolt™ technology Low Speed UART transmit/receive pair and DisplayPort Main Link 1.

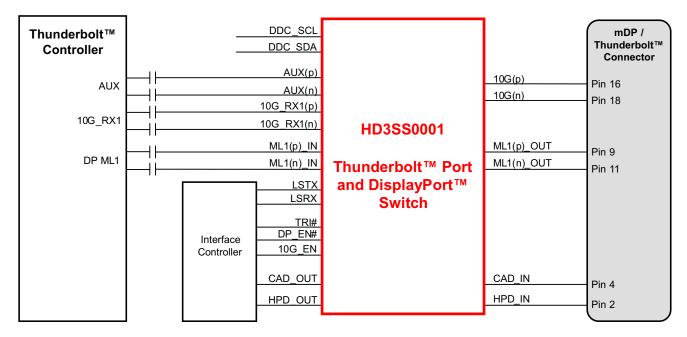
The MUXs are controlled by 4 input pins: TRI#, DP_EN#, 10G_EN, and CAD_IN (cable detect from the connector). The HD3SS0001 is packaged in a small 3x3mm 24-pin QFN, operates from a single 3.3V supply, and supports an ambient temperature range of -40°C to 85°C.

FUNCTIONAL DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

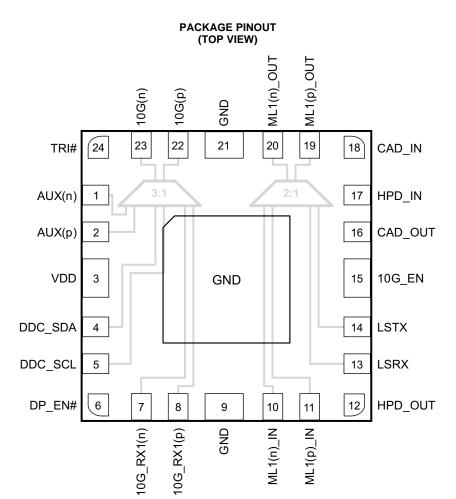
Thunderbolt is a trademark of Intel Corp.

DisplayPort is a trademark of VESA Standards Association.


SLAS827 - SEPTEMBER 2013 www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TYPICAL APPLICATION


TRUTH TABLE

		LOGICAL II	NPUT TO SE	T ⁽¹⁾	EFFECT			
MODE	TRI#	DP_EN#	10G_EN	CAD_IN	2:1 MUX SELECTION ⁽²⁾	3:1 MUX SELECTION ⁽²⁾	PULL-UP RESISTOR on 10G(n)	
Thunderbolt™	1	1	1	Х	LS	10G	Disconnected	
Protocol	0	1	1	Х	LS	Tri-stated	Disconnected	
Disale: Deut	1	0	0	0	ML	AUX	Connected	
DisplayPort	0	0	0	0	Tri-Stated	Tri-stated	Connected	
TMDO	1	0	0	1	ML	DDC	Connected	
TMDS	0	0	0	1	Tri-Stated	Tri-stated	Connected	
Detect Mode	Х	1	0	Х	LS	Tri-Stated	Connected	
[Invalid]	Х	0	1	Х	Tri-Stated	Tri-Stated	Disconnected	

^{(1) &}quot;X" = Don't Care.

Submit Documentation Feedback

⁽²⁾ MUX Selection names are abbreviated.

MUX PIN MAPPING(1)

CONTROLLER-SIDE PIN	Connector-Side Pin
AUX(n)	
DDC_SDA	10G(n)
10G_RX1(n)	
AUX(p)	
DDC_SCL	10G(p)
10G_RX1(p)	
ML1(p)_IN	MI 4(n) OUT
LSTX	ML1(p)_OUT
ML1(n)_IN	MI 1(a) OLIT
LSRX	ML1(n)_OUT

(1) NOTE: The HD3SS0001 can tolerate polarity inversions for the differential signals denoted by the (p) and (n) terminology, to ease potential board routing issues. LSTX/LSRX cannot be swapped, since LSRX is buffered and therefore unidirectional. Also, note that the integrated pullup on 10G(n) and the integrated pulldown on 10G(p) cannot be swapped.

