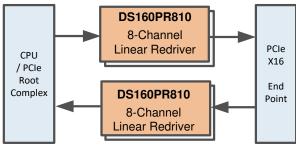


Technical documentation

Support & training

DS160PR810 ZHCSN27 DECEMBER 2020


DS160PR810 PCle 4.0 16Gbps8 通道线性转接驱动器

1 特性

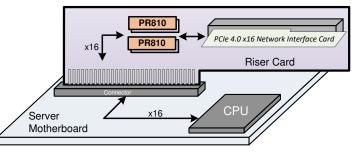
- 八通道线性均衡器,支持高达 16Gbps 的 PCIe 4.0
- 与协议无关的线性转接驱动器支持多种高速接口, 包括UPI、DisplayPort、SAS、SATA、XFI
- 提供均衡功能,以处理高达 42dB 的 PCIe 4.0 通道
- CTLE 在 8GHz 下可升至 18dB
- 90 ps 的超低延迟
- PRBS 数据具有 70fs 的低附加随机抖动
- 3.3V 单电源
- 107mW/通道的低有功功率
- 无需散热器 •
- 引脚搭接、SMBus/I²C 或 EEPROM 编程 •
- 针对 PCle 用例的自动接收器检测
- 无缝支持 PCle 链路训练
- 利用一个或多个 DS160PR810, 支持 x4、x8、 x16、PCle 总线宽度
- -40°C 至 85°C 的工业温度范围
- 64 引脚 5.5mm × 10mm WQFN 封装

2 应用

- 机架式服务器
- 微服务器和塔式服务器
- 高性能计算
- 硬件加速器
- 网络连接存储
- 存储区域网络 (SAN) 和主机总线适配器 (HBA) 卡
- 网络接口卡 (NIC)
- 台式计算机/主板

3 说明

DS160PR810 是八通道低功耗高性能线性转接驱动 器,专为支持速率高达 16Gbps 的 PCIe 4.0 和 Ultra Path Interface (UPI) 2.0 而设计。该器件是一款与协议 无关的线性转接驱动器,可通过多种差分接口来运行。


DS160PR810 接收器部署了连续时间线性均衡器 (CTLE),可提供高频增强。均衡器可以打开由于 PCB 布线或电缆等互连介质引起的码间串扰 (ISI) 而完全关 闭的输入眼图。线性转接驱动器和无源通道作为一个整 体接受链路训练,以便达到出色的传输和接收均衡设 置,从而实现更优的电气链路和尽可能低的延迟。该器 件具有低通道间串扰、低附加抖动和超低的回波损耗, 因此在链路中几乎可用作无源元件。这些器件具有内部 线性稳压器,对板上电源噪声具有高抗扰度,从而为高 速数据路径提供纯净电源。

DS160PR810 在量产期间实施了高速测试,从而确保 可靠的大批量生产。此器件还具有低交流和直流增益变 化,可在各种平台部署中提供一致的均衡功能。

器件信息(1)

器件型号	封装	封装尺寸(标称值)
DS160PR810	WQFN (64)	5.5 mm × 10.00 mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

典型应用

Table of Contents

1 特性	1
2 应用	1
3 说明	1
4 Revision History	
5 Pin Configuration and Functions	
Pin Functions	
6 Specifications	7
6.1 Absolute Maximum Ratings	7
6.2 ESD Ratings	7
6.3 Recommended Operating Conditions	7
6.4 Thermal Information	8
6.5 DC Electrical Characteristics	
6.6 High Speed Electrical Characteristics	9
6.7 SMBUS/I2C Timing Characteristics	10
6.8 Typical Characteristics	12
7 Detailed Description	16
7.1 Overview	16

7.2 Functional Block Diagram	. 17
7.3 Feature Description.	
7.4 Device Functional Modes	
7.5 Programming	19
8 Application and Implementation	
8.1 Application Information	
8.2 Typical Applications	22
9 Power Supply Recommendations	.30
10 Layout	.31
10.1 Layout Guidelines	
10.2 Layout Example	
11 Device and Documentation Support	.33
11.1 Receiving Notification of Documentation Updates.	. 33
11.2 Community Resources	.33
11.3 Trademarks	. 33
12 Mechanical, Packaging, and Orderable	
Information	. 33

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

DATE	REVISION NOTES	
December 2020	*	Initial release

5 Pin Configuration and Functions

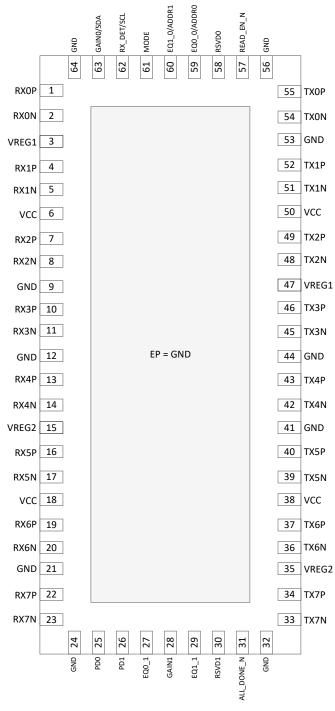


图 5-1. NJX Package 64-Pin WQFN Top View

Pin Functions

PIN		I/O, TYPE	DESCRIPTION			
NAME	NO.	10, TIPE	BESONF HON			
ALL_DONE_N	31	O, 3.3 V open drain	In SMBus/I²C Master Mode : Indicates the completion of a valid EEPROM register load operation. External pullup resistor such as 4.7 k Ω required for operation. High: External EEPROM load failed or incomplete Low: External EEPROM load successful and complete In SMBus/I²C slave/Pin Mode : This output is High-Z. The pin can be left floating.			
MODE	61	I, 4-level	Sets device control configuration modes. 4-level IO pin as defined in 表 7-1. The pin can be exercised at device power up or in normal operation mode. L0: Pin Mode – device control configuration is done solely by strap pins. L1: SMBus/I²C Master Mode - device control configuration is read from external EEPROM. When the device has finished reading from the EEPROM successfully, it will drive the ALL_DONE_N pin LOW. SMBus/I ² C slave operation is available in this mode before, during or after EEPROM reading. Note during EEPROM reading if the external SMBus/I ² C master wants to access the device registers it must support arbitration. L2: SMBus/I²C Slave Mode – device control configuration is done by an external controller with SMBus/I ² C master. L3 (Float): RESERVED – TI internal test mode.			
EQ0_0 / ADDR0	59	I, 4-level	In Pin Mode:			
EQ1_0 / ADDR1	60	I, 4-level	Sets receiver linear equalization (CTLE) for channels 0-3 according to $\frac{1}{8}$ 7-3. These pins are sampled at device power-up only. In SMBus /I ² C Mode: Sets SMBus / I ² C slave address according to $\frac{1}{8}$ 7-4. These pins are sampled at device power-up only.			
EQ0_1	27	I, 4-level	Sets receiver linear equalization (CTLE) for channels 4-7 according to $\frac{1}{2}$ 7-3 in Pin mode. The pin is sampled at device power-up only.			
EQ1_1	29	I, 4-level	Sets receiver linear equalization (CTLE) for channels 4-7 according to \hbar 7-3 in Pin mode. The pin is sampled at device power-up only.			
GAIN0 / SDA	63	I, 4-level / I/O, 3.3 V LVCMOS, open drain	In Pin Mode: Flat gain (DC and AC) from the input to the output of the device for channels 0-3. The pin is sampled at device power-up only. In SMBus /I ² C Mode: 3.3 V SMBus/I ² C data. External 1 k Ω to 5 k Ω pullup resistor is required as per SMBus / I ² C interface standard.			
GAIN1	28	I, 4-level	Flat gain (DC and AC) from the input to the output of the device for channels 4-7 in Pin mode. The pin is sampled at device power-up only.			
GND	EP, 9, 12, 21, 24, 32, 41, 44, 53, 56, 64	Ρ	Ground reference for the device. EP: the Exposed Pad at the bottom of the QFN package. It is used as the GND return for the device. The EP should be connected to ground plane(s) through low resistance path. A via array provides a low impedance path to GND. The EP also improves thermal dissipation.			
PD0	25	I, 3.3 V LVCMOS	2-level logic controlling the operating state of the redriver. Active in all device control modes. The pin has internal 1-M Ω weak pulldown resistor. High: Power down for channels 0-3 Low: Power up, normal operation for channels 0-3			
PD1	26	I, 3.3 V LVCMOS	2-level logic controlling the operating state of the redriver. Active in all device control modes. The pin has internal 1-M Ω weak pulldown resistor. High: Power down for channels 4-7 Low: Power up, normal operation for channels 4-7			
READ_EN_N	57	I, 3.3 V LVCMOS	In SMBus/I²C Master Mode : After device power up, when the pin is low, it initiates the SMBus / I ² C master mode EEPROM read function. Once EEPROM read is complete (indicated by assertion of ALL_DONE_N low), this pin can be held low for normal device operation. During the EEPROM load process the device's signal path is disabled. In SMBus/I²C Slave and Pin Modes : In these modes the pin is not used. The pin can be left floating. The pin has internal 1- $M\Omega$ weak pulldown resistor.			

