

DS90UR910-Q1

ZHCSDL5D -JUNE 2012-REVISED JULY 2015

DS90UR910-Q1 10MHz 至 75MHz、24 位彩色 FPD-Link II 至 CSI-2 转换器

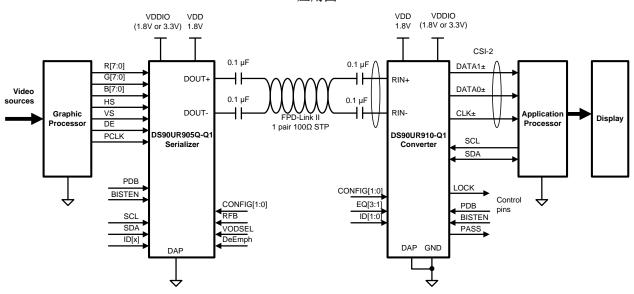
1 特性

- 支持 10MHz 至 75MHz 像素时钟 (PCLK) (280Mbps 至 2.10Gbps FPD-Link II 线速率)
- 兼容直流均衡以及交流耦合的 FPD-Link II 串行位流
- 可对长达 10 米的屏蔽双绞线 (STP) 电缆进行数据 恢复
- 符合 v1.00.00 规范的 MIPI D-PHY 模块
- 与 MIPI CSI-2 版本 1.01 兼容
- 支持双通道运行,每条数据通道支持的传输速率最高可达 900Mbps
- 视频流数据包格式: RGB888
- 连续和非连续时钟模式
- 支持超低功耗、退出、高速和控制模式
- 集成输入端接和可调节接收均衡
- 快速随机锁定;无需基准时钟
- CCI/I2C 兼容控制总线
- 全速内置自检 (@Speed BIST) 和报告引脚
- +1.8V 单电源
- 1.8V 或 3.3V 兼容 LVCMOS I/O 接口
- 汽车应用级产品:符合 AEC-Q100 2 级要求
- 8kV ISO 10605 静电放电 (ESD) 额定值
- 6mm x 6mm 超薄型四方扁平无引线 (WQFN)-40 封装

2 说明

DS90UR910-Q1 是一款接口桥接芯片,用于恢复FPD-Link II 串行位流中的数据,并将其转换为符合移动行业处理器接口 (MIPI) 规范的摄像机串行接口 (CSI-2) 格式。该器件可从兼容 FPD-Link II 串行器的串行位流中恢复 24 位或 18 位 RGB 数据以及 3 个视频同步信号。恢复的数据在由符合 MIPI DPHY/CSI-2 规范的半速率串行时钟所选通的两条数据通道中进行封包化和串行化,每条数据通道的传输速率最高可达900Mbps。FPD-Link II 接收器支持频率最高可达75MHz 的像素时钟。CSI-2 输出电荷总线可息蒸降低

75MHz 的像素时钟。CSI-2 输出串行总线可显著降低图形处理器 (GPU) 的互连和信号计数,同时面向多台汽车驾驶员辅助摄像机的视频流简化系统设计。


DS90UR910-Q1 采用 40 引脚 WQFN 封装。电气性能符合汽车级 AEC-Q100 2 级标准温度范围(-40°C 至+105°C)。

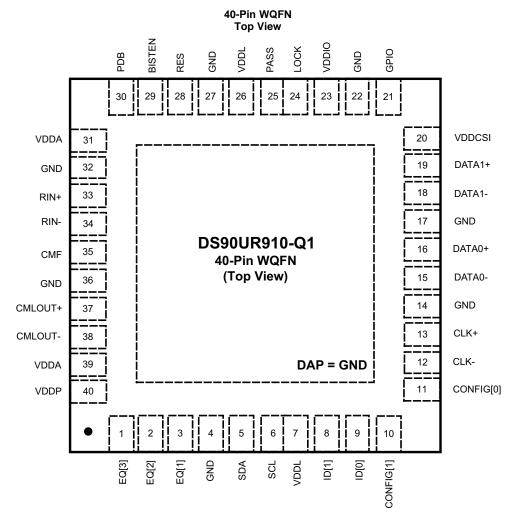
器件信息(1)

部件号	封装	封装尺寸
DS90UR910-Q1	WQFN (40)	6.00mm x 6.00mm

(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

应用图

目录


1	特性 1	6.2 Functional Block Diagram	17
2	说明 1	6.3 Feature Description	18
3	修订历史记录 2	6.4 Register Maps	25
4	Pin Configuration and Functions	7 Application and Implementation	28
5	Specifications5	7.1 Typical Application Connection	28
5	5.1 Absolute Maximum Ratings	7.2 Design Requirements	28
	5.2 ESD Ratings	7.3 Application Performance Plots	29
	5.3 Recommended Operating Conditions	8 Power Supply Recommendations	30
	5.4 DC Electrical Characteristics	8.1 Power Up Requirements and PDB Pin	30
	5.5 AC Switching Characteristics	9 Layout	30
	5.6 Recommended Timing for the Serial Control Bus	9.1 Layout Guidelines	
	(CCI/I2C) 10	10 器件和文档支持	33
	5.7 DC and AC Serial Control Bus (CCI/I2C) 11	10.1 商标	
	5.8 Typical Characteristics	10.2 静电放电警告	33
6	Detailed Description 16	10.3 Glossary	33
	6.1 Overview 16	11 机械、封装和可订购信息	33

3 修订历史记录

修订	说明
2012年9月17日	DS90UR910-Q1 数据表 - 最初发布版本
2012年10月23日	更新了引脚图
2013年5月2日	已将国家数据表的版面布局更改为 TI 格式
2013年5月17日	明确了 VDDL 和 VDDA 电源引脚的编号
2015年4月16日	将器件状态由"产品预览"更改为"量产数据"。添加了新的章节标题并更新至新的 TI 格式。

4 Pin Configuration and Functions

Pin Descriptions (1)

Pin Name	Pin #	I/O, Type	Description		
FPD-Link II Ser	ial Interface				
RIN+ RIN-	33 34	I, CML	Inverting and non-inverting differential inputs. The inputs must be AC Coupled with a 100 nF capacitor.		
CMF	35	Common mode filter pin for the differential inputs. CMP is the virtual ground of the differential input stage. A bypass capacitor is connected from CMP to ground to increase the receiver's common mode noise immunity. A 4.7 μF ceramic capacitor is recommended.			
CMLOUT+ 37 CMLOUT- 38 O, CML			Inverting and non-inverting differential outputs. Single 100Ω (1%) termination resistor must be placed across the CMLOUT± pins. Optional loop-through output to monitor post equalize and requires use of the Serial Control Bus to enable.		
MIPI Interface					
DATA1+ DATA1-	19 18	O, DPHY O, DPHY	Inverting and non-inverting data output of DPHY Lane 1		
DATA0+ DATA0-	16 15	O, DPHY O, DPHY	Inverting and non-inverting data output of DPHY Lane 0		
CLK+ CLK-	13 12	O, DPHY O, DPHY	Inverting and non-inverting half-rate DPHY clock lane		

(1) 1 = HIGH, 0 = LOW

Pin Descriptions (1) (continued)

Pin Name	Pin #	I/O, Type	Description
Control and Co		1,0,1,pc	Socialism
PDB	30	I, LVCMOS w/ pull-down	Power Down Mode Input PDB = 1, Device is enabled (normal operation) PDB = 0, Device is in power-down When the device is in the power-down, outputs are TRI-STATE, control registers are RESET.
CONFIG[1:0]	10, 11	I, LVCMOS w/ pull-down	Operating Mode Select CONFIG[1:0] selects compatibility to FPD-Link II serializers. See Table 1.
EQ[3:1]	1, 2, 3	I, LVCMOS w/ pull-down	Receive equalization control EQ[3:1] provides 8 combinations of the receive equalization gain settings. See Table 2. EQ[3:1] optimizes the input equalizer's ability to reduce inter-symbol interference from the loss characteristics of different cable lengths.
BISTEN	29	I, LVCMOS w/ pull-down	BIST Enable Input BISTEN = 1, BIST is enabled BISTEN = 0, BIST is disabled
LOCK	24	O, LVCMOS	LOCK Status Output LOCK = 1, PLL acquired lock to the reference clock input; DPHY outputs are active LOCK = 0, PLL is unlocked
PASS	25	O, LVCMOS	Normal mode status output pin (BISTEN = 0) PASS = 1: No fault detected on input display timing PASS = 0: Indicates an error condition or corruption in display timing. Fault condition occurs if: 1) DE length value mismatch measured once in succession 2) VSync length value mismatch measured twice in succession BIST mode status output pin (BISTEN = 1) PASS = 1: No error detected PASS = 0: Error detected
CCI / I2C Serial	Control Bus	u.	
SCL	6	I, LVCMOS, Open Drain	Serial Control Bus Clock Input SCL requires an external pull-up resistor to V _{DDIO} .
SDA	5	I/O, LVCMOS Open Drain	Serial Control Bus Data Input / Output SDA requires an external pull-up resistor to V _{DDIO} .
ID[1:0]	8, 9	I, LVCMOS w/ pull-down	Serial Control Bus Device ID Address Select See Table 5.
Reserved Pins			
GPIO	21	I/O	General Purpose I/O Note: Pin must be left floating during initial power-up.
RES	28	I, LVCMOS w/ pull-down	Reserved pin. Must tie Low.
Power and Gro	und		
VDDL	7, 26	Power	Power to logic circuitry, 1.8V ±5%
VDDA	31, 39	Power	Power to analog circuitry, 1.8V ±5%
VDDP	40	Power	Power to PLL, 1.8V ±5%
VDDCSI	20	Power	Power to DPHY CSI-2 drivers, 1.8V ±5%
VDDIO	23	Power	Power to LVCMOS I/O circuitry, 1.8V ±5% OR 3.3V ±10% (V _{DDIO})
GND	4, 14, 17, 22, 27, 32, 36	Ground	Ground return.
GND	DAP	Ground	DAP is the metal contact at the bottom side, located at the center of the WQFN package. It should be connected to the GND plane with multiple via to lower the ground impedance and improve the thermal performance of the package. Connected to the ground plane (GND) with at least 9 vias.