PIN FUNCTIONS

	PIN		SYSTEM	DESCRIPTION				
NO.	NAME	I/O	SIDE	DESCRIF HON				
11	ML1(p)_IN			DisplayPort MainLink1(p) input				
10	ML1(n)_IN			DisplayPort MainLink1(n) input				
24	TRI#		Controller	Tri-State control (see TRUTH TABLE)				
6	DP_EN#	I		DisplayPort Enable, active-low (see TRUTH TABLE)				
15	10G_EN			10.3Gbps Mode Enable (see TRUTH TABLE)				
18	CAD_IN		Connector	Cable Detect				
17	HPD_IN		Connector	Hot Plug Detect				
2	AUX(p)			AUX Positive Signal				
1	AUX(n)			AUX Negative Signal				
5	DDC_SCL		Controller	DDC Clock				
4	DDC_SDA			DDC Data				
14	LSTX	1/0		UART TX Signal				
13	LSRX	1/0		UART RX Signal				
22	10G(p)			10G_RX1(p) or AUX(p) or DDC_SCL, with pull-down				
23	10G(n)		Connector	10G_RX1(n) or AUX(n) or DDC_SDA, with pull-up				
19	ML1(p)_OUT		Connector	DisplayPort MainLink1(p) output or LSTX				
20	ML1(n)_OUT			DisplayPort MainLink1(n) output or LSRX				
8	10G_RX1(p)			10.3Gbps Positive Signal				
7	10G_RX1(n)	0		10.3Gbps Negative Signal				
16	CAD_OUT			Cable Detect				
12	HPD_OUT		Controller	Hot Plug Detect				
3	V_{DD}	Dannan		Power supply				
9, 21, Center Pad	GND	Power Supply		Reference ground				

ABSOLUTE MAXIMUM RATINGS(1)

Over operating free-air temperature range (unless otherwise noted)

		VAL	VALUE	
		MIN	MAX	
Supply voltage range ⁽²⁾	V_{DD}	-0.5	4	V
Voltago rongo	Differential I/O	-0.5	4	\
Voltage range	Control pin/buffers	-0.5	V _{DD} +0.5	٧
Clastrostatia diasharas	Human body model (3)		±1,500	V
Electrostatic discharge	Charged-device model ⁽⁴⁾		±500	V
Continuous power dissipation	See Powe	r Characteristic	cs	

⁽¹⁾ Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Submit Documentation Feedback

⁽²⁾ All voltage values, except differential voltages, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with JEDEC/ESDA JS-001-2011

⁽⁴⁾ Tested in accordance with JEDEC JESD22 C101-E

THERMAL INFORMATION

over operating free-air temperature range (unless otherwise noted)

	TUEDMAL METDIO(1)	HD3SS0001	LINUTO
	THERMAL METRIC ⁽¹⁾	24-PIN VQFN (RLL)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	41.5	
θ_{JCtop}	Junction-to-case (top) thermal resistance	43.1	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	6.3	900
θ_{JB}	Junction-to-board thermal resistance	11.2	°C/W
Ψлт	Junction-to-top characterization parameter	1.2	
ΨЈВ	Junction-to-board characterization parameter	11.2	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

POWER CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX ⁽¹⁾	UNIT
I_{DD}	Supply Current in Active Mode	Outputs Floating		1.0	1.3	mA
I _{DETECT}	Supply Current in Detect Mode	DP_EN# = 1, 10G_EN = 0		26	50	μΑ
P_D	Power Dissipation in Active Mode			3.3	4.7	mW
P _{Detect}	Power Dissipation in Detect Mode			80	150	μW

⁽¹⁾ The maximum ratings are simulated for $V_{DD} = 3.6V$.