PIN			DECODIDITION			
NAME	NO.	I/O, TYPE	DESCRIPTION			
RSVD0	58	—	Reserved use for TI. The pin must be left floating (NC).			
RSVD1	30	_	Reserved use for TI. The pin must be left floating (NC).			
RX_DET / SCL	62	I, 4-level / I/O, 3.3 V LVCMOS, open drain	In Pin Mode: Sets receiver detect state machine options according to $\overline{\mathcal{R}}$ 7-2. The pin is sampled at device power-up only. In SMBus/I²C Mode: 3.3V SMBus/I ² C clock. External 1 kΩ to 5 kΩ pullup resistor is required as per SMBus / I ² C interface standard.			
RX0N	2	I	Inverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 0.			
RX0P	1	I	Noninverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 0.			
RX1N	5	I	Inverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 1.			
RX1P	4	I	Noninverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 1.			
RX2N	8	I	Inverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 2.			
RX2P	7	I	Noninverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 2.			
RX3N	11	I	Inverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 3.			
RX3P	10	I	Noninverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 3.			
RX4N	14	I	Inverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 4.			
RX4P	13	I	Noninverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 4.			
RX5N	17	I	Inverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 5.			
RX5P	16	I	Noninverting differential inputs to the equalizer. An on-chip, 100 Ω termination resistor connects RXP to RXN. Channel 5.			
RX6N	20	I	Inverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 6.			
RX6P	19	I	Noninverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 6.			
RX7N	23	I	Inverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 7.			
RX7P	22	I	Noninverting differential inputs to the equalizer. Integrated 50 Ω termination resistor from the pin to internal CM bias voltage. Channel 7.			
TX0N	54	0	Inverting pin for 100 Ω differential driver output. Channel 0.			
ТХОР	55	0	Non-inverting pin for 100 Ω differential driver output. Channel 0.			
TX1N	51	0	Inverting pin for 100 Ω differential driver output. Channel 1.			
TX1P	52	0	Non-inverting pin for 100 Ω differential driver output. Channel 1.			
TX2N	48	0	Inverting pin for 100 Ω differential driver output. Channel 2.			
TX2P	49	0	Non-inverting pin for 100 Ω differential driver output. Channel 2.			
TX3N	45	0	Inverting pin for 100 Ω differential driver output. Channel 3.			
ТХЗР	46	0	Non-inverting pin for 100 Ω differential driver output. Channel 3.			
TX4N	42	0	Inverting pin for 100 Ω differential driver output. Channel 4.			
TX4P	43	0	Non-inverting pin for 100 Ω differential driver output. Channel 4.			
	1	1	1			

DS160PR810 ZHCSN27 - DECEMBER 2020

PIN	I	I/O, TYPE	DESCRIPTION		
NAME NO.		1/0, TTPE	DESCRIPTION		
TX5N	39	0	Inverting pin for 100 Ω differential driver output. Channel 5.		
TX5P	40	0	Non-inverting pin for 100 Ω differential driver output. Channel 5.		
TX6N	36	0	Inverting pin for 100 Ω differential driver output. Channel 6.		
TX6P	37	0	Non-inverting pin for 100 Ω differential driver output. Channel 6.		
TX7N	33	0	verting pin for 100 Ω differential driver output. Channel 7.		
TX7P	34	0	Non-inverting pin for 100 Ω differential driver output. Channel 7.		
VCC	6, 18, 38, 50	Р	Power supply pins. VCC = $3.3 \text{ V} \pm 10\%$. The VCC pins on this device should be connected through a low-resistance path to the board VCC plane.		
VREG1	3, 47	Ρ	Internal voltage regulator output. Must add decoupling caps of 0.1 μ F near each pins. The regulator is only for internal use. Do not use to provide power to any external component. Do not connect to VREG2.		
VREG2	15, 35	Р	Internal voltage regulator output. Must add decoupling caps of 0.1 μ F near each pins. The regulator is only for internal use. Do not use to provide power to any external component. Do not connect to VREG1.		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
VCC _{ABSMAX}	Supply voltage (VCC)	- 0.5	4.0	V
VIO _{CMOS,ABSMAX}	3.3 V LVCMOS and open drain I/O voltage	- 0.5	4.0	V
VIO _{4LVL,ABSMAX}	4-level input I/O voltage	- 0.5	2.75	V
VIO _{HS-RX,ABSMAX}	High-speed I/O voltage (RXnP, RXnN)	- 0.5	3.2	V
VIO _{HS-TX,ABSMAX}	High-speed I/O voltage (TXnP, TXnN)	- 0.5	2.75	V
T _{J,ABSMAX}	Junction temperature		150	°C
T _{stg}	Storage temperature range	- 65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±3000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 $^{(2)}$	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±3 kV may actually have higher performance.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage, VCC to GND	DC plus AC power should not exceed these limits	3.0	3.3	3.6	V
		DC to <50 Hz, sinusoidal			250	mVpp
N	Supply noise tolerance ¹	50 Hz to 500 kHz, sinusoidal			100	mVpp
N _{VCC}	Supply hoise tolerance	500 kHz to 2.5 MHz, sinusoidal			33	mVpp
		>2.5 MHz, sinusoidal			10	mVpp
T _{RampVCC}	VCC supply ramp time	From 0 V to 3.0 V	0.150		100	ms
TJ	Operating junction temperature		- 40		115	°C
T _A	Operating ambient temperature		- 40		85	°C
PW _{LVCMOS}	Minimum pulse width required for the device to detect a valid signal on LVCMOS inputs	PD1/0, and READ_EN_N	200			uS
VCC _{SMBUS}	SMBus/I ² C SDA and SCL open drain termination voltage	Supply voltage for open drain pull-up resistor			3.6	V
F _{SMBus}	SMBus/I ² C clock (SCL) frequency in SMBus slave mode		10		400	kHz
VID _{LAUNCH}	Source differential launch amplitude		800		1200	mVpp
DR	Data rate		1		16	Gbps

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DS160PR 810	UNIT
		NJX, 64 Pins	UNIT
R _{θ JA-} High K	Junction-to-ambient thermal resistance	22.9	°C/W
R _{0 JC(top)}	Junction-to-case (top) thermal resistance	9.6	°C/W
R _{0 JB}	Junction-to-board thermal resistance	7.2	°C/W
ΨJT	Junction-to-top characterization parameter	1.8	°C/W
ψ _{JB}	Junction-to-board characterization parameter	7.1	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	2.5	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.