5 Specifications

5.1 Absolute Maximum Ratings (1) (2)

	MIN	MAX	UNIT
Supply Voltage – V _{DDA} , V _{DDP} , V _{DDL} , V _{DDCSI} (1.8V)	-0.3	2.5	V
Supply Voltage – V _{DDIO} (1.8V I/O)	-0.3	2.5	٧
Supply Voltage – V _{DDIO} (3.3V I/O)	-0.3	4.0	V
LVCMOS I/O Voltage	-0.3	(V _{DDIO} + 0.3)	V
Receiver Input Voltage	-0.3	(V _{DDA} + 0.3)	V
CSI-2 Output Voltage	-0.3	(V _{DDCSI} + 0.3V)	V
Junction Temperature		150	°C
4L WQFN Package Maximum Power Dissipation Capacity at 25°C			
Storage temperature, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under . Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

				VALUE	UNIT
		Human body model (HBM), pe	er AEC Q100-002, all pins ⁽¹⁾	±8000	
	Electrostatic discharge	Charged device model (CDM)	, per AEC Q100-011, all pins	±1000	
		Machine model (MM)		±250	
		(IEC, powered-up only) $R_D = 330~\Omega,~C_S = 150~pF$ (ISO10605) $R_D = 330~\Omega,~C_S = 150~pF$	Air Discharge (R _{IN+} , R _{IN-})	±30000	
V _(ESD)			Contact Discharge (R _{IN+} , R _{IN-})	±10000	V
V _(ESD)			Air Discharge (R _{IN+} , R _{IN-})	±30000	
			Contact Discharge (R _{IN+} , R _{IN-})	±10000	
		(ISO10605)	Air Discharge (R _{IN+} , R _{IN-})	±30000	
		$R_D = 2 k\Omega$, $C_S = 150 pF$ or 330 pF	Contact Discharge (R _{IN+} , R _{IN-})	±10000	

⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

5.3 Recommended Operating Conditions

	MIN	NOM	MAX	UNIT
Supply Voltage, V _{DDA} , V _{DDP} , V _{DDL} , V _{DDCSI}	1.71	1.8	1.89	
LVCMOS Supply Voltage V _{DDIO} (1.8V I/O)	1.71	1.8	1.89	V
LVCMOS Supply Voltage V _{DDIO} (3.3V I/O)	3.0	3.3	3.6	
Operating Free Air Temperature (T _A)	-40	+25	+105	°C
PCLK Clock Frequency	10		75	MHz
Supply Noise				•
V _{DDn} (1.8V)			25	
V _{DDIO} (1.8V I/O)			25	mV_{P-P}
V _{DDIO} (3.3V I/O)			50	

⁽²⁾ For soldering specifications, see product folder at www.ti.com and SNOA549.

DC Electrical Characteristics (1) (2) (3)

Symbol	Parameter	Conditions	;	Min	Тур	Max	Units
3.3V I/O LVC	MOS DC SPECIFICATIONS - VDD	o = 3.0 to 3.6V (BISTEN, LOCK,	PASS, PDB, EQ[3:1], ID[1:0],	CONFIG[1:0], GPIC))
V _{IH}	High Level Input Voltage	$V_{IN} = 3.0V \text{ to } 3.6V$		2.2		V_{DDIO}	V
V _{IL}	Low Level Input Voltage	V _{IN} = 3.0V to 3.6V		GND		0.8	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{DDIO}$		-15		+15	μΑ
V _{OH}	High Level Output Voltage	I _{OH} = -2 mA		2.4		V_{DDIO}	V
V _{OL}	Low Level Output Voltage	$I_{OL} = +2 \text{ mA}$		GND		0.4	V
l _{OZ}	TRI-STATE Output Current	PDB = 0V		-15		+15	uA
1.8V I/O LVC	MOS DC SPECIFICATIONS - VDD	o = 1.71 to 1.89V (BISTEN, LOCI	K, PASS, PDB, EQ[3	3:1], ID[1:0], CONFI	G[1:0], GF	PIO)
V _{IH}	High Level Input Voltage	V _{IN} = 1.71V to 1.89V		0.65* V _{DDIO}		V _{DDIO}	V
V _{IL}	Low Level Input Voltage	V _{IN} = 1.71V to 1.89V		GND		0.35* V _{DDIO}	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{DDIO}$ $I_{OH} = -2 \text{ mA}$ $I_{OL} = +2 \text{ mA}$		-15		+15	μΑ
V _{OH}	High Level Output Voltage	I _{OH} = −2 mA				V_{DDIO}	V
V _{OL}	Low Level Output Voltage	I _{OL} = +2 mA		GND		0.45	V
l _{OZ}	TRI-STATE® Output Current	PDB = 0V		-15		+15	μΑ
SUPPLY CU	RRENT						
I _{DD1}	Supply current	Supply current drawn from 1.8V rail (V _{DDL} , V _{DDP} , V _{DDA}) Checker Board Pattern	V _{DDL} , V _{DDP} , V _{DDA} = 1.89V f = 75 MHz (900 Mbps)		88	95	mA
			V _{DDL} , V _{DDP} , V _{DDA} = 1.89V f = 10 MHz (120 Mbps)		38		mA
I _{DDTX1}		Supply current drawn at V _{DDCSI} Checker Board Pattern	V _{DDCSI} = 1.89V f = 75 MHz (900 Mbps)		50	65	mA
			V _{DDCSI} = 1.89V f = 10 MHz (120 Mbps)		22		mA
I _{DDIO1}		Supply current drawn at V _{DDIO} Checker Board Pattern	V _{DDIO} = 1.89V f = 75 MHz (900 Mbps)			10	mA
			V _{DDIO} = 3.6V f = 75 MHz (900 Mbps)			15	mA

⁽¹⁾ Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground

except VOD, Δ VOD, VTH and VTL which are differential voltages. Typical values represent most likely parametric norms at V_{DD} = 3.3V, Ta = +25 degC, and at the Recommended Operation Conditions at the time of product characterization and are not ensured.

⁽³⁾ The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not ensured.

DC Electrical Characteristics (1) (2) (3) (continued)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
I _{DDZ}	Supply Current at Power down mode	Supply current drawn from 1.8V rail (V_{DDL} , V_{DDP} , V_{DDA}) PDB = 0V (All other LVCMOS Inputs Low)	$V_{DDL}, V_{DDP}, V_{DDA}$ = 1.89V			5	mA
I _{DDTXZ}		Supply current drawn at VDDCSI PDB = 0V (All other LVCMOS Inputs Low)	V _{DDCSI} = 1.89V			5	mA
I _{DDIOZ}		Supply current drawn at V _{DDIO} PDB = 0V (All other LVCMOS Inputs	V _{DDIO} = 1.89V			3	mA
		Low)	$V_{DDIO} = 3.6V$			3	mA
IDDUPLS	Ultra Low Power State Current	Supply current drawn from 1.8V at (V _{DDL} , V _{DDP} , V _{DDA} , V _{DDCSI}) and V _{DDIO} PLL off, no change in all input signals Register: 0x19h = 0x03h 0x01h = 0x02h	$V_{DD} = 1.89V$ $V_{DDIO} = 3.6V$			20	mA
FPD-LINK II F	RECEIVER DC SPECIFICATIONS (R	IIN±)					
V_{TH}	Differential Input Threshold High Voltage	V _{CM} = +1.2V (Internal V _{BIAS})				+50	mV
V_{TL}	Differential Input Threshold Low Voltage	VCM = +1.2V (IIIteriiai VBIAS)		-50			mV
V_{CM}	Common Mode Voltage, Internal V _{BIAS}				1.2		V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{DD}$		-15		+15	μΑ
R_{T}	Internal Termination Resistor	Differential across RIN+ and R	IN-	80	100	120	Ω
CMLOUT± DF	RIVER OUTPUT DC SPECIFICATION	NS (CMLOUT±)					
V_{OD}	Differential Output Voltage (4)	$R_L = 100\Omega$			500		mV
Vos	Offset Voltage Single-ended	$R_L = 100\Omega$			1.3		V
R _T	Internal Termination Resistor	Differential across CMLOUT+ a	and CMLOUT-	80	100	120	Ω
HSTX DRIVE	R DC SPECIFICATIONS (DATA0±, D	DATA1±, CLK±) Section 8.1.1 of	MIPI D-PHY Specific	cation	ı		
V_{CMTX}	HS transmit static common-mode voltage			150	200	250	mV
$ \Delta V_{CMTX(1,0)} $	VCMTX mismatch when output is 1 or 0 state					5	mV
V _{OD}	HS transmit differential voltage			140	200	270	mV
ΔV _{OD}	VOD mismatch when output is 1 or 0 state					10	mV
V _{OHHS}	HS output high voltage					360	mV
Z _{OS}	Single ended output impedance			40	50	62.5	Ω
ΔZ _{OS}	Mismatch in single ended output impedance					10	%
LPTX DRIVE	R DC SPECIFICATIONS (DATA0±, D	DATA1±, CLK±) Section 8.1.2 of	MIPI D-PHY Specific	cation	•	•	+
V _{OH}	Output high level	See ⁽⁵⁾		1.1	1.2	1.3	V
V _{OL}	Output low level			-50		50	mV
Z _{OLP}	Output impedance			110			Ω

⁽⁴⁾ Voltage difference compared to the DC average common-mode potential.(5) Specification is ensured by characterization.