Product Folder Links: HD3SS0001

TEXAS INSTRUMENTS

RECOMMENDED OPERATING CONDITIONS

Typical values for all parameters are at V_{DD} = 3.3V and T_A = 25°C. (Temperature limits are specified by design)

	PARAMETER	NOTES/CONDITIONS	MIN	TYP	MAX	UNIT
V_{DD}	Supply voltage		3.0	3.3	3.6 ⁽¹⁾	V
T _A	Operating free-air temperature		-40		85	°C
\/	lanut high valtage	CAD_IN, HPD_IN ⁽²⁾ , TRI#, DP_EN#, and 10G_EN	2.0		V_{DD}	V
V_{IH}	Input high voltage	ML1(n)_OUT (when 2:1 MUX selects LS)	2.0		V_{DD}	v
\/	lanut laur valtaga	CAD_IN, HPD_IN ⁽²⁾ , TRI#, DP_EN#, and 10G_EN	-0.1		0.8	V
V_{IL}	Input low voltage	ML1(n)_OUT (when 2:1 MUX selects LS)	-0.1		0.8	V
1/	Output high voltage	CAD_OUT, HPD_OUT	2.7		V_{DD}	V
V _{OH}	Output high voltage	LSRX (when 2:1 MUX selects LS)	2.7		$V_{DD}^{(1)}$	V
V	Output law valtage	CAD_OUT, HPD_OUT	0.0		0.1	V
V_{OL}	Output low voltage	LSRX (when 2:1 MUX selects LS)	0.0		0.1	V
		TRI#, DP_EN#, 10G_EN, CAD_IN, and HPD_IN; $V_{DD} = 3.6V$, $V_{IN} = V_{DD}$			5	
I _{IH}	High-level input current	ML1(n)_OUT; V_{DD} = 3.6V; V_{IN} = V_{DD} (when 2:1 MUX selects LS)			3.75	μA
	Low-level input current	TRI#, DP_EN#, 10G_EN, CAD_IN, and HPD_IN; V _{DD} = 3.6V, V _{IN} = GND			100	nA
I _{IL}	Low-level input current	ML1(n)_OUT; V_{DD} = 3.6V, V_{IN} = GND (when 2:1 MUX selects LS)			100	ΠA
$V_{\text{I/O}_\text{Diff}}$	Differential I/O voltage	AUX(p)/AUX(n), 10G_RX1(p)/ 10G_RX1(n), ML1(p)_IN/ML1(n)_IN, 10G(p)/10G(n), and ML1(p)_OUT/ML1(n)_OUT when MUX's are connected to Differential Signals.	0		1.8	Vpp
V _{I/O_CM}	Common mode I/O voltage	AUX(p)/AUX(n), 10G_RX1(p)/10G_RX1(n), ML1(p)_IN/ML1(n)_IN, 10G(p)/ 10G(n), and ML1(p)_OUT/ML1(n)_OUT when MUX's are connected to Differential Signals.	0		2.0	V

⁽¹⁾ V_{DD} range supports 3.0V to 3.6V, but for Thunderbolt products it is anticipated that the V_{DD} must be maintained at less than or equal to 3.4V to ensure that the V_{OH} on the LSRx do not exceed 3.4V.

ELECTRICAL CHARACTERISTICS

(under recommended operation conditions)

	PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT	
Thunde	rbolt™ Technology 10.3Gbps Link: 10G	RX1(p), 10G_RX1(n) ⁽¹⁾	•	•		
R_L	Differential Return Loss	f = 5.0 GHz	-20		dB	
IL	Differential Insertion Loss	f = 5.0 GHz	-1.5		dB	
O _{IRR}	Differential Off Isolation	f = 5.0GHz (see Figure 3)	-24		dB	
X _{TALK}	Differential Crosstalk	f = 5.0 GHz	-35		dB	
BW	Bandwidth	-3 dB	10		GHz	
t _{PD}	Propagation Delay(from input to output)	R_{sc} and R_L = 50 Ω (see Figure 2)		200	ps	
T _{SKEW}	Intra-Pair Skew Added	R_{sc} and $R_L = 50 \Omega$ (see Figure 2)		4	ps	
C _{ON}	Outputs ON Capacitance	V _I = 0 V, Outputs Open, Switch ON	1.5		pF	
C _{OFF}	Outputs OFF Capacitance	VI = 0 V, Outputs Open Switch OFF	1		pF	
R _{ON}	Output ON resistance	$V_{DD} = 3.3 \text{ V}, I_{O} = -15 \mu\text{A}$	7.5		Ω	
ΔR _{ON}	On resistance match between pairs of the same channel	$V_{DD} = 3.3V; I_{O} = -15 \mu A$		1	Ω	
T _{ON}	Control Line Change to MUX Output	Con Figure 4		400		
T _{OFF}	Switched	See Figure 1		10	μs	

⁽¹⁾ These values apply for CAD_IN tri-stated, unless otherwise noted.