6.5 DC Electrical Characteristics

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power		LL				
		GAIN1/0 = L3 (default)		107		mW
POWER _{CH}	Active power per channel	GAIN1/0 = L0		99		mW
I _{ACTIVE-8CH}	Device current consumption when all eight channels are active	GAIN1/0 = L3		260	360	mA
I _{STBY}	Device current consumption in standby power mode	All channels disabled (PD1,0 = H)		30	45	mA
V _{REG}	Internal regulator output			2.5		V
Control IO (SDA, SCL, PD1, PD0, READ_EN_N pins)			I	
V _{IH}	High level input voltage	SDA, SCL, PD1, PD0, READ_EN_N pins	2.1			V
V _{IL}	Low level input voltage	SDA, SCL, PD1, PD0, READ_EN_N pins			1.08	V
V _{OH}	High level output voltage	$R_{pull-up}$ = 4.7 kΩ (SDA, SCL, ALL_DONE_N pins)	2.1			V
V _{OL}	Low level output voltage	I _{OL} = − 4 mA (SDA, SCL, ALL_DONE_N pins)			0.4	V
I _{IH}	Input high leakage current	V _{Input} = VCC, (SCL, SDA, PD1, PD0, READ_EN_N pins)			10	μA
I _{IL}	Input low leakage current	V _{Input} = 0 V, (SCL, SDA, PD1, PD0, READ_EN_N pins)	-10			μA
I _{IH,FS}	Input high leakage current for fail safe input pins	V _{Input} = 3.6 V, VCC = 0 V, (SCL, SDA, , PD1, PD0, READ_EN_N pins)			200	μA
C _{IN-CTRL}	Input capacitance	SDA, SCL, PD1, PD0, READ_EN_N pins		1.5		pF
4 Level IOs ((MODE, GAIN0, GAIN1, EQ0_0, EQ1_0,	EQ0_1, EQ1_1, RX_DET pins)				
I _{IH_4L}	Input high leakage current, 4 level IOs	VIN = 2.5 V			10	μA
I _{IL_4L}	Input low leakage current for all 4 level IOs except MODE.	VIN = GND	-10			μA
I _{IL_4L,MODE}	Input low leakage current for MODE pin	VIN = GND	-200			μA
Receiver						
V _{RX-DC-CM}	RX DC common mode (CM) voltage	Device is in active or standby state		2.5		V
Z _{RX-DC}	Rx DC single-ended impedance			50		Ω

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Z _{RX-HIGH-IMP-} DC-POS	DC input CM input impedance during Reset or power-down	Inputs are at CM voltage	20			kΩ
Transmitter						
Z _{TX-DIFF-DC}	DC differential Tx impedance	Impedance of Tx during active signaling, VID,diff = 1Vpp				Ω
V _{TX-DC-CM}	Tx DC common mode Voltage			0.75		V
I _{TX-SHORT}	Tx Short circuit current	Total current the Tx can supply when shorted to GND			90	mA

6.6 High Speed Electrical Characteristics

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Receiver						
		50 MHz to 1.25 GHz		-25		dB
		1.25 GHz to 2.5 GHz		-22		dB
RL _{RX-DIFF}	Input differential return loss	2.5 GHz to 4.0 GHz		-21		dB
		4.0 GHz to 8.0 GHz		-16		dB
XT _{RX}	Receive-side pair-to-pair isolation	Pair-to-pair isolation (SDD21) between two adjacent receiver pairs from 10 MHz to 8 GHz.		-47		dB
Transmitter						
V _{TX-AC-CM-PP}	Tx AC peak-to-peak common mode voltage	Measured with lowest EQ, VOD = L2; PRBS-7, 16 Gbps, over at least 10E6 bits using a bandpas filter from 30 Khz to 500 Mhz			50	mVpp
V _{TX-CM-DC-} ACTIVE-IDLE- DELTA	Absolute delta of DC common mode voltage during L0 and Electrical Idle	, , , , , , , , , , , , , , , , , , , ,		100	mV	
V _{TX-CM-DC-} LINE-DELTA	Absolute delta of DC common mode voltage between V_{OUTn^+} and V_{OUTn^-} during L0	Measured by taking the absolute difference of V_{OUTn+} and V_{OUTn-} during PCIe state L0			10	mV
V _{TX-IDLE-DIFF-} AC-p	AC Electrical Idle differential output voltage	Measured by taking the absolute difference of V _{OUTn+} and V _{OUTn} - during Electrical Idle, measured with a band-pass filter consisting of two first- order filters. The high-pass and low- pass -3-dB bandwidths are 10 kHz and 1.25 GHz, respectively - zero at input	0		10	mV
V _{TX-IDLE-DIFF-} DC	DC Electrical Idle differential output voltage	Measured by taking the absolute difference of V_{OUTn+} and V_{OUTn-} during Electrical Idle, measured with a first-order low-pass Filter with -3 -dB bandwidth of 10 kHz	0		5	mV
V _{TX-RCV-} DETECT	Amount of voltage change allowed during receiver detection	Measured while Tx is sensing whether a low-impedance Receiver is present. No load is connected to the driver output	0		600	mV
		50 MHz to 1.25 GHz		-20		dB
	Output differential raturn loss	1.25 GHz to 2.5 GHz		-18		dB
RL _{TX-DIFF}	Output differential return loss	2.5 GHz to 4.0 GHz		-18		dB
		4.0 GHz to 8.0 GHz		-17		dB

DS160PR810 ZHCSN27 - DECEMBER 2020

over operating free-air temperature and voltage range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
хт _{тх}	Transmit-side pair-to-pair isolation	Minimum pair-to-pair isolation (SDD21) between two adjacent transmitter pairs from 10 MHz to 8 GHz.		-48		dB	
Device Datap	path						
T _{PLHD/PHLD}	Input-to-output latency (propagation delay) through a data channel	For either low-to-high or high-to-low transition.		90	120	ps	
L _{TX-SKEW}	Lane-to-lane output skew	Between any two lanes within a single transmitter.	-20		20	ps	
T _{RJ-DATA}	Additive random jitter with data	Jitter through redriver minus the calibration trace. 16Gbps PRBS15. Minimal input/output channels. Minimum EQ. 800 mVpp-diff input swing.		70		fs	
T _{RJ-INTRINSIC}	Intrinsic additive random jitter with clock	Jitter through redriver minus the calibration trace. 8 Ghz CK. Minimal input/output channels. Minimum EQ. 400 mVpp-diff input swing.	90			fs	
JITTER _{TOTAL} - data	Additive total jitter with data	Jitter through redriver minus the calibration trace. 16 Gbps PRBS15. Minimal input/output channels. Minimum EQ. 800 mVpp-diff input swing.		4		ps	
JITTER _{TOTAL} - INTRINSIC	Intrinsic additive total jitter with clock	Jitter through redriver minus the calibration trace. 8 Ghz CK. Minimal input/output channels. Minimum EQ. 800 mVpp-diff input swing.		1		ps	
		Minimum EQ, GAIN1/0=L0		-4.2		dB	
		Minimum EQ, GAIN1/0=L1		-1.8		dB	
FLAT-GAIN	Flat gain (DC and AC) input to output	Minimum EQ, GAIN1/0=L2		0.25		dB	
		Minimum EQ, GAIN1/0=L3 (float, default)		2		dB	
EQ-MAX _{8G}	EQ boost at max setting (EQ INDEX = 15)	AC gain at 8 GHz relative to gain at 100 MHz. GAIN1/0=L3 (float, default).		18.0		dB	
DCGAIN _{VAR}	DC gain variation	GAIN1/0 = L2, minimum EQ setting. Max-Min.	-2.3		1.7	dB	
EQGAIN _{VAR}	EQ boost variation	At 8 Ghz. GAIN1/0 = L2, maximum EQ setting. Max-Min.	-3.3		3.7	dB	
LIN _{DC}	Output DC linearity	GAIN1/0 = L3 (float, default). 128T pattern at 2.5 Gbps.		1000		mVpp	
LIN _{AC}	Output AC linearity	GAIN1/0 = L3 (float, default). 1T pattern at 16 Gbps.		750		mVpp	