5.5 AC Switching Characteristics

Symbol	Parameter	Cor	nditions	Min	Тур	Max	Units
FPD-LINK II I	RECEIVER (RIN±)		-				
t _{IJT}	Input Jitter Tolerance, Figure 1	EQ = OFF,	jitter freq < 2MHz		0.9		UI ⁽¹⁾
		PCLK = 65MHz	jitter freq > 6MHz		0.5		UI
t _{DDLT}	Deserializer Lock Time, Figure 2	PCLK = 75 MHz			10		ms
HSTX DRIVE	R AC SPECIFICATIONS (DATA0±, DA	TA1±, CLK±) Secti	on 8.1.1 of MIPI D-PH	Y Specifica	tion		
HSTX _{DBR}	Data bit rate	DATA0± DATA1±	PCLK = 10-75MHz	120	PCLK*12	900	Mbps
f _{CLK}	DDR Clock frequency	CLK±		60	PCLK*6	450	MHz
$\Delta V_{CMTX(HF)}$	Common mode voltage variations HF	Common-level va MHz ⁽²⁾	riations above 450			15	mV_{RMS}
$\Delta V_{CMTX(LF)}$	Common mode voltage variations LF	Common-level va 50–450 MHz ⁽²⁾	riations between			25	mV_{PEAK}
t _{RHS}	Rise Time HS	20% to 80% rise	time (3)			0.3	UI _{INST}
				150			ps
t _{FHS}	Fall Time HS	20% to 80% rise time (3)				0.3	UI _{INST}
				150			ps
SDD_{TX}	TX differential return loss	See Figure 33 of	f _{LPMAX}			-18	dB
		MIPI D-PHY Specification (2)	f _H			-12	dB
			f _{MAX}			-6	dB
SCC _{TX}	TX common mode return loss	Section 7.7.2 of MIPI D-PHY Specification ⁽²⁾	f _{LPMAX} to f _{MAX}			-6	dB
	R AC SPECIFICATIONS (DATA0±, DAT of MIPI D-PHY Specification	ΓΑ1±, CLK±) ⁽⁴⁾					
t _{RLP}	Rise Time	LP 15% to 85% r Cload = 70pF lun	ise time nped capacitance			25	ns
t _{FLP}	Fall Time	LP 15% to 85% for Cload = 70pF lun	all time nped capacitance			25	ns
t _{REOT}	Post-EoT Rise and Fall Time	30%-85% rise time and fall time (2)				35	ns
t _{LP-PULSE-TX}	Pulse width of the LP exclusive-OR clock	First LP exclusive-OR clock pulse after Stop state or last pulse before Stop state ⁽²⁾		40			ns
		All other pulses (2	2)	20			ns
t _{LP-PER-TX}	Period of the LP exclusive-OR clock	See (2)		90			ns

⁽¹⁾ UI is equivalent to one serialized data bit width (1UI = 1 / 28*PCLK). The UI scales with PCLK frequency.

Specification is ensured by design and is not tested in production. Specification is ensured by characterization.

CLOAD includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2ns delay.

AC Switching Characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
σV/σtSR	Slew rate	Cload = 0pF (3) (4) (5)			500	mV/ns
		Cload = 5pF (3) (4) (5)			300	mV/ns
		Cload = 20pF (3) (4) (5)	250 150 150 y) 30 () 30 () 30 - 0.075 (V _{O,INST} - 700) 0 70 Y Specification 1/ (PCLK*12)	250	mV/ns	
		Cload = 70pF (3) (4) (5)			150	mV/ns
		Cload = 0 to 70pF (Falling Edge Only)	30			mV/ns
		Cload = 0 to 70pF (Rising Edge Only)	30			mV/ns
		Cload = 0 to 70pF (Rising Edge Only)	*			mV/ns
						1111/115
C_{LOAD}	Load capacitance	See (4)	0		70	pF
Data-Clock Ti	ming Specifications (DATA0±, DATA	1±, CLK±) Section 9.2.1 of MIPI D-PHY	Specification	1		
UI _{INST}	Instantaneous Unit Interval Figure 3	PCLK = 10 – 75 MHz ⁽⁹⁾				ns
t _{SKEW(TX)}	Data to Clock Skew Figure 3	Skew between Clock and data from ideal center ⁽²⁾	0.5-0.15	0.5	0.5+0.15	UI _{INST}
CSI-2 Timing	Specifications (DATA0±, DATA1±, CL	K±) (2) (Figure 4, Figure 5) Section 5.9	of MIPI D-PH	IY Specificati	on	
t _{CLK-POST}	HS exit		60 + 52*UI _{INST}			ns
t _{CLK-PRE}	Time HS clock shall be driver prior to any associated Data Lane beginning the transition from LP to HS mode		8			UI _{INST}
t _{CLK-PREPARE}	Clock Lane HS Entry		38		95	ns
t _{CLK-SETTLE}	Time interval during which the HS receiver shall ignore any Clock Lane HS transitions		95		300	ns
t _{CLK-TERM-EN}	Time-out at Clock Lane Display Module to enable HS Termination				38	ns
t _{CLK} -TRAIL	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst		30			ns
t _{CLK-PREPARE} + t _{CLK-ZERO}	TCLK-PREPARE + time that the transmitter drives the HS-0 state prior to starting the Clock		300			ns
t _{D-TERM-EN} (10)	Time for the Data Lane receiver to enable the HS line termination		35 ns + 4*UI _{INST}			ns
t _{LPX}	Transmitted length of LP state		50			ns
t _{HS-PREPARE}	Data Lane HS Entry		40 + 4*UI _{INST}		85 + 6*UI _{INST}	ns
ths-prepare + ths-zero	tHS-PREPARE + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence		145 + 10*UI _{INST}			ns
t _{HS-SETTLE}	Interval HS receiver shall ignore any Data Lane HS transitions		85 + 6*UI _{INST}		145 + 10*UI _{INST}	ns

- Measured as average across any 50 mV segment of the output signal transition. When the output voltage is between 400 mV and 930 mV.
- Where VO,INST is the instantaneous output voltage, VDP or VDN, in millivolts. When the output voltage is between 700 mV and 930 mV. (7)
- UI_{INST} is equal to 1/(12*PCLK), where PCLK is the fundamental frequency for data transmission.
- (10) This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in D-PHY ver 1.00.00.

AC Switching Characteristics (continued)

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{HS-TRAIL}	Data Lane HS Exit		60 + 4*UI _{INST}			ns
t _{EOT}	Transmitted time interval from the start of tHS-TRAIL to the start of the LP-11 state following a HS burst				105 + 12*UI _{INST}	ns
t _{HS-EXIT}	Time that the transmitter drives LP- 11 following a HS burst.		100			ns
t _{WAKEUP}	Recovery Time from Ultra Low Power State (ULPS)		1			ms

5.6 Recommended Timing for the Serial Control Bus (CCI/I2C)

Over supply and temperature ranges unless otherwise specified. (Figure 7) $^{\left(1\right)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{SCL}	SCL Clock Frequency	Standard Mode	>0		100	kHz
		Fast Mode	>0		400	kHz
t_{LOW}	SCL Low Period	Standard Mode	4.7			us
		Fast Mode	1.3			us
t _{HIGH}	SCL High Period	Standard Mode	4.0			us
		Fast Mode	0.6			us
t _{HD;STA}	Hold time for a start or a	Standard Mode	4.0			us
	repeated start condition	Fast Mode	0.6			us
t _{SU;STA}	Set Up time for a start or a	Standard Mode	4.7			us
	repeated start condition	Fast Mode	0.6			us
$t_{HD;DAT}$	Data Hold Time	Standard Mode	0		3.45	us
		Fast Mode	0		0.9	us
t _{SU;DAT}	Data Set Up Time	Standard Mode	250			ns
		Fast Mode	100			ns
t _{SU;STO}	Set Up Time for STOP	Standard Mode	4.0			us
	Condition	Fast Mode	0.6			us
t _{BUF}	Bus Free Time	Standard Mode	4.7			us
	Between STOP and START	Fast Mode	1.3			us
t _r	SCL & SDA Rise Time	Standard Mode			1000	ns
		Fast Mode			300	ns
t _f	SCL & SDA Fall Time	Standard Mode			300	ns
		Fast mode			300	ns

⁽¹⁾ Recommended Input Timing Requirements are input specifications and not tested in production.

5.7 DC and AC Serial Control Bus (CCI/I2C)

Over supply and temperature ranges unless otherwise specified. (Figure 7)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IH}	Input High Level	SDA and SCL	0.65* V _{DDIO}		V _{DDIO}	V
V _{IL}	Input Low Level Voltage	SDA and SCL	SDA and SCL GND 0.3 V _{DI}			
V _{HY}	Input Hysteresis	Fast mode, 3.3V I/O (1)	0.05* V _{DDIO}			mV
		Fast mode, 1.8V I/O		0.1* V _{DDIO}		mV
V _{OL}	Output Low Level Voltage	SDA, I _{OL} = +1.5 mA	0		0.4	V
t _R	SDA RiseTime – READ	Total capacitance of one bus line, Cb ≤ 400pF			300	ns
t _F	SDA Fall Time – READ	Standard mode			1000	ns
		Fast mode			300	ns
t _{SU;DAT}	Set Up Time – READ	Standard mode	250			ns
		Fast mode	100			ns
t _{HD;DAT}	Hold Up Time – READ		0		_	ns
t _{SP}	Input Filter	Fast mode 50			ns	
C _{in}	Input Capacitance	SDA and SCL 5				pF

(1) Specification is ensured by characterization.