Product Folder Links :HD3SS0001

⁽²⁾ HPD_IN is 5V tolerant.

ELECTRICAL CHARACTERISTICS (continued)

(under recommended operation conditions)

(under r	ecommended operation conditions)				
	PARAMETER	CONDITIONS	MIN TYP	MAX	UNIT
Display	Port Link: ML1(p)_IN, ML1(n)_IN				
R_L	Differential Return Loss	f = 2.7 GHz	-16		dB
IL	Differential Insertion Loss	f = 2.7 GHz; V _{CM} = 0 V	-0.8		dB
O _{IRR}	Differential Off-Isolation	f = 2.7 GHz (see Figure 3)	-20		dB
X _{TALK}	Differential Crosstalk	f = 2.7 GHz	-35		dB
BW	Differential Bandwidth	-3 dB	7		GHz
t _{PD}	Propagation Delay(from input to output)	R_{SC} and R_L = 50 Ω (see Figure 2)		200	ps
T _{SKEW}	Intra-pair Skew Added	R_{SC} and $R_L = 50 \Omega$ (see Figure 2)		4	ps
C _{ON}	Outputs ON Capacitance	VI = 0 V; Outputs Open; Switch ON	1.5		pF
C _{OFF}	Outputs OFF Capacitance	V _I = 0 V; Outputs Open; Switch OFF	1		pF
R _{ON}	Output ON resistance	V_{DD} = 3.3 V; I_{O} = -15 mA; V_{CM} = 0.5 V to 1.5 V; CAD_IN = 0 V	6	8	Ω
ΔR_{ON}	On resistance match between pairs of the same channel	V_{DD} = 3.3 V; I_{O} = -15 mA; V_{CM} = 0.5 V to 1.5 V		1	Ω
T _{ON}	Control Line Change to MUX Output Switched	See Figure 1		400 10	μs
	rbolt™ Technology Low Speed UART : I	LSTX		I	
C _{ON}	Outputs ON capacitance	V _I = 0 V , Outputs Open, Switch ON	8		pF
C _{OFF}	Outputs OFF capacitance	V _I = 0 V, Outputs Open, Switch OFF	3		pF
R _{ON}	Output ON resistance	V _{DD} = 3 V, V _{CM} = 0 V to 3 V, I _O = -1 mA CAD_IN = 0 V	12	19	Ω
t _{PD}	Propagation Delay	LSTX to ML1(p)_OUT	200		ps
	Port: AUX(p), AUX(n)			Ш.	•
C _{ON}	Outputs ON Capacitance	V _I = 0 V; Outputs Open; Switch ON	6		pF
C _{OFF}	Outputs OFF Capacitance	V _I = 0 V; Outputs Open; Switch OFF	3		pF
R _{ON}	Output ON resistance	$V_{DD} = 3.3V; I_{O} = -10 \text{ mA}; AUX(p) = 0.3 V;$ $AUX(n) = 3.0 V; CAD_IN = 0 V$	12		Ω
ΔR _{ON}	On resistance match between pairs of the same channel	$V_{DD} = 3.3 \text{ V}; I_{O} = -10 \text{ mA};$ $V_{CM} = 0.5 \text{ V to } 1.5 \text{ V}$		1	Ω
T _{ON}	Control line change to Mux output	Con Figure 2		40	ms
T _{OFF}	switched	See Figure 2		10	μs
	rbolt Technology Low Speed UART : LS	RX			
C _{ON}	Outputs capacitance		3		pF
Z _O	Output impedance	V _{DD} = 3.3 V	60		Ω
t _{PD}	Propagation delay	ML1(n)_OUT to LSRX	3.2		ns
t _r	Rise Time	V _{DD} = 3 V	3		ns
t _f	Fall Time	V _{DD} = 3 V	3		ns
T _{ON}	Control line change to MUX Output			400	μs
T _{OFF}	Switched	See Figure 1		10	μs

TEXAS INSTRUMENTS

ELECTRICAL CHARACTERISTICS (continued)