6.7 SMBUS/I2C Timing Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT					
Slave Mode											
t _{SP}	Pulse width of spikes which must be suppressed by the input filter				50	ns					
t _{HD-STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated		0.6			μs					
t _{LOW}	LOW period of the SCL clock		1.3			μs					
T _{HIGH}	HIGH period of the SCL clock		0.6			μs					

over operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{SU-STA}	Set-up time for a repeated START condition		0.6			μs
t _{HD-DAT}	Data hold time		0			μs
t _{SU-DAT}	Data setup time		0.1			μs
t _r	Rise time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10pF		120		ns
t _f	Fall time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10pF		2		ns
t _{su-sто}	Set-up time for STOP condition		0.6			μs
t _{BUF}	Bus free time between a STOP and START condition		1.3			μs
t _{VD-DAT}	Data valid time				0.9	μs
t _{VD-ACK}	Data valid acknowledge time				0.9	μs
C _b	capacitive load for each bus line				400	pF
Master Mod	le				I	
f _{SCL-M}	SCL clock frequency	MODE = L1 (Master Mode)		303		kHz
t _{LOW-M}	SCL low period			1.9		μs
t _{HIGH-M}	SCL high period			1.4		μs
t _{SU-STA-M}	Set-up time for a repeated START condition			2		μs
t _{HD-STA-M}	Hold time (repeated) START condition. After this period, the first clock pulse is generated			1.5		μs
t _{SU-DAT-M}	Data setup time			1.4		μs
t _{HD-DAT-M}	Data hold time			0.5		μs
t _{R-M}	Rise time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10pF		120		ns
t _{F-M}	Fall time of both SDA and SCL signals	Pull-up resistor = 4.7 k Ω , Cb = 10pF		2		ns
t _{su-sто-м}	Stop condition setup time			1.5		μs
EEPROM T	iming					
T _{EEPROM}	EEPROM configuration load time	Time to assert ALL_DONE_N after READ_EN_N has been asserted. Single device reading its configuration from an EEPROM with common channel configuration with individual channel settings . This time scales with the number of devices reading from the same EEPROM. Does not include power-on reset time.		7.5		ms
T _{POR}	Time to first SMBus access	Power supply stable after initial ramp. Includes initial power-on reset time.		50		ms

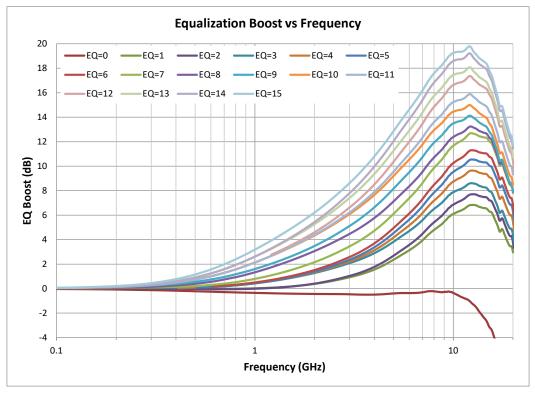


图 6-1. Typical EQ Boost vs Frequency

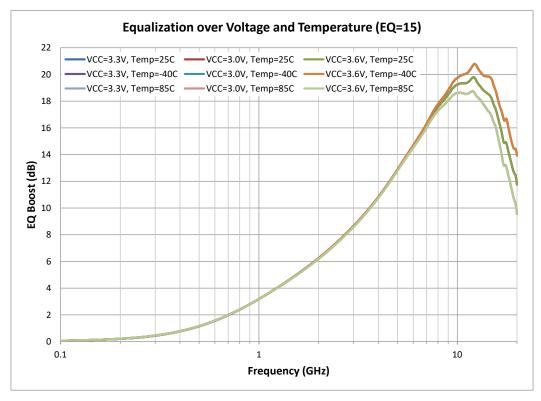
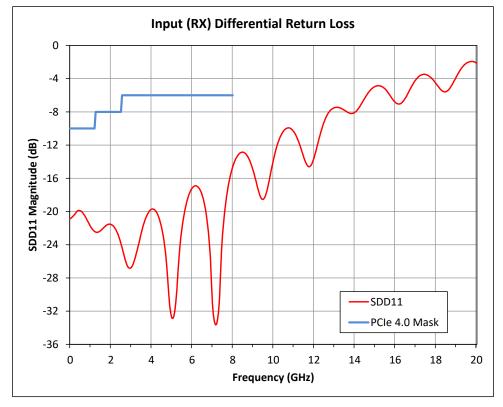


图 6-2. Typical EQ Boost over Voltage and Temperature with EQ=15



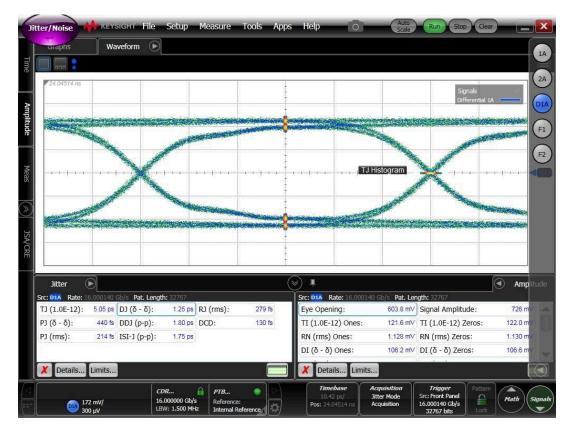


图 6-3. Typical RX Differential Return Loss

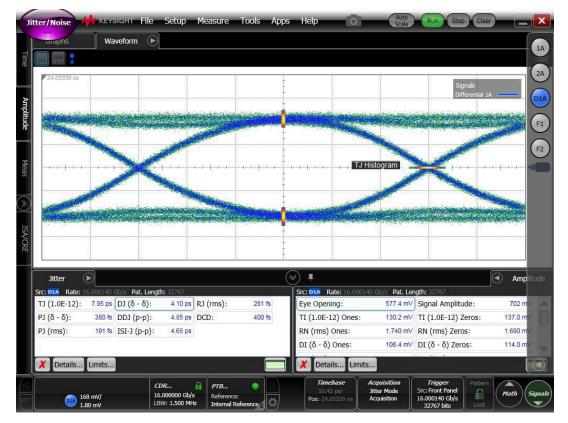


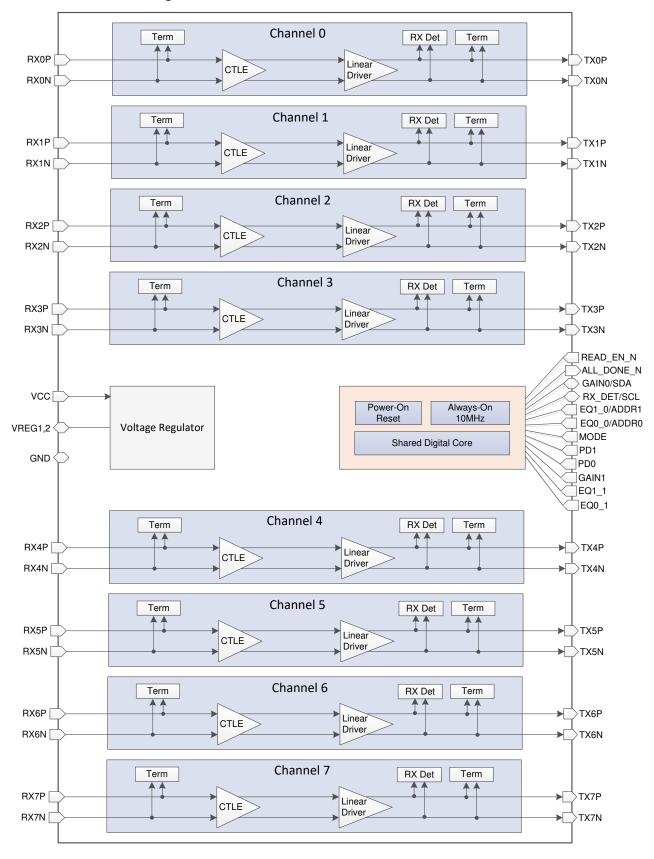
图 6-5. Typical Jitter Characteristics - Top: 16Gbps PRBS15 Input to the Device, Bottom: Output of the Device.

7 Detailed Description

7.1 Overview

The DS160PR810 is an eight-channel multi-rate linear repeater with integrated signal conditioning. The device's signal channels operate independently from one another. Each channel includes a continuous-time linear equalizer (CTLE) and a linear output driver, which together compensate for a lossy transmission channel between the source transmitter and the final receiver. The linearity of the data path is specifically designed to preserve any transmit equalization while keeping receiver equalization effective.