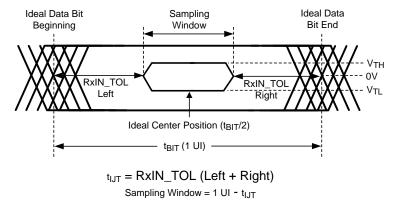


Figure 1. Receiver Input Jitter Tolerance

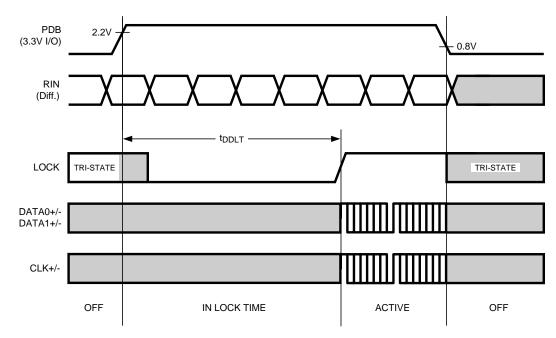


Figure 2. Deserializer PLL Lock Time

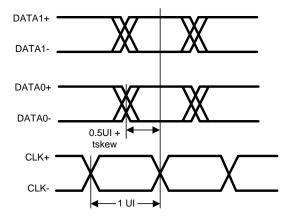


Figure 3. Clock and Data Timing in HS Transmission

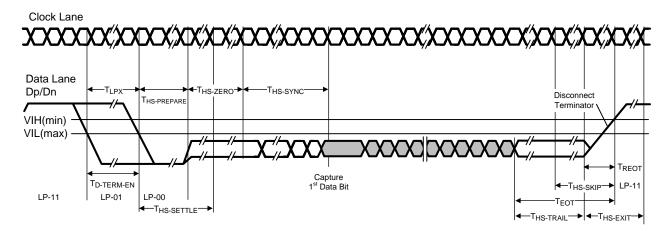


Figure 4. High Speed Data Transmission Burst

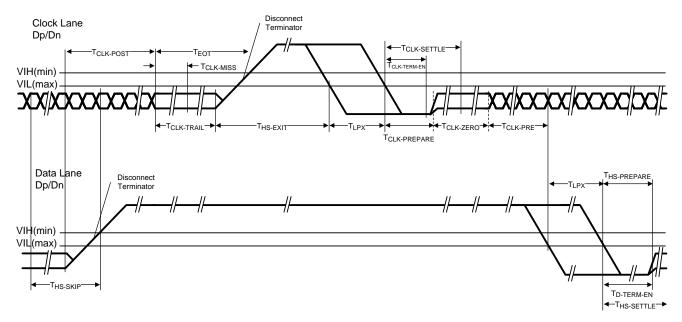


Figure 5. Switching the Clock Lane between Clock Transmission and Low-Power Mode

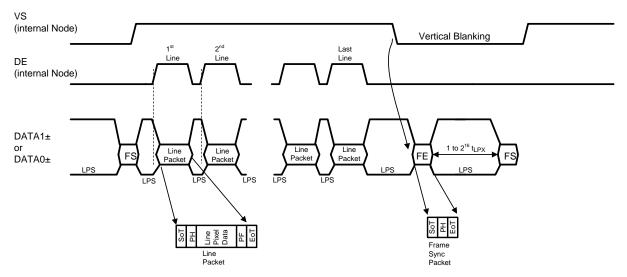


Figure 6. Long Line Packets and Short Frame Sync Packets

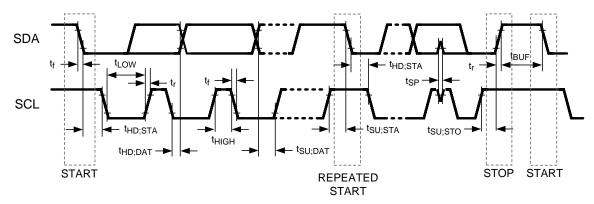
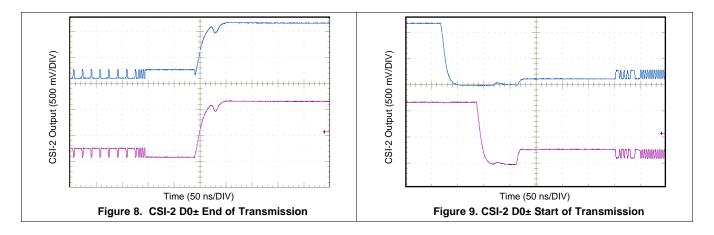



Figure 7. Serial Control Bus Timing Diagram

5.8 Typical Characteristics

6 Detailed Description

6.1 Overview

The DS90UR910-Q1 recovers RBG data and sync signals from a FPD-Link II AC coupled serial bit stream, and converts the recovered data into packetized CSI-2 data format. The CSI-2 output serial interface greatly reduces the interconnect and signal count to a graphic processing unit and eases system designs for video streams from multiple automotive driver assist cameras.

The DS90UR910-Q1 is based on the DS90UR906Q de-serializer core. Please refer to the DS90UR906Q datasheet for the functionality and performance of the FPD-Link II interface can be found in the DS90UR906Q datasheet.

The DS90UR910-Q1 conforms to the MIPI CSI-2 and DPHY standards for protocol and electrical specifications. Compliant with standards:

- Conforms with MIPI Alliance Specification for D-PHY, version 1.00.00, dated May 14, 2009
- Compatible with MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.01, dated Nov 9, 2010

The DS90UR910-Q1 receives 24-bit (or 18-bit) RGB data and 3 low speed control signals (VS, HS, DE) over a serial FPD-Link II transmitted through a single twisted pair. It supports a pixel clock of 10 MHz to 75 MHz, corresponding to the serial line rate of 280 Mb/s to 2100 Mb/s. The serial bit stream contains the scrambled 24-bit data, an embedded clock, encoded control signals and DC balance information which enhances signal quality and supports AC coupling.

The DS90UR910-Q1 is compatible with FPD-Link II serializers such as DS90UR905Q, DS90UR241Q, DS90C241Q, DS90UR907Q, DS99R421Q and DS90UH/UB/92x FPD-Link III serializers in backward compatibility mode. The serial bit stream is illustrated in Figure 10. In each pixel clock cycle, a 28-bit frame is transmitted over the FPD-Link. The frame contains C1 and C0 representing the embedded clock information. C1 is always high and C0 is always low. Payload bits b[23:0] contain the scrambled 24-bit RGB data. DCB is the DC balance bit and is used to minimize the DC offset on the signal line. DCA is used to validate the data integrity in the embedded data stream and contain the encoded control signals VS, HS and DE (DS90UR905Q, DS90UR907Q and DS90UH/UB/92x in backward compatible mode).

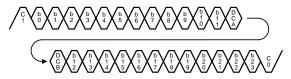


Figure 10. FPD-Link II Serial Stream

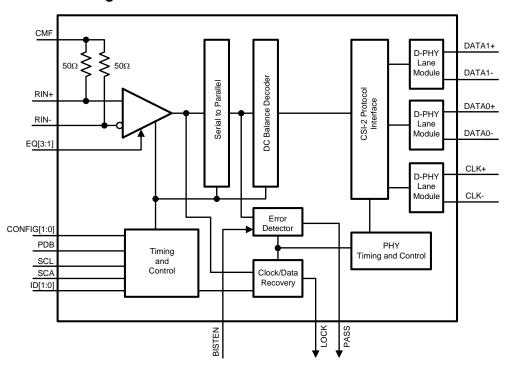

The DS90UR910-Q1 supports compatibility to FPD-Link II serializers and FPD-Link III serializers in backward compatible mode as defined in Table 1.

Table 1. DS90UR910-Q1 Configuration Modes

CON FIG1	CON FIG0	Mode	FPD-Link II Compatibility	CSI-2 Data Format
0	0	Normal Mode, Control Signal Filter disabled	DS90UR905Q 24-bit DS90UR907Q 24-bit DS90UH/UB/92x Serializers 24-bit	RGB888
0	1	Normal Mode, Control Signal Filter enabled	DS90UR905Q 24-bit DS90UR907Q 24-bit DS90UH/UB/92x Serializers 24-bit	RGB888
1	0	Backwards Compatible GEN2	DS90UR241Q 18-bit DS99R421Q 18-bit	RGB888
1	1	Backwards Compatible GEN1	DS90C241Q 18-bit	RGB888

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Input Receive Equalization

The input equalizer of the DS90UR910-Q1 is designed to compensate the attenuation distortion results from cable of different length or wire gauge. The equalizer gain setting is controlled by the control pins EQ[3:1] or through register programming. Users can optimize the equalizer's gain setting along with the de-emphasis level of the DS90UR905Q/907Q to achieve the optimum jitter performance.

Note this function cannot be seen at the RIN+/- input but can be observed at the serial test port (CMLOUT+/-) enabled via the Serial Bus control registers. The equalization feature may be controlled by the external pin or by register.