(under recommended operation conditions)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Display	Port : DDC_SCL, DDC_SDA					
C _{ON}	Outputs ON capacitance	V _I = 0 V, Outputs Open, Switch ON		9		pF
C _{OFF}	Outputs OFF capacitance	V _I = 0 V, Outputs Open, Switch OFF		3		pF
R _{ON}	Output ON resistance	V_{DD} = 3.3 V, I_{O} = -10 mA, V_{CM} = 0.4 V, CAD_IN = 3.3 V		80	150	Ω
T _{ON}	Control line change to MUX output	See Figure 1			400	
T _{OFF}	switched				10	μs
UART a	and 10G MUX Outputs : LSTX/LSRX/10G	(p)/10G(n)				
R1	Integrated Pullup Resistance	10G(n) pin when in DP, TMDS, or Detect Mode		87	105	kΩ
R2	Integrated Pulldown Resistance	10G(p) pin when in DP, TMDS, or Detect Mode, or VDD = 0V		87	105	kΩ
R_{PU}	Integrated pullup resistance	LSTX		8.7		kΩ
R _{PD}	Integrated pulldown resistance	LSRX		1.2		ΜΩ

TEST DIAGRAMS

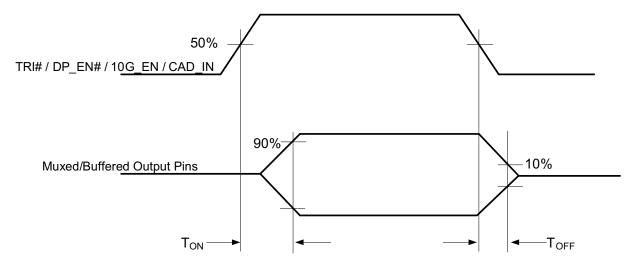
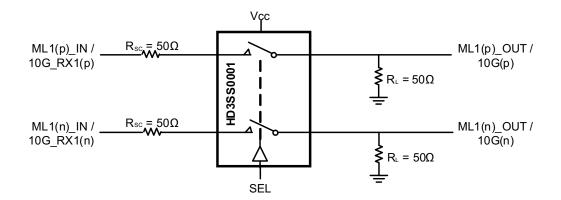
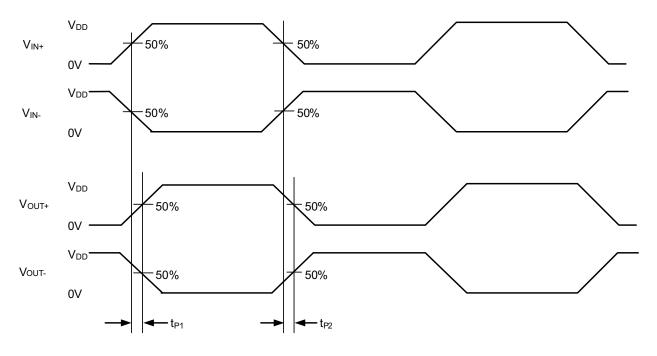




Figure 1. Control Line Change to Switched Signals

 $t_{PD} = Max(t_{p1}, t_{p2})$

t_{SK(O)} = Difference between t_{PD} for any two pairs of outputs

 $t_{SK(b-b)}$ = Difference between t_{P1} and t_{P2} of same pair

Figure 2. Propagation Delay and Skew

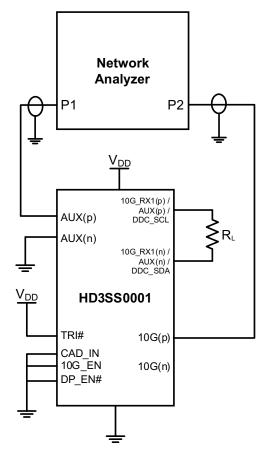


Figure 3. Off-Isolation Measurement Setup

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
HD3SS0001RLLR	Active	Production	VQFN (RLL) 24	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	3SS001
HD3SS0001RLLR.B	Active	Production	VQFN (RLL) 24	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	3SS001

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

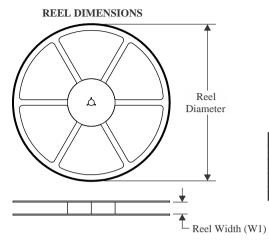
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