The DS160PR810 can be configured three different ways:


Pin Mode – device control configuration is done solely by strap pins. Pin mode is expected to be good enough for many system implementation needs.

SMBus/I²C Master Mode - device control configuration is read from external EEPROM. When the device has finished reading from the EEPROM successfully, it will drive the ALL_DONE_N pin LOW. SMBus/I²C slave operation is available in this mode before, during or after EEPROM reading. Note during EEPROM reading if the external SMBus/I²C master wants to access device registers it must support arbitration. The mode is prefferred when software implementation is not desired.

SMBus/I²C Slave Mode - provides most flexibility. Requires a SMBus/I²C master device to configure the device through writing to its slave address.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Linear Equalization

The DS160PR810 receivers feature a continuous-time linear equalizer (CTLE) that applies high-frequency boost and low-frequency attenuation to help equalize the frequency-dependent insertion loss effects of the passive channel. $\boxed{0}$ 7-1 shows available equalization boost through EQ control pins (EQ1_0 and EQ0_0 for channels 0-3 and EQ1_1 and EQ0_1 for channels 4-7), when in Pin Control mode (MODE = L0).

	EQUALIZATION SETTI	NG	TYPICAL EQ BOOST (dB)			
EQ INDEX	EQ1_0 (Ch 0-3) / EQ1_1 (Ch 4-7)	EQ0_0 (Ch0-3) / EQ0_1 (Ch 4-7)	@ 4 GHz	@ 8 GHz		
0	LO	LO	0.0	-0.2		
1	LO	L1	1.5	4.5		
2	LO	L2	2.0	5.5		
3	LO	L3	2.5	6.5		
4	L1	LO	2.7	7.0		
5	L1	L1	3.0	8.0		
6	L1	L2	4.0	9.0		
7	L1	L3	5.0	10.0		
8	L2	LO	6.0	11.0		
9	L2	L1	7.0	12.0		
10	L2	L2	7.5	13.0		
11	L2	L3	8.0	13.5		
12	L3	LO	8.5	15.0		
13	L3	L1	9.5	16.5		
14	L3	L2	10.0	17.0		
15	L3	L3	11.0	18.0		

表 7-1. Equalization Control Settings

The equalization of the device can also be set by writing to SMBus/I²C registers in slave or master mode. Refer to the *DS160PR810 Programming Guide* (SNLU268) for details.

7.3.2 Flat Gain

The GAIN1 and GAIN0 pins can be used to set the overall datapath flat gain (DC and AC) of the DS160PR810 when the device is in Pin Mode. The pin GAIN0 sets the flat gain for channels 0-3 and GAIN1 sets the same for channels 4-7. The default recommendation for most systems will be GAIN1,0 = L3 (float).

The flat gain and equalization of the DS160PR810 must be set such that the output signal swing at DC and high frequency does not exceed the DC and AC linearity ranges of the devices, respectively.

7.3.3 Receiver Detect State Machine

The DS160PR810 deploys an RX detect state machine that governs the RX detection cycle as defined in the PCI express specifications. At power up, after a manually triggered event through PD0 and/or PD1 pins (in pin mode), or writing to the relevant I²C/SMBus register, the redriver determines whether or not a valid PCI express termination is present at the far end of the link. The RX_DET pin of DS160PR810 provides additional flexibility for system designers to appropriately set the device in desired mode according to $\frac{1}{7}$ 7-2. PD0 and PD1 pins impact channel groups 0-3 and 4-7 respectively. If all eight channels of DS160PR810 is used for a same PCI express link, the PD1 and PD0 pins can be shorted and driven together. For most applications the RX_DET pin can be left floating for default settings.

	₹ 7-2. Receiver Detect State Machine Settings										
PD0	PD1	RX_DET	Channels 0-3 RX Common-mode Impedance	Channels 4-7 RX Common-mode Impedance	COMMENTS						
L	L	LO	Always 50 Ω	Always 50 Ω	PCI Express RX detection state machine is disabled. Recommended for non PCIe interface use case where the DS160PR810 is used as buffer with equalization.						
L	L	L3 (Float)	Pre Detect: Hi-Z Post Detect: 50 Ω .	Pre Detect: Hi-Z Post Detect: 50 Ω .	TX polls every ~150us until valid termination is detected. RX CM impedance held at Hi-Z until detection Reset by asserting PD0/1 high for 200µs then low.						
н	L	Х	Hi-Z	Pre Detect: Hi-Z Post Detect: 50 Ω .	Reset Channels 0-3 signal path and set their RX impedance to Hi-Z						
L	Н	X	Pre Detect: Hi-Z Post Detect: 50 Ω.	Hi-Z	Reset Channels 4-7 signal path and set their RX impedance to Hi-Z.						
Н	Н	Х	Hi-Z	Hi-Z							

表 7-2 Receiver Detect State Machine Settings

7.4 Device Functional Modes

7.4.1 Active PCIe Mode

The device is in normal operation with PCIe state machine enabled by RX DET = L1/L2/L3. In this mode PD0/PD1 pins are driven low in a system (for example by PCIE connector "PRSNT" signal). In this mode, the DS160PR810 redrives and equalizes PCIe RX or TX signals to provide better signal integrity.

7.4.2 Active Buffer Mode

The device is in normal operation with PCIe state machine disabled by RX DET = L0. This mode is recommended for non-PCIe use cases. In this mode the device is working as a buffer to provide linear equalization to improve signal integrity.

7.4.3 Standby Mode

The device is in standby mode invoked by PD1.0 = H. In this mode, the device is in standby mode conserving power.

7.5 Programming

7.5.1 Control and Configuration Interface

7.5.1.1 Pin Mode

The DS160PR810 can be fully configured through pin-strap pins. In this mode the device uses 2-level and 4level pins for device control and signal integrity optimum settings. The # 5 section defines the control pins.

7.5.1.1.1 Four-Level Control Inputs

The DS160PR810 has 4-level inputs pins (EQ0 0, EQ1 0, EQ0 1, EQ1 1, GAIN0, GAIN1, MODE, and RX DET) that are used to control the configuration of the device. These 4-level inputs use a resistor divider to help set the 4 valid levels and provide a wider range of control settings. External resistors must be of 10% tolerance or better. The pins are sampled at power-up only. The MODE pin can be exercised at device power up or in normal operation mode.

LEVEL	SETTING							
LO	1 kΩ to GND							
L1	13 kΩ to GND							
L2	59 kΩ to GND							
L3	F (Float)							

表 7-3. 4-Level Control Pin Settings

7.5.1.2 SMBUS/I²C Register Control Interface

If MODE = L2 (SMBus / I²C slave control mode), the DS160PR810 is configured for best signal integrity through a standard I²C or SMBus interface that may operate up to 400 kHz. The slave address of the device is determined by the pin strap settings on the ADDR1 and ADDR0 pins. Note slave addresses to access channel 0-3 and Channels 4-7 is different. Channel bank 4-7 has address which is Channel bank 0-3 address +1. The sixteen possible slave addresses (8-bit) for each channel banks of the the device are shown in $\frac{1}{2}$ 7-4. In SMBus/I²C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus capacitance. 4.7 k Ω is a good first approximation for a bus capacitance of 50 pF.

表 7-4. SMBUS/I2C Slave Address Settings									
ADDR1	ADDR0	7-bit Slave Address Channels 0-3	7-bit Slave Address Channels 4-7						
LO	LO	0x18	0x19						
LO	L1	0x1A	0x1B						
LO	L2	0x1C	0x1D						
LO	L3	0x1E	0x1F						
L1	LO	0x20	0x21						
L1	L1	0x22	0x23						
L1	L2	0x24	0x25						
L1	L3	0x26	0x27						
L2	LO	0x28	0x29						
L2	L1	0x2A	0x2B						
L2	L2	0x2C	0x2D						
L2	L3	0x2E	0x2F						
L3	LO	0x30	0x31						
L3	L1	0x32	0x33						
L3	L2	0x34	0x35						
L3	L3	0x36	0x37						

Refer to the DS160PR810 Programming Guide (SNLU268) for register map details.