INPUTS EQ[3:1] EQ Boost EQ2 EQ3 EQ1 0 ~3 dB 0 1 1 0 0 ~4.5 dB 0 1 1 ~6 dB 1 0 0 ~7.5 dB 1 0 1 ~9 dB 1 0 1 ~10.5 dB 1 ~12 dB 1 1 See (1) 0 0 0

Table 2. Receiver Equalization Configuration

6.3.2 CSI-2 Interface

The DS90UR910-Q1 (in default mode) takes the RGB data bits R[7:0], G[7:0] and B[7:0] defined in the 24-bit serializer pinout and directly maps to the RGB888 color space in the data frame. The DS90UR910-Q1 follows the General Frame Format as described in Figure 49 of the CSI-2 standard (repeated here in Figure 11). Upon the end of the vertical sync pulse (VS), the DS90UR910-Q1 generates the Frame End and Frame Start synchronization packets within the vertical blanking period. The timing of the Frame Start will not reflect the timing of the VS signal.

Upon the rising edge of the DE signal, each active line is output in a long data packet with the RGB888 data format. At the end of each packet, the data lanes DATA0± and DATA1± return to the LP-11 state, while the clock lane CLK± continue outputting the high speed clock.

⁽¹⁾ Default Setting is EQ = Off

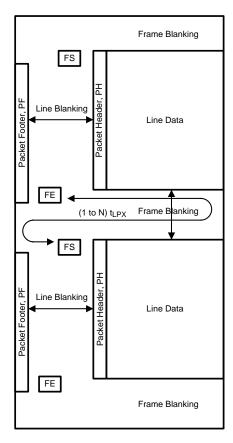


Figure 11. General Frame Format

6.3.3 High Speed Clock and Data

The high speed clock and data outputs are source synchronous interface. The half rate clock at CLK± is derived from the pixel clock sourced by the clock/data recovery circuit of the DS90UR910-Q1. The clock frequency is 6 times the Pixel clock frequency. The 24-bit recovered RGB data is serialized and output at the 2 high speed data lanes DATA0± and DATA1± in according to the CSI-2 protocol. The data rate of each lane is 12 times the Pixel clock. As an example, at a pixel clock of 75 MHz, the CLK± runs at 450 MHz, and the data lanes run at 900 Mb/s.

The half-rate clock maintains a quadrature phase relationship to the data signals and allows receiver to sample data at the rising and falling edges of the clock. Figure 3 shows the timing relationship of the clock and data lines. The DS90UR910-Q1 supports continuous high speed clock.

High speed data are sent out at DATA0± and DATA1± in bursts. In between data bursts, the data lanes return to Low Power States in according to protocol defined in D-PHY standard. The rising edge of the differential clock (CLK+ – CLK-) is sent during the first payload bit of a transmission burst in the data lanes.

The DS90UR910-Q1 recovers the data bits R[7:0], G[7:0], B[7:0], VS, HS and DE from the serial FPD-Link II bit stream at RIN±. During the vertical blanking period (VS goes low), it sends the short Frame End packet, followed by a short Frame Start packet. User can program the time between Frame End to Frame Start packets from 0 to (2¹⁶-1) in units of 8*pclk_period/3.

6.3.4 Non-continuous/Continuous Clock

DS90UR910-Q1 D-PHY supports Continuous clock mode and Non-Continuous clock mode. Default mode is Non-Continuous Clock mode, where the Clock Lane enters in LP mode between the transmissions of data packets. Non-continuous clock mode will only be non-continuous during the vertical blanking period for lower PCLK rates. For higher PCLK rates, the clock will be non-continuous between line and frame packets. Operating modes are configurable through CCI.

Clock lane enters LP11 during horizontal blanking if the horizontal blanking period is longer than the overhead time to start/stop the clock lane. There is auto-detection of the length of the horizontal blank period. The threshold is 70 PCLK cycles. Register bit available to disable off the non-continuous clock mode

6.3.5 Data Frame RGB Mapping

Table 3 shows the pixel data R[7:0], G[7:0 and B[7:0] defined in DS90UR905Q/907Q and DS90UH/UB/92x Serializers pinout, which are recovered by the DS90UR910-Q1 and output in RGB888 format (data type 0x24) at the CSI-2 interface.

Table 3. CSI-2 RGB888 Data Format with FPD-Link II Serializer (24-bit mode)

FPD-Link II (24-bit)	RGB888 Data bits
pin name	
R[0]	R[0]
R[1]	R[1]
R[2]	R[2]
R[3]	R[3]
R[4]	R[4]
R[5]	R[5]
R[6]	R[6]
R[7]	R[7]
G[0]	G[0]
G[1]	G[1]
G[2]	G[2]
G[3]	G[3]
G[4]	G[4]
G[5]	G[5]
G[6]	G[6]
G[7]	G[7]
B[0]	B[0]
B[1]	B[1]
B[2]	B[2]
B[3]	B[3]
B[4]	B[4]
B[5]	B[5]
B[6]	B[6]
B[7]	B[7]
HS	
VS	
DE	

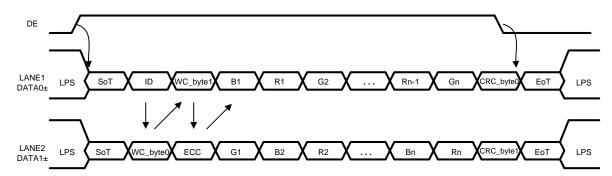


Figure 12. DATA0± and DATA1± packet format in according to CSI-2 protocol for RGB888

Table 4. CSI-2 Data Format with FPD-Link II Serializers (18-bit mode)

FPD-Link II (18-bit) pin name	RGB Data bits	CSI-2 RGB888 Data bits
		R[0]
		R[1]
DIN[0]	R[0]	R[2]
DIN[1]	R[1]	R[3]
DIN[2]	R[2]	R[4]
DIN[3]	R[3]	R[5]
DIN[4]	R[4]	R[6]
DIN[5]	R[5]	R[7]
		G[0]
		G[1]
DIN[6]	G[0]	G[2]
DIN[7]	G[1]	G[3]
DIN[8]	G[2]	G[4]
DIN[9]	G[3]	G[5]
DIN[10]	G[4]	G[6]
DIN[11]	G[5]	G[7]
		B[0]
		B[1]
DIN[12]	B[0]	B[2]
DIN[13]	B[1]	B[3]
DIN[14]	B[2]	B[4]
DIN[15]	B[3]	B[5]
DIN[16]	B[4]	B[6]
DIN[17]	B[5]	B[7]
DIN[18]	HS	
DIN[19]	VS	
DIN[20]	DE	

6.3.6 Serial Control Bus (CCI/I2C)

The DS90UR910-Q1 can be configured by the use of the I2C or CCI (Camera Control Interface) as defined by MIPI, which is a bi-directional, half-duplex, serial control bus consists of SDA and SCL. The SDA is the bi-directional data line. The SCL is the serial clock line. Both SCL and SDA are driven by open drain drivers and required external pull-up resistors to VDDIO. The signals are either driven low or pulled high.

The DS90UR910-Q1 is a CCI slave. ID[1:0] pins select one of the four CCI slave addresses (see Table 5).

Table 5. CCI/I2C Slave Address

ID[1]	ID[0]	7-bit slave address	8-bit slave address (0 appended WRITE)
0	0	011 1100 (0x3C'h)	0111 1000 (0x78'h)
0	1	011 1101 (0x3D'h)	0111 1010 (0x7A'h)
1	0	011 0110 (0x36'h)	0110 1100 (0x6C'h)
1	1	011 0111 (0x37'h)	0110 1110 (0x6E'h)

The Serial Bus protocol is initiated by START or START-REPEATED, and terminated by STOP condition. A START occurs when SDA transitions low while SCL is high. A STOP occurs when SDA transitions high when SCL is high. See Figure 13.



Figure 13. START and STOP Conditions

To communicate with a remote device, the host controller (master) sends the 7-bit slave address followed by a write-bit (0), and listens for a response from the slave. This response is referred to as an acknowledge bit. If the slave on the bus is addressed correctly, it acknowledges the master by driving the SDA low (ACK). If the address does not match a device's slave address, it negative acknowledges the master by letting SDA be pulled high (NACK). In a write operation from master to slave, the master sends the 8-bit index address of the register that it wants to access. After the slave ACKs, the master sends the 8-bit data byte. The slave ACKs after each data byte is successfully received and is ready to receive another byte into the next sequential index location. At the end of the data transfer, the master ends the transaction with a STOP condition.

In a read operation, the master first sends the 8-bit index address of the register that it wants to access. After receiving an ACK from the slave, it initiates a START-REPEAT condition, sends the 7-bit slave address followed by the read-bit (1). The slave ACKs and sends out the 8-bit data byte. The master acknowledges an ACK when another data byte will be sent to the next sequential index address. The master acknowledges an NACK when no more data byte will be sent, and ends the transaction with a STOP condition.

The CCI interface of the DS90UR910-Q1 supports Standard mode (<100KHz) or Fast mode (<400KHz) with 8-bit index addressing and 8-bit data transfer. It supports the following read/write operations between the DS90UR910-Q1 and the CCI master:

- Single read from random location
- · Single read from current location
- Sequential read starting from a random location
- Sequential read starting from the current location
- Single write to a random location
- · Sequential write starting from a random location

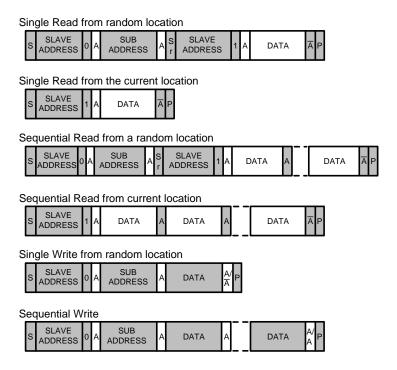


Figure 14. I2C/CCI Read/Write Operations

6.3.7 Ultra Low Power State

DS90UR910-Q1 D-PHY Lanes will enter ULPS mode upon software standby mode through CCI generated by Application Processor. When ULPS is entered, all lanes including the clock and data lanes are put in ULPS according to the MIPI D-PHY protocol. D-PHY can reduce power consumption by entering ULPS mode.