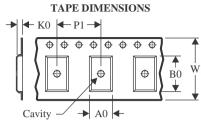
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

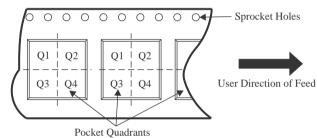
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

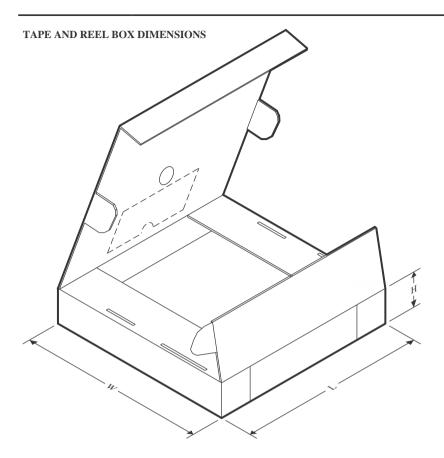
PACKAGE MATERIALS INFORMATION

www.ti.com 20-Apr-2023


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

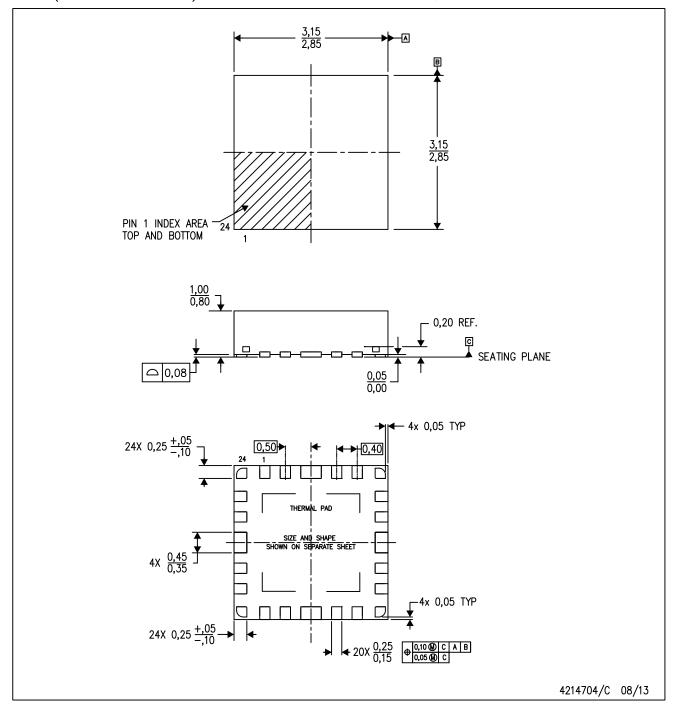


*All dimensions are nominal

	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ĺ	HD3SS0001RLLR	VQFN	RLL	24	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Apr-2023

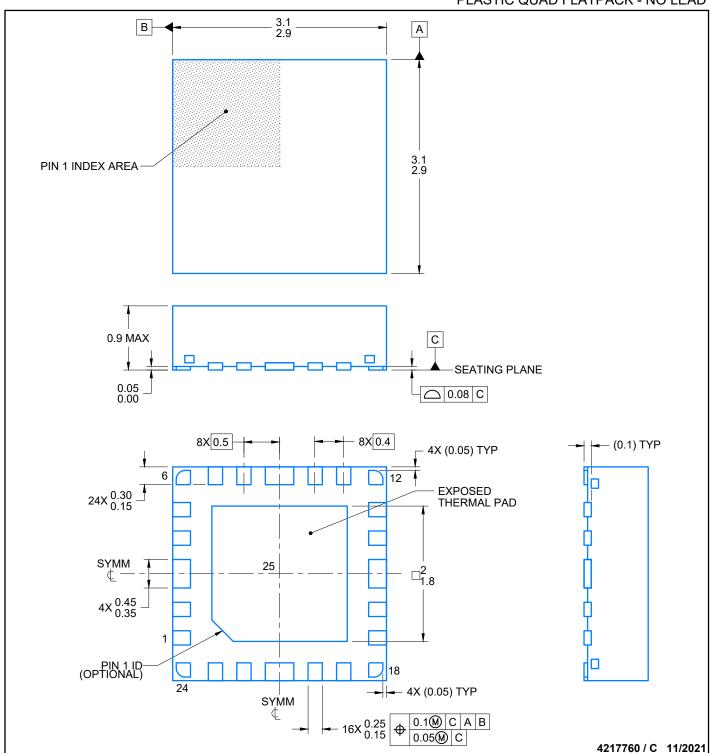


*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	HD3SS0001RLLR	VQFN	RLL	24	3000	346.0	346.0	33.0