7.5.1.3 SMBus/I²C Master Mode Configuration (EEPROM Self Load)

The DS160PR810 can also be configured by reading from EEPROM. To enter into this mode MODE pin must be set to L1. The EEPROM load operation only happens once after device's initial power-up. If the device is configured for SMBus master mode, it will remain in the SMBus IDLE state until the READ_EN_N pin is asserted to LOW. After the READ_EN_N pin is driven LOW, the device becomes an SMBus master and attempts to self-configure by reading device settings stored in an external EEPROM (SMBus 8-bit address 0xA0). When the device has finished reading from the EEPROM successfully, it will drive the ALL_DONE_N pin LOW. SMBus/I²C slave operation is available in this mode before, during or after EEPROM reading. Note during EEPROM reading if the external SMBus/I²C master wants to access the device registers it must support arbitration. Refer to the *Understanding EEPROM Programming for PCI-Express 4.0 Redrivers* (SNLA342) application report for more information.

When designing a system for using the external EEPROM, the user must follow these specific guidelines:

- EEPROM size of 2 kb (256 × 8-bit) is recommended.
- Set MODE = L1, configure for SMBus master mode
- The external EEPROM device address byte must be 0xA0 and capable of 400 kHz operation at 3.3 V supply
- In SMBus/I²C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus capacitance. 4.7 k^Ω is a good first approximation for a bus capacitance of 10 pF.

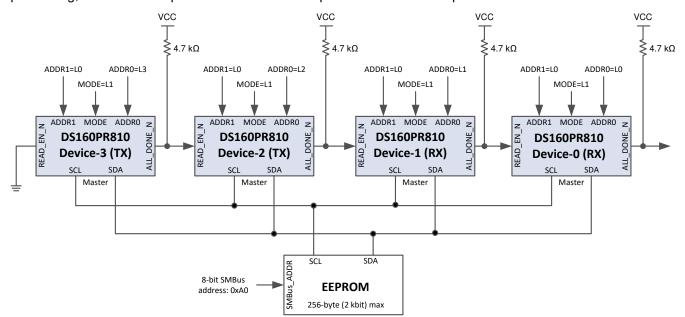


图 7-1. Daisy Chain Four DS160PR810 Devices to Read from Single EEPROM

8 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DS160PR810 is a high-speed linear repeater which extends the reach of differential channels impaired by loss from transmission media like PCBs and cables. It can be deployed in a variety of different systems. The following sections outline typical applications and their associated design considerations.

8.2 Typical Applications

The DS160PR810 is a protocol and interface agnostic linear redriver that can be used in wide range of interfaces including:

- PCI Express 1.0/2.0/3.0/4.0
- Ultra Path Interconnect (UPI) 1.0/2.0
- DisplayPort 2.0
- SAS
- SATA
- XFI

The DS160PR810 is a protocol agnostic linear redriver with PCI Express receiver-detect capability. Its protocol agnostic nature allows it to be used in PCI Express x4, x8, and x16 applications. 🛛 8-1 shows how a number of DS160PR810 devices can be used to obtain signal conditioning for PCI Express buses of varying widths.

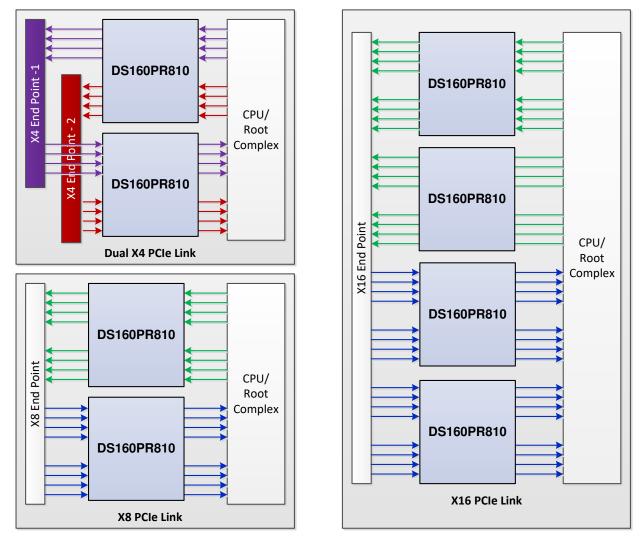


图 8-1. PCI Express x4, x8 and x16 use cases using DS160PR810

Note all eight channels of the DS160PR810 flow in same direction. Therefore, if the device is used for dual x4 configuration with two devices, PD0 of both devices need to be connected together to implement PCIe state machine for first x4 link while PD1 for second x4 link.

8.2.1 PCIe x16 Lane Configuration

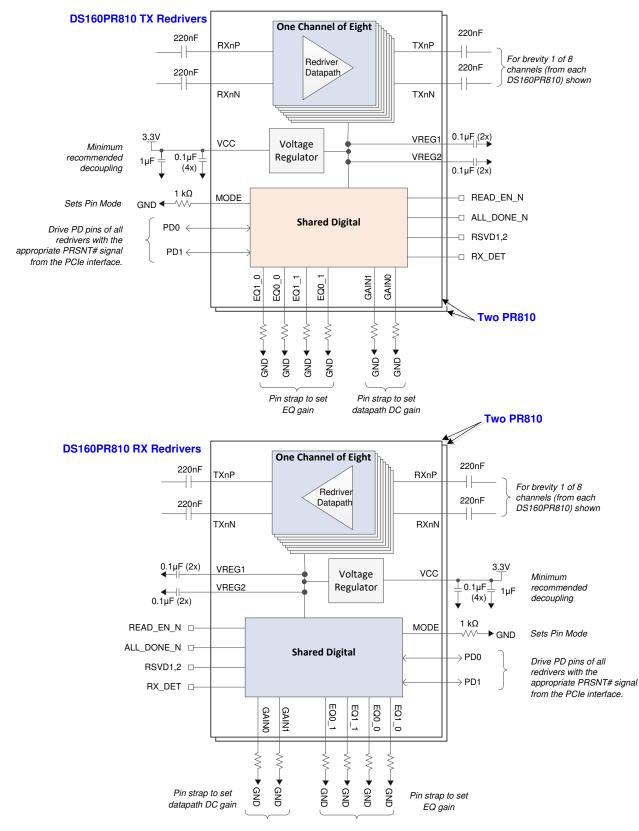
The DS160PR810 can be used in server or motherboard applications to boost transmit and receive signals to increase the reach of the host or root complex processor to PCI Express slots/connectors. The section outlines detailed procedure and design requirement for a typical PCIe x16 lane confuration. However, the design recommendations can be used in any lane configuration.

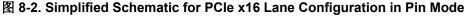
8.2.1.1 Design Requirements

As with any high-speed design, there are many factors which influence the overall performance. The following list indicates critical areas for consideration during design.

- Use 85 Ω impedance traces when interfacing with PCIe CEM connectors. Length matching on the P and N traces should be done on the single-end segments of the differential pair.
- Use a uniform trace width and trace spacing for differential pairs.
- Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.
- For PCIe Gen 3.0 and Gen 4.0, AC-coupling capacitors of 220 nF are recommended, set the maximum body size to 0402, and add a cutout void on the GND plane below the landing pad of the capacitor to reduce parasitic capacitance to GND.
- Back-drill connector vias and signal vias to minimize stub length.
- Use reference plane vias to ensure a low inductance path for the return current.

8.2.1.2 Detailed Design Procedure


In PCIe Gen 4.0 and Gen 3.0 applications, the specification requires Rx-Tx (of root-complex and endpoint) link training to establish and optimize signal conditioning settings at 16 Gbps and 8 Gbps, respectively. In link training, the Rx partner requests a series of FIR – preshoot and deemphasis coefficients (10 Presets) from the Tx partner. The Rx partner includes 7-levels (6 dB to 12 dB) of CTLE followed by a single tap DFE. The link training would pre-condition the signal, with an equalized link between the root-complex and endpoint resulting an optimized link. Note that there is no link training in PCIe Gen 1.0 (2.5 Gbps) or PCIe Gen 2.0 (5.0 Gbps) applications.