Ultra-Low Power State Entry Command is sent after an Escape mode Entry command through CCI, and then Lane shall enter the Ultra-Low Power State (ULPS). When ULPS is entered, all lanes including the clock and data lanes are put in ULPS according to the MIPI DPHY protocol. Typically an ULPS entry command is used but other sequences can be used also. Ultra-Low Power State is exited by means of a Mark-1 state with a length TWAKEUP followed by a Stop state. Reference: [1] D-PHY Specification, Section 5.6.3, Line 895

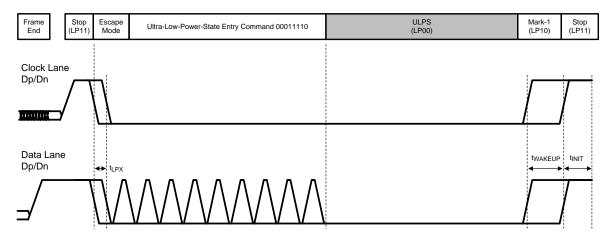


Figure 15. Ultra-Low Power State

6.3.8 Display Timing Requirements

Table 6 shows the supported display resolutions for the DS90UR910-Q1. The display timings assume an estimated overall blanking rate of 1.2. The DS90UR910-Q1 will automatically detect the incoming data rate by from the frame rate (by measuring VS). This timing is then mapped into a look up table. The lookup table is used for any pixel rate from PCLK of 10 MHz to 65 MHz. The limitation that it assumes the frame rate is 60fps and 30fps. An override option will be available to set each of the parameter individually for a data rate that is not listed in the table. Option is programmed through CCI. Operation of frequencies above 65 MHz require additional I2C/CCI programming of CSI_TIMING registers.

Table 6. DS90UR910-Q1 Supported Resolution and Refresh Rates with Expected Blanking Period

							-		_
Resolution	Hactive (pixels)	Hblank (pixels)	Htotal (pixels)	Vactive (lines)	Vblank (lines)	Vtotal (lines)	Frame size (pixels)	Refresh (Hz)	PCIk (MHz)
400x240	400	40	440	240	5	245	107800	60	6.468
640x240	640	40	680	240	5	245	166600	60	9.996
800x480	800	40	840	480	5	485	407400	60	24.444
1280x480	1280	40	1320	480	5	485	640200	60	38.412
640x480	640	144	784	480	29	509	399056	60	23.94336
800x600	800	256	1056	600	28	628	663168	60	39.79008
960x160	960	40	1000	160	5	165	165000	60	9.9
640x160	640	40	680	160	5	165	112200	60	6.732
480x240	480	96	576	240	24	264	152064	60	9.12384
800x480	800	160	960	480	48	528	506880	60	30.4128
1280x480	1280	256	1536	480	48	528	811008	60	48.66048
960x540	960	192	1152	540	54	594	684288	60	41.05728
1440x540	1440	288	1728	540	54	594	1026432	60	61.58592
1000x600	1000	200	1200	600	60	660	792000	60	47.52
640x480	640	160	800	480	45	525	420000	60	25.2
800x600	800	256	1056	600	28	628	663168	60	39.79008
1024x768	1024	320	1344	768	38	806	1083264	60	64.99584
1440x550	1440	144	1584	550	55	605	958320	60	57.4992
800x480	800	256	1056	480	45	525	554400	60	33.264
800x480	800	256	1056	480	45	525	554400	30	16.632
1024x480	1024	52	1076	480	24	504	542304	60	32.53824
1024x480	1024	52	1076	480	24	504	542304	30	16.26912
1024x480	1024	100	1124	480	48	528	593472	60	35.60832
1024x480	1024	100	1124	480	48	528	593472	30	17.80416
1440x550	1440	154	1594	550	55	605	964370	60	57.8622
1440x550	1440	154	1594	550	55	605	964370	30	28.9311

6.4 Register Maps

Table 7. Serial Bus Control Registers

ADD (hex)	Register Name	Bit(s)	R/W	Default	Field	Description
0x00	I2C_SLAVE_ID	7:1	R/W	0x30	DEVID	I2C slave ID
		0	R/W	0	DEVID_EN	0: Address from ID[X] Pin 1: Address from Register
0x01	CONFIG1	7	R/W	0	LFMODE	If pin over write bit is one, controls the LF Mode. Debug only
		6	R	0	Reserved	Reserved
		5	R/W	0	SLEW	Control slew rate of LOCK, PASS and GPIO 0: Normal slew 1: Increased Slew
		4	R	0	Reserved	Reserved
		3:2	R/W	0	MODE	00: Normal Mode, Control Signal Filter Disabled 01: Normal Mode, Control Signal Filter Enabled 10: Backwards Compatible (GEN2) 11: Backwards Compatible (GEN1) (See Table 1)
		1	R/W	0	SLEEP	Note – not the same function as PowerDown (PDB pin) 0: Normal mode 1: Sleep Mode – Register settings retained.
		0	R/W	0	USEREG	Configurations set from control pins / STRAP pins Override EQ and CONFIG strapped control inputs with register settings
0x02	CONFIG2	7:6	R	0	Reserved	Reserved
		5:4	R/W	00	ОМАР	6 bits to 8 bits color mapping 00: bit 4, 5 repeated on LSB 01: LSB zero if all data is zero 10: LSB zero 11: LSB zero
		3	R	0	Reserved	Reserved
		2:0	R/W	3'b100	Reserved	Reserved
0x03	EQ Control	7:4	R/W	000	EQ	Override EQ pin input if USEREG bit set
		3:0	R	0	Reserved	Reserved
0x04	CMLOUT Config	7	R/W	0	CMLOUT	Loop through enable 0: Output CMLOUT+/- = disabled 1: Output CMLOUT+/- = enabled
		6:0	R/W	0	VOD	VOD control 000000: min VOD 000001: 000011: 000111: 001111: 011111: 111111: max VOD
0x05-> 0x10	NA	7:0	R/W	0	Reserved	Reserved

Register Maps (continued)

Table 7. Serial Bus Control Registers (continued)

					, regione (commucu)	
ADD (hex)	Register Name	Bit(s)	R/W	Default	Field	Description
0x11	CSI config	7	R/W	0	CCI_INV_VS	0: VS is active low pulse 1: VS is active high pulse
		6	R/W	0	CCI_CONT_CLOCK	0: CSI-2 non-continuous clock 1: CSI-2 continuous clock
		5:2	R/W	0	Reserved	Reserved
		1	R/W	0	CCI_EXTERNAL_TIMING	0: Use computed DPHY timing based on frame length 1: Use manual override values for DPHY timing
		0	R/W	0	CCI_INV_DE	0: DE is active low pulse 1: DE is active high pulse
0x12	CSI_FRM_GAP_0	7:0	R/W	0	CSI_FRM_GAP_0	Defined the delay between the start frame and end frame packet (lower byte)
0x13	CSI_FRM_GAP_1	7:0	R/W	0	CSI_FRM_GAP_1	Defined the delay between the start frame and end frame packet (upper byte)
0x14	CSI_TIMING0	7:5		0	Reserved	Reserved
		4:0	R/W	0	TCLK_PREPARE	Defines the Tclk_prepare parameter if CCI_EXTERNAL_TIMING is set
0x15	CSI_TIMING1	7:3	R/W	0	TCLK_ZERO	Defines the Tclk_zero parameter if CCI_EXTERNAL_TIMING is set
		2:0	R/W	0	TCLK_TRAIL	Defines the Tclk_trail parameter if CCI_EXTERNAL_TIMING is set
0x16	CSI_TIMING2	7:4	R/W	0	TCLK_POST	Defines the Tclk_post parameter if CCI_EXTERNAL_TIMING is set
		3:0	R/W	0	THS_ZERO	Defines the Ths_zero parameter if CCI_EXTERNAL_TIMING is set
0x17	CSI_TIMING3	7	R/W	0	Reserved	Reserved
		6:4	R/W	0	THS_TRAIL	Defines the Ths_trail parameter if CCI_EXTERNAL_TIMING is set
		3:0	R/W	0	THS_EXIT	Defines the Ths_exit parameter if CCI_EXTERNAL_TIMING is set
0x18	CSI_TIMING4	7:3	R/W	0	THS_PREPARE	Defines the Ths_prepare parameter if CCI_EXTERNAL_TIMING is set
		2:0	R/W	0	TLPX	Defines the Ths_exit parameter if CCI_EXTERNAL_TIMING is set

Register Maps (continued)

Table 7. Serial Bus Control Registers (continued)