RLL (S-PVQFN-N24)

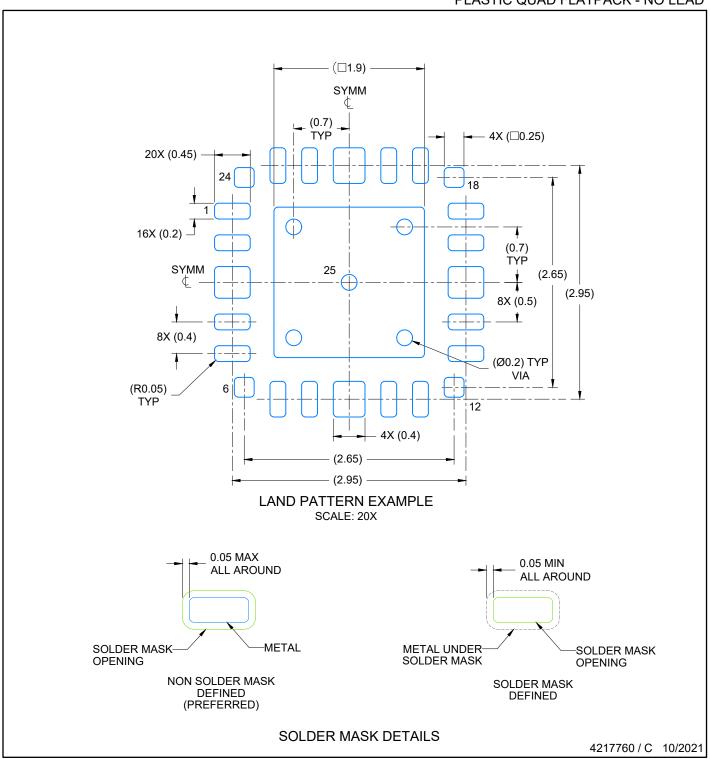
PLASTIC QUAD FLATPACK NO-LEAD



NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

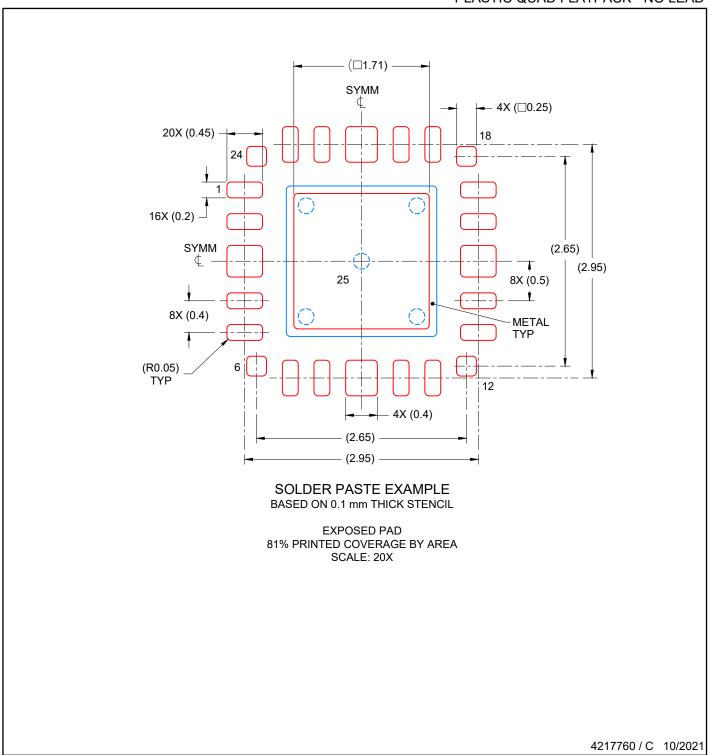
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations..

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025