For operation in PCIe 4.0 or 3.0 links, the DS160PR810 is designed with linear datapth to pass the Tx preset signaling (by root complex and end point) onto the Rx (of root complex and end point) to train and optimize the equalization settings. The linear redriver device helps extend the PCB trace reach distance by boosting the attenuated signals with its equalization, which allows the user to recover the signal by the downstream Rx more easily. The device must be placed in between the Tx and Rx (of root complex and end point) such a way that both RX and TX signal swing stays within the linearity range of the device. Adjustments to the device EQ setting should be performed based on the channel loss to optimize the eye opening in the Rx partner. The available EQ gain settings are provided in $\frac{1}{7}$ 7-1. For most PCIe systems the default DC gain setting GAIN = floating would be sufficient.

The DS160PR810 can be optimized for a given system utilizing its three configuration modes - Pin Mode, SMBus/I²C Master Mode and SMBus/I²C Slave Mode. In SMBus/I²C modes the SCL, SDA pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus capacitance. 4.7 k Ω is a good first approximation for a bus capacitance of 10 pF.

图 8-2 shows a simplified schematic for x16lane configuration in Pin Mode.

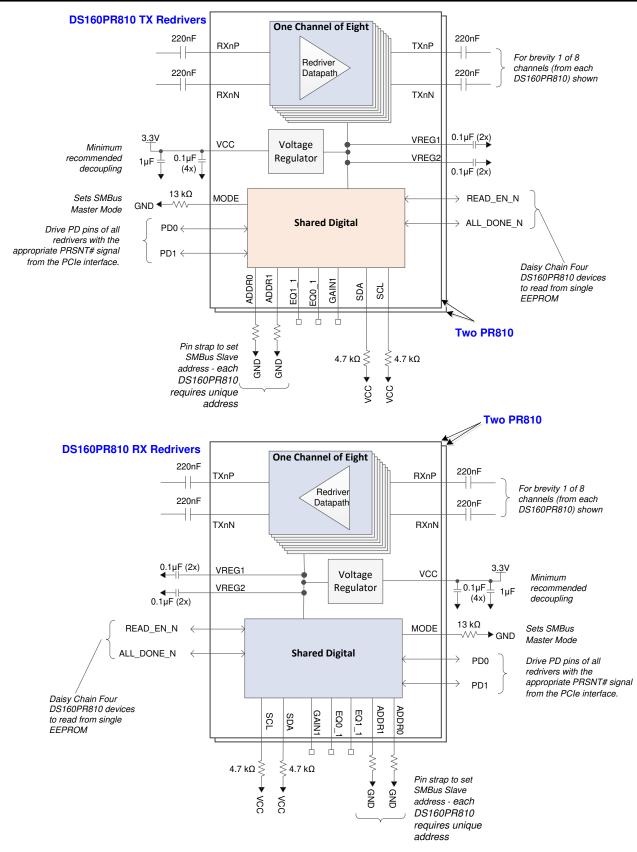
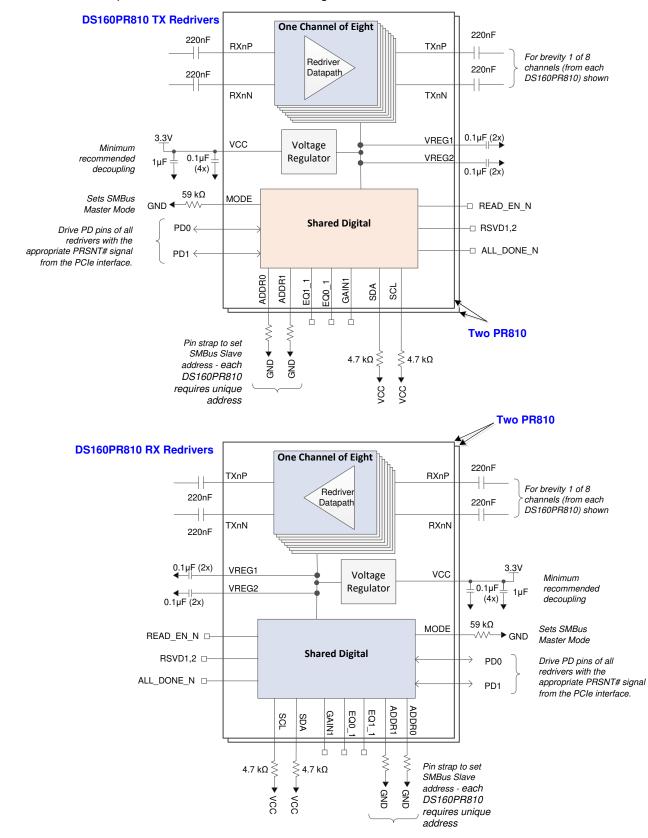



图 8-3. Simplified Schematic for PCIe x16 Lane Configuration in SMBus/I²C Master Mode

图 8-4 shows a simplified schematic for x16 lane configuration in SMBus/I²C Slave Mode.

图 8-4. Simplified Schematic for PCIe x16 Lane Configuration in SMBus/I²C Slave Mode

8.2.1.3 Application Curves

The DS160PR810 is a linear redriver that can be used to extend channel reach of a PCIe link. Normally, PCIecompliant TX and RX are equipt with signal-conditioning functions and can handle channel losses of up to 28 dB at 8 GHz. With the DS160PR810 in the link, the total channel loss between a PCIe root complex and an end point can be up to 42 dB at 8 GHz.

8 - 5 shows an electric link that models a single channel of a PCIe link and eye diagrams measured at different locations along the link. The source that models a PCIe TX sends a 16 Gbps PRBS-15 signal with P7 presets. After a transmission channel with -30 dB at 8 GHz insertion loss, the eye diagram is fully closed. The DS160PR810 with its CTLE set to the maximum (18 dB boost) together with the source TX equalization compensates for the losses of the pre-channel (TL1) and opens the eye at the output of the device.

The post-channel (TL2) losses mandate the use of PCIe RX equalization functions such as CTLE and DFE that are normally available in PCIe-compliant receivers.

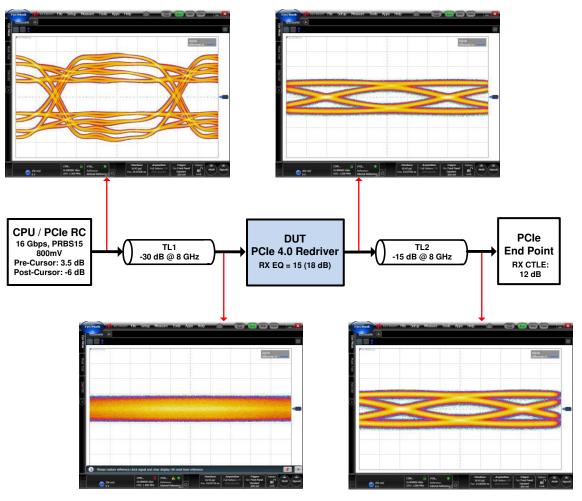


图 8-5. PCIe 4.0 Link Reach Extension Using DS160PR810

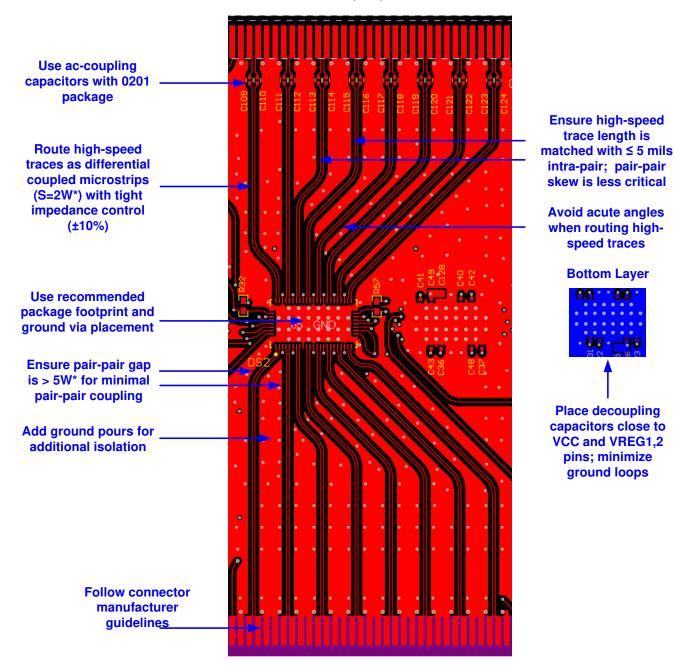
9 Power Supply Recommendations

Follow these general guidelines when designing the power supply:

- 1. The power supply should be designed to provide the operating conditions outlined in the recommended operating conditions section in terms of DC voltage, AC noise, and start-up ramp time.
- 2. The DS160PR810 does not require any special power supply filtering, such as ferrite beads, provided that the recommended operating conditions are met. Only standard supply decoupling is required. Typical supply decoupling consists of a 0.1 μ F capacitor per VCC pin, one 1.0 μ F bulk capacitor per device, and one 10 μ F bulk capacitor per power bus that delivers power to one or more devices. The local decoupling (0.1 μ F) capacitors must be connected as close to the VCC pins as possible and with minimal path to the device ground pad.
- 3. The DS160PR810 voltage regulator output pins require decoupling caps of 0.1 µF near each pins. The regulator is only for internal use. Do not use to provide power to any external component.

10 Layout

10.1 Layout Guidelines


The following guidelines should be followed when designing the layout:

- 1. Decoupling capacitors should be placed as close to the VCC pins as possible. Placing the decoupling capacitors directly underneath the device is recommended if the board design permits.
- 2. High-speed differential signals TXnP/TXnN and RXnP/RXnN should be tightly coupled, skew matched, and impedance controlled.
- 3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, take care to minimize the via stub, either by transitioning through most/all layers or by back drilling.
- 4. GND relief can be used (but is not required) beneath the high-speed differential signal pads to improve signal integrity by counteracting the pad capacitance.
- 5. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to the GND planes on other layers. This has the added benefit of improving thermal conductivity from the device to the board.

10.2 Layout Example

Top Layer

*W is a trace width. S is a gap between adjacent traces.

图 10-1. DS160PR810 Layout Example - Sub-Section of a PCIe Riser Card With CEM Connectors

11 Device and Documentation Support

11.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.2 Community Resources

11.3 Trademarks

所有商标均为其各自所有者的财产。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

6-Jan-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DS160PR810NJXR	ACTIVE	WQFN	NJX	64	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PR8XX	Samples
DS160PR810NJXT	ACTIVE	WQFN	NJX	64	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PR8XX	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

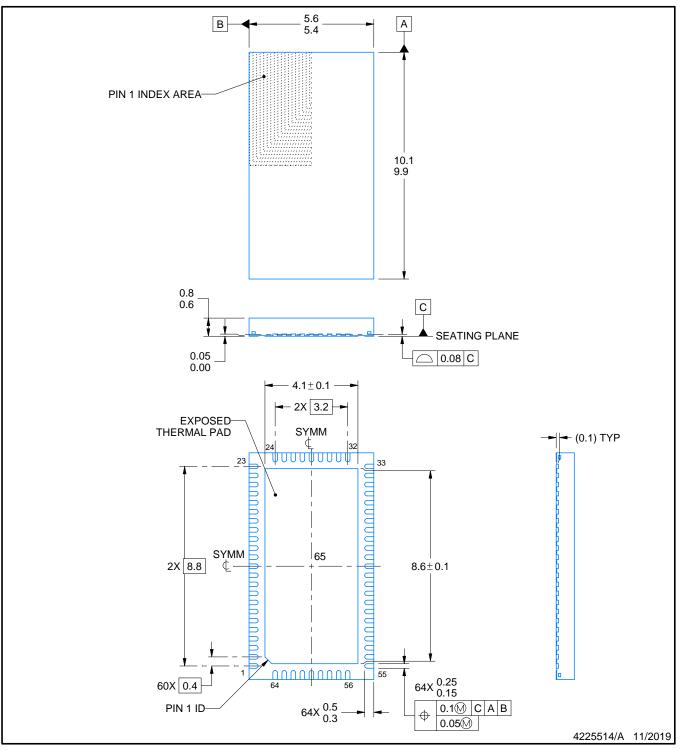
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

6-Jan-2021


NJX0064A

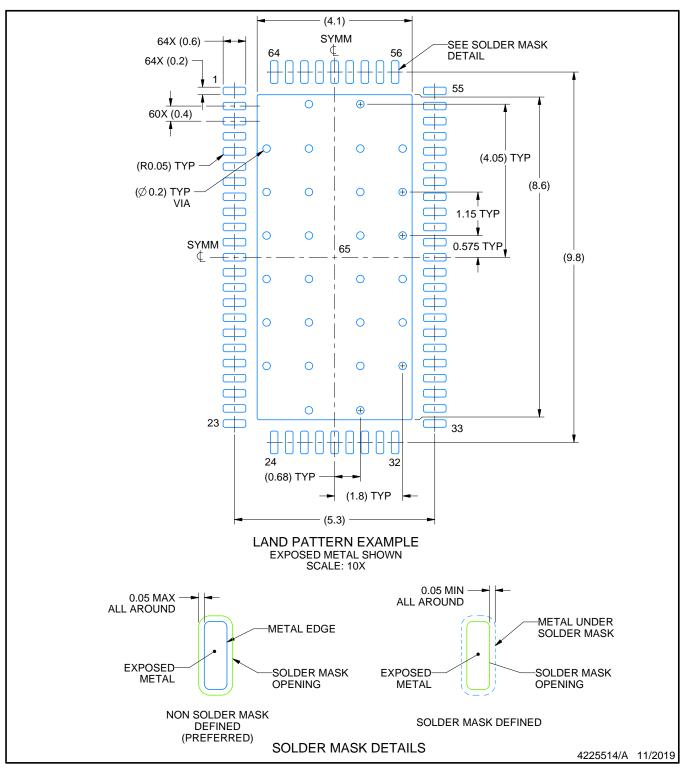
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NJX0064A

EXAMPLE BOARD LAYOUT

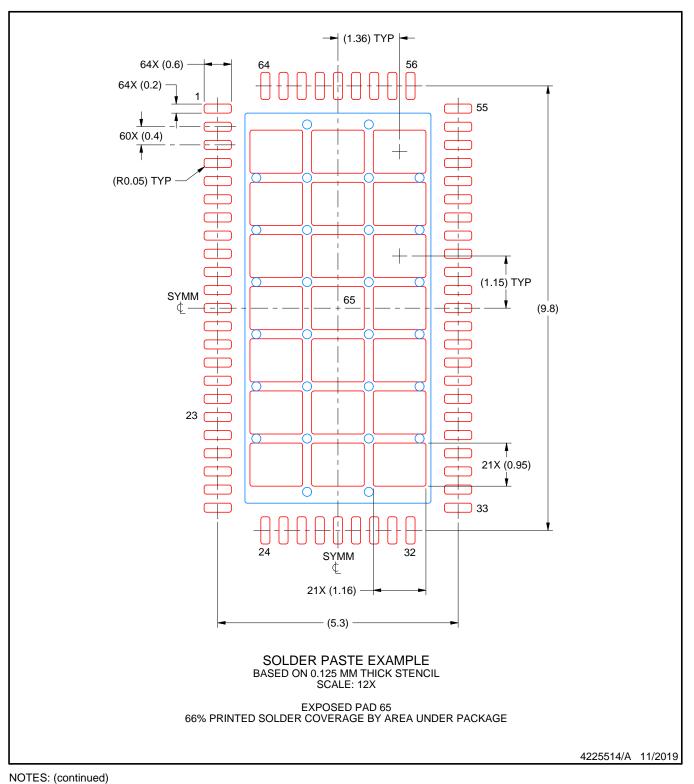
WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



NJX0064A

EXAMPLE STENCIL DESIGN

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司