ADD (hex)	Register Name	Bit(s)	R/W	Default	Field	Description
0x19	CSI_ULPS	7:3	R/W	0	Reserved	Reserved
		1	R/W	0	ULPS_MODE	0: In ULPS mode, data lane off 1: In ULPS mode, data lane off, clock lane off, x6 PLL off
		0	R/W	0	ULPS_EN	0: Disable UPLS mode 1: Enable ULPS mode
0x1A	NA	7:0	R/W	0	Reserved	Reserved
0x1B	CSI_UNH1	7	R/W	0	Reserved	Reserved
		6:5	R/W	0x1	ACT_VERT_MSB	MSBs of active vertical UNH image
		4:3	R/W	0x2	TOT_VERT_MSB	MSBs of total vertical UNH image
		2:1	R/W	0	Reserved	Reserved
		0	R/W	0	PATGEN	Normal mode Enable pattern generator mode
0x1C	CSI_UNH2	7:0	R/W	0x0F	TOT_VERT_LSB	LSBs of total vertical UNH image
0x1D	CSI_UNH3	7:0	R/W	0xDF	ACT_VERT_LSB	LSBs of active vertical UNH image
0x1E	CSI_UNH4	7:6	R/W	0	Reserved	Reserved
		5:3	R/W	0x4	ACT_HORIZ_MSB	MSBs of active horizontal UNH image
		2:0	R/W	0x5	TOT_HORIZ_MSB	MSBs of total horizontal UNH image
0x1F	CSI_UNH5	7:0	R/W	0xFF	ACT_HORIZ_LSB	LSBs of active horizontal UNH image
0x20	CSI_UNH6	7:0	R/W	0xFF	TOT_HORIZ_LSB	LSBs of total horizontal UNH image
0x21	CSI_UNH7	7:0	R/W	0x09	PORCH_VERT	Vertical porch size UNH image
0x22	CSI_UNH8	7:0	R/W	0x09	SYNC_VERT	Vertical sync size UNH image
0x23	CSI_UNH9	7:0	R/W	0x09	PORCH_HORIZ	Horizontal porch size UNH image
0x24-> 0x2F	NA	7:0	R/W	0	Reserved	Reserved
0x30	CSI_ID0	7:0	R	0x5F	CID0	Chip ID, character "_"
0x31	CSI_ID1	7:0	R	0x55	CID1	Chip ID, character "U"
0x32	CSI_ID2	7:0	R	0x52	CID2	Chip ID, character "R"
0x33	CSI_ID3	7:0	R	0x39	CID3	Chip ID, character "9"
0x33	CSI_ID4	7:0	R	0x31	CID4	Chip ID, character "1"
0x35	CSI_ID5	7:0	R	0x30	CID5	Chip ID, character "0"
0x36	CSI_REVID	7:0	R	0x01	CID5	Revision ID of the design
0x37-> 0x3A	NA	7:0	R	0	Reserved	Reserved
0x3B	REVID	7:0	R	0x01	REVID	Revision ID of the design
0x3C-> 0x3F	NA	7:0	R	0	Reserved	Reserved
0x40-> 0xFF						Address range 0x00 to 0x3F aliases into the full address space.

7 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

7.1 Typical Application Connection

Figure 16 shows a typical application of the DS90UR910-Q1 in Pin control mode for a 24-bit Color Display Application. The LVDS signals require 100 nF AC coupling capacitors to the line. The line driver includes internal termination. Bypass capacitors are placed near the power supply pins. At a minimum, four 0.1 μ F capacitors and a 4.7 μ F capacitor should be used for local device bypassing. System GPO (General Purpose Output) signals control the PDB and BISTEN pins. The interface to the host is with 1.8 V LVCMOS levels, thus the VDDIO pin is connected also to the 1.8V rail. The Optional I2C/CCI is connected to the Host bus in this example, thus the SCL and SDA pins are using pull-up resistors R to VDDIO. A delay cap is placed on the PDB signal to delay the enabling of the device until power is stable.

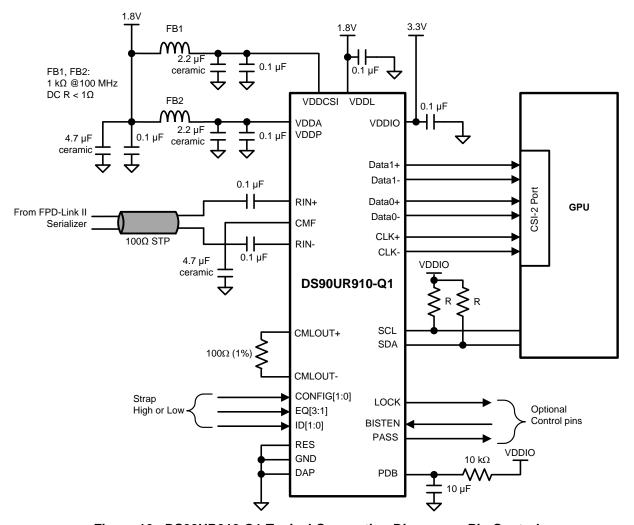


Figure 16. DS90UR910-Q1 Typical Connection Diagram — Pin Control

7.2 Design Requirements

For the typical design application, use the following as input parameters.

Design Requirements (continued)

Table 8. Design Parameters

Design Parameter	Example Value
VDDIO	1.8V or 3.3V
VDDL, VDDA, VDDP, VDDCSI	1.8V
AC Coupling Capacitor for RIN0± and RIN1±	100nF

The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme. External AC coupling capacitors must be placed in series in the FPD-Link II signal path as illustrated in Figure 17.

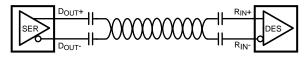
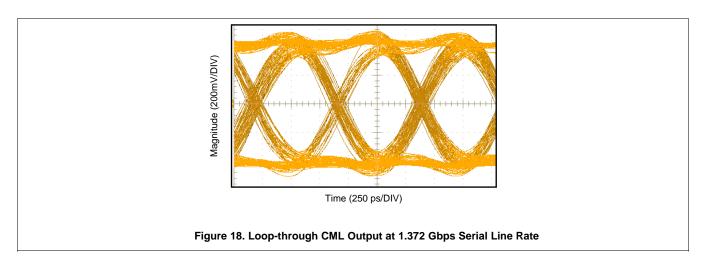



Figure 17. AC-Coupled Connection

For high-speed FPD-Link II transmissions, the smallest available package should be used for the AC coupling capacitor. This will help minimize degradation of signal quality due to package parasitics. The I/O's require 100nF AC coupling capacitors to the line.

7.3 Application Performance Plots

The plot below corresponds to 49MHz PCLK UNH pattern.

8 Power Supply Recommendations

8.1 Power Up Requirements and PDB Pin

The VDD (V_{DDn} and V_{DDIO}) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms then a capacitor on the PDB pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage. When PDB pin is pulled to V_{DDIO} , it is recommended to use a 10 k Ω pull-up and a >10 uF cap to GND to delay the PDB input signal.

9 Layout

9.1 Layout Guidelines

9.1.1 Transmission Media

The Ser/Des chipset is intended to be used in a point-to-point configuration, through a PCB trace, or through twisted pair cable. The Ser and Des provide internal terminations providing a clean signaling environment. The interconnect for LVDS should present a differential impedance of 100 Ohms. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities. Shielded or un-shielded cables may be used depending upon the noise environment and application requirements.

9.1.2 PCB Layout and Power System Considerations

Circuit board layout and stack-up for the LVDS Ser/Des devices should be designed to provide low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the tantalum capacitors should be at least 5X the power supply voltage being used.

Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power entry. This is typically in the 50uF to 100uF range and will smooth low frequency switching noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass capacitor will increase the inductance of the path.

A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing the impedance at high frequency.

Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate switching noise effects between different circuit sections. Separate PCB planes are typically not required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.

Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely-coupled differential lines of 100 Ohms are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.

Information on the WQFN style package is provided in Application Note: AN-1187 / SNOA401.

Layout Guidelines (continued)

9.1.3 CSI-2 Guidelines

- 1. CSI0_D*P/N and CSI1_D*P/N pairs should be routed with controlled 100-Ohm differential impedance (± 20%) or 50-Ohm single-ended impedance (±15%)
- 2. Keep away from other high speed signals
- 3. Keep length difference between a differential pair to 5 mils max
- 4. Length matching should be near the location of mismatch.
- 5. Match trace lengths between pairs to be < 25 mils.
- 6. Each pair should be separated at least by 3 times the signal trace width
- 7. The use of bends in differential traces should be kept to a minimum. When bends are used, the number of left and right bends should be as equal as possible and the angle of the bend should be ≥ 135 degrees. This arrangement minimizes any length mismatch caused by the bends and therefore minimizes the impact that bends have on EMI.
- 8. Route all differential pairs on the same layer
- 9. The number of VIAS should be kept to a minimum. It is recommended to keep the VIA count to 2 or less
- 10. Keep traces on layers adjacent to ground plane
- 11. Do NOT route differential pairs over any plane split
- 12. Adding Test points will cause impedance discontinuity and will therefore negatively impact signal performance. If test points are used, they should be placed in series and symmetrically. They must not be placed in a manner that causes a stub on the differential pair

Layout Guidelines (continued)

9.1.4 Layout Example

Figure 19 (PCB layout example) is derived from a layout design of the DS90UR910-Q1 EVM. This graphic and additional layout description are used to demonstrate both proper routing and proper solder techniques when designing in the Deserializer.

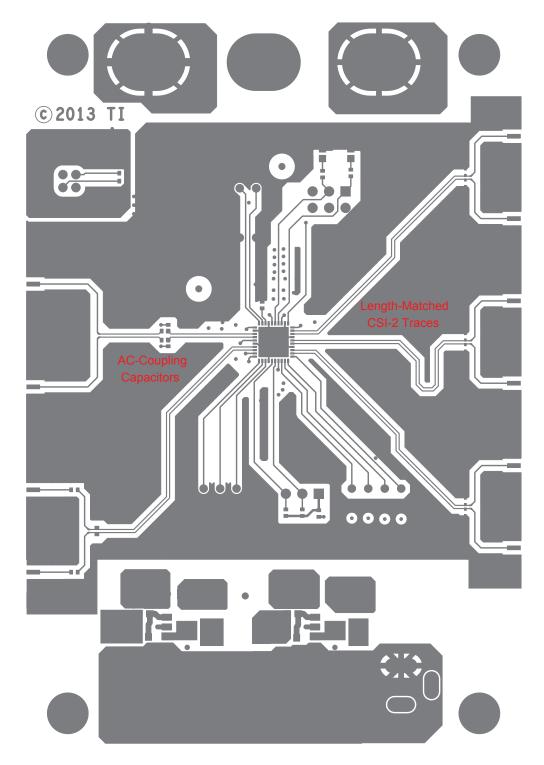


Figure 19. DS90UR910-Q1 Deserializer Example Layout

Layout Guidelines (continued)

9.1.5 LVDS Interconnect Guidelines

See AN-1108 and AN-905 for full details.

- Use 100Ω coupled differential pairs
- Use the S/2S/3S rule in spacings
 - S = space between the pair
 - 2S = space between pairs
 - 3S = space to LVCMOS signal
- Minimize the number of Vias and skew within the pair
- Use differential connectors when operating above 500 Mbps line speed
- · Maintain balance of the traces
- Terminate as close to the TX outputs and RX inputs as possible

Additional general guidance can be found in the LVDS Owner's Manual - available in PDF format from the Texas Instruments web site at: www.ti.com/lvds

10 器件和文档支持

10.1 商标

TRI-STATE is a registered trademark of National Semiconductor Corporation. All other trademarks are the property of their respective owners.

10.2 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

10.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

11 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 1-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
DS90UR910QSQ/NOPB	Active	Production	WQFN (RTA) 40	1000 SMALL T&R	Yes	SN	Level-3-260C-168 HR	-40 to 105	UR910QSQ
DS90UR910QSQ/NOPB.A	Active	Production	WQFN (RTA) 40	1000 SMALL T&R	Yes	SN	Level-3-260C-168 HR	-40 to 105	UR910QSQ
DS90UR910QSQE/NOPB	Active	Production	WQFN (RTA) 40	250 SMALL T&R	Yes	SN	Level-3-260C-168 HR	-40 to 105	UR910QSQ
DS90UR910QSQE/NOPB.A	Active	Production	WQFN (RTA) 40	250 SMALL T&R	Yes	SN	Level-3-260C-168 HR	-40 to 105	UR910QSQ
DS90UR910QSQX/NOPB	Active	Production	WQFN (RTA) 40	2500 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 105	UR910QSQ
DS90UR910QSQX/NOPB.A	Active	Production	WQFN (RTA) 40	2500 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 105	UR910QSQ
DS90UR910QSQX/NOPB.B	Active	Production	WQFN (RTA) 40	2500 LARGE T&R	-	Call TI	Call TI	-40 to 105	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

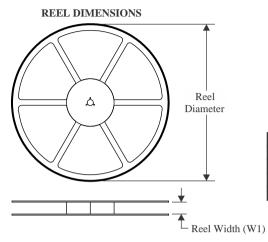
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

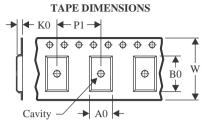
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

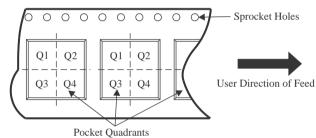
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM


www.ti.com 1-Nov-2025

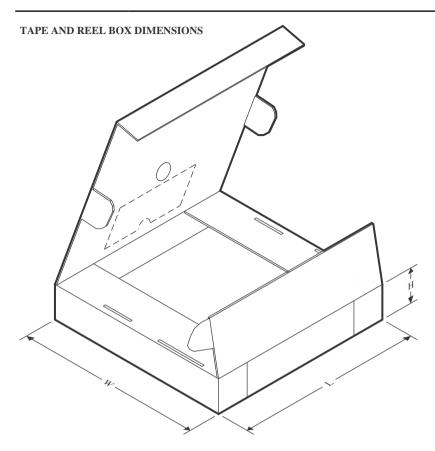
PACKAGE MATERIALS INFORMATION

www.ti.com 26-Aug-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

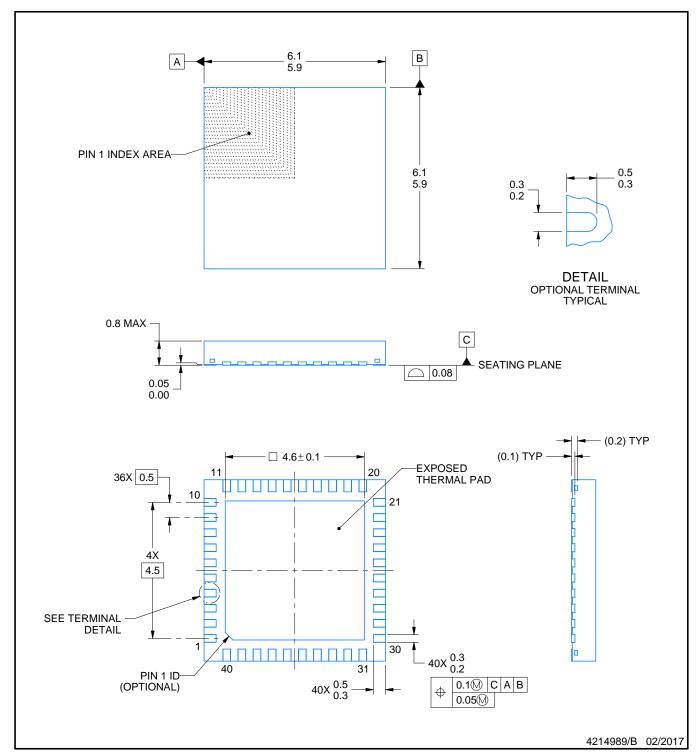
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS90UR910QSQ/NOPB	WQFN	RTA	40	1000	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q1
DS90UR910QSQE/NOPB	WQFN	RTA	40	250	178.0	16.4	6.3	6.3	1.5	12.0	16.0	Q1
DS90UR910QSQX/NOPB	WQFN	RTA	40	2500	330.0	16.4	6.3	6.3	1.5	12.0	16.0	Q1

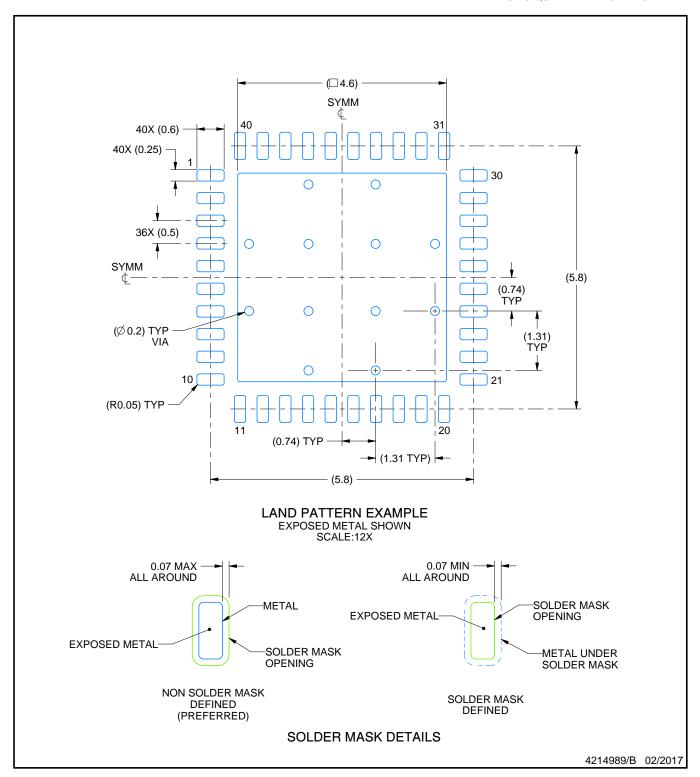
www.ti.com 26-Aug-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS90UR910QSQ/NOPB	WQFN	RTA	40	1000	356.0	356.0	36.0
DS90UR910QSQE/NOPB	WQFN	RTA	40	250	208.0	191.0	35.0
DS90UR910QSQX/NOPB	WQFN	RTA	40	2500	356.0	356.0	36.0

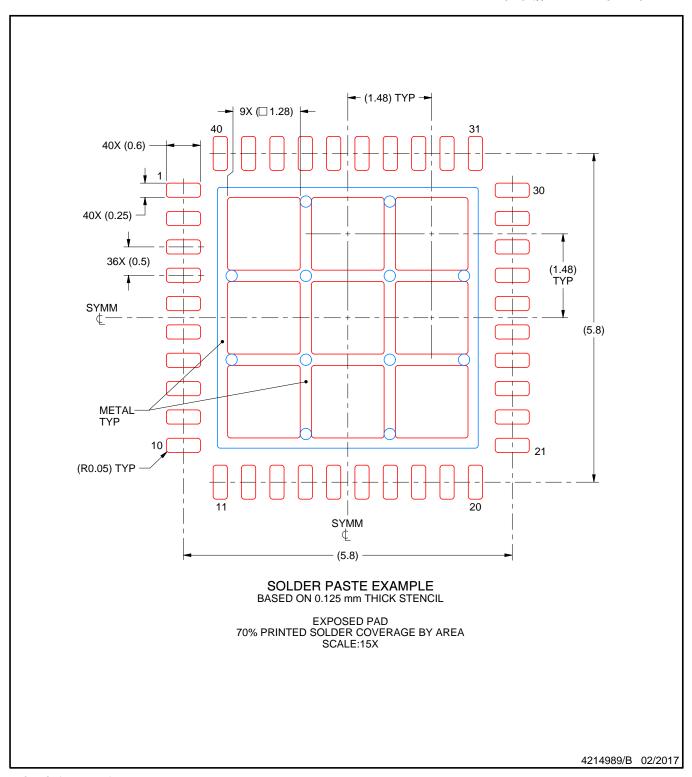
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月